Bewise Inc. www.tool-tool.com
Reference source from the internet.
线路板数控铣床的铣技术包括选择走刀方向、补偿方法、定位方法、框架的结构、下刀点。都是保证铣加工精度的重要方面。
走刀方向、补偿方法
当铣刀切入板材时,有一个被切削面总是迎着铣刀的切削刃,而另一面总是逆着铣刀的切削刃。前者,被加工面光洁,尺寸精度高。主轴总是顺时针方向转动。所以 不论是主轴固定工作台运动或是工作台固定主轴运动的数控铣床,在铣印制板的外部轮廓时,要采用逆时针方向走刀。这就是通常所说的逆铣。而在线路板内部铣框 或槽时采用顺铣方式。铣板补偿是在铣板时机床自动安照设定值让铣刀自动以铣切线路的中心偏移所设定的铣刀直径的一半,即半径距离,使铣切的外形与程序设定 保持一致。同时如机床有补偿的功能必需注意补偿的方向和使用程序的命令,如使用补偿命令错误会使线路板的外形多或少了相当于铣刀直径的长度和宽度的尺寸。
定位方法和下刀点
定位方法可分为两种;一是内定位,二是外定位。定位对于工艺制定人员也十分重要,一般在线路板前期制作时就应确定定位的方案。
内定位是通用的方法。所谓内定位是选择印制板内的安装孔,插拨孔或其它非金属化孔作为定位孔。孔的相对位置力求在对角线上并尽可能挑选大直径的孔。不能使 用金属化孔。因为孔内镀层厚度的差异会影响你所选定位孔的一致性,同时在取板时很容易造成孔内和孔表面边缘的镀层损坏,在保证印制板定位的条件下,销钉数 量愈少愈好。一般小的板使用2枚销钉,大板使用3枚销钉,其优点是定位准确,板外形变形小精确度高外形好,铣切速度快。其缺点板内各种孔径种类多需备齐各 种直径的销钉,如板内没有可用的定位孔,在先期制作时需要与客户商讨在板内加定位孔较,较为烦琐。同时每一种板的铣板模板不同管理较为麻烦,费用较高。
外定位是另一种定位方法,是采用在板子外部加定位孔作为铣板的定位孔。其优点是便于管理,如果先期制作规范好的话,铣板模板一般在十五种左右。由于使用外 定位所以不能一次将板铣切下来,否则线路板十分容易损坏,特别是拼板,因铣刀和吸尘装置会将板子带出造成线路板损坏和铣刀折断。而采用分段铣切留结合点的 方法,先铣板当铣板完了以后程序暂停然后将板用胶带固定,执行程序的第二段,使用3mm至4mm的钻头将结合点钻掉。其优点是模板少费用小易于管理,可铣 切所有板内无安装孔和定位孔的线路板,小工艺人员管理方便,特别是CAM等先期制作人员的制作可简单化,同时可优化基材的利用率。缺点是由于使用钻头,线 路板外形留有至少2-3个凸起点不美观,可能不符合客户要求,铣切时间长,工人劳动强度稍大。
框架及下刀点
框架的制作是属于线路板先期的制作,框架设计不但对电镀的均匀性等有影响,同时对铣板也有影响,如设计不好框架易变形或在铣板时产生部份小的块装的小废 块,产生的废块会堵塞吸尘管或碰断高速旋转的铣刀,框架变形特别是对外定位铣板时造成成品板变形,另外下刀点和加工顺序选择的好,能使框架保持最大的强度 最快的速度。选择的不好,框架容易变形而使印制板报废。
BW碧威股份有限公司針對客戶端改善切削方式、提供專業切削CNC數控刀具專業能力、製造 客戶需求如:Cutting tool、切削刀具、HSS Cutting tool、Carbide end mills、Carbide cutting tool、NAS Cutting tool、Carbide end mill、Aerospace cutting tool、Carbide drill、High speed steel、Milling cutter、Core drill、鎢鋼銑刀、航太刀具、鎢鋼鑽頭、高速剛、鉸刀、中心鑽頭、Taperd end mills、斜度銑刀、Metric end mills、公制銑刀、Miniature end mills、微小徑銑刀、鎢鋼切削刀具、Pilot reamer、領先鉸刀、Electronics cutter、電子用切削刀具、Step