公告版位

目前日期文章:200704 (1581)

瀏覽方式: 標題列表 簡短摘要
Bewise Inc.   www.tool-tool.com     Reference source from the internet.   
1.机床的安装方式及特点

  机床安装方式主要有刚性连接与弹性连接两种。

表1 刚性连接时部分中小型机床基础的最小厚度参考值

序号
   

机床名称
   

机床质量(t)
   

基础最小厚度(mm)
   

地脚螺栓预留孔深度(mm)

1
   

C3163-1转塔六角车床
   

2.6
   

400
   

320

2
   

C6140普通车床
   

2.0
   

400
   

320

3
   

CW6163普通车床
   

3.7
   

500
   

420

4
   

Z3040摇臂钻床
   

3.5
   

380
   

300

5
   

Z5125A立式钻床
   

1.0
   

320
   

240

6
   

X5030立式铣床
   

2.1
   

450
   

400

7
   

X6132万能铣床
   

2.6
   

450
   

400

8
   

YN3132滚齿机
   

4
   

380
   

300

9
   

M7130平面磨床
   

3.5
   

500
   

420

10
   

B6050牛头刨床
   

1.9
   

430
   

350

11
   

B5032插床
   

3
   

480
   

400

  刚性连接

  机床安装时,在机床底座与混凝土基础之间放置可调整机床水平的刚性垫铁,同时将地脚螺栓放入基础上的预留孔和机床底座的螺栓孔内,先将机床初步调整到水平位置,再将混凝土砂浆灌入基础上的预留孔内,待灌入的混凝土强度达到>80%时,再对机床水平位置进行精确调整,当达到规定的安装水平后,拧紧地脚螺栓上的螺母,将机床和垫铁一起紧固在基础上,并确保不破坏已达到规定的安装水平。

  采用刚性连接的机床一般安装在单独基础(或局部加厚地坪)上,基础的厚度与机床的质量、精度、刚性、外形尺寸、地质资料等因素有关,其最小厚度可由埋入基础内的地脚螺栓长度来确定。一般地脚螺栓预留孔的深度要大于地脚螺栓埋入孔内的长度,基础的最小厚度大于地脚螺栓预留孔的深度。基础的厚度较大。表1列出了部分中小型机床地脚螺栓预留孔的深度和基础最小厚度参考值。

  机床与基础紧固成一整体,可提高机床的刚度,降低机床重心高度和减少机床振动。机床安装和基础施工不方便,安装时间长,增加土建投资。

  弹性连接

  机床安装时,在机床底座与混凝土地坪之间放置可调整机床水平的防振垫铁,并将机床精确地调整到规定的水平位置。机床与防振垫铁之间可以用螺栓紧固或不紧固,机床与地坪之间不紧固,机床安装较刚性连接方便,安装时间短,并具有隔振作用。但刚度、稳定性较差,振动大的机床一般不宜采用简单的弹性连接的方法,可采用带有附加基础件的组合弹性连接,也有较显著效果。

  采用弹性连接的中小型机床均可直接安装在混凝土地坪上。国内曾对76家工厂机床安装在地坪上的情况进行过调查统计,并做了有关的专题试验,提出了可安装在混凝土地坪上的中小型普通机床,其类型、机床质量和对地坪的要求见表2。

  从表2与表1的比较中可见地坪的厚度小于基础的厚度,不需要预留地脚螺栓孔,施工方便,成本低。

表2 中小型普通机床安装在地坪上的要求

机床类型
   

机床质量(t)
   

混凝土地坪厚度(mm)

混凝土垫层强度等级
   

地基土变形模量E0(kPa)

8000
   

20000
   

40000

卧式车床、转塔六角车床、铲齿车床、半自动车床、仿形车床
   

<6
   

C10
   

160
   

140
   

120

摇臂钻床、立式钻床、卧式内拉床
   

<5

外圆磨床、内圆磨床、平面磨床、无心磨床、曲轴磨床
   

<6
   

C15
   

150
   

130
   

110

滚齿机、刨齿机、插齿机、剃齿机
   

<5

立式铣床、卧式铣床、万能铣床
   

<6
   

C20
   

140
   

120
   

100

牛头刨床、插床
   

≤3

  卡盘车床这类刚性好的机床,采用有阻尼的弹性连接时,可改善其动态特性。

表3 最小防振距离动力

动力
设备
   

允许速度(mm/s)
   

0.03
   

0.05
   

0.10
   

0.30
   

0.50

设 备 类 型
   

防 振 距 离 (m)

火车
   

厂外货车(铁路干线)
厂内货车(专用线 )
   

800
300
   

600
200
   

400
100
   

150
35
   

80
20

汽车
   

公路干线柔性路面
刚性路面
城市道路柔性路面
刚性路面
厂区道路柔性路面
刚性路面
   

120
150
80
100
50
65
   

60
100
40
50
25
35
   

35
50
20
25
12
15
   

15
20
10
12
6
8
   

8
10
5
6

4

空压

(活塞
式)
   

7L-100/8
8L—60/8
5L—40/8
4L— 20/8
3L—10/8
   

300
200
150
80
60
   

250
150
100
50
40
   

180
100
50
30
20
   

80
40
30
20
15
   

60
30
20
15
10

冷冻

   

170 系列
125系列
100系列
70系列
   

60
45
30
15
   

40
30
20
10
   

20
15
10
5
   

10
8
5
3
   

5
4
3
2

锻锤
(kN)




   

160
100
50
30
20
10
4-7.5
2.5
   

1200
750
600
450
350
200
150
80
   

1000
650
450
350
250
180
120
60
   

900
550
400
300
220
150
100
50
   

700
400
300
220
180
100
60
40
   

550
300
220
160
120
80
45
30

压力

(kN)




   

5000
3150
2500
1600
1000
630
500
300
≤150
   

280
220
175
125
90
65
50
40
30
   

220
170
140
95
65
45
35
30
20
   

150
110
80
60
40
30
20
15
10
   

65
50
40
30
25
20
15
10
5
   

45
35
30
25
20
15
12
6
3

其它
设备




   

300kN拉力试验机
1000kN拉力试验机
B6 65牛头刨床
B690牛头刨床
6m、8m龙门刨床
8#-12#风机
砂轮机
水 泵
   

80
120
50
80
30
25-30
15
10
   

50
90
30
50
20
20-25
10
5
   

30
50
20
30
15
15-20
8
3
   

15
25
12
18
10
10-15
5

   

10
15
10
12
8
8



表4 精密机床和高精度机床的允许振动值

机 床 类 型
   

允许速度
(mm/s)

5级丝杠车床及螺纹磨床,高精度长刻线机及圆刻线机(精度2μm及1″)
   

0.05

6级丝杠车床、丝杠磨床及螺纹磨床,精密轧辊磨床及大型精密滚齿机
   

0.08

坐标镗床及坐标磨床,高精度外圆磨床和平面磨床,导轨磨床
   

0.16

精密磨床,磨齿机,高精度车床及加工中心
   

0.20

精密卧式镗床,仿形铣床,精密车床及数控车床
   

0.32

数控铣床,精密滚齿机,普通磨床及仿形铣床
   

0.50

  2.防振垫铁的选用

  中小型机床刚性好,移动部件质量小,不需要依靠基础来增加其刚性,除了振动较大和稳定性较差的机床外,一般均可采用弹性连接的方法来安装机床。大型设备和振源型设备采用带有基础组合弹性连接也有良好使用效果。

  影响精密机床正常工作的往往是通过地面土壤和基础传来的外界振动,这种振动随着距离的增加而逐渐衰减,当达到一定的距离后,在无其它隔振措施的情况下,也不会影响精密机床的正常工作,这个距离称为机床的防振距离。

  根据精密机床的允许振动速度,以亚粘土为代表,表3列出了最小防振距离,表4列出了精密机床和高精度机床的允许振动值。

  精密机床的安装位置应尽量远离振源,如确实不能满足最小防振距离要求时,应对其采取隔振措施,使振动的影响控制在允许的范围内。当机床对振动控制要求不高时,可采用防振垫铁进行隔振,隔振效率应根据振源距离的远近和机床对振动控制的要求确定,还应注意要使机床工作时不产生明显的摇晃。否则要采取其他更有效的隔振措施。

  普通机床一般不需要采取隔振措施,采用弹性连接主要是考虑到安装机床方便,节约费用和用于不便于使用刚性连接的场合,如机床上楼等。由于普通机床的类型和加工条件的不同,机床工作时自身振动的情况相差较大,防振垫铁中弹性件的刚度应根据机床工作时振动的大小来决定,振动大的,弹性件的刚度要大些,反之则可小些。但为了避免机床工作时产生明显的摇晃,影响工人操作,防振垫铁上弹性件的刚度宁可取大些。如弹性件的刚度已足够大,机床工作时还要产生明显的摇晃就不宜采用弹性连接,而要采用刚性连接。



Welcome to BW tool world!  We are an experienced tool maker specialized in cutting tools.  We focus on what you need and endeavor to research the best cutter to satisfy users’ demand.  Our customers involve wide range of industries, like mold & die, aerospace, electronic, machinery, ,,,etc.  We are professional expert in cutting field.  We would like to solve every problem from you.  Please feel free to contact us, it’s our pleasure to serve for you.     BW product including: utting tool、aerospace tool .HSS Cutting tool、Carbide end mills、Carbide cutting tool、NAS Cutting tool、Carbide end mill、Aerospace cutting tool、Carbide drill、High speed steel、Milling cutter、Core drill、Taperd end mills、Metric end mills、Miniature end mills、Pilot reamer、Electronics cutter、Step drill、Metal cutting saw、Double margin drill、Gun barrel、Angle milling cutter、Carbide burrs、Carbide tipped cutter、Chamfering tool、IC card engraving cutter、Side cutter、NAS tool、DIN tool、Special tool、Metal slitting saws、Shell end mills、Side and face milling cutters、Side chip clearance saws、Long end mills、Stub roughing end mills、Dovetail milling cutters、Carbide slot drills、Carbide torus cutters、Angeled carbide end mills、Carbide torus cutters、Carbide ball-noseed slot drills、Mould cutter、Tool manufacturer.
Bewise Inc.   www.tool-tool.com

beeway 發表在 痞客邦 PIXNET 留言(0) 人氣()

Bewise Inc.   www.tool-tool.com     Reference source from the internet.   
 1.精密和超精密磨削的技术关键

  在工具和模具制造中,磨削是保证产品的精度和质量的最后一道工序。技术关键除磨床本身外、磨削工艺也起决定性的作用。在磨削脆性材料时,由于材料本身的物理特性,切屑形成多为脆性断裂,磨剂后的表面比较粗糙。在某些应用场合如光学元件,这样的粗糙表面必须进行抛光,它虽能改善工件的表面粗糙度,但由于很难控制形状精度,抛光后经常会降低。为了解决这一矛盾,在80年代末日本和欧美的众多公司和研究机构相继推回了两种新的磨削工艺:塑性磨削(Ductile Grinding)和镜面磨削(Mirror Grinding)。

  (1)塑性磨削 它主要是针对脆性材料而言,其命名来源出自该种工艺的切屑形成机理,即磨削脆性材料时,切屑形成与塑性材料相似,切屑通过剪切的形式被磨粒从基体上切除下来。所以这种磨削方式有时也被称为剪切磨削(Shere Mode Grindins)。由此磨削后的表面没有微裂级形成,也没有脆必剥落时的元规则的凹凸不平,表面呈有规则的纹理。

  塑性磨削的机理至今不十分清楚在切屑形成由脆断向逆性剪切转变为塑断,这一切削深度被称为临界切削深度,它与工件材料特性和磨粒的几何形状有关。一般来说,临界切削深度在100μm以下,因而这种磨削方法也被称为纳米磨削(Nanogrinding)。根据这一理论,有些人提出了一种观点,即塑性磨削要靠特殊磨床来实现。这种特殊磨床必须满足如下要求:

  l)极高的定位精度和运动精度。以免因磨粒的切削深度超过100μm时,导致转变为脆性磨削。

  2)极高的刚性。因为塑性磨削的切削力远超过脆性磨削的水平,机床刚性太低,会因切削力引起的变形而破坏塑性切屑形成的条件。

  对形成塑性磨削的另一种观点认为切削深度不是唯一的因素,只有磨削温度才是切屑由脆性向塑性转变的关键。从理论上讲,当磨粒与工件的接触点的温度高到一定程度时,工件材料的局部物理特性会发生变化,导致了切屑形成机理的变化。作者从实践中找到了支持这种观点的许多证据:比如在一台已经服役20多年的精度和刚度不高的平面磨床上磨削SiC陶瓷,用40O0#的金刚石砂轮。工件表面粗糙度小于Rq5μm,表面上看不到脆断的痕迹。另外德国亚琛工业大学的Konig教授作了如下试验,在普通的车床上,用激光局部加热一个SiN陶瓷试件,即能顺利地进行车削。这些实验均间接地说明温度对切屑形成机理有决定性的影响。

  (2)镜面磨削 顾名思义,它关心的不是切屑形成的机理而是磨削后的工件表面的特性。当磨削后的工件表面反射光的能力达到一定程度时,该磨削过程被称为镜面磨削。镜面磨削的工件材料不局限于脆性材料,它也包括金属材料如钢、铝和钼等。为了能实现镜面磨削,日本东京大学理化研究所的 Nakagawa和Ohmori教授发明了电解在线修整磨削法ELID(Electrolytic In-Process Dressing)。

  镜面磨削的基本出发点是:要达到境面,必须使用尽可能小的磨粒粒度,比如说粒度2μm乃至0.2μm。在ELID发明之前,微粒度砂轮在工业上应用很少,原因是微粒度砂轮极易堵塞,砂轮必须经常进行修整,修整砂轮的辅助时间往往超过了磨削的工作时间。ELID首次解决了仅用微粒度砂轮时,修整与磨削在时间上的矛盾,从而为微粒度砂轮的工业应用创造条件。

  ELID磨削的关键是用与常规不同的砂轮,它的结合剂通常为青铜或铸铁。图1是ELID在平面磨床上应用的原理及实验装置。在使用ELID磨削时,冷却润滑液为一种特殊的电解液。当电极与砂轮之间接上一电压时,砂轮的结合剂发生氧化。在切削力作用下,氧化层脱落从而露出了锋利的磨粒(图2)。由于电解修整过程在磨削时连续进行,所以能保证砂轮在整个磨削过程中保持同一锋利状态。这样既可保证工件表面质量的一致性,又可节约以往修整砂轮时所需的辅助时间。满足了生产率要求。

  ELID磨削方法除适用于金刚石砂轮外,也适用于氮化硼砂轮,应用范围几乎可以覆盖所有的工件材料。它最适合于加工平面,磨削后的工件表面粗糙度可达Rq1nm的水平,即使在可见光范围内,这样的表面确实可以作为镜面来使用。ELID磨削的生产率远远超过常规的抛光加工,故在许多应用场合取代了抛光工序。最典型的例子就是加工各种泵的陶瓷密封圈,传统的工艺是先磨再抛光,采用ELID磨削,只需一道工序,既节约时间又节省投资。

  ELID也被用于加工其他几何形状如球面、柱面和环面等。按镜面的不同要求,可用于部分取代抛光或把抛光的时间降到最低的水平。

  ELID磨削虽有上述优点,但在某些应用场合也有一些缺点。比如在摩削玻璃时,如果采用较大的粒度(2μm),由于砂轮的磨粒连续更替,部分磨粒不断脱离结合剂而成为自由磨粒,这些磨粒在工件与砂轮间作无规则的滚动,个别磨粒会在工件表面上造成局部的无规则的刻痕,其深度有时能超过磨料的半径。图3是一个ELID磨削过的工件表面,若不考虑局部的刻痕,其表面粗糙度已达Rq5nm的水平,但由于这样的刻痕,使工件的抛光量要增加到3-5μm,镜面磨削的应用价值在这种情况下被相应地减弱。

  由此可见,是否要采用镜面磨削,关键在于应用场合。假如个别刻痕不影响工件的使用,镜面磨削可以取代研磨和抛光,并提高生产效率。否则必须综合考虑所有的加工过程以确定最佳的加工工序的组合。
Welcome to BW tool world!  We are an experienced tool maker specialized in cutting tools.  We focus on what you need and endeavor to research the best cutter to satisfy users’ demand.  Our customers involve wide range of industries, like mold & die, aerospace, electronic, machinery, ,,,etc.  We are professional expert in cutting field.  We would like to solve every problem from you.  Please feel free to contact us, it’s our pleasure to serve for you.     BW product including: utting tool、aerospace tool .HSS Cutting tool、Carbide end mills、Carbide cutting tool、NAS Cutting tool、Carbide end mill、Aerospace cutting tool、Carbide drill、High speed steel、Milling cutter、Core drill、Taperd end mills、Metric end mills、Miniature end mills、Pilot reamer、Electronics cutter、Step drill、Metal cutting saw、Double margin drill、Gun barrel、Angle milling cutter、Carbide burrs、Carbide tipped cutter、Chamfering tool、IC card engraving cutter、Side cutter、NAS tool、DIN tool、Special tool、Metal slitting saws、Shell end mills、Side and face milling cutters、Side chip clearance saws、Long end mills、Stub roughing end mills、Dovetail milling cutters、Carbide slot drills、Carbide torus cutters、Angeled carbide end mills、Carbide torus cutters、Carbide ball-noseed slot drills、Mould cutter、Tool manufacturer.
Bewise Inc.   www.tool-tool.com

beeway 發表在 痞客邦 PIXNET 留言(0) 人氣()

Bewise Inc.   www.tool-tool.com     Reference source from the internet.   
1.概述

  1.1 非球面光学零件的作用

  非球面光学零件是一种非常重要的光学零件,常用的有抛物面镜、双曲面镜、椭球面镜等。非球面光学零件可以获得球面光学零件无可比拟的良好的成像质量,在光学系统中能够很好的矫正多种像差,改善成像质量,提高系统鉴别能力,它能以一个或几个非球面零件代替多个球面零件,从而简化仪器结构,降低成本并有效的减轻仪器重量。

  非球面光学零件在军用和民用光电产品上的应用也很广泛,如在摄影镜头和取景器、电视摄像管、变焦镜头、电影放影镜头、卫星红外望远镜、录像机镜头、录像和录音光盘读出头、条形码读出头、光纤通信的光纤接头、医疗仪器等中。

