Lutetium ( /l(j)uːˈtiːʃiəm/ lew-TEE-shee-əm) is a chemical element with the symbol Lu and atomic number 71. It is in the d-block of the periodic table, not the f-block, but the IUPAC classifies it as a lanthanide.[2] It is one of the elements that traditionally were included in the classification, "rare earths". One of its radioactive isotopes (176Lu) is used in nuclear technology to determine the age of meteorites. Lutetium usually occurs in association with the element yttrium and is sometimes used in metal alloys and as a catalyst in various chemical reactions.

 

 

Contents

[hide]

  • 1 Characteristics
    • 1.1 Physical properties
    • 1.2 Chemical properties
    • 1.3 Compounds
    • 1.4 Isotopes
  • 2 History
  • 3 Occurrence and production
  • 4 Applications
  • 5 Precautions
  • 6 References
  • 7 External links

[edit] Characteristics

[edit] Physical properties

Lutetium is a silvery white corrosion-resistant trivalent metal. It has the smallest atomic radius and is the heaviest and hardest of the rare earth elements.[3] Lutetium has the highest melting point of any lanthanide, probably related to the lanthanide contraction.

[edit] Chemical properties

Lutetium metal tarnishes slowly in air and burns readily at 150 °C to form lutetium(III) oxide:

 

4 Lu + 3 O2 → 2 Lu2O3

Lutetium is quite electropositive and reacts slowly with cold water and quite quickly with hot water to form lutetium hydroxide:

 

2 Lu (s) + 6 H2O (l) → 2 Lu(OH)3 (aq) + 3 H2 (g)

Lutetium metal reacts with all the halogens to form halides:

 

2 Lu (s) + 3 F2 (g) → 2 LuF3 (s)2 Lu (s) + 3 Cl2 (g) → 2 LuCl3 (s)2 Lu (s) + 3 Br2 (g) → 2 LuBr3 (s)2 Lu (s) + 3 I2 (g) → 2 LuI3 (s)

The fluoride, chloride, and bromide are white, whereas the iodide is brown.

Lutetium dissolves readily in dilute sulfuric acid to form solutions containing the colorless lutetium(III) ions, which exist as a [Lu(OH2)9]3+ complex:[4]

 

2 Lu (s) + 3 H2SO4 (aq) → 2 Lu3+ (aq) + 3 SO2–

4 (aq) + 3 H2 (g)

[edit] Compounds

 

See also Category: Lutetium compounds

In all its compounds, lutetium occurs in +3 valence state. Aqueous solutions of most Lu salts are colorless and form white crystalline solids upon drying. The soluble salts, such as chloride (LuCl3), bromide (LuBr3), iodide (LuI3), nitrate, sulfate and acetate form hydrates upon crystallization. The oxide (Lu2O3), hydroxide, fluoride (LuF3), carbonate, phosphate and oxalate are insoluble in water.[5]

Lutetium tantalate (LuTaO4) is the densest known stable white material (density 9.81 g/cm3)[6] and therefore is an ideal host for X-ray phosphors.[7][8] Thoria is more dense (10 g/cm3) and is also white, but radioactive.

[edit] Isotopes

Main article: isotopes of lutetium

Naturally occurring lutetium is composed of 1 stable isotope 175Lu (97.41% natural abundance) and 1 long-lived beta-radioactive isotope 176Lu with a half-life of 3.78×1010 years (2.59% natural abundance). The last one is used in radiometric dating (see Lutetium-hafnium dating). 33 radioisotopes have been characterized, with the most stable being naturally occurring 176Lu, and artificial isotopes 174Lu with a half-life of 3.31 years, and 173Lu with a half-life of 1.37 years. All of the remaining radioactive isotopes have half-lives that are less than 9 days, and the majority of these have half-lives that are less than half an hour. This element also has 18 meta states, with the most stable being 177mLu (T½=160.4 days), 174mLu (T½=142 days) and 178mLu (T½=23.1 minutes).

