Bewise Inc. www.tool-tool.com Reference source from the internet.

Getriebe mit vier Gliedern: Antriebsritzel u.re., Zwischenrad li. und Abtriebsrad o.re., sowie Gestell / Rahmen

Getriebe mit vier Gliedern: Antriebsritzel u.re., Zwischenrad li. und Abtriebsrad o.re., sowie Gestell / Rahmen

Getriebe sind bewegliche Verbindungen von Teilen zum Übertragen und Umwandeln von Drehzahlen oder Drehmomenten oder zum Führen von Teilen auf einer Bahn.

Getriebe sind meist mechanische Vorrichtungen zum Übertragen und Wandeln von Drehbewegungen, Drehrichtungen und Drehmomenten. Der bekannteste Vertreter ist das Fahrzeuggetriebe. Für andere Bauarten wird meist der Begriff Mechanismus oder Räderwerk benutzt. Ein Mechanismus ist meist ein Zusammenspiel von Zahnrädern. In Anlehnung an VDI-Richtlinie 2127: Getriebe dienen zur Übertragung und Umformung (Übersetzung) von Bewegungen, Energie und/oder Kräften.
Sie bestehen aus mindestens drei Gliedern, von denen eines das Gestell bildet.

Getriebe mit gleichmäßiger Übersetzung (für Drehbewegung) [Bearbeiten]

Der Einsatz dieser Form von Getrieben erfolgt hauptsächlich

Das Getriebe wird meist zwischen dem Antriebsaggregat (Motor) und dem zu treibenden Maschinenteil mittels Kupplungen eingebunden. Getriebe werden nach verschiedenen Kriterien unterteilt:

Nach Bauart [Bearbeiten]

Nach der Art der Kraftübertragung [Bearbeiten]

Mechanische Getriebe [Bearbeiten]

Formschlüssige Getriebe [Bearbeiten]
  1. Getriebe mit Zahnrädern
    1. Stirnradgetriebe: Eingangs- und Ausgangswelle sind parallel.
    2. Planetengetriebe: An- und Abtriebswelle sind koaxial. Um das Innenrad kreisen Planetenräder, die ihrerseits wieder in ein Außenrad eingreifen. Sonderform der Stirnradgetriebe (zum Beispiel in der Nabenschaltung von Fahrrädern).
    3. Kegelradgetriebe: An- und Abtriebswelle sind nicht parallel (meist 90°) angeordnet. Die äußere Form der Zahnräder (Hüllkurve) entspricht Kegeln, deren Mittelachsen sich schneiden.
    4. Kronenradgetriebe: Verwendung und Bauform wie Kegelradgetriebe; allerdings ist das Ritzel als Stirnrad ausgeführt, und das Gegenrad hat die Form einer Krone mit der Verzahnung an der Radseite. Daher nennt man es Kronenrad.
    5. Schraubenradgetriebe: Wellen kreuzen sich. Die Wellenachsen sind windschief, haben also keinen Schnittpunkt.
    6. Ausgleichsgetriebe (auch Differentialgetriebe): Spezialgetriebe, das vor allem im Kraftfahrzeugbau eingesetzt wird.
    7. Schieberadgetriebe: Bei Schieberadgetrieben werden die verschiedenen Übersetzungsstufen durch axiales Verschieben eines Räderblocks auf einer Getriebewelle hergestellt.
    8. Harmonic-Drive-Getriebe (auch Taumelradgetriebe): es fällt unter die sogenannten Umlaufgetriebe. Beim Harmonic-Drive-Getriebe wird das Antriebselement durch einen elliptischen Kurvenkörper permanent verformt. Das Untersetzungsverhältnis von HD-Getrieben ist systembedingt hoch. Es wird unter anderem bei Robotern, Geräten und Maschinen, auch in Luft- und Raumfahrt eingesetzt, wenn dort eine Drehzahl stark reduziert oder ein Moment stark erhöht werden muss. Aus Aufbau und Wirkart ergibt sich eine nahezu spielfreie Verzahnung.
  2. Cyclo-Drive-Getriebe
  3. Schneckengetriebe
  4. Kettengetriebe (siehe auch Antriebskette und Kettenarten)
  5. Zahnriementrieb

Kraftschlüssige Getriebe [Bearbeiten]