  1.2 国外非球面零件的超精密加工技术的现状

  80年代以来,出现了许多种新的非球面超精密加工技术,主要有:

  计算机数控单点金刚石车削技术、计算机数控磨削技术、计算机数控离子束成形技术、计算机数控超精密抛光技术和非球面复印技术等,这些加工方法,基本上解决了各种非球面镜加工中所存在的问题。前四种方法运用了数控技术,均具有加工精度较高,效率高等特点,适于批量生产。

  进行非球面零件加工时,要考虑所加工零件的材料、形状、精度和口径等因素,对于铜、铝等软质材料,可以用单点金刚石切削(SPDT)的方法进行超精加工,对于玻璃或塑料等,当前主要采用先超精密加工其模具,而后再用成形法生产非球面零件,对于其它一些高硬度的脆性材料,目前主要是通过超精密磨削和超精密研磨、抛光等方法进行加工的,另外,还有非球面零件的特种加工技术如离子束抛光等。

  国外许多公司己将超精密车削、磨削、研磨以及抛光加工集成为一体,并且研制出超精密复合加工系统,如 Rank Pneumo公司生产的Nanoform300、Nanoform250、CUPE研制的Nanocentre、日本的AHN60―3D、 ULP一10OA(H)都具有复合加工功能,这样可以便非球面零件的加工更加灵活。

  1.3 我国非球面零件超精密加工技术的现状

  我国从80年代初才开始超精密加工技术的研究,比国外整整落后了20年。近年来,该项工作开展较好的单位有北京机床研究所、中国航空精密机械研究所、哈尔滨工业大学、中科院长春光机所应用光学重点实验室等。

  为更好的开展对此项超精密加工技术的研究,国防科工委于1995年在中国航空精密机械研究所首先建立了国内第一个从事超精密加工技术研究的重点实验室。

  2.非球面零件超精密切削加工技术

  美国Union Carbide公司于1972年研制成功了R―θ方式的非球面创成加工机床。这是一台具有位置反馈的双坐标数控车床,可实时改变刀座导轨的转角θ和半径R,实现非球面的镜面加工。加工直径达φ380mm,加工工件的形状精度为±0.63μm,表面粗糙度为Ra0.025μm。

  摩尔公司于1980年首先开发出了用3个坐标控制的M―18AG非球面加工机床,这种机床可加工直径356mm的各种非球面的金属反射镜。

  英国Rank Pneumo公司于1980年向市场推出了利用激光反馈控制的两轴联动加工机床(MSG―325),该机床可加工直径为350mm的非球面金属反射镜,加工工件形状精度达0.25-0.5μm,表面粗糙度Ra在0.01- 0.025μm之间。随后又推出了ASG2500、ASG2500T、Nanoform300等机床,该公司又在上述机床的基础上,于1990年开发出 Nanoform600,该机床能加工直径为600mm的非球面反射镜,加工工件的形状精度优于0.1μm,表面粗糙度优于0.01μm。

  代表当今员高水平的超精密金刚石车床是美国劳伦斯.利弗莫尔(LLNL)实验室于1984年研制成功的 LODTM,它可加工直径达2100mm,重达4500kg的工件其加工精度可达0.25μm,表面粗糙度Ra0.0076μm,该机床可加工平面、球面及非球面,主要用于加工激光核聚变工程所需的零件、红外线装置用的零件和大型天体反射镜等。

  英国Cranfield大学精密工程研究所(CUPE)研制的大型超精密金刚右镜面切削机床,可以加工大型  X射线天体望远镜用的非球面反射镜(最大直径可达1400mm,最大长度为600mm的圆锥镜)。该研究所还研制成功了可以加工用于 X射线望远镜内侧回转抛物面和外侧回转双曲面反射镜的金刚石切削机床。

  日本开发的超精密加工机床主要是用于加工民用产品所需的透镜和反射镜,目前日本制造的加工机床有:东芝机械研制的ULG―l0OA(H)不二越公司的ASP―L15、丰田工机的AHN10、AHN30×25、AHN60―3D非球面加工机床等。

  3.非球面零件超精密磨削加工技术

  3.1 非球面零件超精磨削装置

  英国Rank Pneumo公司1988年开发了改进型的ASG2500、ASG2500T、 Nanoform300机床,这些机床不仅能够进切削加工,而且也可以用金刚石砂轮进行磨削,能加工直径为300mm的非球面金属反射镜,加工工件的形状精度为0.3-0.16μm,表面粗糙度达Ra0.01μm。最近又推出Nanoform250超精密加工系统,该系统是一个两轴超精密CNC机床,在该机床上既能进行超精密车削又能进行超扬密磨削.还能进行超精密抛光。最突出的特点是可以直接磨削出能达到光学系统要求的具有光学表面质量和面型精度的硬脆材料光学零件。该机床采用了许多先进的Nanoform600、Optoform50设计思想,机床最大加工工件直径达250mm,它通过一个升高装置使机床的最大加工工件直径达到450mm,另外通过控制垂直方向的液体静压导轨(Y轴)还能磨削非轴对称零件,机床数控系统的分辨率达0.001μm,位置反馈元件采用了分辨率为8.6nm的光栅或分辨率为1.25nm的激光干涉仪,加工工件的面型精度达0.25μm,表面粗糙度优于Ra0.01μm。

  Nanocentre250、Nanocentre600是一种三轴超精密CNC非球面范成装置,它可以满足单点和延性磨削两个方面的使用要求,通过合理化机床结构设计、利用高刚度伺服驱动系统和液体静压轴承使机床具有较高的闭环刚度, x和Z轴的分辨率为 1.25nm,这个机床被认为是符合现代工艺规范的。

  CUPE生产的Nanocentre非球面光学零件加工机床,加工直径达600mm.面型精度优于 0.1μm,表面粗糙度优于Ra0.01μm。CUPE还为美国柯达公司研究、设计和生产了当今世界上最大的超精密大型CNC光学零件磨床 “OAGM2500”,该机床主要用于光学玻璃等硬脆材料的加工,可加工和测量2.5m×2.5m×0.61m的工件,它能加工出2m见方的非对称光学镜面,镜面的形状误差仅为1μm。

  日本丰田工机研制的AHN60―3D是一台CNC三维截形磨削和车削机床,它能在X、Y、和Z三轴控制下磨削和车削轴向对称形状的光学零件,可以在X、Y和Z轴二个半轴控制下磨削和车削非轴对称光学零件,加工工件的截形精度为0.35unl,表面粗糙度达 Ra0.016μm。另外东芝机械研制的ULG―10OA(H)超精密复合加工装置,它用分别控制两个轴的方法,实现了对非球面透镜模具的切削和磨削,其 X轴和Z轴的行程分别为150mm和100mm,位置反馈元件是分辨率为0.01μm的光栅。

  3.2 非球面光学零件的ELID镜面磨削技术

  日本学者大森整等人从1987年对超硬磨料砂轮进行了研究,开发了使用电解In Process Dressing(ELID)的磨削法,实现了对硬脆材料高品位镜面磨削和延性方式的磨削,现在该方法己成功的应用于球面、非球面透镜、模具的超精密加工。

  ① ELID镜面磨削原理

  ELID磨削系统包括:金属结合剂超微细粒度超硬磨料砂轮、电解修整电源、电解修整电极、电解液(兼作磨削液)、接电电刷和机床设备。磨削过程中,砂轮通过接电电刷与电源的正极相接,安装在机床上的修整电极与电源的负极相接,砂轮和电极之间浇注电解液,这样,电源、砂轮、电极、砂轮和电极之间的电解液形成一个完整的电化学系统。

  采用ELID磨削时,对所用的砂轮、电源、电解液均有一些特殊要求。

  要求砂轮的结合剂有良好的导电性和电解性、结合剂元素的氢氧化物或氧化物不导电,且不溶于水,ELID磨削使用的电源,可以采用电解加工的直流电源或采用各种波形的脉冲电源或直流基量脉冲电源。在ELID磨削过程中,电解液除作为磨削液外,还起着降低磨削区温度和减少摩撩的作用,ELID磨削一般采用水溶性磨削液,全属基结合剂砂轮的机械强度高,通过设定合适的电解量,砂轮磨损小。同时能得到高的形状精度。应用这个原理,能实现从平面到非球面,各种形状的光学元件的超精密镜面磨削。

  ②ELID镜面磨削实验系统

  在Rank Pneumo公司的ASG―2500T机床上,装上由砂轮、电源、电极、磨削液等组成大森整 ELID系统毛坯粗成形加工时使用400#、半精加工时使用1000#或2000#、作镜面磨削时使用4000#(平均粒径约为4μm)或8000#(平均粒径约为2μm)的铸铁结合剂金刚石砂轮,电解修锐电源(ELID电源),使用的是直流高频脉冲电压式专用电源,工作电压为60V,电流为l0A。所用的磨削液,使用时要求用纯水将水溶性磨削液AFH―M和CEM稀释50倍。

  ③ ELID镜面磨削实验方法和实验结果

  作非球面加工时,通过安装在工件轴上的碗形砂轮(325#铸铁结合剂金刚石砂轮为φ30×W2mm)进行平砂轮的只成形体整,作10min的电解初期修锐之后,经过400#的粗磨和1000#的半精加工,最后再用4000#进行 ELID镜面磨削,在超精密非球面加工机床上,借助ELID磨削技术,成功地加工出了光学玻璃BK―7非球面透镜。面型精度达到优于0.2μm,表面粗糙度达Ra20nm,而对于稍软如 LASFN30和Ge等材料的非球面加工,同样能达到面型精度优于0.2-0.3μm,表面粗糙度达Ra30nm。

  4.非球面零件的超精密抛光(研磨)技术

  超精密抛光是加工速度极慢的一种加工方法。不适合形状范成法加工,近年来,由于短波长光学元件、OA仪器和 AV机器等的飞速发展,对零件的表面粗糙度提出了更高的要求,到目前为止还没有比超精密抛光更好的实用的方法,尤其当零件的表面粗糙度要求优于 0.0lμm时,这种方法是不可缺少的,对形状精度要求很高的工件,如果采用强制进给的方法进行切削或进行磨削时,其形状精度将直接受到机床进给定位精度的影响,达到所在反应,并由此引起的加工作用,在工件表面上存在同样微小凹的部分,在一般情况下,只能获得波纹起伏较大的表面。

  日本大阪大学工学部森勇芷教授等人利用EEM开发了一种三轴(x、z、C)数控光学表面范成装置,利用该装置加工时,一边在工件表面上控制聚胺脂球的滞留时间,一边用聚胺脂球扫描加工对象的物全领域,利用该装置能加工高精度的任意曲面。

  5.非球面零件等离子体的CVM(Chemical Vap0rizati0n Machining)技术

  目前广泛采用的切削、研磨、抛光等机械加工方法,由于加工材料中存在微细裂纹或结晶中的品格缺陷等原因,无论怎样提高加工精度,改进加工装置,总存在一定的局限性,为此,日本大阪大学工学部森勇正教授提出了一种用化学气体加工的新的加工工艺方法,称为等离子CVM法,这是一种利用原子化学反应,获得超精密表面的一种技术,其加工原理和等离子体刻蚀一样,在等离子体中,被激活的游离基和工件表面原于起反应,将之变成挥发性分子,并通过气体蒸发实现加工的,在高压力下所产生的等离子体,能够生成密度非常高的游离基,所以这种加工方法能达到与机械加工方法相匹敌的加工速度。

  在高压力下,由于气体分子的平均自由行程极小,等离子体局限在电极附近。所以可以通过电极扫描,加工出0.01μm精度的任意形状的零件,另外可以以50μm/min的速度加工单晶硅平面,加工工件的表面粗糙度可达0.1nm(Rrms)。

  下个世纪,在硅芯片加工和半导体曝光装置用的非球面透镜加工等很多领域中,将应用CVM技术,当前有人正在研究通过CVM和EEM的组合,加工同步加速器用的X射线反射镜等原子级平坦的任意曲面。

  6.非球面零件复制技术

  用控制除去厚度的抛光(研磨)方法能够制造出高精度的非球面零件,但和一般的光学零件加工方法相比,这种方法的加工效率很低,解决这个问题的方法之一有复制技术,即塑料注射成形和玻璃的模压成形技术,这种技术能够制造一部分非球面透镜。塑料透镜注射成形是将熔化的树脂注入模具内,一边施加压力,一边冷却固化的加工方法,这种方法能够进行廉价、大批量生产,但存在塑料自身的某些问题,如温度变化、吸湿导致透镜折射率的变化。

  玻璃的模压成形是代替切削、磨削、研磨加工透镜、棱镜的最佳的小型零件大批量生产方法。模压成形技术是将模具内的温度控制在冲压的玻璃转移温度以上,软化温度以下,在模具内,进入有流动性的玻璃,加压成形,并且保持这种状态20s以上,直到成形了的玻璃温度分布均匀化,将模具的形状精度作到0.1μm,表面粗糙度作到0.01μm以下,在上述条件下加压成形,能加工出和模具精度相近的零件。



Welcome to BW tool world!  We are an experienced tool maker specialized in cutting tools.  We focus on what you need and endeavor to research the best cutter to satisfy users’ demand.  Our customers involve wide range of industries, like mold & die, aerospace, electronic, machinery, ,,,etc.  We are professional expert in cutting field.  We would like to solve every problem from you.  Please feel free to contact us, it’s our pleasure to serve for you.     BW product including: utting tool、aerospace tool .HSS Cutting tool、Carbide end mills、Carbide cutting tool、NAS Cutting tool、Carbide end mill、Aerospace cutting tool、Carbide drill、High speed steel、Milling cutter、Core drill、Taperd end mills、Metric end mills、Miniature end mills、Pilot reamer、Electronics cutter、Step drill、Metal cutting saw、Double margin drill、Gun barrel、Angle milling cutter、Carbide burrs、Carbide tipped cutter、Chamfering tool、IC card engraving cutter、Side cutter、NAS tool、DIN tool、Special tool、Metal slitting saws、Shell end mills、Side and face milling cutters、Side chip clearance saws、Long end mills、Stub roughing end mills、Dovetail milling cutters、Carbide slot drills、Carbide torus cutters、Angeled carbide end mills、Carbide torus cutters、Carbide ball-noseed slot drills、Mould cutter、Tool manufacturer.
Bewise Inc.   www.tool-tool.com

beeway 發表在 痞客邦 PIXNET 留言(0) 人氣()

Bewise Inc.   www.tool-tool.com     Reference source from the internet.   
目前金属切削FMS的加工对象主要有两类工件:棱柱体类(包括箱体形、平板形)和回转体类(长轴形、盘套形)。对加工系统而言,通常用于加工棱柱体类工件的 FMS由立、卧式加工中心,数控组合机床(数控专用机床、可换主轴箱机床、模块化多动力头数控机床等)和托盘交换器等构成;用于加工回转体类工件的FMS 由数控车床、车削中心、数控组合机床和上下料机械手或机器人及棒料输送装置等构成。

  因为棱柱体类工件的加工时间较长,且工艺复杂,为实现夜间无人值守自动加工,加工棱柱体类工件的FMS首先得到了发展。小型FMS的加工系统多由4~6台机床构成,这些数控加工设备在FMS中的配置有互替形式(并联)、互补形式(串联)和混合形式(并串联)三种,见表1。应该说明,这些配置主要取决于机床功能、FMS的物料流和信息流,而并非取决于加工设备的物理布局。

表1 机床配置形式与特征比较

  FMS的加工系统原则上应是可靠的、自动化的、高效的、易控制的,其实用性、匹配性和工艺性好,能满足加工对象的尺寸范围、精度。材质等要求。因此在选用时应考虑:

  工序集中。如选用多功能机床、加工中心等,以减少工位数和减轻物流负担,保证加工质量。

  控制功能强、扩展性好。如选用模块化结构,外部通信功能和内部管理功能强,有内装可编程序控制器,有用户宏程序的数控系统,以易于与上下料、检测等辅助装置连接和增加各种辅助功能,方便系统调整与扩展,以及减轻通信网络和上级控制器的负载。

  高刚度、高精度、高速度。选用切削功能强,加工质量稳定,生产效率高的机床。

  使用经济性好。如导轨油可回收,断、排屑处理快速、彻底等,以延长刀具使用寿命。节省系统运行费用,保证系统能安全、稳定、长时间无人值守而自动运行。

  操作性、可靠性、维修性好。机床的操作、保养与维修方便,使用寿命长。

  自保护性、自维护性好。如设有切削力过载保护、功率过载保护、行程与工作区域限制等。导轨和各相对运动件等无须润滑或能自动加注润滑,有故障诊断和预警功能。

  对环境的适应性与保护性好。对工作环境的温度、湿度、噪声、粉尘等要求不高,各种密封件性能可靠、无渗漏,冷却液不外溅,能及时排除烟雾、异味,噪声、振动小,能保护良好的生产环境。

  其他。如技术资料齐全,机床上的各种显示、标记等清楚,机床外形、颜色美观且与系统协调。



Welcome to BW tool world!  We are an experienced tool maker specialized in cutting tools.  We focus on what you need and endeavor to research the best cutter to satisfy users’ demand.  Our customers involve wide range of industries, like mold & die, aerospace, electronic, machinery, ,,,etc.  We are professional expert in cutting field.  We would like to solve every problem from you.  Please feel free to contact us, it’s our pleasure to serve for you.     BW product including: utting tool、aerospace tool .HSS Cutting tool、Carbide end mills、Carbide cutting tool、NAS Cutting tool、Carbide end mill、Aerospace cutting tool、Carbide drill、High speed steel、Milling cutter、Core drill、Taperd end mills、Metric end mills、Miniature end mills、Pilot reamer、Electronics cutter、Step drill、Metal cutting saw、Double margin drill、Gun barrel、Angle milling cutter、Carbide burrs、Carbide tipped cutter、Chamfering tool、IC card engraving cutter、Side cutter、NAS tool、DIN tool、Special tool、Metal slitting saws、Shell end mills、Side and face milling cutters、Side chip clearance saws、Long end mills、Stub roughing end mills、Dovetail milling cutters、Carbide slot drills、Carbide torus cutters、Angeled carbide end mills、Carbide torus cutters、Carbide ball-noseed slot drills、Mould cutter、Tool manufacturer.
Bewise Inc.   www.tool-tool.com

beeway 發表在 痞客邦 PIXNET 留言(0) 人氣()