drill、階梯鑽頭、Metal cutting saw、金屬圓鋸片、Double margin drill、領先階梯鑽頭、Gun barrel、Angle milling cutter、角度銑刀、Carbide burrs、滾磨刀、Carbide tipped cutter、銲刃刀具、Chamfering tool、倒角銑刀、IC card engraving cutter、IC晶片卡刀、Side cutter、側銑刀、NAS tool、DIN tool、德國規範切削刀具、Special tool、特殊刀具、Metal slitting saws、Shell end mills、滾筒銑刀、Side and face milling cutters、Side chip clearance saws、交叉齒側銑刀、Long end mills、長刃銑刀、Stub roughing end mills、粗齒銑刀、Dovetail milling cutters、鳩尾刀具、Carbide slot drills、Carbide torus cutters、鎢鋼圓鼻銑刀、Angeled carbide end mills、角度鎢鋼銑刀、Carbide torus cutters、短刃平銑刀、Carbide ball-noseed slot drills、鎢鋼球頭銑刀、Mould cutter、模具用刀具、BW微型渦流管槍、Tool manufacturer、刀具製造商等相關切削刀具、以服務客戶改善工廠加工條件、爭加競爭力。歡迎尋購~~~碧威股份有限公司www.tool- tool.com
公告版位
- Apr 10 Tue 2007 20:26
线路板数控铣床的铣技术分析www.tool-tool.com
- Apr 10 Tue 2007 20:26
深小孔镗削在线补偿方法的研究www.tool-tool.com
Bewise Inc. www.tool-tool.com
Reference source from the internet.
在 线误差补偿技术在精密车削加工中得到了广泛的应用,但在镗孔中的应用还是很少,特别是在深小孔的镗削加工中更是少见。与车削等外表面加工方法相比,镗孔时 镗杆的外径尺寸受到被镗孔的严格限制,那些安装在车床刀架上的误差检测传感器和用来对加工误差进行补偿的执行元件,由于其体积较大,不便或不能安装在镗杆 上。为此,本文提出一种新型结构的微调镗杆,使在线误差补偿技术能在镗削加工中得到应用。
车削加工中的微进给机构
图1a所示为日本大阪大学研制的微动刀架的结构示意图,该刀架中采用压电陶瓷传感器做微进给驱动元件。图1b是哈尔滨工业大学研制的压电陶瓷传感器驱动的微进给刀架的结构示意图。
1
图1 压电陶瓷驱动的微进给刀架
上述两种微量进给刀架都是用在外表面车削加工中的误差补偿装置上,压电陶瓷(PZT)传感器和刀具装在同一条直线上,由于压电陶瓷传感器较长,使得这些微进给装置在刀具进给方向的尺寸都比较大。
镗杆的结构设计
在镗削小而深的孔时,要求镗杆的直径小而长度较长。如图2所示,设计了一种由两个同轴的内外杆组成的微调镗杆。其中,外杆做控制用,称为控制杆,控制杆做 成以柔性铰链为支点的杠杆结构,镗刀和压电陶瓷传感器分别安装在控制杆的两端。内杆用来测试镗刀的微位移误差,称为测试杆,测试杆设计成悬臂形式,测试杆 的一端固定在刀架座上,另一端以柔性铰链的方式与镗刀和控制杆连结在一起,通过贴在固定端的应变片测试内杆的变形来监测镗刀的径向位移误差。这种双杆形式 的镗杆可以不受压电陶瓷传感器和微位移测试传感器的影响而使镗杆直径做得较小,并且长度也能做得较长,以便于加工深小孔。
1 1
图2 双杆微调镗杆结构示意图 图3 微调镗杆在线补偿系统
微调镗杆在线补偿系统
1.主要组成及工作原理