The known isotopes of lutetium range in atomic weight from 149.973 (150Lu) to 183.961 (184Lu). The primary decay mode before the most abundant stable isotope, 175Lu, is electron capture (with some alpha and positron emission), and the primary mode after is beta emission. The primary decay products before 175Lu are element 70 (ytterbium) isotopes and the primary products after are element 72 (hafnium) isotopes.

[edit] History

Lutetium (Latin: Lutetia meaning Paris) was independently discovered in 1907 by French scientist Georges Urbain,[9] Austrian mineralogist Baron Carl Auer von Welsbach, and American chemist Charles James.[10] All of these men found lutetium as an impurity in the mineral ytterbia which was thought by Swiss chemist Jean Charles Galissard de Marignac (and most others) to consist entirely of the element ytterbium.

The separation of lutetium from Marignac's ytterbium was first described by Urbain and the naming honor therefore went to him. He chose the names neoytterbium (new ytterbium) and lutecium for the new element but neoytterbium was eventually reverted back to ytterbium and in 1949 the spelling of element 71 was changed to lutetium.

The dispute on the priority of the discovery is documented in two articles in which Urbain and von Welsbach accuse each other of publishing results influenced by the published research of the other.[11][12]

The Commission on Atomic Mass, which was responsible for the attribution of the names for the new elements, settled the dispute in 1909 by granting priority to Urbain and adopting his names as official ones. An obvious problem with this decision was that Urbain was one of the four members of the commission.[13]

Welsbach proposed the names cassiopeium for element 71 (after the constellation Cassiopeia) and aldebaranium for the new name of ytterbium but these naming proposals were rejected (although many German scientists in the 1950s called the element 71 cassiopium).

Ironically, Charles James, who had modestly stayed out of the argument as to priority, worked on a much larger scale than the others, and undoubtedly possessed the largest supply of lutetium at the time.[14]

[edit] Occurrence and production

 

 

 

 

Monazite

Found with almost all other rare-earth metals but never by itself, lutetium is very difficult to separate from other elements. The principal commercially viable ore of lutetium is the rare earth phosphate mineral monazite: (Ce, La, etc.) PO4 which contains 0.003% of the element. The abundance of lutetium in the Earth crust is only about 0.5 mg/kg. The main mining areas are China, United States, Brazil, India, Sri Lanka and Australia. The world production of lutetium (in the form of oxide) is about 10 tonnes per year.[14] Pure lutetium metal has only relatively recently been isolated and is very difficult to prepare. It is one of the rarest and most expensive of the rare earth metals with the price about US$ 10,000 per kg, or about one-fourth that of Gold.[15][16]

Crushed minerals are treated with hot concentrated sulfuric acid to produce water-soluble sulfates of rare earths. Thorium precipitates out of solution as hydroxide and is removed. After that the solution is treated with ammonium oxalate to convert rare earths in to their insoluble oxalates. The oxalates are converted to oxides by annealing. The oxides are dissolved in nitric acid that excludes one of the main components, cerium, whose oxide is insoluble in HNO3. Several rare earth metals, including Lu, are separated as a double salt with ammonium nitrate by crystallization. Lutetium is separated by ion exchange. In this process, rare-earth ions are sorbed onto suitable ion-exchange resin by exchange with hydrogen, ammonium or cupric ions present in the resin. Lutetium salts are then selectively washed out by suitable complexing agent. Lutetium metal is then obtained by reduction of anhydrous LuCl3 or LuF3 by either an alkali metal or alkaline earth metal.[5]

 

2 LuCl3 + 3 Ca → 2 Lu + 3 CaCl2

[edit] Applications

Because of the rarity and high price, lutetium has very few commercial uses. However, stable lutetium can be used as catalysts in petroleum cracking in refineries and can also be used in alkylation, hydrogenation, and polymerization applications.