Bewise Inc. www.tool-tool.com Reference source from the internet.
钛合金材料由于其密度小,比强度高,耐高温,抗氧化性能好等特点,应用广泛。但钛合金机械加工性能差,影响了该材料的广泛使用。

  钛合金即在工业纯钛中加入合金元素,以提高钛的强度。钛合金可分三种:a钛合金,b钛合金和a+b钛合金。a+b钛合金是由a和b双相组成,这类合金组织稳定,高温变形性能、韧性、塑性较好,能进行淬火、时效处理,使合金强化。钛合金的性能特点主要表现在:

  比强度高。钛合金密度小(4.4kg/dm3)重量轻,但其比强度却大于超高强度钢。

  热强性高。钛合金的热稳定性好,在300-500℃条件下,其强度约比铝合金高10倍。

  化学活性大。钛可与空气中的氧、氮、一氧化碳、水蒸气等物质产生强烈的化学反应,在表面形成TiC及TiN硬化层。

  导热性差。钛合金导热性差,钛合金TC4在200℃时的热导率l=16.8W/m·℃,导热系数是0.036卡/厘米·秒·℃。

  钛合金机加工特性分析

   首先,钛合金导热系数低,仅是钢的1/4,铝的1/13,铜的1/25。因切削区散热慢,不利于热平衡,在切削加工过程中,散热和冷却效果很差,易于在 切削区形成高温,加工后零件变形回弹大,造成切削刀具扭矩增大、刃口磨损快,耐用度降低。其次,钛合金的导热系数低,使切削热积于切削刀附近的小面积区域 内不易散发,前刀面摩擦力加大,不易排屑,切削热不易散发,加速刀具磨损。最后,钛合金化学活性高,在高温下加工易与刀具材料起反应,形成溶敷、扩散,造 成粘刀、烧刀、断刀等现象。

  钛合金在加工中心上的铣削案例分析

  零件的结构形式,见图1。该零件的特点是:

图1 零件外形尺寸

  形状较复杂,精度要求高。

  加工过程中必须进行多种工序加工。

  必须严格控制零件公差范围。

  价格昂贵,加工成本高。

  加工中心加工钛合金特点

  加工中心可以多个零件同时加工,提高生产效率。

  提高零件的加工精度,产品一致性好。加工中心有刀具补偿功能,可以获得机床本身的加工精度。

  有广泛的适应性和较大的灵活性。如本零件的圆弧加工、倒角和过渡圆角。

  可以实现一机多能。加工中心可以进行铣削、钻孔、镗孔、攻丝等一系列加工。

  可以进行精确的成本计算,控制生产进度。

  不需要专用夹具,节约大量成本经费,缩短生产周期。

  大大减轻了工人的劳动强度。

  可以与UG等加工软件进行多轴加工。

  刀具材料的选择

  刀具材料选用应满足下列要求:

  足够的硬度。刀具的硬度必须要远大于钛合金硬度。

  足够的强度和韧性。由于刀具切削钛合金时承受很大的扭矩和切削力,因此必须有足够的强度和韧性。

  足够的耐磨性。由于钛合金韧性好,加工时切削刃要锋利,因此刀具材料必须有足够的抗磨损能力,这样才能减少加工硬化。这是选择加工钛合金。

  刀具最重要的参数

  刀具材料与钛合金亲合能力要差。由于钛合金化学活性高,因此要避免刀具材料和钛合金形成溶敷、扩散而成合金,造成粘刀、烧刀现象。

  经过对国内常用刀具材料和国外刀具材料进行试验表明,采用高钴刀具效果理想,钴的主要作用能加强二次硬化效果,提高红硬性和热处理后的硬度,同时具有较高的韧性、耐磨性、良好的散热性。

  铣刀的几何参数

  钛合金的加工特性决定刀具的几何参数与普通刀具存在着较大区别。

  螺旋角b

  选择较小的螺旋升角,排屑槽增大,排屑容易,散热快,同时也减小切削加工过程中的切削抗力。

  前角g

  切削时刃口锋利,切削轻快,避免钛合金产生过多切削热,从而避免产生二次硬化。

  后角a

  减小刀刃的磨损速度,有利于散热,耐用度也得到很大程度的提高。

  切削参数选择

  钛合金机加工应选择较低的切削速度,适当大的进给量,合理的切深和精加工量,冷却要充分。

  切削速度Vc

  Vc=30-50m/min

  进给量f

  粗加工时取较大进给量,精加工和半精加工取适中的进给量。

  切削深度ap

  ap=1/3d为宜,钛合金亲合力好,排屑困难,切削深度太大,会造成刀具粘刀、烧刀、断裂现象。

  精加工余量ac适中

  钛合金表面硬化层约0.1-0.15mm,余量太小,刀刃切削在硬化层上,刀具容易磨损,应该避免硬化层加工,但切削余量不宜过大。

  冷却液

  钛合金加工最好不用含氯的冷却液,避免产生有毒物质和引起氢脆,也能防止钛合金高温应力腐蚀开裂。

  选用合成水溶性乳化液,也可自配用冷却液。

  切削加工时冷却液要保证充足,冷却液循环速度要快,切削液流量和压力要大,加工中心都配有专用冷却喷嘴,只要注意调整就能达到预期的效果。

  通过对钛合金的特性分析,解决了钛合金切削加工过程中存在的难题;通过编制正确、科学的加工工艺,可以降低成本,提高生产效率,得出如下结论:

  用加工中心精加工钛合金,满足了零件形状复杂,高精度的要求,且可多件同时加工,提高生产效率。

  高钴刀具材料是钛合金理想的加工刀具。

  选择合理的刀具几何参数、切削参数、冷却液,可以延长切削刀具寿命,提高生产效率。

  安排出合理科学的工艺规程是提高效益、节约成本的最佳方法。



Welcome to BW tool world! We are an experienced tool maker specialized in cutting tools. We focus on what you need and endeavor to research the best cutter to satisfy users’ demand. Our customers involve wide range of industries, like mold & die, aerospace, electronic, machinery, ,,,etc. We are professional expert in cutting field. We would like to solve every problem from you. Please feel free to contact us, it’s our pleasure to serve for you. BW product including: utting tool、aerospace tool .HSS Cutting tool、Carbide end mills、Carbide cutting tool、NAS Cutting tool、Carbide end mill、Aerospace cutting tool、Carbide drill、High speed steel、Milling cutter、Core drill、Taperd end mills、Metric end mills、Miniature end mills、Pilot reamer、Electronics cutter、Step drill、Metal cutting saw、Double margin drill、Gun barrel、Angle milling cutter、Carbide burrs、Carbide tipped cutter、Chamfering tool、IC card engraving cutter、Side cutter、NAS tool、DIN tool、Special tool、Metal slitting saws、Shell end mills、Side and face milling cutters、Side chip clearance saws、Long end mills、Stub roughing end mills、Dovetail milling cutters、Carbide slot drills、Carbide torus cutters、Angeled carbide end mills、Carbide torus cutters、Carbide ball-noseed slot drills、Mould cutter、Tool manufacturer.
Bewise Inc. www.tool-tool.com

beeway 發表在 痞客邦 PIXNET 留言(0) 人氣()

1)切削刀具数据库 根据ISO标准,刀片参数包括刀片类型,切削边长度,刀尖圆弧半径,切削边的数量和刀片的成本。刀杆的参数包括刀杆的类型,刀片在刀杆上的夹持方式,切削边的长度、刀杆的直径,所能加工孔的最小直径,刀片切削边的角度和刀杆的成本。根据这个数据库,在加工时就可以选择合适的刀片和刀杆。

  2)切削用量数据库 切削用量数据库采用瑞典Sandvik Coromant公司提供的工艺参数。它包括零件的材料、进给量、切削速度,刀片硬质合金的牌号等。

  3)加工中心数据库 包括机床型号、在机床上所要加工零件的最大总体尺寸,进给量和主轴转速取值范围,机床功率和机床运行时每分钟的费用等。

  镗削加工工艺优化程序框图如图1所示,其中:ITbk为毛坯的精度等级;ITwp为工件的精度等级。

图1

  优化所需的原始数据是:零件的轮廓尺寸、材料、硬度,基本加工表面的直径和长度,总的加工余量,毛坯的精度等级和表面粗糙度,零件被加工成的基本加工表面的精度等级和表面粗糙度。

  瑞典Sandvik Coromant公司的数据基本上能满足切削用量优化的条件,但还存在以下不足。

  1)公司的数据是建立在切削刀具工作耐用度为15min这个基础上的,这仅在个别的情况是对的;

  2)没有给出选择切削深度的方法,这使得分配整个加工余量到每一工步中去变得复杂了;

  3)在选择切削速度时没有考虑切削刀具可靠性这一重要因素;

  4)没有考虑主偏角对切削速度的影响等等。

  以上不足之处本系统中都给予了应有的重视。

  程序运行的下一步,是输出加工顺序和总加工余量在每一工步中的分配量。应该注意的是,在加工中心上加工时,总的加工余量要比普通机床上加工时的余量少20%-40%。镗削加工的类型有:粗镗、半精镗、精镗,根据毛坯和零件的精度等级,可选用某种加工方法或其中几种方法的结合。加工余量通常是根据实际经验分配到每一个工步中去。例如:在镗削加工中,粗镗加工余量占总余量的70%,半精镗占20%,最后精镗所剩部分。如果要求一步镗削加工完毕,那么在这一步中总的加工余量,将被加工掉。

  确定了加工步骤,每一工步的加工余量之后,就对每一加工步骤的镗削参数进行优化。首先应该选择刀具,刀具包括刀片和刀杆。刀片类型选择是根据刀具切削边长度和刀尖半径而定的。进给量是根据刀尖半径和加工表面粗糙度确定的。刀片的选择与所加工零件的材料、硬度以及进给量有关。切削速度的确定与刀具的工作耐用度有关。对每种切削速度和刀具的工作耐用度来说有一个相应的加工费用,相对于费用最少的切削参数就是最优的。

  最后,校验所选用的切削用量,如果检验结果满意,就可以认为得到的优化切削用量是可用的。

  使用本程序对镗削加工用量进行优化,可以使加工箱体零件精密孔的费用降低。

图2是镗Ø60H7孔的优化结果的实例。

  刀片规格:T-MAX.U.TCMM16T312-52;刀杆:S25T-STFCR/L16-M;切削深度:a=0.21mm;进给量:s= 0.12m/r;优化速度:v=210.0min;刀个耐用度:T=6-min;主轴转速:N=700r/nin;工步成本:C=1.3859美元。

  以上所得到的结果都建立在ISO标准基本之上,推广使用十分方便。



Welcome to BW tool world!  We are an experienced tool maker specialized in cutting tools.  We focus on what you need and endeavor to research the best cutter to satisfy users’ demand.  Our customers involve wide range of industries, like mold & die, aerospace, electronic, machinery, ,,,etc.  We are professional expert in cutting field.  We would like to solve every problem from you.  Please feel free to contact us, it’s our pleasure to serve for you.     BW product including: utting tool、aerospace tool .HSS Cutting tool、Carbide end mills、Carbide cutting tool、NAS Cutting tool、Carbide end mill、Aerospace cutting tool、Carbide drill、High speed steel、Milling cutter、Core drill、Taperd end mills、Metric end mills、Miniature end mills、Pilot reamer、Electronics cutter、Step drill、Metal cutting saw、Double margin drill、Gun barrel、Angle milling cutter、Carbide burrs、Carbide tipped cutter、Chamfering tool、IC card engraving cutter、Side cutter、NAS tool、DIN tool、Special tool、Metal slitting saws、Shell end mills、Side and face milling cutters、Side chip clearance saws、Long end mills、Stub roughing end mills、Dovetail milling cutters、Carbide slot drills、Carbide torus cutters、Angeled carbide end mills、Carbide torus cutters、Carbide ball-noseed slot drills、Mould cutter、Tool manufacturer.
Bewise Inc.   www.tool-tool.com

beeway 發表在 痞客邦 PIXNET 留言(0) 人氣()

Bewise Inc. www.tool-tool.com Reference source from the internet.
1.前言

   颗粒增强铝合金复合材料,其价格低廉,性能优良,生产工艺简单,成为新材料研究的一个重要领域和发展方向。特别是颗粒增强铸造铝合金复合材料,其性能可 用选择不同的基体合金,改变加入物的数量、大小和分布来进行调整。由于硬的碳化硅等颗粒分布在较软的铝合金基体中,使复合材料的切削加工性能同基体合金差 别较大。目前用刀具切削仍然是金属基复合材料的重要加工方法,研究复合材料的切削加工性能对保证零件的加工质量,降低生产成本,提高生产效率等有着非常重 要的意义。但颗粒增强铸造铝合金复合材料切削加工性能的研究报导很少。影响材料切削加工性能的因素较多,而材料对刀具的磨损速度及工件表面的粗造度是表征 其切削加工性能的重要方面。本文用硬质合金YG6和高速钢W18Cr4V为切削刀具,研究了碳化硅颗粒增强ZL201合金复合材料的切削加工性能,探讨了 切削加工机理,以便为正确制定颗粒增强铸造铝合金复合材料的切削加工工艺提供依据。

  2.试验方法

  复合材料用熔体 搅拌法制取,基体合金及复合材料用金属模浇铸成40mm坯料,基体合金为ZL201,试样经淬火+完全人工时效处理。碳化硅颗粒平均直径为14µm和 80µm,选用四种复合材料进行试验:5%SiC-wt(14µm)、10%SiC-wt(14µm)、5%SiC-wt (80µm)、10%SiC-wt(80µm)。

  切削刀具选用硬质合金YG6和高速钢W18Cr4V车刀。刀具几何参数为g=6°,a=8°,Kr=90°,K′r=15°,ls=0°。

   在C6132普通车床上进行干切削试验。选用两组参数: ① vc=28m/min,ap=0.4mm,f=0.2mm/r。② vc= 72m/min,ap=0.2mm,f=0.1mm/r。用读数显微镜测量车刀后刀面的磨损值VB,用JSG—1型光切法显微镜测量复合材料己加工表面的 粗糙度。

  3.试验结果及讨论

  碳化硅颗粒尺寸对切削性能的影响

  在不同的切削参数条件下,用硬 质合金和高速钢刀具切削复合材料和基体合金。试验材料对刀具后刀面的磨损曲线如图1、图2所示。可见无论是高速钢还是硬质合金刀具,在相同切削参数下,复 合材料对其后刀面的磨损量均比基体合金大。为了比较不同复合材料对刀具后刀面的磨损速度,把图中曲线进行一元线性回归处理,其回归方程的斜率即为该曲线对 应复合材料对刀具的磨损速度(mm/min)。

曲线的回归方程为:

曲线1:VB=0.012+0.061t
曲线2:VB=0.017+0.034t
曲线3:VB=0.018+0.018t
曲线4:VB=-0.0145+0.013t
(a)

曲线的回归方程为:

曲线1:VB=0.028+0.082t
曲线2:VB=0.007+0.042t
曲线3:VB=0.0216t
曲线4:VB=-0.0038+0.0148t
(b)

  1-10%SiC(80µm), 2-5%SiC(80µm), 3-10%SiC(14µm), 4-5%SiC(14µm), 5-ZL201

图1 高速钢刀具后刀面磨损曲线



曲线回归方程为:

曲线1:VB=0.015+0.045t
曲线2:VB=0.0015+0.0285t
曲线3:VB=-0.022+0.0152t
曲线4:VB=-0.027+0.0096t
(a)



曲线回归方程为:
曲线1:VB=0.0012+0.058t
曲线2:VB=0.030+0.030t
曲线3:VB=0.015+0.0169t
曲线4:VB=-0.015+0.0116t
(b)

1-10%SiC(80µm), 2-5%SiC(80µm), 3-10%SiC(14µm), 4-5%SiC(14µm), 5-ZL201
图2 硬质合金刀具后刀面磨损曲线

   比较各图曲线1、3和2、4的回归方程斜率可知,碳化硅颗粒尺寸越大,复合材料对刀具后刀面的磨损速度也越快。特别是高速钢切削10%SiC (80µm)复合材料时,刀具磨损很快,切削不到3分钟,磨损量就超过0.2mm(图1)。说明高速钢切削粗颗粒碳化硅增强铝合金复合材料是不合适的。切 削细碳化硅颗粒复合材料时,其对刀具的磨损速度远小于切削粗颗粒复合材料。特别是对5%SiC(14µm)复合材料,高速钢和硬质合金刀具均可对其连续切 削较长时间,而且允许比较高的切削速度。比较图1和图2相同切削参数下的同号曲线可知,复合材料对高速钢刀具的磨损速度大于硬质合金刀具。说明切削碳化硅 颗粒增强ZL201合金复合材料时,硬质合金刀具的耐磨性要比高速钢优良。这是因为碳化硅颗粒具有很高的硬度(HV2800),颗粒在基体合金中的分布是 无方向性、呈不连续分布。因此颗粒增强铸造铝合金复合材料具有各向同性。当碳化硅颗粒粗大时,切削过程中易受刀刃的挤压、撞击而转动、破碎、甚至脱落。这 就加强了硬的碳化硅颗粒对刀具的磨损及刮划作用,增大了刀具后刀面的磨损速度。而碳化硅颗粒越细小,其在基体ZL201中的分布越弥散,切削时颗粒容易在 切削变形区随基体变形,也可以在切削力作用下将细的碳化硅颗粒压进切屑中或已加工的工件表面,使刀具切削时,直接接触碳化硅的几率减小,从而减小对刀具的 磨损速度,使常用的高速钢W18Cr4V和硬质合金YG6刀具也能较长时间切削细碳化硅颗粒增强ZL201基复合材料。硬质合金比高速钢有更高的硬度和耐 磨性,在相同切削条件下,硬质合金比高速钢磨损速度小。