Hauptartikel: Reibgetriebe

  1. Riemengetriebe (hierzu werden auch kraftschlüssige Kettengetriebe gezählt)
  2. Kegelringgetriebe: An- und Abtriebswelle sind in Form von Kegeln dargestellt, die über einen stufenlos verstellbaren Ring eine (nahezu) beliebige Übersetzung ermöglichen.
  3. Wälzkörpergetriebe (auch: Reibradgetriebe)
  4. Rollringgetriebe

Hydraulische Getriebe [Bearbeiten]

Bei hydraulischen Getrieben (siehe Strömungsgetriebe) sind An- und Abtriebsseite nicht mechanisch miteinander verbunden (kraftschlüssiges Getriebe). Die Antriebsseite setzt eine Flüssigkeit im Inneren in Bewegung, die die Abtriebsseite antreibt. Es wird zwischen hydrostatischen und hydrodynamischen Getrieben unterschieden.

Pneumatische Getriebe [Bearbeiten]

Pneumatische Getriebe sind nicht bekannt, jedoch werden Pneumatik-Motoren (linear oder drehend) häufig als Antrieb für Getriebe und Mechanismen verwendet.

Bekannt sind Elektro-Pneumatische Getriebe. Eine Steuerelektronik steuert über elektrisch schaltbare Ventile die Druckluft für Pneumatikzylinder an. Somit wird das Getriebe elektropneumatisch geschaltet.

Man könnte die Turbinenantriebe von Zahnarztbohrern als pneumatische Getriebe bezeichnen. Ein niedrig drehender Kompressor komprimiert Luft, die dann im Handstück des Zahnarztes eine hochdrehende winzige Turbinenwelle in Bewegung setzt.

Elektrische und elektronische Getriebe [Bearbeiten]

Das einfachste „elektrische Getriebe“ ist ein Generator (Antrieb), der mit einer bestimmten Drehzahl angetrieben wird, und einen daran angeschlossenem Elektromotor (Abtrieb), der, von diesem gespeist, mit einer anderen Drehzahl dreht.

Über die Feldsteuerung des Generators kann die elektrische Spannung und somit die Drehzahl des Motors (Abtriebes) variiert werden. Eine solche Anordnung nennt man Leonardsatz, wenn zum Antrieb des Generators ein Elektromotor verwendet wird. Dient zum Antrieb ein Dieselmotor, liegt ein sogenannter dieselelektrischer Antrieb vor. Solche Antriebe werden in Dieselloks und Schiffen verwendet; der Dieselmotor kann nun immer mit optimaler Drehzahl arbeiten, der Abtrieb kann ab Drehzahl null das volle Drehmoment liefern. Der Abtrieb kann auf mehrere Räder oder Schiffsschrauben verteilt werden und diese ggf. mit unterschiedlichen Drehzahlen und Momenten antreiben.
Beispielsweise in Schiffen werden auch Gasturbinen als Antriebsmaschinen eingesetzt.
Diesel- und Ottomotoren werden in Hybridfahrzeugen verwendet.
Fast jeder elektrische Hybridantrieb verfügt über Funktionen eines elektrischen Getriebes, teilweise mit anschließender Leistungsverzweigung über mechanische Systeme (Differentialgetriebe) oder zunehmend elektrisch (Einzelradantrieb). Im Hybrid Synergy Drive wird eine Leistungsverzweigung zur Reduzierung der Leistungsübertragung über das elektrische Getriebe integriert um Verluste und Dimensionierung zu minimieren.

Ein derartiges elektrisches Getriebe war Anfang der 1990er Jahre auch der serielle Hybridantrieb der FICHTEL & SACHS AG: ein Verbrennungsmotor treibt einen Generator für elektrischen Strom, der erzeugte elektrische Strom wird anschließend über einen Umrichter an zwei Elektromotoren (Tandem-Motoren) an den Rädern geliefert.