采用闭环补偿控制的方式来提高镗削加工精度。如图3所示,微调镗杆控制系统主要由以下几部分组成: (1) 微调镗杆 (包括控制杆和测试杆),(2) 应变测试仪部分,(3) PZT传感器及驱动电源部分,(4)控制计算机。在图2中,当镗削力FC变小时,镗刀将向下偏转,测试杆也向下偏转。由应变测试仪测的信号减小,这时计算 机输出一个增大的信号给PZT传感器驱动系统,PZT传感器伸长推动控制杆绕柔性铰链支点顺时针方向旋转,这样镗刀向下的偏转就被补偿了。同样,当镗削力 FC变大镗刀向上偏转时,PZT传感器的输入电压减小而缩短,控制杆逆时针方向旋转而补偿镗刀向上的偏转。于是在精密镗孔加工过程中,就能够通过微调镗杆 系统的PZT传感器的补偿作用有效提高加工精度。
2.补偿控制模型
为了对加工误差有效地进行闭环补偿控制,必须对加工误差进行在线检测和实时补偿,而且所采用的补偿控制方法不仅要能够补偿系统误差,而且还要能够补偿随机 误差。预报补偿控制技术(FCC)是一种非常有效的控制法,这种控制法将加工误差当做是一组时间序列来分析,不仅能够补偿重复性的误差而且还能够补偿随机 误差。预报补偿控制技术的主要优点是不必研究各式各样复杂的误差源对加工误差的影响,而且可以直接利用误差序列自身的相关性,根据已测得的误差值来有效预 报下一时刻的误差值。为了对镗削加工误差进行实时补偿,镗刀的微位移误差可以用下列的AR(autoregressive)模型来表示:
1
其中yt 表示镗刀在t时刻的微位移误差,fj (j= 1,2, ......)是自回归参数,d是白噪声,代表了误差序列中的不回归的随机部分(这里也包含了测试误差)。随着加工的进行,AR模型中的模型参数不断被新 采集的信息所修正,这样就使随机模型能始终正确表达镗削加工误差。
预报补偿控制技术的一个主要特点是能对加工误差进行实时的预报,根据前面时刻和现在时刻测得的误差值以及所建立的AR模型来预报将来时刻的误差。这样提前预报误差后,就为实时补偿加工误差赢得了时间。根据公式(1)可以得到提前q步预报的误差值如下:
1
1
图4 加工误差预报效果图
该系统采用的是提前一步的AR(3)模型。 图4给出了采用这种模型进行预报的效果示意图,从图中可以看出加工误差的预报值与实际值非常接近,能够满足精密镗削加工中误差补偿的要求。
实验研究
1.仿真实验
为了确定微调镗杆系统的动态补偿性能,用仿真实验的方法对镗杆系统进行了研究。用一个振动器推动镗刀来模拟切削过程。当振动器产生一组变化频率的振动时, 测试微调镗杆系统的动态补偿性能。如图5所示,当振动频率由5Hz变化到40Hz时,用示波器观测到的镗刀在有补偿和没有补偿条件下的位移情况,其中1表 示没有补偿条件下的镗刀位移情况,2表示有补偿条件下的镗刀位移情况。从图中可以看出微调镗杆系统能有效的补偿频率为40Hz或以下的动态误差。
1 1
图5 加工误差预报效果图 图6 加工结果
2.镗削实验
在数控车床(MAZAK QUICK TURN 8N)上对微调镗杆在线补偿系统进行了实验研究。实验中加工一个内径为35mm,深度为160mm的孔,工件材料是Al,车床转速为500r/min。在 同样的切削条件下对采用补偿和不采用补偿的情况进行了试验,并用圆度仪测试了这两种情况下加工出来的孔的圆度(如图6所示)。从图中可以看出微调镗杆在线 补偿系统能有效的提高工件的加工精度。
结论
1.研制了新型双杆结构的微调镗杆补偿系统,实现了对小而深的孔进行误差在线检测和补偿的精密加工。
2.采用时间序列分析的方法对镗削加工误差进行建模和预报,试验表明这种预报补偿方法能有效提高镗削加工精度。