Some other applications include:

  • Lutetium-176 (176Lu) has been used to date the age of meteorites.[17]
  • Lutetium aluminium garnet (Al5Lu3O12) has been proposed for use as a lens material in high refractive index immersion lithography.[18]
  • Lutetium-177 (177Lu), when bound to Octreotate (a somatostatin analogue), is used experimentally in targeted radionuclide therapy for neuroendocrine tumors.[19]
  • Cerium-doped lutetium oxyorthosilicate (LSO) is currently the preferred compound for detectors in positron emission tomography (PET.) [20][21]
  • Use as a pure beta emitter, using lutetium which has been exposed to neutron activation.
  • A tiny amount of lutetium is added as a dopant to gadolinium gallium garnet (GGG), which is used in magnetic bubble memory devices.[22]

[edit] Precautions

Like other rare-earth metals, lutetium is regarded as having a low degree of toxicity, but its compounds should be handled with care nonetheless. Metal dust of this element is a fire and explosion hazard. Lutetium plays no biological role in the human body.

引用出處: 

 http://en.wikipedia.org/wiki/Lutetium

歡迎來到Bewise Inc.的世界,首先恭喜您來到這接受新的資訊讓產業更有競爭力,我們是提供專業刀具製造商,應對客戶高品質的刀具需求,我們可以協助客戶滿足您對產業的不同要求,我們有能力達到非常卓越的客戶需求品質,這是現有相關技術無法比擬的,我們成功的滿足了各行各業的要求,包括:精密HSS DIN切削刀具協助客戶設計刀具流程DIN or JIS 鎢鋼切削刀具設計NAS986 NAS965 NAS897 NAS937orNAS907 航太切削刀具,NAS航太刀具設計超高硬度的切削刀具醫療配件刀具設計複合式再研磨機PCD地板專用企口鑽石組合刀具粉末造粒成型機主機版專用頂級電桿PCBN刀具PCD刀具單晶刀具PCD V-Cut捨棄式圓鋸片組粉末成型機航空機械鉸刀主機版專用頂級電汽車業刀具設計電子產業鑽石刀具木工產業鑽石刀具銑刀與切斷複合再研磨機銑刀與鑽頭複合再研磨機銑刀與螺絲攻複合再研磨機等等。我們的產品涵蓋了從民生刀具到工業級的刀具設計;從微細刀具到大型刀具;從小型生產到大型量產;全自動整合;我們的技術可提供您連續生產的效能,我們整體的服務及卓越的技術,恭迎您親自體驗!!

BW Bewise Inc. Willy Chen willy@tool-tool.com  bw@tool-tool.com  www.tool-tool.com skype:willy_chen_bw mobile:0937-618-190 Head &Administration Office No.13,Shiang Shang 2nd St., West Chiu Taichung,Taiwan 40356 http://www.tool-tool.com/ / FAX:+886 4 2471 4839 N.Branch 5F,No.460,Fu Shin North Rd.,Taipei,Taiwan S.Branch No.24,Sec.1,Chia Pu East Rd.,Taipao City,Chiayi Hsien,Taiwan

Welcome to BW tool world! We are an experienced tool maker specialized in cutting tools. We focus on what you need and endeavor to research the best cutter to satisfy users demand. Our customers involve wide range of industries, like mold & die, aerospace, electronic, machinery, etc. We are professional expert in cutting field. We would like to solve every problem from you. Please feel free to contact us, its our pleasure to serve for you. BW product including: cutting toolaerospace tool .HSS  DIN Cutting toolCarbide end millsCarbide cutting toolNAS Cutting toolNAS986 NAS965 NAS897 NAS937orNAS907 Cutting Tools,Carbide end milldisc milling cutter,Aerospace cutting toolhss drillФрезерыCarbide drillHigh speed steelCompound SharpenerMilling cutterINDUCTORS FOR PCD’CVDD(Chemical Vapor Deposition Diamond )’PCBN (Polycrystalline Cubic Boron Nitride) Core drillTapered end millsCVD Diamond Tools Inserts’PCD Edge-Beveling Cutter(Golden FingerPCD V-CutterPCD Wood toolsPCD Cutting toolsPCD Circular Saw BladePVDD End Millsdiamond tool. INDUCTORS FOR PCD . POWDER FORMING MACHINE Single Crystal Diamond Metric end millsMiniature end millsСпециальные режущие инструментыПустотелое сверло Pilot reamerFraisesFresas con mango PCD (Polycrystalline diamond) ‘FresePOWDER FORMING MACHINEElectronics cutterStep drillMetal cutting sawDouble margin drillGun barrelAngle milling cutterCarbide burrsCarbide tipped cutterChamfering toolIC card engraving cutterSide cutterStaple CutterPCD diamond cutter specialized in grooving floorsV-Cut PCD Circular Diamond Tipped Saw Blade with Indexable Insert PCD Diamond Tool Saw Blade with Indexable InsertNAS toolDIN or JIS toolSpecial toolMetal slitting sawsShell end millsSide and face milling cuttersSide chip clearance sawsLong end millsend mill grinderdrill grindersharpenerStub roughing end millsDovetail milling cuttersCarbide slot drillsCarbide torus cuttersAngel carbide end millsCarbide torus cuttersCarbide ball-nosed slot drillsMould cutterTool manufacturer.