Ein Magnetisch-Elektrischer Getriebe-Automat (MEGA) integriert in einem Gehäuse die elektronische Leistungssteuerung, Antriebsrotor, Abtriebsrotor und einen verschiebbaren gemeinsamen Stator. Durch Veränderung der wirksamen Windungszahlen während des Betriebs wird die Auslegung auf hohes Drehmoment oder hohe Drehzahl variiert. So wird ein Wirkungsgrad von 80 bis 90 Prozent über alle Übersetzungen von Null bis unendlich erreicht. Die Entwicklung zur Serienreife des MEGA erfordert noch Entwicklungen der Automobil-Zulieferer. Das Antriebskonzept mit dem von Volkswagen entwickelten Getriebe wird als Direkthybrid bezeichnet.[1][2]

Es gibt auch Kopplungen von Synchrongenerator und Synchronmotor, bei denen keine Steuerung erforderlich ist. Diese erreichen insbesondere bei hohen Untersetzungen bessere Wirkungsgrade als mehrstufige mechanische Getriebe.

Der Begriff elektronisches Getriebe wird im übertragenen Sinne für eine elektronische Schaltung verwendet, die sowohl zur Drehzahl- als auch zur Drehmomentsteuerung dienen kann. Dabei werden nur die Motoren (Abtrieb) gesteuert. Verwendet wird dazu beispielsweise ein Frequenzumrichter oder ein Brückenverstärker. Der Antrieb des „Getriebes“ ist ein Drehgeber, der aus der Drehbewegung elektrische Steuersignale erzeugt.
Sind auch die Motoren mit Drehgebern (Winkelaufnehmer, Inkrementalgeber) ausgestattet, sind exakte Übersetzungsverhältnisse erreichbar. Solche Getriebe werden z. B. zur Drehung von Antennen (Antennenrotor zur Peilung oder bei Funkamateuren, Radar-Antennen) oder als „elektronische Welle“ in Manipulatoren und Flugzeugen (fly-by-wire) eingesetzt.

Nach Bauform [Bearbeiten]

Offene Bauform [Bearbeiten]

Offene Bauform bedeutet, dass die Elemente des Getriebes frei zugänglich sind. Häufig werden sie jedoch aus sicherheitstechnischen Gründen verkleidet. Beispiele: Riemengetriebe (früher auch Transmission genannt)

Geschlossene Gehäuse [Bearbeiten]

Schnittmodell eines Autogetriebes

Schnittmodell eines Autogetriebes

Bei geschlossenen Getrieben kommt kein Sand bzw. Staub in das Getriebe, was wichtig für einen geringen Verschleiß ist. Die Schmierung erfolgt über Fett oder einen geschlossenen Ölkreislauf. Das Gehäuse dient auch dem Lärmschutz und der Sicherheit. Beispiele: Kraftfahrzeuggetriebe, Differentialgetriebe

Getriebe mit einer ungleichmäßigen Übersetzung [Bearbeiten]

Zur Berücksichtigung der Positionsabhängigkeit der Übersetzung von der jeweiligen Position des Antriebes benutzt man die Übertragungsfunktion. Diese zeichnet die Position des Abtriebes über der Position des Antriebes auf.

Kurvengetriebe [Bearbeiten]

Kurvengetriebe mit Nutführung

Kurvengetriebe mit Nutführung

Als Kurvengetriebe werden Mechanismen bezeichnet, bei denen die Form einer bewegten Kurve von einem Abtaster abgegriffen und an andere Getriebeelemente (rotatorische oder translatorische) weitergeleitet wird. Die Abtastung erfolgt meist einseitig, das heißt, der Abtaster läuft auf der Kurve, an die er gedrückt wird, aber bei zu großen abhebenden Kräften kann er auch von der Kurve abheben. Um das zu vermeiden, wurden verschiedene Lösungen zur Zwangsführung der Abtaster entwickelt.

Kurvenkörper können ihre Kurve durch Rotation oder Längsverschiebung auf den Abtaster übertragen. Oft werden Kurvenkörper eingesetzt, die nur als Kreissegment ausgebildet sind und zum Zweck der Abtastung darum hin und her schwingen, entsprechend der Hin- und Herbewegung ebener Kurvenkörper.

Kurvengetriebe werden sehr häufig in der Automation eingesetzt, um Schalter zu bedienen, oder um komplizierte Bewegungsabläufe auszuführen. Am geläufigsten ist der Einsatz in Verbrennungsmotoren, wo Kurvengetriebe (Nockenwelle) das Öffnen und Schließen der Ventile steuern. Von dort ist auch das Problem des Abhebens des Abtasters bekannt (Ventilflattern).