  碳化硅颗粒含量对切削性能的影响

  比较图1、图2中各曲线 1、2和3、4可知,无论是14µm的碳化硅还是80µm的碳化硅,其复合材料中颗粒量越大,高速钢和硬质合金刀具的磨损速度就越快。根据图1a和图 2b,10%SiC(80µm)复合材料对高速钢的磨损速度是5%SiC(80µm)复合材料的1.8倍;10%SiC(14µm)复合材料对硬质合金刀 具的磨损速度是5%SiC(14µm)复合材料的1.4倍。试验中切削80µm碳化硅颗粒复合材料时,硬质合金刀具前刀面上有细粉生成,碳化硅含量越大, 形成的细粉状物越多。这说明在切削复合材料时,部分碳化硅粗颗粒被刀具挤压、破碎而飞溅到刀具前刀面上,形成细粉尘粒。部分细粉也可能是硬质合金中的硬粒 被复合材料中的碳化硅挤脱而生成的,碳化硅颗粒含量越大,对刀具的磨损就越严重。而切削细颗粒碳化硅复合材料时,很少见到细粉出现。根据颗粒增强金属基复 合材料的强化机制,对细颗粒增强复合材料,碳化硅颗粒含量越大,复合材料的硬度及耐磨性越好,对刀具的磨损速度也就越快。

  复合材料已加工表面的粗糙度

  比较图1和图2中同号曲线可知,同一种复合材料,切削加工参数②条件下对刀具的磨损速度比参数①条件下快,碳化硅颗粒尺寸越大,这种差别越大。这是由于切削速度不同所致,切削参数②的切削速度大,碳化硅硬颗粒对刀具的撞击、磨损机会越多,刀具的磨损速度也就越快。

   观察复合材料切屑表明,碳化硅颗粒尺寸对复合材料的切屑形状也有影响。颗粒尺寸越大,切屑越短,底面越不连续,横裂纹越多,横向变形越明显,切屑外观越 粗糙。碳化硅颗粒越细小,切削连续性越好,切屑底面越平整,横裂纹越少。两种参数条件下复合材料已加工表面的粗糙度 Ra值如图3所示。由图可知,碳化硅颗粒尺寸越大,复合材料的表面粗糙度越大。对碳化硅粒径为80µm的复合材料,粗糙度随碳化硅颗粒含量的增大而增大; 而碳化硅粒径为14µm复合材料,粗糙度随碳化硅颗粒含量增大而减小。这是因为在切削过程中,复合材料中的粗碳化硅颗粒受刀具的挤压容易破碎和脱落,增大 了切削过程中的机械摩擦,使已加工复合材料表面粗糙度增大。而复合材料中细碳化硅颗粒易被压入切屑和已加工工件表面,且复合材料的硬度随碳化硅含量增加而 增大,使细碳化硅颗粒的复合材料粗糙度随颗粒含量的增加而减小。

(a)高速钢刀具切削

(b)硬质合金刀具切削

图3 复合材料加工表面粗糙度

  4.结论

  高速钢或硬质合金刀具可对细碳化硅颗粒的ZL201合金复合材料进行连续较长时间切削,而不宜切削加工粗碳化硅颗粒的ZL201合金复合材料。

  碳化硅颗粒含量越大,复合材料对高速钢和硬质合金刀具的磨损越快。在相同条件下,复合材料对高速钢刀具的磨损速度大于硬质合金刀具的磨损速度。

  碳化硅颗粒尺寸越大,复合材料加工表面的粗糙度越大,且随颗粒含量的增加而增大;碳化硅颗粒细小,复合材料加工表面粗糙度小,且随颗粒含量增加而减小。

  碳化硅颗粒增强ZL201合金复合材料对高速钢和硬质合金刀具的主要磨损为磨粒磨损。
Welcome to BW tool world! We are an experienced tool maker specialized in cutting tools. We focus on what you need and endeavor to research the best cutter to satisfy users’ demand. Our customers involve wide range of industries, like mold & die, aerospace, electronic, machinery, ,,,etc. We are professional expert in cutting field. We would like to solve every problem from you. Please feel free to contact us, it’s our pleasure to serve for you. BW product including: utting tool、aerospace tool .HSS Cutting tool、Carbide end mills、Carbide cutting tool、NAS Cutting tool、Carbide end mill、Aerospace cutting tool、Carbide drill、High speed steel、Milling cutter、Core drill、Taperd end mills、Metric end mills、Miniature end mills、Pilot reamer、Electronics cutter、Step drill、Metal cutting saw、Double margin drill、Gun barrel、Angle milling cutter、Carbide burrs、Carbide tipped cutter、Chamfering tool、IC card engraving cutter、Side cutter、NAS tool、DIN tool、Special tool、Metal slitting saws、Shell end mills、Side and face milling cutters、Side chip clearance saws、Long end mills、Stub roughing end mills、Dovetail milling cutters、Carbide slot drills、Carbide torus cutters、Angeled carbide end mills、Carbide torus cutters、Carbide ball-noseed slot drills、Mould cutter、Tool manufacturer.
Bewise Inc. www.tool-tool.com

beeway 發表在 痞客邦 PIXNET 留言(0) 人氣()

Bewise Inc.   www.tool-tool.com     Reference source from the internet.  
指导思想:在数控切割机机床结构、硬件配置和制造水平大致相同或类似的情况下,数控切割机的切割效率和切割质量主要将由数控切割软件决定,特别是由优化套料编程软件和数控系统中的切割控制软件决定。因此,用户在购买数控切割机时,要非常重视数控切割软件的选择和配套,下面就以FastCAM套料软件和FastCAM数控系统为例,简要介绍有效提高切割效率和切割质量,有效节省钢材和耗材的全新数控切割理念和技术方法,实现数控切割机全时切割、自动切割、高效切割、高质量切割和高套料率切割!

  目前数控火焰和等离子切割机在我国工业企业开始大量普及,国内数控切割机厂家生产的数控切割机在机床设计和制造水平方面逐步趋向成熟和稳定。但是在数控切割机硬件结构和制造水平相同或类似情况下,由于缺乏数控切割软件技术,使数控切割机在使用过程中普遍存在切割生产效率低,钢材和耗材浪费严重的问题,具体表现在以下几个方面:

  1. 数控系统不稳定:用户在购买数控切割机挑选数控系统时,一味追求民用计算机的高配置,选用Windows系统、高主频CPU和大硬盘,忽视了工业用数控系统的稳定性。由于高主频CPU和大硬盘功率大,发热量高,尤其是在夏天,数控系统内部发热过热,导致数控系统和切割机无法正常工作,只好使用工业风扇把数控系统进行风冷。此外,高主频CPU必须配备风扇,而风扇容易磨损,寿命有限,容易导致CPU和主板损坏,硬盘震动损坏磁道且易感染病毒,都会造成数控系统不稳定,导致切割生产停滞。

  2. 没有使用套料软件:在购买数控切割机时没有购买优化套料软件,只是使用CAD软件和NC转换软件,进行画图和NC切割文件,或是调用数控系统中的零件库,在数控系统上对DXF或NC文件进行手工编程套料,局部切割,使数控切割机大部分时间处于等待编程套料的闲置状态,大大降低了数控切割机的生产效率,同时由于钢板的局部切割,产生大量边角余料或剩余钢材,导致钢材的严重浪费。

  3. 不能实现自动切割:数控系统上没有自动切割工艺和切割参数数据库,切割工人只能凭借经验和眼睛观察,通过手工方式调整和控制穿孔过程、切割速度和拐角加减速,不能做到自动穿孔和自动切割,数控切割机的生产效率不能得到有效发挥。

  4. 单件切割与热切割变形:就是每个零件都要预热穿孔并逐个切割,没有使用共边、借边、桥接连割等高效切割方式,不仅容易发生热切割变形,而且火焰预热穿孔耗时耗材,切割效率低,等离子割嘴损耗浪费严重。

  5. 切割质量问题:诸如零件引割点过烧留疤痕、零件拐角过烧、切割面过分倾斜、切割圆形零件时圆变形或不闭合,切割大尺寸零件发生严重误差,使切割变形不闭合等严重切割质量问题。

  下面介绍全新的数控切割理念和技术方法,通过数控切割软件技术,实现数控切割机的“全时切割、自动切割、高效切割、高质量切割和高套料率切割!”

  全时切割:

  传统切割方式:使用CAD画图软件和NC转换软件,绘制DXF零件图转换为NC文件,然后在数控系统上进行手工套料编程,或是调用数控系统零件库中的零件,在数控系统上进行套料编程,使数控切割机大部分 (超过50%的)时间处于等待数控系统进行套料编程的闲置状态,数控切割机不能做到全时切割,切割效率大大降低(超过50%)。

  全时切割方式:FastCAM公司倡导和推广全时切割生产方式。在电脑上使用FastCAM优化套料编程软件完成整板套料,余料板套料和高效切割套料编程,数控切割机只接受套料软件提供的CNC切割程序,使数控切割机全时用来切割。改变传统的在数控系统上进行编程套料,使数控切割机闲置等待编程套料的切割生产方式,有效提高数控切割机的切割效率。

  经济效益:“全时切割”给企业带来的最大经济效益是提高数控切割机的生产效率,使原本一台数控切割机的切割生产能力提高成为二台甚至三台数控切割机的切割生产能力。

图一:整板套料实现全时切割

图二:余料板套料实现全时切割

  自动切割:

  传统切割方式:依靠切割工人的切割经验,通过手和眼的紧密配合,进行手工操作,调节和控制数控切割过程的预热、穿孔、起割、空程和正常切割加减速和拐角加减速等。

  现实问题:企业无法保证每个切割工人都具有丰富的切割经验和良好的操作技能,更无法保证每个切割工人的工作态度和身体状况始终处在最佳或良好的状态,因此也就无法保持或保证数控切割机的切割效率和切割质量。只有把丰富的切割经验和切割工艺写入数控系统,工人使用自动切割方式,排除人为因素的干扰,才能保证数控切割机的切割效率和切割质量。

  自动切割方式:FastCAM公司倡导和推广自动切割生产方式。FastCAM专门为火焰和等离子数控切割提供的 FastCNC数控系统,为用户提供了完善的自动穿孔和自动切割工艺,通过调用板材切割参数库和自动切割逻辑,使用自动切割功能键,实现自动切割,包括自动穿孔,空程和切割速度的自动加减速,以及拐角和圆弧切割的自动加减速。自动切割方式的最大优点是把完善的切割工艺和丰富的切割经验集成在数控系统中,有效地弥补切割工人的经验不足和体力与情绪的波动,可以有效提高和持久保证数控切割机的切割效率和切割质量。

图三:自动切割工艺数据库

图四:自动切割板材参数数据库

  特别值得指出的是:火焰厚板穿孔技术难度高,切割工艺复杂。FastCNC数控系统提供了独具匠心的火焰厚板自动穿孔切割逻辑数据库和明盲孔自动智能判断功能,使火焰厚板穿孔实现自动穿孔,自动判断明孔盲孔,实现借边切割,有效减少和避免火焰厚板穿孔次数。

  高效切割:

  传统切割方式:不论是火焰切割还是等离子切割,切割效率低的主要原因是每个零件都要预热穿孔,都要逐个切割,火焰切割预热穿孔耗时耗材,切割效率低,等离子切割割嘴损耗浪费严重。

  高效切割方式:FastCAM公司倡导和推广高效切割生产方式。FastCAM优化套料软件在整板套料和余料板套料的基础上,提供共边、连割、借边、桥接等高效切割方式编程方法,有效减少预热穿孔,减少重复切割,防止热切割变形,从而有效提高切割效率,节省钢材和耗材,特别是节省等离子耗材。

  同时,FastCNC数控系统为实现高效切割提供了零件套料图形库和明盲孔自动判断与借边切割功能,节省画图编程套料时间,实现零件整板套料和共边与连续切割,有效减少预热穿孔,改变传统的逐个零件切割,每个零件穿孔的切割方式,有效提高切割效率。

图五:火焰高效切割,整板只穿孔二次

图六:等离子高效切割,整板只穿孔三次

图七:零件套料连割图形库

图八:无线遥控器

  经济效益:高效切割生产方式可减少70~80%的穿孔数量,每年可节省50%的割嘴和耗材。

  无线遥控技术,直接提高数控切割生产效率。

  FastCNC数控系统提供了独具特色,且使用便捷的无线遥控器,有效提高钢板校正、起割点定位、更换割嘴、切割与拐角加减速的操作效率,避免操作工人在钢板、割枪与数控系统之间来回奔走,一个人就可以轻松地掌控切割机的操作。无线遥控技术与触摸屏技术相比,触摸屏技术在于改善或替代键盘操作,但还是局限在数控系统上,而无线遥控技术不仅改善和替代键盘的操作,而且摆脱了数控系统的限制,直接在切割机和钢材上进行操作,有效提高钢板校正、起割点定位穿孔、切割加减速、更换割嘴等切割过程的操作效率,避免工人来回奔走,有效提高切割效率。

  高质量切割:

  几种常见数控切割质量问题:

  1. 数控切割机使用一段时间后,齿轮齿条磨损产生反向间隙,导致切割零件不闭合和机床上下抖动,严重影响切割质量和机床使用寿命。

  2. 在等离子切割中普遍存在拐角过烧和圆弧切割面过分倾斜等切割质量问题。

  3. 在等离子切割中普遍存在引割点过烧留疤痕的质量问题,特别是在不锈钢的切割中,由于过烧疤痕很难修补,造成加工困难和钢材浪费。

  4. 在切割大尺寸零件时,产生切割误差,导致零件切割不闭合,造成废品。或是切割由大量小实体组成的零件时,发生数控切割机上下抖动、不闭合、变形等质量问题,造成切割质量降低,机床寿命缩短。

  5. 数控切割机在切割圆形零件或弧形零件时,切割不闭合,或是圆或弧发生严重变形。

  高质量切割工艺:

  FastCNC数控系统提供完善系统的切割工艺,确保数控切割机高质量切割。

  1. 提供齿轮齿条间隙自动补偿切割工艺,有效解决反向间隙的切割质量问题,延长切割机使用寿命。

  2. 提供不同板材厚度和不同切割方式下的拐角及圆弧自动加减速的设置和切割工艺,有效解决拐角过烧和圆弧切割面倾斜问题。

  3. 提供多种引入引出线补偿方法,有效解决引割点过烧留疤痕的质量问题。用户可根据焊接或机械加工的需要,自主选择起割点少量过烧、留小尾巴、或近似平滑的起割点引入引出方式。

  4. 提供CNC程序的预处理功能,把DXF圆弧中的小线段压缩拟合为光滑的曲线,使数控切割机平稳切割,有效避免机床上下抖动,提高切割质量。

  5. 提供直线插补运算和圆弧插补运算,保证圆形零件切割不变形。

  高套料率切割:

  传统切割方式:是在数控系统上读入零件的DXF或NC文件或是调用数控系统零件库中的零件,使用手动或矩阵方法在数控系统上进行套料和编程,然后在数控切割机上进行局部切割。手工套料和局部切割通常的结果是钢板的中间留下大面积不规则的剩余钢材,无法再进行准确的套料和切割,从而造成大量剩余钢材的产生和钢材浪费。

  高套料率切割方式:FastCAM公司倡导和推广高套料率切割生产方式。使用FastCAM优化套料软件,进行整板套料、余料板套料,进而实现整板切割和余料板切割,有效避免钢板余料的产生和浪费,使剩余钢板得到充分的重复利用。

  总之,在数控切割机的机床结构、硬件配置和制造水平大致相同或类似的情况下,完全可以通过软件技术,特别是配套使用 FastCAM优化套料软件和FastCNC数控系统,实现“全时切割、自动切割、高效切割、高质量切割和高套料率切割”,进一步提高数控切割机的切割效率和切割质量,有效节省钢材和耗材。
Welcome to BW tool world!  We are an experienced tool maker specialized in cutting tools.  We focus on what you need and endeavor to research the best cutter to satisfy users’ demand.  Our customers involve wide range of industries, like mold & die, aerospace, electronic, machinery, ,,,etc.  We are professional expert in cutting field.  We would like to solve every problem from you.  Please feel free to contact us, it’s our pleasure to serve for you.     BW product including: utting tool、aerospace tool .HSS Cutting tool、Carbide end mills、Carbide cutting tool、NAS Cutting tool、Carbide end mill、Aerospace cutting tool、Carbide drill、High speed steel、Milling cutter、Core drill、Taperd end mills、Metric end mills、Miniature end mills、Pilot reamer、Electronics cutter、Step drill、Metal cutting saw、Double margin drill、Gun barrel、Angle milling cutter、Carbide burrs、Carbide tipped cutter、Chamfering tool、IC card engraving cutter、Side cutter、NAS tool、DIN tool、Special tool、Metal slitting saws、Shell end mills、Side and face milling cutters、Side chip clearance saws、Long end mills、Stub roughing end mills、Dovetail milling cutters、Carbide slot drills、Carbide torus cutters、Angeled carbide end mills、Carbide torus cutters、Carbide ball-noseed slot drills、Mould cutter、Tool manufacturer.
Bewise Inc.   www.tool-tool.com

beeway 發表在 痞客邦 PIXNET 留言(0) 人氣()


  原型零件快速制造

  随着汽车市场的繁荣,汽车的更新换代越来越快,要求新产品研制周期尽可能缩短。而高速铣削加工效率高,可切削复杂的型面型腔,尤其与立卧转换5轴联动等柔性加工方式相结合,是原型零件快速制造的极佳解决方案。

  汽车零件模具加工

  一辆汽车所需模具上千副,模具的制造周期和质量直接影响到汽车的生产周期和质量。高速铣削在汽车复杂零件模具制造方面具有独特的优势。例如:高速铣削中心在加工安全门锁的注塑模时,所加工材料的硬度为54HRC,使用的最小的刀具为0.6mm,最大切深 4.8mm,表面粗糙度达Ra0.4mm。而且不再需要钳工工序,缩短了加工时间。又如在加工车窗自动升降系统齿轮箱的注塑模时,所加工材料的硬度为 58HRC,工件直接铣削部分达85%,其余15%通过电加工完成,总加工时间为16h,缩短了加工时间的50%。

  汽车内饰件模具加工

  汽车的更新换代不仅仅体现在性能的提高上,更体现在汽车外观及内饰件的更新上。汽车内饰件多为注塑件,模具的消耗量大,高速铣削能提高模具的制造精度,延长模具的使用寿命,从而提高注塑件的质量。