BW碧威股份有限公司針對客戶端改善切削方式、提供專業切削CNC數控刀具專業能力、製造客戶需求如:Cutting tool、切削刀具、HSS Cutting tool、Carbide end mills、Carbide cutting tool、NAS Cutting tool、Carbide end mill、Aerospace cutting tool、Carbide drill、High speed steel、Milling cutter、Core drill、鎢鋼銑刀、航太刀具、鎢鋼鑽頭、高速剛、鉸刀、中心鑽頭、Taperd end mills、斜度銑刀、Metric end mills、公制銑刀、Miniature end mills、微小徑銑刀、鎢鋼切削刀具、Pilot reamer、領先鉸刀、Electronics cutter、電子用切削刀具、Step drill、階梯鑽頭、Metal cutting saw、金屬圓鋸片、Double margin drill、領先階梯鑽頭、Gun barrel、Angle milling cutter、角度銑刀、Carbide burrs、滾磨刀、Carbide tipped cutter、銲刃刀具、Chamfering tool、倒角銑刀、IC card engraving cutter、IC晶片卡刀、Side cutter、側銑刀、NAS tool、DIN tool、德國規範切削刀具、Special tool、特殊刀具、Metal slitting saws、Shell end mills、滾筒銑刀、Side and face milling cutters、Side chip clearance saws、交叉齒側銑刀、Long end mills、長刃銑刀、Stub roughing end mills、粗齒銑刀、Dovetail milling cutters、鳩尾刀具、Carbide slot drills、Carbide torus cutters、鎢鋼圓鼻銑刀、Angeled carbide end mills、角度鎢鋼銑刀、Carbide torus cutters、短刃平銑刀、Carbide ball-noseed slot drills、鎢鋼球頭銑刀、Mould cutter、模具用刀具、BW微型渦流管槍、Tool manufacturer、刀具製造商等相關切削刀具、以服務客戶改善工廠加工條件、爭加競爭力。歡迎尋購~~~碧威股份有限公司www.tool- tool.com
- Apr 10 Tue 2007 20:25
五坐标高速铣削加工与编程的关键技术www.tool-tool.com
Bewise Inc. www.tool-tool.com
Reference source from the internet.
一、前言
数控高速切削制造技术促进了机械冷加工制造业的飞速发展,革新了产品设计概念,如通过采用整体件加工取代零部件的分项制造装配,提高了加工效率和产品质 量,缩短了产品制造周期。高速切削加速了汽车、模具、航空、航天、光学、精密机械等产品的更新换代,加速了制造技术与装备的升级,推动了企业技术进步。但 目前国内存在相当一部分高速机床因各方面的原因并没有达到理想的效果,如刀具配置跟不上而低速使用,高速电主轴因长期受重载荷或使用不当造成寿命低下,企 业高速切削工艺参数库及CAD\CAM高速编程软件包造成高速切削应用不是很好,高速切削工艺流程与传统的工艺流程没有有机结合,没有充分发挥高速切削加 工变形小、加工效率高、定位装夹少的优势。
高速铣削机床的特点,采用主轴运动结构实现载荷的平稳,减小工作台由于运动的惯性,尤其是当工作台承载较大时,工作台本身和工件的运动载荷对高速切削极容 易引起冲击,机床结构的新颖性对高速切削有着重要的影响,传统机床依靠工作台移动实现机床的XY方向的移动不是很适合高速切削。高速机床有瑞士 Mikron公司VCP710、美国Cincinnati公司HyperMach五轴加工中心、日本Mazak公司SMM-2500UHS、德国 Roders公司RFM1000、意大利FIDIA公司KR214六坐标加工中心、FIDIA公司D218五坐标加工中心等。
一般情况下,高速切削其切削速度比常规速度高出5~10倍,其材料的去除率是常规切削的3~5倍以上。对于铝合金铣削可达到1100m/min以上,铸铁 可到700m/min,钢材可到380m/min以上,钻削200~1200m/min,磨削150~360m/min。采用FIDIA KR214五坐标高速铣削加工中心机床及机床验收标准试切产品。