Die Synthese von Kurvengetrieben geht meistens einher mit der Synthese von Koppelgetrieben, die üblicherweise die abgetasteten Bewegungen weiterleiten und umformen. Es gibt spezielle Kurvenformen zur Optimierung des Abtastverhaltens:

  • Geschwindigkeitsoptimal
  • Beschleunigungsoptimal
  • Kraftoptimal
  • Geräuschminimierend

u. a. Dazu werden im allgemeinen entsprechend geneigte Sinoiden verwendet.

Koppelgetriebe [Bearbeiten]

Koppelgetriebe

Koppelgetriebe
Hauptartikel: Koppelgetriebe

Kurbeltrieb [Bearbeiten]

In die Gruppe der Koppelgetriebe gehört u. a. auch der Kurbeltrieb. Es setzt eine rotatorische (drehende) Bewegung in eine translatorische (geradlinige) Bewegung um oder umgekehrt. Anwendung findet er beispielsweise an Dampfmaschinen oder im Kolbenmotor. (siehe auch Kurbelwelle)

Schrittgetriebe [Bearbeiten]

Schrittgetriebe setzen eine kontinuierliche Drehbewegung in eine intermittierende, schrittweise Drehbewegung um. Zwischen den einzelnen Schritten erfolgt eine Pause, bis der nächste Schritt beginnt. Schrittgetriebe können mit fast jeder Getriebeart realisiert werden.

Schrittgetriebe werden verwendet, um kontinuierliche Bewegungen in schrittweise Bewegungen mit momentaner oder zeitlicher Rast sowie auch mit Pilgerschritt (kurze Rückwärtsbewegung) umzuformen. Schrittgetriebe können u. a. durch Rädergetriebe, Räderkoppelgetriebe oder Koppelgetriebe, aber auch durch Kurvengetriebe und Getriebesonderbauformen realisiert werden.

Die bekannteste Bauform von Schrittantrieben ist das Malteserkreuzgetriebe, bei dem das bestimmende Getriebeteil (je nach Ausprägung) die Form eines Malteserkreuzes annehmen kann. Sie wurden beispielsweise in Filmprojektoren und -kameras eingesetzt, um die schrittweise Bewegung des Filmmaterials auszuführen, sind darüber hinaus aber wenig verbreitet.

Ordnung nach Hauptbestandteilen [Bearbeiten]

Begriffsdefinitionen [Bearbeiten]

  • Die Abtriebswelle führt die Leistung aus dem Getriebe heraus.
  • Bei der Antriebsdrehzahl unterscheidet man zwischen der Drehzahl im Fall der belasteten und der unbelasteten Antriebswelle.
  • Für die Abtriebsdrehzahl gilt das gleiche wie bei der Antriebsdrehzahl.
  • Die Übersetzung ist bei Getrieben das Verhältnis zwischen Antriebsdrehzahl und Abtriebsdrehzahl. Auch hier unterscheidet man zwischen belastetem und unbelastetem Getriebe.
  • Die Nennleistung ist die auf der An- oder Abtriebswelle bezogene Leistung, auf die das Getriebe ausgelegt ist. Betriebsfaktoren werden dabei nicht berücksichtigt.
  • Die Betriebsfaktoren K oder CB sind Werte, die zur Berücksichtigung von Stößen, Anfahrhäufigkeiten, Staub, Betriebsdauerintervallen, Temperatureinflüssen usw. dienen.
  • Multipliziert man die Nennleistung mit den Betriebsfaktoren, so erhält man die Bemessungsleistung.
  • Der Wirkungsgrad η eines Getriebes ergibt sich aus dem Verhältnis der Abtriebsleistung zur Antriebsleistung.
  • Der Stellbereich R oder SV ist das Verhältnis der maximalen zur minimalen Übersetzung.
  • Die Übertragungssicherheit beschreibt die Präzision der Bewegungsübertragung in einem Getriebe.

Redewendung „Sand im Getriebe“ [Bearbeiten]

„Besser ohne Sand“

„Besser ohne Sand“

Aufgrund der Funktion eines Getriebes gibt es den umgangssprachlichen Ausdruck Sand im Getriebe, wenn etwas schleppend oder nur gestört funktioniert. Sand im Getriebe sorgt für erhöhten Verschleiß, kann ein Getriebe auch blockieren oder unrunden Lauf verursachen. Ihren Ursprung mag die Redewendung im Rennsport sowie bei anderen Wettbewerben haben, wie sie beispielsweise bei Ausschreibungen erfolgen. Dabei soll es mitunter vorkommen, dass tatsächlich Sand nebst anderen Sabotagemaßnahmen in Getriebe und Motoren eingebracht wird, um damit den Konkurrenten Nachteile zu verschaffen. Auch waren und sind nicht alle Getriebe dicht gekapselt, wodurch Sand und Schmutz ins Getriebe gelangen kann, wie beim Fahrrad, landwirtschaftlichen Maschinen oder einem Betonmischer.