  由此可见,高速铣削在汽车零件模具及内饰件模具的加工上体现出了巨大的技术优势。在加工工艺方面,高速铣削在汽车模具加工中主要应用在以下几个环节中。

  (1)加工电极

  放电加工工艺基本上需要两个电极来加工一个工件。若要更好地进行放电加工,需要复制相同的电极,通过表面质量来统一区分粗加工和精加工的电极。一致性好的电极会减少放电加工的时间。传统铣削的电极需手工抛光,一致性差,且手工抛光后的电极总带有尖角,而尖端放电会影响电加工的质量。高速铣削的电极无需人工抛光,粗加工和精加工电极之间的几近完美的一致性会优化放电加工的效率。同时,由于高速铣削可加工薄壁,因而可以加工带肋的整体电极,这就消除了传统铣削中多次装夹产生的位置累积误差,相应地节省了时间并提高了质量。

传统加工与高速加工的效果对比

加工方式
   

总工序数
   

总时间(h)
   

型槽加工(h)
   

加工精度(mm)
   

表面粗糙度

传统加工
   

22
   

256
   

179
   

±0.2~±0.5
   

Ra1.6

高速加工
   

17
   

120
   

44
   

±0.10
   

Ra0.4

  (2)模具的粗加工和半精加工

  由于高速铣削可以在淬硬钢上直接加工,理论上它可以直接铣削出模具。但当模具型腔有特殊要求时,还需要电加工的配合。因此,可以在材料热处理后,利用高速铣床进行模具型腔的粗加工和半精加工,而留下较小的余量,由电加工来完成模具最后的精加工。

  (3)直接加工完成淬硬钢模具

  这种方式是模具加工中高速铣削优势的最大体现。以东风汽车有限公司商用车锻造厂运用米克朗的高速铣加工曲轴和连杆锻模为例,传统的加工工序为:外形粗加工→仿形铣粗加工型槽→热处理→外形精加工→数控电火花粗、精加工型槽→钳工打磨抛光型槽→表面强化处理。而采用高速加工后的工序为:外形粗加工→热处理→外形精加工→高速铣加工型槽→表面强化处理。利用高速铣削直接加工完成淬硬钢模具具有明显的加工优势,它使总加工成本从传统加工的27000多元降到22000元。
Welcome to BW tool world!  We are an experienced tool maker specialized in cutting tools.  We focus on what you need and endeavor to research the best cutter to satisfy users’ demand.  Our customers involve wide range of industries, like mold & die, aerospace, electronic, machinery, ,,,etc.  We are professional expert in cutting field.  We would like to solve every problem from you.  Please feel free to contact us, it’s our pleasure to serve for you.     BW product including: utting tool、aerospace tool .HSS Cutting tool、Carbide end mills、Carbide cutting tool、NAS Cutting tool、Carbide end mill、Aerospace cutting tool、Carbide drill、High speed steel、Milling cutter、Core drill、Taperd end mills、Metric end mills、Miniature end mills、Pilot reamer、Electronics cutter、Step drill、Metal cutting saw、Double margin drill、Gun barrel、Angle milling cutter、Carbide burrs、Carbide tipped cutter、Chamfering tool、IC card engraving cutter、Side cutter、NAS tool、DIN tool、Special tool、Metal slitting saws、Shell end mills、Side and face milling cutters、Side chip clearance saws、Long end mills、Stub roughing end mills、Dovetail milling cutters、Carbide slot drills、Carbide torus cutters、Angeled carbide end mills、Carbide torus cutters、Carbide ball-noseed slot drills、Mould cutter、Tool manufacturer.
Bewise Inc.   www.tool-tool.com

beeway 發表在 痞客邦 PIXNET 留言(0) 人氣()


PMMA镜片虽然具有优越的光学特性,又能矫正角膜性散光,然而由于其不透氧往往导致角膜缺氧水肿。配戴不舒适,时间不能持久,目前基本已补淘汰。 1960年捷克学者利用十年的时间发明了软性隐形眼镜的材料,就是一直延用至今的聚甲基丙烯酸羟乙酯,简称HEMA。1971年软式隐形眼镜的正式生产和应用改善了传统硬式隐形眼镜的不透氧及异物感的缺点,又因其装配容易,且无适应期,因此产品一上市即受到广泛的欢迎,迅速占领了PMMA的市场,迄今为止它的配戴者在全世界也是占主流地位。然而它也有一些缺点如:容易吸附沉淀物、矫正角膜散光欠佳、镜片保养较复杂、镜片易破等。针对这些缺点世界上的高分子科学家又开始研究一种新的隐形眼镜材质,1974年,为了改善镜片的透氧性能,以达到使镜片能够安全地配戴过夜的目的,一种透气硬镜材料(硅酮丙烯酸酯, SMA)诞生了,由于硅成份的介入,使镜片的透氧性能进一步提高,其后又在此基础上衍生出多种透气硬镜材料,具有代表性的有氟硅丙烯酸酯(fluorosilicone acrylates,FSA)和氟多聚体(fluoropolymers)等。有机氟成分则使材料有更为良好的透氧性能。

美国德克萨斯大学西南医学中心的研究人员公布的最新研究结果表明,他们利用一种新型硅树脂水凝胶材料制成的隐形眼镜镜片,能够减少眼睛受细菌感染的几率。这是隐形眼镜研制的一个重大突破,美国食品与药品管理局已经批准将这种新材料应用于月抛型隐形眼镜的生产。有人看作是半硬性或半软性隐形眼镜,但它实际是更接近硬性,所以叫做透气性硬镜,简称RGP(Rigid Gas Permeable)。这种隐形眼镜的缺点是开始配戴时适应时间稍长,但由于它透氧性非常好,对角膜的影响也极小,所以可以过夜配戴。这种RGP镜片在少数国家,如日本在隐形眼镜销量中占有主导地位。可以预见这种镜片的发展前景是美好的。

Welcome to BW tool world! We are an experienced tool maker specialized in cutting tools. We focus on what you need and endeavor to research the best cutter to satisfy users’ demand. Our customers involve wide range of industries, like mold & die, aerospace, electronic, machinery, ,,,etc. We are professional expert in cutting field. We would like to solve every problem from you. Please feel free to contact us, it’s our pleasure to serve for you. BW product including: utting tool、aerospace tool .HSS Cutting tool、Carbide end mills、Carbide cutting tool、NAS Cutting tool、Carbide end mill、Aerospace cutting tool、Carbide drill、High speed steel、Milling cutter、Core drill、Taperd end mills、Metric end mills、Miniature end mills、Pilot reamer、Electronics cutter、Step drill、Metal cutting saw、Double margin drill、Gun barrel、Angle milling cutter、Carbide burrs、Carbide tipped cutter、Chamfering tool、IC card engraving cutter、Side cutter、NAS tool、DIN tool、Special tool、Metal slitting saws、Shell end mills、Side and face milling cutters、Side chip clearance saws、Long end mills、Stub roughing end mills、Dovetail milling cutters、Carbide slot drills、Carbide torus cutters、Angeled carbide end mills、Carbide torus cutters、Carbide ball-noseed slot drills、Mould cutter、Tool manufacturer.
Bewise Inc. www.tool-tool.com

beeway 發表在 痞客邦 PIXNET 留言(0) 人氣()

Bewise Inc. www.tool-tool.com Reference source from the internet.
阻 燃PC,特别是透明阻燃PC这一块,在很多人的眼中是属于高科技的行业,一般来说加了阻燃的要求之后,阻燃料的物理性能,透明度,色变等参数都会变的比较 差,可是阻燃PC呢?是不是也是这样子的呢?其实PC我觉得是阻燃料之中非常好做的一个材料,只是需求量比较少,很少有人有机会去做而已.还有就是拿到的 原料怎么样,能不能拿到性价比高的阻燃剂也是一个关键.

PC的物理性能中对水气的要求比较高,一定要保证挤出之前PC的干燥性.然后选择 合适的阻燃剂,目前最常用的是无卤阻燃剂,添加比例一般也只有 0.3~0.4%(仅仅是纯PC,如果添加了钛白粉和碳黑或者增韧剂的话另当别论),然后加上一部分1010和168,选择合适的双螺杆,在保证可以让阻 燃剂分散均匀的情况下直接挤出造粒就OK了.

这个样子可以做到3.2mmV0,透明度可以达到87左右的PC,而且冲击强度基本上不影响.

如果你要求1.6mmV0,透明度料,目前只要选择好合适的阻燃剂,也不是一件难事.

市场上面PC阻燃剂目前是以磺酸盐类和硅类为主.
Welcome to BW tool world! We are an experienced tool maker specialized in cutting tools. We focus on what you need and endeavor to research the best cutter to satisfy users’ demand. Our customers involve wide range of industries, like mold & die, aerospace, electronic, machinery, ,,,etc. We are professional expert in cutting field. We would like to solve every problem from you. Please feel free to contact us, it’s our pleasure to serve for you. BW product including: utting tool、aerospace tool .HSS Cutting tool、Carbide end mills、Carbide cutting tool、NAS Cutting tool、Carbide end mill、Aerospace cutting tool、Carbide drill、High speed steel、Milling cutter、Core drill、Taperd end mills、Metric end mills、Miniature end mills、Pilot reamer、Electronics cutter、Step drill、Metal cutting saw、Double margin drill、Gun barrel、Angle milling cutter、Carbide burrs、Carbide tipped cutter、Chamfering tool、IC card engraving cutter、Side cutter、NAS tool、DIN tool、Special tool、Metal slitting saws、Shell end mills、Side and face milling cutters、Side chip clearance saws、Long end mills、Stub roughing end mills、Dovetail milling cutters、Carbide slot drills、Carbide torus cutters、Angeled carbide end mills、Carbide torus cutters、Carbide ball-noseed slot drills、Mould cutter、Tool manufacturer.
Bewise Inc. www.tool-tool.com

beeway 發表在 痞客邦 PIXNET 留言(0) 人氣()

Bewise Inc. www.tool-tool.com Reference source from the internet.
目前市场上面的无卤阻燃ABS还没有工业化,大部分的企业阻燃是采用四溴或者十溴来阻燃的.然而这些阻燃剂的添加量太大,同时锑的添加量也不低,大大的影响了阻燃ABS的物理性能,那怎么样才能提高这些材料的物理性能呢?

我们在测试过程中发现,添加适量的抗滴落剂,可以降低四溴(十溴)的添加比例,同时降低锑的添加量,可以最终的提高ABS的冲击强度,拉伸模量,而且还可以降低一部分的成本下来.

查阅文献发现,国外的很多资料上面都提到阻燃体系中,添加一部分的滴落剂.他们是这样解释的:PTFE可以和SB203作用所产生的氟化锑可催化聚合物交 联,从而改善了材料的阻燃行为.SbF5也具有与PTFE相似的作用.另外,ABS中PTFE或者SbF3的用量应适当,只有在某一用量范围内,他们对材 料的阻燃才有明显的阻燃效果.

目前市场上面常用的四溴和三氧化二锑的比例通常为18:5,如果添加比例适当,可以降低到16:4,或者更低,冲击强度却有明天的提高.
Welcome to BW tool world! We are an experienced tool maker specialized in cutting tools. We focus on what you need and endeavor to research the best cutter to satisfy users’ demand. Our customers involve wide range of industries, like mold & die, aerospace, electronic, machinery, ,,,etc. We are professional expert in cutting field. We would like to solve every problem from you. Please feel free to contact us, it’s our pleasure to serve for you. BW product including: utting tool、aerospace tool .HSS Cutting tool、Carbide end mills、Carbide cutting tool、NAS Cutting tool、Carbide end mill、Aerospace cutting tool、Carbide drill、High speed steel、Milling cutter、Core drill、Taperd end mills、Metric end mills、Miniature end mills、Pilot reamer、Electronics cutter、Step drill、Metal cutting saw、Double margin drill、Gun barrel、Angle milling cutter、Carbide burrs、Carbide tipped cutter、Chamfering tool、IC card engraving cutter、Side cutter、NAS tool、DIN tool、Special tool、Metal slitting saws、Shell end mills、Side and face milling cutters、Side chip clearance saws、Long end mills、Stub roughing end mills、Dovetail milling cutters、Carbide slot drills、Carbide torus cutters、Angeled carbide end mills、Carbide torus cutters、Carbide ball-noseed slot drills、Mould cutter、Tool manufacturer.
Bewise Inc. www.tool-tool.com

beeway 發表在 痞客邦 PIXNET 留言(0) 人氣()

Bewise Inc. www.tool-tool.com Reference source from the internet.
聚合物加工性能的助剂PPA
由 氟聚合物构成的塑料加工助剂PPA,是一种可适用于多种树脂挤出工艺的助剂。PPA可以用于吹塑薄膜、挤出丝、膜、板、管、型材、电线电缆,也适用于 BOPP和CPP薄膜生产工艺,适用于聚乙烯(包括LLDPE、HDPE、HMW-HDPE、 LDPE、VLDPE)、乙烯一醋酸乙烯酯(EVA)、聚丙烯(PP)、聚氯乙烯(PVC)、聚苯乙烯(PS)、尼龙、聚酯(PET)等树脂作原料的挤出 加工。PPA通常用量在400-1000PPm(wt),一般用含有PPA 2-3%的母料形式加入。其当初开发的主要应用点是LLDPE,后来才发现由于有机氟的特殊性能,在很多塑料上面都有一定的应用。其在LLDPE的应用主 要效能如下:
1、 提高产量、降低能耗、降低加工温度、加速颜料转换

2、 减少表面缺陷,如常见的熔体破裂现象

3、 减少或消除模口积料现象

4、 允许挤出温度敏感型树脂或需低温挤出的树脂
5、 减少挤出过程中凝胶现象

6、 延长连续加工时间

7、 提高LLDPE的混合树脂中LLDPE的比例,甚至全部采用LLDPE,以及充分发挥LLDPE优异的物理机械性能

PPA作用的原理:
聚合物的物理性能对挤出加工影响较大。氟聚合物的表面张力比常用聚烯烃的表面张力要低。塑料聚四氟乙烯PTFE的表面张力低,PTFE制品表面象蜡一样的光滑,耐热性好,不容易粘连熔融态的聚烯烃,曾经有报道用PIFE做口模以提高挤出产品质量。

今 天,工业上广泛采用的是添加含氟聚合物的聚合物加工助剂。当氟聚合物加工助剂在挤出机中混入熔体后,在表面张力的作用下,氟聚合物有向熔体表面移动并附着 在挤出机金属表面上的趋势,在塑料熔体流动时,提供一个润滑层,这里必须指出:金属表面的含氟润滑层是动态的:PPA不断被带走同时又不断地补充。最低的 添加量要保证在挤出机头的金属表面上形成连续的润滑层。当过程达到动态平衡以后,挤出机的背压、扭矩和熔体的表观粘度将下降。此时如果提高挤出机的转速, 使背压达到原始值时,挤出机的产量将提高。(当然,产量还与其他因素有关)。
)
简介:

PPA加工助剂在聚烯烃及其它聚合物加工设备的金属表面形成一个薄膜,起着润滑作用,降低主体树脂的表观粘度。表观粘度的降低有利于降低背压及扭矩、减少凝胶、减少口模积料、减少模头磨损、提高产量。

通过试用可以了解PPA加工助剂对聚合物加工的特殊贡献。这里介绍一些原则,帮助您准确评估微量(50~1000ppm,0.005~0.1%) PPA加工助剂的作用。

设备准备:

PPA加工助剂在聚合物加工中的作用,常用挤出设备来评估:可以用实验室的毛细管流变仪、或工业挤出设备。这些设备无需改造。

5fwll[HJc
试用的设备必须先清洗干净。金属表面上的碳化聚合物积料会损害添加剂的性能,使评价结果不可靠。可以先用PPA加工助剂通过设备,洗掉挤出机中的黑点、凝胶及残余颜料,约清洗1小时,或直至系统清洗干净为止。具有清洗作用,是PPA加工助剂的优点。


为了获得准确的结果,再从试验设备中除去PPA加工助剂也是重要的。如果不清洗,PPA加工助剂会粘在金属表面,使对照树脂的加工性能变好。


可以用含有5~10%的SiO2无机磨擦填料的低MI树脂除去PPA加工助剂。如果试用设备容易拆卸,也可以用少量磨擦料、或粉擦磨。某些表面可以用浸有甲基乙基酮、或丙酮的布擦洗(请注意:这两种溶剂是可燃的,要注意它们的使用安全及工业卫生)。

用没有PPA加工助剂的试用设备,挤出对照树脂,控制操作参数达到给定数值。


添加PPA 加工助剂:
可以用母料或直接加入一定量的PPA加工助剂进行熔融混合。应当充分分散PPA加工助剂。通常用单螺杆挤出机充分混合做含有2~3%的PPA加工助剂母料。PPA直接加入树脂需要更精密的熔融混合机,如Banbury密炼机或双螺杆挤出机。

加工中如果使用PPA母料,排除母料载体树脂对加工的影响是重要的。应当用同样数量的载体树脂(不含PPA加工助剂)做对照。
如果PPA加工助剂直接加入树脂熔融混合,重要的是与有同样加热历史的树脂体系做对照。建议对照试验要用同样的混合操作过程。
基准:

为了便于比较PPA加工助剂对加工的贡献,要确定对照树脂体系的加工极限,如:开始发生熔体破裂时。通常,生产能力取决于挤出压力、对产品质量要求。

对照树脂运行时加工系统的操作条件,作为评估初始条件。设备在评估中真正清理干净,试验结果比较可靠。

PPA加工助剂比较:

当PPA加工助剂涂复到设备的金属表面之后,其作用就表现出来了。这个比较必须在稍高于对照试验加工极限的条件下进行,看到该产率下产品不完美表面。运行15~60分钟,完成涂复PPA过程,看到表面缺陷减少、电流降低、挤出压力降低。这个滞后时间与设备及加工条件有关。

这时,要通过提高产率至产品表面性能允许的程度,或提高其它速率,检测含有PPA加工助剂树脂与对照树脂之间的操作性能差异。检查PPA加工助剂贡献的效果,要用不同量的PPA加工助剂进行评估,以便确定使用PPA加工助剂贡献的确切数值。
通 常高剪切速率缩短滞后时间、而低剪切速率延长滞后时间。用2%的母料预处理设备,在低剪切速率下,可以迅速看出PPA加工助剂的作用。然而,这只是组略 的,并会产生螺杆打滑和口模积料。另外,这样挤出得产品可能超出允许接触食品规定的PPA加工助剂量。不推荐用此方法比较PPA加工助剂或将其定为适用 量。
确定添加量:

在决定加工参数以后,接着要确定“适用量”,即:PPA加工助剂对给定树脂的适用添加量,以保证加工设备部件的涂层达到动态平衡,能提供良好的加工性能,达到既定目标。一旦PPA加工助剂的适用量确定,在系统中将不用高含量。


用同样的或类似的工业生产设备加工指定的树脂,为了确定“适用量”,开始要用十分清洁的设备,以得到可靠的结果。在小设备(如毛细管流变仪)上确定的适用量,没有必要完全照搬到大设备上。


PPA加工助剂用量由低(200~400ppm)开始,然后,每过30~60分钟增加100~200ppm,或者直至加工指标稳定并达到,这将是“适用量”。
用这个程序,在不同对比试验之间,必须将设备清理干净。
其它添加剂:
评估的树脂必须含有足够的抗氧剂,这样,在评估期间的热分解,将不引起流变学变化。树脂的大多数其它添加剂,如:抗氧剂、滑爽剂、除酸剂等,与PPA加工助剂相容,一般不影响其性能。
然而,有些添加剂会稍稍干扰PPA加工助剂的作用。当这些添加剂含量高时,会影响PPA加工助剂的预期性能。这些添加剂有:硬酯酸盐、抗粘剂、无机颜料和受阻胺类光稳定剂。
Welcome to BW tool world! We are an experienced tool maker specialized in cutting tools. We focus on what you need and endeavor to research the best cutter to satisfy users’ demand. Our customers involve wide range of industries, like mold & die, aerospace, electronic, machinery, ,,,etc. We are professional expert in cutting field. We would like to solve every problem from you. Please feel free to contact us, it’s our pleasure to serve for you. BW product including: utting tool、aerospace tool .HSS Cutting tool、Carbide end mills、Carbide cutting tool、NAS Cutting tool、Carbide end mill、Aerospace cutting tool、Carbide drill、High speed steel、Milling cutter、Core drill、Taperd end mills、Metric end mills、Miniature end mills、Pilot reamer、Electronics cutter、Step drill、Metal cutting saw、Double margin drill、Gun barrel、Angle milling cutter、Carbide burrs、Carbide tipped cutter、Chamfering tool、IC card engraving cutter、Side cutter、NAS tool、DIN tool、Special tool、Metal slitting saws、Shell end mills、Side and face milling cutters、Side chip clearance saws、Long end mills、Stub roughing end mills、Dovetail milling cutters、Carbide slot drills、Carbide torus cutters、Angeled carbide end mills、Carbide torus cutters、Carbide ball-noseed slot drills、Mould cutter、Tool manufacturer.
Bewise Inc. www.tool-tool.com

beeway 發表在 痞客邦 PIXNET 留言(0) 人氣()

Bewise Inc. www.tool-tool.com Reference source from the internet.
材料简介
Cr12Mo1V1是国际上较广泛应用的高碳高铬冷作模具钢,属莱氏体钢,具有高的淬透性、淬硬性和高的耐磨性;高温抗氧化性能好,淬火和抛光后抗锈蚀能 力好,热处理变形小。Cr12Mo1V1宜制造各种高精度、长寿命的冷作模具、刃具和量具,例如:形状复杂的冲孔凹模、冷挤压模、滚丝轮、搓丝轮、冷剪切 刀和精密量具等。
化学成分
Cr12Mo1V1钢的化学成分见表2-2-1。
表2-2-1 Cr12Mo1V1钢的化学成分(GB/T 1299—2000)ω/%
C

Si

Mn

P

S

Cr

Mo

V

其他
1.40~
1.60

≤0.60

≤0.60

≤0.030

≤0.030

11.00~
13.00

0.70~
1.20

≤1.10

Co≤1.00
物理性能
Cr12Mo1V1钢的物理性能如表2-2-1和表2-2-2所示,弹性模量为207000MPa,质量定压热容Cp为461J/(kg·K)。
表2-2-1Cr12Mo1V1 钢的临界温度
临界点

Ac1

Acm

Ar1

Arcm

Ms
温度(近似值)/℃

810

875

750

695

190
表2-2-2 Cr12Mo1V1钢的线(膨)胀系数
温度/℃

20~100

20~200

20~300

20~400
线(膨)胀系数/℃-1

10.5×10-6

11.5×10-6

11.9×10-6

12.2×10-6


热加工
Cr12Mo1V1钢的热加工工艺列于表2-2-4。
表2-2-4 Cr12Mo1V1钢的热加工工艺
 
项 目

加热温度/℃

开锻温度/℃

终锻温度/℃

冷却方式
钢 锭
钢 坯

1120~1160
1120~1140

1050~1090
1050~1070

≥850℃
≥850℃

红送退火
红送退火或坑冷或砂冷

预备热处理
Cr12Mo1V1钢的钢锭、钢坯退火工艺示于图2-2-1,等温退火工艺示于图2-2-2。
图2-2-1 钢锭、钢坯退火工艺
图2-2-2 钢材等温退火工艺



淬火
Cr12Mo1V1的淬火曲线示于图2-2-3~图2-2-10,显微组织组成与奥氏体温度的关系示于表2-2-5,推荐的淬火规范示于表2-2-6。
图2-2-3 Cr12Mo1V1空淬高碳高铬钢奥氏体等温转变曲线
(实验钢化学成分(%)1.58C,12.04Cr,1.08Mo,1.06V,0.40Mn,0.56Si,
0.007P,0.009S,0.007A1;原始状态:退火,奥氏体温度:1000℃)
图2-2-4 Cr12Mo1V1钢的奥氏体连续冷却转变曲线

图2-2-5 淬火温度与材料硬度关系曲线

图2-2-6 淬火介质、渗碳介质中装箱淬火和奥氏体化温度对含1.50% C的Cr12Mo1V1高碳高铬钢硬度的影响

图2-2-7 Cr12Mo1V1钢奥氏体晶粒度
与淬火温度的关系

(从982℃及其以下温度预先淬火将导致以后淬火时晶粒的显著细化)
图2-2-8 Cr12Mo1V1钢从图示温度预先淬火后
再次奥氏体化的温度对晶粒度的影响

图2-2-9 Cr12Mo1V1钢残余奥氏体量与
淬火温度的关系

(钢的成分(%):1.60C,0.33Mn,0.32Si,11.95Cr,0.25V,0.79Mo,
0.010S和0.018P;冷却方式见图示)
图2-2-10 Cr12Mo1V1高碳高铬钢的奥氏体化温度与残余奥氏体量的关系
表 2-2-5 Cr12Mo1V1钢的显微组成与奥氏体化温度的关系
奥氏体化温度/℃

体积百分比/%
马 氏 体

奥 氏 体

碳 化 物
1038
1066
1093
1121
1135
1149

79
65
33
5
2
2

7
22
55
85
88
88

14
13
12
10
10
10
注:实验钢成分为(%):1.60C,11.95Cr,0.33Si,0.79Mo,0.25V,0.018P,0.010S;试样在奥氏体
化温度保温分,然后淬火。
表2-2-6 Cr12Mo1V1钢推荐的淬火规范示
方案

加热温度/℃

冷却

硬度(HRC)
一次预热

二次预热

最后加热



500~600
500~600

820~860
820~860

980~1040
1060~1110

空冷或油冷
空冷或油冷

60~65
60~65


回火 回火温度对Cr12Mo1V钢性能和尺寸变化的影响示于图2-2-11图2-2-15,推荐的回火规范列于表2-2-7。


图2-2-11 回火温度对油淬和空冷的
Cr12Mo1V1钢硬度的影响

图2-2-12 Cr12Mo1V1钢抗弯强度
与回火温度的关系

图2-2-13 Cr12Mo1V1钢冲击韧性
与回火温度的关系

图2-2-14 回火温度对Cr12Mo1V1钢
扭转冲击功的影响
(试样尺寸为25.4㎜×50.8㎜×152.4㎜,图中尺寸变化是指三个方向尺寸变化的平均值)
图2-2-15 回火温度对Cr12Mo1V1钢尺寸变化的影响
表2-2-7 Cr12Mo1V1钢推荐的回火规范
方 案

回火温度/℃

回火次数

硬度(HRC)



180~230
510~540

1
2

60~64
60~64

Welcome to BW tool world! We are an experienced tool maker specialized in cutting tools. We focus on what you need and endeavor to research the best cutter to satisfy users’ demand. Our customers involve wide range of industries, like mold & die, aerospace, electronic, machinery, ,,,etc. We are professional expert in cutting field. We would like to solve every problem from you. Please feel free to contact us, it’s our pleasure to serve for you. BW product including: utting tool、aerospace tool .HSS Cutting tool、Carbide end mills、Carbide cutting tool、NAS Cutting tool、Carbide end mill、Aerospace cutting tool、Carbide drill、High speed steel、Milling cutter、Core drill、Taperd end mills、Metric end mills、Miniature end mills、Pilot reamer、Electronics cutter、Step drill、Metal cutting saw、Double margin drill、Gun barrel、Angle milling cutter、Carbide burrs、Carbide tipped cutter、Chamfering tool、IC card engraving cutter、Side cutter、NAS tool、DIN tool、Special tool、Metal slitting saws、Shell end mills、Side and face milling cutters、Side chip clearance saws、Long end mills、Stub roughing end mills、Dovetail milling cutters、Carbide slot drills、Carbide torus cutters、Angeled carbide end mills、Carbide torus cutters、Carbide ball-noseed slot drills、Mould cutter、Tool manufacturer.
Bewise Inc. www.tool-tool.com

beeway 發表在 痞客邦 PIXNET 留言(0) 人氣()

Bewise Inc. www.tool-tool.com Reference source from the internet.
淬 火是将金属零件加热到相变温度以上,保温后在淬火介质中急剧冷却得到马氏体组织;从而达到提高或调整零件硬度和耐磨性的目的。在这个过程中要求淬火介质 (淬火液)有良好的低变形性,低烧裂性,耐热性,洗净性,脱脂性,防锈性,冷却性,光亮性,等等一系列性能要求,通常淬火液按组成分为油基型和水基型两大 类。

油基淬火液

最早采用的油是 动植物油,其冷却能力较弱,但仍具有足够的冷却能力 ,且油温度升高时对淬火能力影响不大,时较为理想的淬火介质。由于价格及原料来源的限制,工业上多采用矿物油,如0#柴油,15~32#粘度等级的机械油 等。矿物油随黏度、闪点不同其冷却能力不同,使用温度也不同。由于其冷却速度较缓慢,对截面较大的碳钢及低合金钢不易淬硬,而且材料表面易玷污,使用油一 定的局限性。为改善油的冷却能力,可采用适当提高油温(通常在80℃以下的范围内调节)、强烈搅拌循环及加入添加剂等方法。在油中加入如磺酸钠、磺酸钡、 磺酸钙、环烷酸钙等添加剂,在淬火冷却时,添加剂粘在工件表面成为次女国货曾蒸汽泡的质点,使稳定蒸汽膜不易形成,提高了高温区的冷却能力,这种油称为 “快速淬火油”。此外,在轻油及用溶剂精炼法提取的淬火油中加入热稳定剂、无灰分的表面活性剂国务常用1%的米唑啉油酸钠和0.3%的T501,可以使工 件淬火后表面迅速被油膜包覆浸润而不致在表面沉积炭黑,从而使工件淬火后表面光亮洁净,这种油称为“光亮淬火油”。另外,矿物油中加入表面活性剂可使金属 淬火均匀,并有利于淬火后矿物油的清洗。例如,在淬火用矿物油中添加2%~5%非离子乳化剂如壬基酚聚氧乙烯(6)醚,金属制品淬火后用水冲洗即可除掉矿 物油。

水基淬火液

水是最经济的淬火介质。其化学稳定性很高,热容量较大。但纯水在高温区的冷却能力并不强,而在300℃ 附近冷却能力却很大,因此,纯水的冷却特性恰恰与我们要求的理想淬火介质的特性相反,这正是纯水极少使用的原因。常用的水基淬火液有盐水、碱水、饱和氯化 钙、三硝水溶液(NaNO3、NaNO2、KNO3)、有机高分子水溶液等。

20世纪50年代末期美国提出了无毒、无臭、不燃和冷却性能 在水油之间、可调的聚乙烯醇(PVA)、水溶液淬火介质,以后又发展为聚亚烷基乙二醇(PAG)、聚氧乙烯二醇(GLY)和聚乙烯吡咯烷酮(PVP)等有 机高分子聚合物水基淬火液。70年代末期又研制出适用于贝氏体淬火的非马氏体淬火液—碱性聚丙烯酸酯(ACR),其特点氏黏度较高,适用于等温淬火、锻件 热锻淬火、高速钢及马氏体不锈钢的淬火。此外,还有聚丙烯酰胺(PAM)、甲基纤维素(CMC)及高相对分子质量聚皂水溶液等新的淬火液品种。

由 环氧乙烷、环氧丙烷开环聚合制得的聚醚具有逆溶性,这乙性质使它在水基金属加工液(如切削液、磨制液、淬火液)中发挥了优良的润滑作用。当聚醚溶液被带入 切削区域,遇到热的金属表面时,液体温度很快升到高于聚醚的浊点。这时,聚醚即从水中析出,形成油一样的微小液滴,这些液滴在金属表面形成薄的润滑油膜, 起到流体润滑作用。试验证明,当温度高于浊点时,5%的聚醚溶液的浓缩液具有相同的润滑性能。在常温下,聚醚易溶于水,其水溶液具有许多淬火液所要求的优 良性能,故在淬火液中得到广泛应用。制备“传统聚醚”所用单体必须包括环氧乙烷,其质量分数在整个分子中的含量最好在70%~90%,至少占10%。也可 以只用环氧乙烷一种单体。其他单体时含C3~4的低级环氧化物,如环氧丙烷、四氧呋喃及磺氧丁烷的2种异构体等。“传统聚醚”的相对分子质量多为2万左 右,属于中高相对分子质量范畴。它的制备多采用“分步合成法”即先按一般方法用环氧丙烷、环氧乙烷合成相对分子质量为几百至几千的聚醚,然后用这种聚合物 作起始剂与单体继续聚合制得较高相对分子质量的聚醚。重复上述步骤几次就可以得到所需相对分子质量的产物。环氧乙烷与另一种单体的杂聚共聚物和镶嵌共聚物 都可以称作“传统聚醚”。制备“传统聚醚”的起始剂时常用的醇类、胺类。国外已经报道了大量关于水基淬火液用聚醚的合成及其应用的专利,而且已进入工业化 生产和应用阶段。我国在这方面的研究起步较晚,许多产品仍需以来进口。近年来,研究较多的时改性聚醚。

PAG淬火液是工业上应用较多的一 种水及淬火液,是以特定的聚醚类非离子型高分子聚合物(PAG)加上能获得其他辅助性能的复合添加剂和矢量的水配置而成的。特别对于寻求水-油之间冷速的 中低淬透性钢,PAG是较理想的淬火液。使用PAG淬火剂的目的就是调节水的冷却特性。在淬火过程中,PAG成膜迅速,冷却能力可随浓度的调整而变化,淬 火硬度均匀,淬火后无需清洗即可直接回火。淬火液的冷却特性决定于其中PAG组分的特性和数量。其他提供辅助性能的添加剂对淬火液的冷却性能几乎没有影 响。但在淬火生产中,工件带出及受高温氧化分解都会使PAG聚合物的量减少。淬火过程中,工件周围液温升高,PAG聚合物从溶液中脱溶出来并靠其润湿性以 富水的包膜形式黏在工件表面上,从而调整工件的冷却速度。工件冷却下来后,黏附在工件表面的聚合物又会溶到淬火液中。回溶需要一定时间,而生产中往往等步 到聚合物回溶干净就将工件从淬火液中取走。因为工件带出的液体中PAG含量往往高于所有淬火液中PAG的 平均浓度。长期、大量淬火后,淬火液中PAG的相对浓度必然逐渐降低。另外,PAG具有很高的化学稳定性,在室温下与一般的酸碱不发生反应,只有在 250℃的高温且又有氧存在的条件下才被氧化分解。淬火过程中,黏附在工件表面的PAG聚合物膜大部分可以因为其中及其周围的水肥被气化而保持在不高于水 沸点的温度。但紧接工件表面的部分仍然可能升到更高的温度而发生氧化分解,导致PAG含量降低。这样淬火液中其他添加剂组分的相对含量将随之升高,最终影 响淬火效率。

PAG淬火液用于铝合金淬火有显著的优越性,对于铝板的淬火效率比热水淬火的效率减少60%。然而PAG淬火液在多数钢件马氏体转变区的冷速比油快,因此对高合金钢的调质有一定的局限性。

PVP、 ACR淬火液是为弥补PAG的上述不足而开发的,但这两种聚合物无逆溶性,淬火后粘在工件表面的聚合物需清洗,加上其工艺性和稳定性步及PAG,应用也有 限。PEO(聚乙烯基噁唑啉)淬火液AQ3610氏好富顿国际公司的专利产品,具有逆溶性,黏度大大低于PAG淬火液,从而减少了工件淬火后带出聚合物的 量。而且具有独特的冷却性能,在300℃的冷速与油基淬火液一样慢,而在高温区冷速又比油快。5%~25%的 AQ3610淬火液可以满足从感应淬火到大锻件、铸件调质处理的冷速要求,淬火后无需清洗即可直接回火。

近年来,随着石油资源的日益紧缺 以及人类共同对环保强调,大量的水基淬火液被广泛地用于热处理加工过程中,由上述聚乙烯醇(PVA)、聚亚烷基乙二醇(PAG)、聚氧乙烯乙二醇 (GLY)、聚乙烯吡咯烷酮(PVP)、碱性聚丙烯酸酯(ACR)、聚丙烯酰胺(PAM)、甲基纤维素(CMC)等含强极性基团的高分子聚合物为基础增稠 剂组成的水基淬火液已成为今后的发展方向。
Welcome to BW tool world! We are an experienced tool maker specialized in cutting tools. We focus on what you need and endeavor to research the best cutter to satisfy users’ demand. Our customers involve wide range of industries, like mold & die, aerospace, electronic, machinery, ,,,etc. We are professional expert in cutting field. We would like to solve every problem from you. Please feel free to contact us, it’s our pleasure to serve for you. BW product including: utting tool、aerospace tool .HSS Cutting tool、Carbide end mills、Carbide cutting tool、NAS Cutting tool、Carbide end mill、Aerospace cutting tool、Carbide drill、High speed steel、Milling cutter、Core drill、Taperd end mills、Metric end mills、Miniature end mills、Pilot reamer、Electronics cutter、Step drill、Metal cutting saw、Double margin drill、Gun barrel、Angle milling cutter、Carbide burrs、Carbide tipped cutter、Chamfering tool、IC card engraving cutter、Side cutter、NAS tool、DIN tool、Special tool、Metal slitting saws、Shell end mills、Side and face milling cutters、Side chip clearance saws、Long end mills、Stub roughing end mills、Dovetail milling cutters、Carbide slot drills、Carbide torus cutters、Angeled carbide end mills、Carbide torus cutters、Carbide ball-noseed slot drills、Mould cutter、Tool manufacturer.
Bewise Inc. www.tool-tool.com

beeway 發表在 痞客邦 PIXNET 留言(0) 人氣()