Bewise Inc.  www.tool-tool.com

ようこそBewise Inc.の世界へお越し下さいませ、先ず御目出度たいのは新たな

情報を受け取って頂き、もっと各産業に競争力プラス展開。

弊社は専門なエンドミルの製造メーカーで、客先に色んな分野のニーズ

豊富なパリエーションを満足させ、特にハイテク品質要求にサポート致します。

弊社は各領域に供給できる内容は:

(1)精密HSSエンドミルのR&D

(2)Carbide Cutting tools設計

(3)鎢鋼エンドミル設計

(4)航空エンドミル設計

(5)超高硬度エンドミル

(6)ダイヤモンドエンドミル

(7)医療用品エンドミル設計

(8)自動車部品&材料加工向けエンドミル設計

弊社の製品の供給調達機能は:

(1)生活産業~ハイテク工業までのエンドミル設計

(2)ミクロエンドミル~大型エンドミル供給

(3)小Lot生産~大量発注対応供給

(4)オートメーション整備調達

(5)スポット対応~流れ生産対応

弊社の全般供給体制及び技術自慢の総合専門製造メーカーに貴方のご体験を御待ちしております。   

Bewise Inc. talaşlı imalat sanayinde en fazla kullanılan ve üç eksende (x,y,z) talaş kaldırabilen freze takımlarından olan Parmak Freze imalatçısıdır. Çok geniş ürün yelpazesine sahip olan firmanın başlıca ürünlerini Karbür Parmak Frezeler, Kalıpçı Frezeleri, Kaba Talaş Frezeleri, Konik Alın Frezeler, Köşe Radyüs Frezeler, İki Ağızlı Kısa ve Uzun Küresel Frezeler, İç Bükey Frezeler vb. şeklinde sıralayabiliriz.

BW специализируется в научных исследованиях и разработках, и снабжаем самым высокотехнологичным карбидовым материалом для поставки режущих / фрезеровочных инструментов для почвы, воздушного пространства и электронной индустрии. В нашу основную продукцию входит твердый карбид / быстрорежущая сталь, а также двигатели, микроэлектрические дрели, IC картонорезальные машины, фрезы для гравирования, режущие пилы, фрезеры-расширители, фрезеры-расширители с резцом, дрели, резаки форм для шлицевого вала / звездочки роликовой цепи, и специальные нано инструменты. Пожалуйста, посетите сайт  www.tool-tool.com  для получения большей информации.

BW is specialized in R&D and sourcing the most advanced carbide material with high-tech coating to supply cutting / milling tool for mould & die, aero space and electronic industry. Our main products include solid carbide / HSS end mills, micro electronic drill, IC card cutter, engraving cutter, shell end mills, cutting saw, reamer, thread reamer, leading drill, involute gear cutter for spur wheel, rack and worm milling cutter, thread milling cutter, form cutters for spline shaft/roller chain sprocket, and special tool, with nano grade. Please visit our web  www.tool-tool.com  for more info.

 

arrow
arrow
    全站熱搜
    創作者介紹
    創作者 beeway 的頭像
    beeway

    BW Professional Cutter Expert www.tool-tool.com

    beeway 發表在 痞客邦 留言(0) 人氣()