歡迎來到Bewise Inc.的世界,首先恭喜您來到這接受新的資訊讓產業更有競爭力,我們是提供專業刀具製造商,應對客戶高品質的刀具需求,我們可以協助客戶滿足您對產業的不同要求,我們有能力達到非常卓越的客戶需求品質,這是現有相關技術無法比擬的,我們成功的滿足了各行各業的要求,包括:精密HSS DIN切削刀具協助客戶設計刀具流程DIN or JIS 鎢鋼切削刀具設計NAS986 NAS965 NAS897 NAS937orNAS907 航太切削刀具,NAS航太刀具設計超高硬度的切削刀具醫療配件刀具設計汽車業刀具設計電子產業鑽石刀具木工產業鑽石刀具等等。我們的產品涵蓋了從民生刀具到工業級的刀具設計;從微細刀具到大型刀具;從小型生產到大型量產;全自動整合;我們的技術可提供您連續生產的效能,我們整體的服務及卓越的技術,恭迎您親自體驗!!

BW Bewise Inc. Willy Chen willy@tool-tool.com bw@tool-tool.com www.tool-tool.com skype:willy_chen_bw mobile:0937-618-190 Head &Administration Office No.13,Shiang Shang 2nd St., West Chiu Taichung,Taiwan 40356 http://www.tool-tool..com / FAX:+886 4 2471 4839 N.Branch 5F,No.460,Fu Shin North Rd.,Taipei,Taiwan S.Branch No.24,Sec.1,Chia Pu East Rd.,Taipao City,Chiayi Hsien,Taiwan

Welcome to BW tool world! We are an experienced tool maker specialized in cutting tools. We focus on what you need and endeavor to research the best cutter to satisfy users demand. Our customers involve wide range of industries, like mold & die, aerospace, electronic, machinery, etc. We are professional expert in cutting field. We would like to solve every problem from you. Please feel free to contact us, its our pleasure to serve for you. BW product including: cutting toolaerospace tool .HSS DIN Cutting toolCarbide end millsCarbide cutting toolNAS Cutting toolNAS986 NAS965 NAS897 NAS937orNAS907 Cutting Tools,Carbide end milldisc milling cutter,Aerospace cutting toolhss drillФрезерыCarbide drillHigh speed steelMilling cutterCVDD(Chemical Vapor Deposition Diamond )’PCBN (Polycrystalline Cubic Boron Nitride) Core drillTapered end millsCVD Diamond Tools Inserts’PCD Edge-Beveling Cutter(Golden FingerPCD V-CutterPCD Wood toolsPCD Cutting toolsPCD Circular Saw BladePVDD End Millsdiamond tool Single Crystal Diamond Metric end millsMiniature end millsСпециальные режущие инструментыПустотелое сверло Pilot reamerFraisesFresas con mango PCD (Polycrystalline diamond) ‘FreseElectronics cutterStep drillMetal cutting sawDouble margin drillGun barrelAngle milling cutterCarbide burrsCarbide tipped cutterChamfering toolIC card engraving cutterSide cutterNAS toolDIN or JIS toolSpecial toolMetal slitting sawsShell end millsSide and face milling cuttersSide chip clearance sawsLong end millsStub roughing end millsDovetail milling cuttersCarbide slot drillsCarbide torus cuttersAngel carbide end millsCarbide torus cuttersCarbide ball-nosed slot drillsMould cutterTool manufacturer.

Bewise Inc. www.tool-tool.com

ようこそBewise Inc.の世界へお越し下さいませ、先ず御目出度たいのは新たな

情報を受け取って頂き、もっと各産業に競争力プラス展開。

弊社は専門なエンドミルの製造メーカーで、客先に色んな分野のニーズ

豊富なパリエーションを満足させ

arrow
arrow
    全站熱搜

    beeway 發表在 痞客邦 留言(0) 人氣()