Bewise Inc. www.tool-tool.com Reference source from the internet.
公制 英美制常衡 英美制金衡或药衡 中国市制
公斤 克 磅 磅 两
1 1000 2.2046 35.2736 2.679 31.1507 20
0.001 1 0.0022 0.03527 0.00268 0.0321 0.02
0.4536 453.59 1 16 1.2135 14.5833 9.072
0.02835 28.35 0.0625 1 0.07595 0.9114 0.567
0.3732 373.24 0.82286 13.1657 1 12 7.465
0.0311 31.10 0.06857 1.0971 0.08333 1 0.622
0.05 50 0.1102 1.76368 0.13396 1.6075 1

宝石:1克拉=0.2克 1金衡=155.5克拉

容(体)积换算(一)
公制 中国市制 英制 美制
升 升 英加仑 美加仑
1 1 0.22 0.264
4.546 4.546 1 1.201
3.785 3.785 0.833 1

1000升=1立方米 1升=1000毫升=1000立方厘米(C.C.)
英制1加仑=277.42立方英寸 英制1加仑=231立方英寸

容(体)积换算(一)
公制 英美制 中国市制
立方米 立方厘米 立方码 立方英尺 立方英寸 立方尺
1 1000000 1.303 35.3147 61024 27
0.000001 1 0.0000013 0.00004 0.06102 0.000027
0.7636 764555 1 27 46656 20.643
0.02832 28317 0.037 1 1728 0.7646
0.000016 16.317 0.00002 0.00058 1 0.00044
0.037 37037 0.0484 1.308 2260 1

木材体积单位换算
板(BOARD FOOT MEASURE,BFM):指厚一英寸面积一平方英尺的木材
板材的换算:100板=2.36立方米
原木的换算:100板=5立方米(近似值)

功率换算表
1千瓦(KW)=1034英制马力(HP)1.36公制马力(HP)
1英制马力=0.746千瓦(KW)
1公制马力=0.735千瓦(KW)
1千伏安(K.V.A)=千瓦(K.W.)/0.80

粮谷重量容积换算
品名 1公吨折合蒲式耳 1蒲式耳折合
磅 公斤
小麦,大豆 36.743 60 27.216
玉米 39.368 56 25.402
大麦(英制) 44.092 50 22.68
大麦(美制) 45.931 48 21.773

1英制蒲式耳(-1.0321美制蒲式耳)合36.3677升

石(原)油重量,容积换算
国别 1公吨折合
千升 美制桶 英制加仑 美制加仑
美国,印度尼西亚 1.18 7.4 259.1 310.6
伊朗,沙特阿拉伯 1.19 7.49 261.8 314.5
日本 1.11 6.99 244.5 293.3
英国,科威特 1.16 7.31 255.8 306.7
委内瑞拉 1.09 6.84 239.2 287.4

注:世界平均比重的原油通常以1公吨=7.35桶(每桶为42美制加仑)或1174升计

常用度量衡英文名称和简写
名称 英文名称 简写 名称 英文名称 简写
克 gram g. 码 yard yd.
公斤 kilogram kg. 英尺 foot ft.
公担 quintal q. 英寸 inch in.
公吨 metric ton m.t. 平方米 square metre sq.m.
长吨 long ton l.t. 平方英尺 square foot sq.ft
短吨 short ton sh.t. 平方码 square yard sq.yd.
英担 hundredweight cwt. 立方米 cubic metre cu.m.
美担 hundredweight cwt. 立方英尺 cudic metre cu.ft.
磅 pound lb. 升 litre l.
(常衡) ounce oz. 毫升 millilitre ml.
(金衡) ounce oz.t 加仑 gallon gal.
司马担 picul   蒲式耳 bushel bu.
米 metre m. 克拉 carat car.
公里 kilometre km. 马力 horse power h.p.
厘米 centimetre cm. 千瓦 kilowatt kw.
毫米 millimetre mm. 公吨度 metric ton unit m.t.u.

附表八:

计量单位换算表

面(地)积换算
公制 英美制  
平方米 平方厘米 平方码 平方英尺 平方英寸 平方尺
1 10000 1.1960 10.7639 1550 9
0.0001 1 0.00012 0.00108 0.155 0.0009
0.8361 8361 1 9 1296 7.525
0.0929 929 0.1111 1 144 0.836
0.00065 6.45 0.00077 0.00694 1 0.0058
0.111 1111 0.133 1.196 172.2 1

长度换算
公制 中国市制 英美制
米 厘米 尺 码 英尺 英寸
1 100 3 1.094 3.2808 39.37
0.01 1 0.03 0.01094 0.03281 0.3937
0.3333 33.33 1 0.3646 1.094 13.123
0.9144 91.44 2.743 1 3 36
0.3048 30.48 0.9144 0.3334 1 12
0.0254 2.54 0.0762 0.0278 0.833 1

1米=100厘米=1000毫米

重量换算(一)
公制 英制 美制 港制
公吨 长吨 短吨 司马担
1 0.9842 1.1023 16.535
1.016 1 1.12 16.8
0.9072 0.8929 1 15
0.05 0.04921 0.0551 0.8267
0.0508 0.05 0.056 0.8402
0.0605 0.0594 0.0667 1

 
公制 中国市制 英美制
公斤 斤 磅
1000 2000 2204.6
1016 2032 2242
907 1814 2000
50 100 110.23
50.8 101.6 112
60.48 120.96 133.33
1 2 2.2046
0.5 1 1.1023
0.4536 0.9072 1

港制1司马担=100司马斤 公制1公吨=10公担 英制1长吨=20英担(CWT)
1英担=50.8024公斤 美制1短吨=20短担(CWT) 1短吨=100磅=45.36公斤
Welcome to BW tool world! We are an experienced tool maker specialized in cutting tools. We focus on what you need and endeavor to research the best cutter to satisfy users’ demand. Our customers involve wide range of industries, like mold & die, aerospace, electronic, machinery, ,,,etc. We are professional expert in cutting field. We would like to solve every problem from you. Please feel free to contact us, it’s our pleasure to serve for you. BW product including: utting tool、aerospace tool .HSS Cutting tool、Carbide end mills、Carbide cutting tool、NAS Cutting tool、Carbide end mill、Aerospace cutting tool、Carbide drill、High speed steel、Milling cutter、Core drill、Taperd end mills、Metric end mills、Miniature end mills、Pilot reamer、Electronics cutter、Step drill、Metal cutting saw、Double margin drill、Gun barrel、Angle milling cutter、Carbide burrs、Carbide tipped cutter、Chamfering tool、IC card engraving cutter、Side cutter、NAS tool、DIN tool、Special tool、Metal slitting saws、Shell end mills、Side and face milling cutters、Side chip clearance saws、Long end mills、Stub roughing end mills、Dovetail milling cutters、Carbide slot drills、Carbide torus cutters、Angeled carbide end mills、Carbide torus cutters、Carbide ball-noseed slot drills、Mould cutter、Tool manufacturer.
Bewise Inc. www.tool-tool.com

beeway 發表在 痞客邦 PIXNET 留言(0) 人氣()

Bewise Inc. www.tool-tool.com Reference source from the internet.
镁及其合金对氧具有很高的化学亲和力,特别是在熔化和碎屑、粉尘状态下,更增加了与氧接触表面,当加热温度达到400℃~430℃以上就有产生燃烧爆炸的危险。所以:

(1)镁及镁合金机械加工主要防火安全要求:加工时最好与黑色金属加工分开,设在单独的隔离内:为了避免摩擦发热,避免碎硝粉尘,应尽量选用大前、后角、 大排屑槽的锋利刀具,选用大走刀量和大切削深度,切削进给结束要立即退刀;不得使用含水份的冷却液,切屑时应及时清除并存放在指定地点,不得与其它切屑混 在一起;切屑起火可用干砂扑灭,切不可用水。

(2)镁合金熔化防火安全要求:镁合金熔化不仅容易引起燃烧,而且使用氟化物作熔剂腐蚀相当严重。因此镁合金的熔化,浇铸应在一、二级耐火等级具有特殊抗 腐蚀措施的单独厂房,熔化和浇铸地方不准敷设蒸气和水管,用水浸润坩锅应在有防火隔墙的单独房间;熔化镁合金是在溶剂层下进行的。熔剂形成熔融状隔膜,使 熔融的镁合金与空气隔离,防止氧化燃烧;在砌炉衬或修炉时,不要使用水玻璃或其它硅酸盐和硅砖,因为万一发生坩锅烧穿时,熔融的镁合金与其作用可能发生爆 炸,应保证坩锅制造质量,定期检查和清除氧化皮,如底部厚度减薄超过原有50%应予报废,发现坩锅外壁有干枯熔剂,即表明已有渗漏,应报废;坩锅开始有渗 漏现象,即发现炉膛内产生白烟,应立即停止加温查明原因,如烟雾急剧增加、应立即将镁合金熔液掏出或将坩锅吊起,注入干燥并经过予热的槽子或镁模内;在扑 灭熔融或坩锅烧穿流入炉膛内的镁合金必须用镁合金专用灭火剂,如发生小型燃烧,也可用镁合金型砂扑灭。注意切不可用砂子,因为砂中的二氧化硅与燃烧的镁起 反应,会放出大量的热,反而促使镁的燃烧。

(3) 镁合金焊接、热处理的防火安全要求:镁合金焊接、热处理在预热和加热前应除去零件上的毛边和镁合金碎硝,零件不得和加热炉的电阻丝直接接触,在盐炉内进行热处理时严格控制温度,一般不应超过430℃。

Welcome to BW tool world! We are an experienced tool maker specialized in cutting tools. We focus on what you need and endeavor to research the best cutter to satisfy users’ demand. Our customers involve wide range of industries, like mold & die, aerospace, electronic, machinery, ,,,etc. We are professional expert in cutting field. We would like to solve every problem from you. Please feel free to contact us, it’s our pleasure to serve for you. BW product including: utting tool、aerospace tool .HSS Cutting tool、Carbide end mills、Carbide cutting tool、NAS Cutting tool、Carbide end mill、Aerospace cutting tool、Carbide drill、High speed steel、Milling cutter、Core drill、Taperd end mills、Metric end mills、Miniature end mills、Pilot reamer、Electronics cutter、Step drill、Metal cutting saw、Double margin drill、Gun barrel、Angle milling cutter、Carbide burrs、Carbide tipped cutter、Chamfering tool、IC card engraving cutter、Side cutter、NAS tool、DIN tool、Special tool、Metal slitting saws、Shell end mills、Side and face milling cutters、Side chip clearance saws、Long end mills、Stub roughing end mills、Dovetail milling cutters、Carbide slot drills、Carbide torus cutters、Angeled carbide end mills、Carbide torus cutters、Carbide ball-noseed slot drills、Mould cutter、Tool manufacturer.
Bewise Inc. www.tool-tool.com

beeway 發表在 痞客邦 PIXNET 留言(0) 人氣()


Bewise Inc. www.tool-tool.com Reference source from the internet.
积屑瘤——指在加工中碳钢时,在刀尖处出现的小块且硬度较高的金属粘附物。

1、积屑瘤的形成

在 加工过程中,由于工件材料是被挤裂的,因此切屑对刀具的前面产生有很大的压力,并摩擦生成大量的切削热。在这种高温高压下,与刀具前面接触的那一部分切屑 由于摩擦力的影响,流动速度相对减慢,形成“滞留层”。当摩擦力一旦大于材料内部晶格之间的结合力时,“滞流层”中的一些材料就会粘附在刀具*近刀尖的前 面上,形成积屑瘤。

2、积屑瘤的作用

优点:积屑瘤的硬度比原材料的硬度要高,可代替刀刃进行切削,提高了刀刃的耐磨性;同时积屑瘤的存在使得刀具的实际前角变大,刀具变得较锋利。

缺 点:积屑瘤的存在,在实际上是一个形成、脱落、再形成、再脱落的过程,(1)部分脱落的积屑瘤会粘附在工件表面上,(2)而刀具刀尖的实际位置也会随着积 屑瘤的变化而改变,(3)同时,由于积屑瘤很难形成较锋利的刀刃,在加工中会产生一定的振动。所以这样加工后所得到的工件表面质量和尺寸精度都会受到影 响。

鉴于积屑瘤的优缺点,我们在粗加工时应设法形成积屑瘤,而在精加工时则要避免积屑瘤的产生。

3、积屑瘤的控制

(1)材料的性质 材料的塑性越好,产生积屑瘤的可能性越大。因此对于中、低碳钢以及一些有色金属在精加工前应对于它们进行相应的热处理,如正火或调质等,以提高材料的硬度、降低材料的塑性。

(2)切削速度 当加工中出现不想要的积屑瘤时,可提高或降低切削速度,亦可以消除积屑瘤。但要与刀具的材料、角度以及工件的形状相适应。

(3)冷却润滑 冷却液的加入一般可消除积屑瘤的出现,而在冷却液中加入润滑成分则效果更好
Welcome to BW tool world! We are an experienced tool maker specialized in cutting tools. We focus on what you need and endeavor to research the best cutter to satisfy users’ demand. Our customers involve wide range of industries, like mold & die, aerospace, electronic, machinery, ,,,etc. We are professional expert in cutting field. We would like to solve every problem from you. Please feel free to contact us, it’s our pleasure to serve for you. BW product including: utting tool、aerospace tool .HSS Cutting tool、Carbide end mills、Carbide cutting tool、NAS Cutting tool、Carbide end mill、Aerospace cutting tool、Carbide drill、High speed steel、Milling cutter、Core drill、Taperd end mills、Metric end mills、Miniature end mills、Pilot reamer、Electronics cutter、Step drill、Metal cutting saw、Double margin drill、Gun barrel、Angle milling cutter、Carbide burrs、Carbide tipped cutter、Chamfering tool、IC card engraving cutter、Side cutter、NAS tool、DIN tool、Special tool、Metal slitting saws、Shell end mills、Side and face milling cutters、Side chip clearance saws、Long end mills、Stub roughing end mills、Dovetail milling cutters、Carbide slot drills、Carbide torus cutters、Angeled carbide end mills、Carbide torus cutters、Carbide ball-noseed slot drills、Mould cutter、Tool manufacturer.
Bewise Inc. www.tool-tool.com

beeway 發表在 痞客邦 PIXNET 留言(0) 人氣()

Bewise Inc.   www.tool-tool.com     Reference source from the internet.   
前言

  深孔钻削在机械加工中占有非常重要的地位,但由于有一些技术问题尚未解决,至今仍是金属切削加工的“瓶颈”工序。在深孔加工中,常常发生钻头刀齿突然崩刃或断齿,即钻头破损,其结果是工件孔表面损伤,钻杆扭弯、断裂,甚至机床被损坏。破损是深孔钻最主要的损坏形式,其破损耐用度主要取决于刀刃受冲击的次数和力度,即深孔钻削稳定性,特别是入钻和出钻的稳定性。根据实际应用情况统计,近80%的钻头早期破损都发生在入钻或出钻时。因此,深孔钻削稳定性将直接影响钻头耐用度和钻孔质量。现有的深孔钻有深孔麻花钻、枪钻、单刃内排屑深孔钻和多刃错齿内排屑深孔钻等。其中多刃错齿内排屑深孔钻以其分屑可靠,切削力平衡,刀齿可分别选配材料等优点,成为目前国内外应用最广的一种深孔钻,本文就基于此种钻头进行研究。

图1 深孔钻削过程中的扭矩变化

  1 钻削稳定性的影响因素

  影响钻削稳定性的因素很多,追根究底是由切削力变化而产生的。因此,这里主要分析切削力变化对切削稳定性的影响,并从导向套与钻头间隙、钻尖高度和导向块布置方面加以论证。

  钻削过程中切削力变化的影响

  通过试验测得,用58.4钻头钻削40CrNiMo5材料,切削扭矩变化如图1所示,可分为五个阶段。

  在导向套引导下,各切削刃依次切入工件,切削扭矩迅速增大。这时,切削合力使钻头上导向块紧贴导向套孔壁,起导向作用,见图1中的OA段。
钻头所有刀齿切入工件后,切削扭矩达到最大。由于导向块端部与钻头外刃刀尖之间的轴向位置之差,导向块仍然停留在导向套内,这时扭矩不会发生明显变化,见图1中的AB段,这段距离亦称为导向块滞后量。

  导向块进入工件后,与孔壁发生摩擦、挤压。这时扭矩会突然增大,随着导向块全部进入,钻头定心作用加强,钻削趋于平稳,扭矩逐渐地减小,见图1中的BC段。

  钻头在已加工表面上稳定导向,切削扭矩没有明显的波动,进入稳定钻削阶段,见图1中的CD段。

  工件快被钻透时,中心处发生塑性变形,钻头中心齿及部分中间齿不起切削作用,只有外齿和部分中间齿在切除残余部分,因而形成“切削帽”。此时能量瞬时释放,切削扭矩一下降低趋于零,见图1中的DE段。