二、高速铣削刀具刀柄
1.高速铣削刀柄
由于高速切削时,主轴、刀柄及刀具在高速旋转情况下,较小的偏心就会产生较大的离心力,由振动引起产品的质量、降低主轴和刀具的使用寿命。常规的刀具刀柄 系统难以满足高速切削时的切削刚度和精度要求。现阶段比较流行常用的高速刀柄系统主要有德国的HSK刀柄、美国KM刀柄、日本NC5刀柄。HSK刀柄及 KM刀柄均为1:10的锥度,采用主轴锥孔和刀柄端面过定位的方式,实现刀具的定位夹紧,其重复定位精度在传统7:24的锥度刀柄±2.5μm提高到± 1μm,采用这种刀柄系统可以提高主轴刚度、由于其契形效果好,能提高刀具的抗扭能力,且转速越高其锁紧力越大。但这种刀柄价格较贵,一般为常规刀柄的 1.5~2倍,其最低转速小于KM刀柄。一般情况下,高速铣削时,刀具刀柄的不平衡力小于切削力时,不影响刀具的使用寿命和切削效率。
根据高速切削的动平衡规定,主轴转速至少要达到8000 r/min以上。其进给速度至少大于20m/min。50柄转速达到10000~20000 r/min,40柄以及HSK刀柄20000~40000 r/min,KM刀柄达到35000 r/min以上。由于高速铣削动平衡的要求,在配置高速铣削刀柄刀具时优先配置经过动平衡测试的刀具系统,其次用户可以自行采用动平衡机及调整系统进行动 平衡调节,但其使用非常麻烦。美国Kennametal公司推出了一种通过调节主轴系统的自动平衡刀柄系统TABS刀柄,但目前应用还不广泛。为有效发挥 高速切削的加工效率,在配置高速刀具夹持刀柄系统时显得非常重要,传统的弹簧夹头、螺钉连接刀柄已不能满足高速铣削夹持精度高、结构对称性好、传递扭矩大 等要求,以下为作者总结的高速刀具及刀柄配置经验。
第一、优先配置热胀式刀柄通过热胀式加热仪装置进行加热,通过热胀冷缩的原理对刀具进行夹紧,其回转精度、结构对称性、动平衡性能均较液压式刀柄好,在欧 洲应用非常广泛,尤其适合模具等行业产品的高速切削加工,该刀柄可达到40000r/min。其中热胀式装刀装置以德国Thermal Grip为典型代表。
其次、液压式刀柄是高精度、高性能的刀柄夹持柄,其回转精度、结构对称性和动平衡性能均较好,减振性好,可有效提高切削效率和刀具的使用寿命,液压式刀柄以德国雄克公司的为典型代表,经过动平衡后转速可达到25000r/min。
第三、整体式刀柄,如日本Nikken公司刀柄、奥地利盘石的整体铝合金铣削刀柄,其结构主要是刀体和刀柄为一体,在经过动平衡测试调整后,再安装铣削刀 片进行动平衡调节来满足高速铣削加工的需要,整体式刀柄尤其适合模具的高速粗加工和铝合金高速铣削。其转速一般可以达到10000~30000r/min 之间。
最后、高速铣削应用精密弹簧夹头刀柄和侧固式刀柄时,其转速由于本身结构的限制,一般难以达到20000 r/min,精密弹簧夹头刀柄一般可达到12000~15000 r/min,而侧固式刀柄则难以达到10000 r/min,在高速机床上尽量少用。
2.高速铣削刀具
由于高速铣削对刀具刀柄要求较高,在购置高速刀具时尽量购置经过动平衡测试的刀具,常用的硬质合金、涂层硬质合金、金属陶瓷、立方氮化硼(PCBN),聚 晶金刚石(PCD)在经过长时间磨损后,可应用于普通数控机床进行加工。另外一个方面由于高速切削的安全性,在进行工件加工时一定要注意加工防护,如 40mm直径刀具,主轴转速达到30000r/min,其射出的速度可达到63m/s的速度,接近于230km/h的汽车速度,切削过程中如出现断刀摔 出,势必有较大的冲击动量。同时对没有把握的刀具刀柄一定要经过高速动平衡仪测试出真实数据,方可进行产品加工。此外由于高速运转时,刀具的长度在高速环 境下其刀具直径和长度与静态条件下有所差别,采用激光机内对刀仪可有效解决数控编程的刀具工艺参数的确定,因此在购置高速铣削机床时,配置激光机内对刀仪 是不应少的选项,尤其在进行高精度产品的铣削加工时更能体现其优势。