  由此可知,钻头的入钻使切削扭矩骤然产生,钻头的出钻使切削扭矩骤然消失,其变化幅度之大,足以影响工件加工质量和钻头耐用度,是钻削稳定性的主要影响因素。

  导向套与钻头间隙的影响

  为了正确引导钻头入钻,通常采用在工件上加工出引导孔或采用导向套的方法,前者用于单件加工,后者用于批量生产。入钻误差由钻头与导向套(引导孔)之间的间隙造成,并随轴向力的增大而加大。导向套与钻头间隙对入钻误差的影响如图2所示。在钻削开始时,径向力将钻头导向块压向导向套孔壁,由于两者之间有间隙,钻头中心相对工件回转中心发生偏移(见图2a),这时钻出的孔径小于钻头直径。当导向块开始进入已加工孔时,在直径略小的孔壁作用下,将外刃向外挤,使钻头中心相对工件回转中心向相反方向偏移(见图2b),使孔径扩大,并且与导向孔壁挤压摩擦,使钻削扭矩迅速增大,这一过程与图1中的BC段相对应。往往此时钻头突然发生抖动,钻头容易发生破损。随着导向块逐渐进入,定心作用加强,加工孔径也趋于稳定(见图2c)。这样在工件入口处产生一个喇叭口,大端尺寸约等于导向套的内径,长度约等于导向块长度。间隙越大,喇叭口也越大,入钻容易钻偏,出钻偏斜更大,钻削过程振动剧烈;间隙过小,容易发生夹钻,造成刀具破损。由此可见,导向套与钻头的间隙也是钻削稳定性的主要影响因素之一。
轴向力将会加大入钻时的误差,影响钻削稳定性。根据材料力学理论,以纵横弯曲简支梁的力学模型对深孔钻削入钻过程进行研究。在建立力学方程后,可推导出轴向力对钻头作用时钻杆挠度转角的放大系数X(u),该系数越大,挠度转角也越大,即

  X(u)=3(tgu-u)/u      u=0.5L(Fx/EI)½

  式中:L——钻杆长度

  Fx——轴向力

  E——弹性模量

  I——惯性矩

  式中E、I为常量,X(u)只与钻杆长度L和轴向力Fx有关,L,Fx增大,X(u)相应增大。在入钻时,轴向力Fx从零增加到最大,放大系数 X(u)也不断增加,钻杆挠度转角亦不断地被放大,当切削刃全部切入时,转角达到最大。由于钻头与导向块之间有间隙,钻头相对于工件端面发生倾斜,这就相当于在斜面上钻孔(见图2d),入钻发生偏斜,钻头与钻杆绕着工件回转中心转动,产生周期振动,容易使钻头破损,使工件表面产生螺旋沟槽,并随着钻孔深度的增加而加大。

图2 导向套与钻头间隙的影响

  钻尖高度的影响

  钻尖高度是指钻头的钻尖点到导向块前端的轴向距离,见图3中的h。钻尖高度越大,入钻和出钻的时间就越长,不稳定钻削时间也越长。由于位于钻尖的中心齿切削速度较低,切削力大,挤压摩擦严重,卷屑、断屑困难,定心、导向较差。入钻时“单枪匹马”,摇摇晃晃,容易断齿或崩刃。出钻时不易形成“切削帽”,钻尖首先钻穿工件,失去孔底的反锥尖定心(见图4),钻削力突然失去平衡,钻头晃动突然加剧,非常容易崩刃(特别是外齿)。因此钻尖的高低直接影响钻削稳定性、钻头耐用度和钻孔精度。

1.中心齿(YG8) 2.中间平齿(YT798) 3.外齿(YT798) 4.导向块(YT798) 5.中间尖齿(YT798) 6.减振块(YT798)
图3 尖齿内折线刃深孔钻

1.定心反锥 2.定心环形凸筋
图4 孔底的形状

  导向块位置的影响

  深孔钻利用外齿副刃和两个导向块三点定圆自行导向进行切削。导向块必须始终保持与已加工孔壁接触,并有一定的压力存在,才能保证加工过程的稳定性。目前,常采用静力学中“稳定度”的概念作为合理布置导向块位置的理论依据。稳定度在这里是指以所要考察的那个导向块作为支点,使非考察的那个导向块压向孔壁的力矩与使非考察的那个导向块脱离孔壁的力矩的比值。这样一个钻头就有两个稳定度,对于整个钻头的稳定度,应该把两者中最小的作为该钻头的稳定度S,S值越大,钻削稳定性越好,即

  S>1时,钻头处于稳定状态;

  S=1时,钻头处于临界状态;

  S<1时,钻头处于不稳定状态。

  2 提高钻削稳定性的途径

  消除或减小前述各因素的影响即可提高钻削稳定性。本文仅从深孔钻结构改进方面进行了研究,设计了一种尖齿内折线刃深孔钻头,详见图3。与普通深孔钻相比主要进行了以下改进。

  降低钻尖高度

  降低钻尖高度,可通过加大偏心量、将中心齿的内刃磨成两条折线刃来实现。其特点是:可以有效地降低钻尖高度(见图3 中的钻尖由h′降低到h),缩短入钻和出钻的时间。入钻时,中心齿和中间齿几乎同时切入工件(见图3中的Δh),入钻后很快就可以进入正常切削状态;出钻时,切削帽减薄,各刀齿上刀削力几乎同时消失,有效地提高了入钻和出钻过程的钻削稳定性。另外,内折线刃还增大了中心齿的散热体积和钻尖强度。

  改中间齿为尖齿

  为了提高钻削稳定性,我们将中间齿设计为尖齿(见图3)。切削时,中间齿在孔底形成环形凸筋,与内折线刃在孔底形成的反锥(见图4)同时起到定心、稳定钻削的作用。

  增加减振块

  普通深孔钻大都采用两个导向块,与钻头外齿副刃基本上在180°内布置,稳定度S>1,当切削力波动不大时,可以保证钻削过程稳定性。但是,由于作导向的已加工孔表面有圆度误差,以及工件材质不均,特别是入钻和出钻,难免在钻削过程中引起振动,尤其是扭振,使钻头以某一个导向块为支点转动。这种情况,普通深孔钻无法抑制。因此,我们在钻头体后端增设一减振块,布置在外齿刀刃上方与之成90°的位置,如图3所示。在正常切削时,切削合力指向两导向块之间,使导向块紧贴已加工孔壁,起导向作用,而减振块位于后端,刃磨有倒锥使与已加工孔壁有一定的间隙,不起作用;当钻削力失去平衡发生振动,产生偏离导向块方向的位移时,减振块才起作用,可以减振、消振,保护刀刃和提高加工孔的形状精度。

  3 试验验证

  试验条件

  试验设备:C630改装深孔钻床。

  试验钻头:Ø58.4尖齿内折线刃深孔钻头和Ø58.4普通深孔钻头各10支。

  工件材料:40CrNiMo5 250HB~300HB。

  切削用量:主轴转速n=230 r/min;进给量vf=0.03mm/r~0.15mm/r。

  测量仪器:SD375动态分析仪、Y6D—3 A动态电阻应变仪、LZ3函数记录仪、测力传感器和位移传感器等。

  试验方法

  测量两种钻头切削力值,见表1。

表1 切削力对比试验数据

转速n

r/min
   

进给量vf

mm/r
   

新型钻头与普通钻头扭矩之比

%
   

新型钻头与普通钻头轴向力之比

%

230
   

0.03
   

85.9
   

84.3

230
   

0.08
   

83.5
   

76.7

230
   

0.15
   

78.3
   

78.6

  测量瞬间轴向力变化情况。

  测量两种钻头在钻削过程中钻杆的振幅,对比曲线如图5所示。

1.普通深孔钻 2.尖齿内折线刃深孔钻
图5 钻杆振幅对比曲线

  测量两种钻头的钻削长度。

  测量两种钻头的钻孔精度。

  试验结果分析

  由表1可以看出,随着进给量的增加,两种钻头的轴向力和扭矩相应增大。尖齿内折线刃深孔钻比普通深孔钻轴向力平均降低20.1%,扭矩平均降低17.4%,而且随着进给量增加,新型钻头切削力增加较为缓慢。

  根据函数记录仪所记录下的轴向力瞬间变化情况,当进给量突然增大时,两种钻头的轴向力均呈周期性变化,但新型钻头的波峰值始终小于普通深孔钻,而且波动幅度也小于普通深孔钻,这说明尖齿内折线刃深孔钻的钻削稳定性优于普通深孔钻。产生这种效果的主要原因是中间齿是尖齿和有减振块,加强了定心作用。

  图5是两种钻头钻削过程中钻杆振幅量的对比曲线。图中A、B、C点分别为中心齿、导向块、减振块钻入时钻杆的振幅量。显然,由于尖齿内折线刃深孔钻钻尖高度低、中间齿是尖齿,入钻和整个钻削过程的振动均小于普通深孔钻,而且在C点之后,即减振块进入工件后,钻头还有一个减振稳定过程,使钻削扭矩迅速减弱到正常水平,而普通深孔钻没有这一过程。出钻时,在D、E之间,普通深孔钻振动加剧,振幅增大,而新型钻头由于各刀齿高差小,几乎同时透钻,且又有减振块的保护,可以平稳出钻,钻杆振幅很小。

  根据两种钻头钻削路程长度对比试验,由于尖齿内折线刃深孔钻钻削稳定性好,平均钻削路程长度达16.16m,高于普通深孔钻近一倍。

  两种钻头钻孔精度比较,尖齿内折线刃深孔钻钻孔圆度误差比普通深孔钻小3µm左右,孔径误差小0.04mm,尺寸精度可达IT7级~IT8级。新型钻头钻孔表面质量好,加工表面光滑,无螺旋刀痕,表面粗糙度在Ra1.0~Ra3.2之间。

  4 结论

  深孔钻削稳定性直接影响深孔钻头的耐用度和钻孔质量。

  深孔钻削稳定性主要受切削力变化影响,其次还取决于导向套与钻头间隙。

  钻尖高度直接影响深孔钻削入钻和出钻的稳定性。

  按钻削稳定性原则设计的尖齿内折线刃深孔钻,可以有效地提高深孔钻削的稳定性。经对比试验证明,钻削平稳,钻头耐用度和钻孔精度高,其设计思想可作为今后深孔钻合理设计的参考基础。



Welcome to BW tool world!  We are an experienced tool maker specialized in cutting tools.  We focus on what you need and endeavor to research the best cutter to satisfy users’ demand.  Our customers involve wide range of industries, like mold & die, aerospace, electronic, machinery, ,,,etc.  We are professional expert in cutting field.  We would like to solve every problem from you.  Please feel free to contact us, it’s our pleasure to serve for you.     BW product including: utting tool、aerospace tool .HSS Cutting tool、Carbide end mills、Carbide cutting tool、NAS Cutting tool、Carbide end mill、Aerospace cutting tool、Carbide drill、High speed steel、Milling cutter、Core drill、Taperd end mills、Metric end mills、Miniature end mills、Pilot reamer、Electronics cutter、Step drill、Metal cutting saw、Double margin drill、Gun barrel、Angle milling cutter、Carbide burrs、Carbide tipped cutter、Chamfering tool、IC card engraving cutter、Side cutter、NAS tool、DIN tool、Special tool、Metal slitting saws、Shell end mills、Side and face milling cutters、Side chip clearance saws、Long end mills、Stub roughing end mills、Dovetail milling cutters、Carbide slot drills、Carbide torus cutters、Angeled carbide end mills、Carbide torus cutters、Carbide ball-noseed slot drills、Mould cutter、Tool manufacturer.
Bewise Inc.   www.tool-tool.com

beeway 發表在 痞客邦 PIXNET 留言(0) 人氣()

Bewise Inc. www.tool-tool.com Reference source from the internet.
刀具长度补偿功能,是数控机床的一项重要功能,在准备功能中用G43、G44、G49表示,但是若使用得不好很容易造成撞车和废品事故。下面以加工中心为例,介绍生产实践中常用的几种刀具长度补偿方法。

  1 刀具长度补偿功能的执行过程

  典型的指令格式为G43 Z_H_;或G44 Z_H_。其中G43指令加补偿值,也叫正向补偿,即把编程的Z值加上H代码指定的偏值寄存器中预设的数值后作为CNC实际执行的Z坐标移动值。相应的,G44指令减去预设的补偿值,也叫负向补偿。

  当指令G43时,实际执行的Z坐标值为Z’=Z_+(H_);

  当指令G44时,实际执行的Z坐标值为Z’=Z_-(H_);

  这个运算不受G90绝对值指令或G91增量值指令状态的影响。偏值寄存器中可预设正值或负值,因此有如下等同情况。

  指令G43、H设正值等同于指令G44、H设负值的效果:

  指令G43、H设负值等同于指令G44、H设正值的效果。

  因此一般情况下,为避免指令输入或使用时失误,可根据操作者习惯采用两种方式:

  只用指令G43,H设正值或负值:

  H只设正值,用指令G43或G44。

  以下介绍使用较多的第一种情况。

  指令格式中Z值可以为0,但H0或H00将取消刀具长度补偿,与G49效果等同,因为0号偏值寄存器被NC永远置0。

  一般情况下,为避免失误,通过设定参数使刀具长度补偿只对Z轴有效。例如当前指令为G43X_H_;时,X轴的移动并没有被补偿。

  被补偿的偏置值由H后面的代码指定。例如H1设20.、H2设-30.,当指令“G43 Z100.H1;”时,Z轴将移动至120.处:而当指令“G43 Z100. H2;”时,Z轴将移动至70.处。

  G43(G44)与G00、G01出现在一个程序段时,NC将首先执行G43(G44)。

  可以在固定循环的程序段中指令G43(G44),这时只能指令一个H代码,刀具长度补偿同时对Z值和R值有效。

  在机床回参考点时,除非使用G27、G28、G30等指令,否则必须取消刀具长度补偿。为了安全,在一把刀加工结束或程序段结束时,都应取消刀具长度补偿。

   现代数控机床基本上淘汰了纸带,用芯片存储程序和刀具长度补偿值,可以随时修改,但通过设置和修改补偿量避免和减少改动加工程序,避免和减少因此可能带 来的误改、改不全等事故发生也是很有意义的。有些数控机床在出厂时因为参数设定不当,造成存储保护开关只能禁止修改加工程序,这种情况是相当危险的。

  2 利用刀具长度补偿功能简化编程

   利用NC处理刀具长度补偿功能的原理,可以简化编程。在编制加工程序时,忽略不同刀具长度对编程数值的影响,可以只以一把假想长度的标准刀具进行编程, 这个假想长度也可以是0,以简化编程中不必要的计算,在正式加工前再把实际刀具长度与标准刀具长度的差值作为该刀具的长度补偿数值设置到其所使用的H代码 地址内。

  试切时在零件或夹具上垂直于Z轴(平行于X、Y轴)的平面族内选择一个Z0平面,该平面是刀具长度补偿后编程的Z坐标0点。 一般以达到图纸尺寸的零件上的一个平面或台阶作为Z0平面,也叫对刀基准面。如果是切削毛坯,需先用一把铣刀通过试切建立这个平面。如下图所示,钻头 T1、镗刀T2、铣刀 T3是Z轴在机床零件点时的位置,标准刀具是前端抵至Z0平面的位置。

1.钻头T1 2.镗刀T2 3.铣刀T3 4.标准刀具 5.工件
对刀基准面示意图

  根据用户购买机床时的实际配置,对刀有两种情况。

  有机外对刀仪

  一般以对刀仪供货时随机的校验棒作为标准刀具,把它装进主轴,.轴回到机床零点,然后以手动方式使标准刀具的前端(一般是钢球)抵至Z0平面,可以用塞尺确认。

  把此时机床坐标系的Z轴值(负值)减去标准刀具的长度(正值),注意是负值时得绝对值相加,把这个值(负值)设置为该工件坐标系的Z值。接着在对刀仪上测出所有加工刀具的长度,即主轴端面至刀尖的距离,然后把这些值(正值)分别作为每把刀的刀具长度补偿值。

  直接把此时机床坐标系的Z轴值(负值)设置为该工件坐标系的Z值。接着在对刀仪上测出所有加工刀具与标准刀具的长度之差,比标准刀具长的记为正值,比标准刀具短的记为负值,然后把这些值分别作为每把刀的刀具长度补偿值。

  没有机外对刀仪

   没有对刀仪的用户,一般采用前述的指令G43、H只设负值的方式。分别把加工刀具装进主轴,Z轴回到机床零点,然后以手动方式使刀具的前端抵至Z0平 面。把此时机床坐标系的Z轴值(负值)直接作为每把刀的刀具长度补偿值。同时该工件坐标系的Z值永远置0。这种对刀过程,对大部分数控系统,在刀具偏置页 面下就可以显示当时的Z坐标值,可以直接把该值输入到补偿地址。应注意这时显示的Z坐标值一般是相对值,一定要切换到机床坐标系,否则很容易造成事故。

  有的操作者用一个对刀块确认刀具的前端抵至Z0平面,这样在输入补偿值或输入工件坐标系Z值时换算对刀块的厚度,也容易因加减搞错和漏加漏减造成事故。

  不同刀具的对刀点

  根据使用经验,为使程序调整简单,钻头、铣刀、镗刀等刀具以刀尖对刀。但是对倒角刀具,比如锪钻、倒角镗刀、倒角立铣刀等以被倒角的孔口接触刀刃作为对刀点,这样可以简化倒角角度与Z轴进给长度的换算。



Welcome to BW tool world! We are an experienced tool maker specialized in cutting tools. We focus on what you need and endeavor to research the best cutter to satisfy users’ demand. Our customers involve wide range of industries, like mold & die, aerospace, electronic, machinery, ,,,etc. We are professional expert in cutting field. We would like to solve every problem from you. Please feel free to contact us, it’s our pleasure to serve for you. BW product including: utting tool、aerospace tool .HSS Cutting tool、Carbide end mills、Carbide cutting tool、NAS Cutting tool、Carbide end mill、Aerospace cutting tool、Carbide drill、High speed steel、Milling cutter、Core drill、Taperd end mills、Metric end mills、Miniature end mills、Pilot reamer、Electronics cutter、Step drill、Metal cutting saw、Double margin drill、Gun barrel、Angle milling cutter、Carbide burrs、Carbide tipped cutter、Chamfering tool、IC card engraving cutter、Side cutter、NAS tool、DIN tool、Special tool、Metal slitting saws、Shell end mills、Side and face milling cutters、Side chip clearance saws、Long end mills、Stub roughing end mills、Dovetail milling cutters、Carbide slot drills、Carbide torus cutters、Angeled carbide end mills、Carbide torus cutters、Carbide ball-noseed slot drills、Mould cutter、Tool manufacturer.
Bewise Inc. www.tool-tool.com

beeway 發表在 痞客邦 PIXNET 留言(0) 人氣()