高速切削钢材时,刀具材料应选用热硬性和疲劳强度高的P类硬质合金、涂层硬质合金、立方氮化硼(CBN)与CBN复合刀具材料(WBN)等。切削铸铁,应 选用细晶粒的K类硬质合金进行粗加工,选用复合氮化硅陶瓷或聚晶立方氮化硼(PCNB)复合刀具进行精加工。精密加工有色金属或非金属材料时,应选用聚晶 金刚石PCD或CVD金刚石涂层刀具。高速铣削时应针对相应的材料选择合适的刀柄和刀具材料,铝合金高速铣削时可优先选用采用镶刀片的整体刀柄。
三、五坐标高速铣削刀具轨迹设计
高速切削有着比传统切削特殊的工艺要求,除了高速切削机床和高速切削刀具,具有合适的CAM编程软件也是至关重要的。一个优秀的高速加工CAM编程系统应 具有很高的计算速度、较强的插补功能、全程自动过切检查及处理能力、自动刀柄与夹具干涉检查、进给率优化处理功能、刀具轨迹编辑优化功能、加工残余分析功 能等。数控编程时应首先要注意加工方法的安全性和有效性;其次要尽一切可能保证刀具轨迹光滑平稳,这会直接影响加工质量和机床主轴等零件的寿命;最后要尽 量使刀具载荷均匀,这会直接影响刀具的寿命。国内外比较成熟适用于高速加工编程的有美国EDS公司UnigraphicsNX、英国DelCAM公司的 PowerMill、以色列的Cimatron软件。
1.五轴刀具轨迹设计的关键点
在进行刀具轨迹设计之前,CAD三维模型的系统精度尽可能设置高一些,尤其是在不同的CAD系统之间进行模型转换时,优先采用CATIA (*.model)格式、Parasolid(*.x_t)格式进行数据转换,其次采用IGES格式进行数据转换,当使用IGES格式时,系统精度一般不 应低于0.01mm,尤其在进行五轴高速切削精密零件时模型的精度、刀具插补精度对刀具轨迹的输出有着重要影响。
空间曲面轴加工涉及的内容比较多,尤其是五轴加工时更明显。进行五轴加工时涉及加工导动曲面、干涉面、轨迹限制区域、进退刀及刀轴矢量控制等关键技术。四 轴五轴加工的基础是理解刀具轴的矢量变化。四轴五轴加工的关键技术之一是刀具轴的矢量(刀具轴的轴线矢量)在空间是如何发生变化的,而刀具轴的矢量变化是 通过摆动工作台或主轴的摆动来实现的。对于矢量不发生变化的固定轴铣削场合,一般用三轴铣削即可加工出产品,五轴加工关键就是通过控制刀具轴矢量在空间位 置的不断变化或使刀具轴的矢量与机床原始坐标系构成空间某个角度,利用铣刀的侧刃或底刃切削加工来完成。
①Line :刀具轴的矢量方向平行于空间的某条直线形成的固定角度方式;
②Pattern Surface:曲面法向式为刀具轴的矢量时刻指向曲面的法线方向;
③From point:点位控制刀具轴的矢量远离空间某点;To point:刀具轴的矢量指向空间某点;
④Swarf Driver:刀具轴的矢量沿着空间曲面(曲面具有直纹性)的直纹方向发生变化;
⑤刀具轴矢量连续插补控制。从上述刀具轴的矢量控制方式来看,五轴数控铣削加工的切削方式可以根据实际产品的加工来进行合理的刀具轨迹设计规划。
UGII/Contour Milling三轴高速等高分层粗铣削时,刀具轨迹之间的圆弧过渡。高速铣削加工的支持:系统提供的等高分层加工应用于高速铣削场合,在转角处以圆角的形 式过渡,避免90度急转(高速场合对导轨和电机容易损坏),同时采用螺旋进退刀,系统还提供环绕等多种方式支持高速加工刀具轨迹的生成策略。 UGII/Variable Axis Milling可变轴铣削模块支持定轴和多轴铣削功能,可加工UGII造型模块中生成的任何几何体,并保持主模型相关性。该模块提供多年工程使用验证的 3~5轴铣削功能,提供刀轴控制、走刀方式选择和刀具路径生成功能。刀具轴矢量控制方式、加工策略。
UGII/Sequential Milling顺序铣模块可实现控制刀具路径生成过程中的每一步骤的情况、支持2~5轴的铣削编程、和UGII主模型完全相关,以自动化的方式,获得类似 APT直接编程一样的绝对控制、允许用户交互式地一段一段地生成刀具路径,并保持对过程中每一步的控制、提供的循环功能使用户可以仅定义某个曲面上最内和 最外的刀具路径,由该模块自动生成中间的步骤、该模块是UGII数控加工模块中如自动清根等功能一样的UGII特有模块,适合于高难度的数控程序编制。
2.整体叶轮加工数控编程
在进行五坐标加工编程时,加工策略划分对于产品质量是很重要的,尤其是复杂产品的数控编程时,要求更高。整体叶轮进行五坐标高速铣削加工,其粗精加工铣削 方式和刀具轨迹策略、粗精加工工序余量的合理安排、切削工艺参数加工步距、加工深度、主轴转速、机床进给等的选择对于提高产品的加工效率和质量是至关重要 的。五坐标切削工艺参数的在经验基础上,针对不同的加工产品对象,对不同材料、刀柄刀具、切削方式可通过正交试验等方法进行科学试验、归纳总结选用。
整体叶轮在FIDIA KR215五坐标高速铣削中心上,分别按照三轴铣削粗加工排量、五轴流道排量、五轴叶片精铣削、五轴流道精加工铣削的加工顺序对该产品进行切削及其产品加工实例。
四、五坐标高速铣削后处理程序开发
1.五轴机床旋转刀具中心编程RTCP(Rotation Tool Centre Point)
五坐标机床及其加工编程,常用RTCP功能对机床的运动精度和数控编程进行简化,下面对RTCP( Rotation Tool Centre Point 旋转刀具中心)编程进行简要说明。
非RTCP模式编程:为了编程五坐标的曲面加工,必须知道刀具中心与旋转主轴头中心的距离:这个距离我们称为转轴中心(pivot)。根据转轴中心和坐标 转动值计算出X、Y、Z 的直线补偿,以保证刀具中心处于所期望的位置。运行一个这样得出的程序必须要求机床的转轴中心长度正好等于在书写程序时所考虑的数值。任何修改都要求重新 书写程序。对于FIDIA C20数控系统G96 激活RTCP,G97 禁止RTCP
RTCP模式编程:选件RTCP 的运行原理是当存在此选项时,控制系统会保持刀具中心始终在被编程的XYZ位置上。为了保持住这个位置,转动坐标的每一个运动都会被XYZ 坐标的一个直线位移所补偿。因此,对于其它传统的数控系统而言,一个或多个转动坐标的运动会引起刀具中心的位移;而对于FIDIA 数控系统(当RTCP 选件起作用时),是坐标旋转中心的位移,保持刀具中心始终处于同一个位置上。在这种情况下,可以直接编程刀具中心的轨迹,而不需考虑转轴中心,这个转轴中 心是独立于编程的,是在执行程序前由显示终端输入的,与程序无关。通过计算机编程或通过PLP 选件被记录的三坐标程序,可以通过RTCP 逻辑,以五坐标方式被执行。对于这种特殊的应用方法,必须要求使用球形刀具。这些转动坐标的运动,可以通过JOG 方式或通过手轮来完成,所以在某些加工条件下,允许所使用的刀具,其长度值小于用于三坐标加工的刀具。
2.基于UGNX平台后处理程序的开发
后置处理最重要的是将CAM软件生成的刀位轨迹转化为适合数控系统加工的NC程序,通过读取刀位文件,根据机床运动结构及控制指令格式,进行坐标运动变换 和指令格式转换。通用后置处理程序是在标准的刀位轨迹以及通用的CNC系统的运动配置及控制指令的基础上进行处理。它包含机床坐标运动变换、非线性运动误 差校验、进给速度校验、数控程序格式变换及数控程序输出等方面的内容。只有采用正确的后置处理系统才能将刀位轨迹输出为相应数控系统机床能正确进行加工的 数控程序,因此编制正确的后置处理系统模板是数控编程与加工的前提条件之一。后处理的主要内容包括三个方面的内容:
①数控系统控制指令的输出:主要包括机床种类及机床配置、机床的定位、插补、主轴、进给、暂停、冷却、刀具补偿、固定循环、程序头尾输出等方面的控制。
②格式转换:数据类型转换与圆整、字符串处理等:主要针对数控系统的输出格式如单位、输出地址字符等方面的控制。
③算法处理:主要针对多坐标加工时的坐标变换、跨象限处理、进给速度控制。
五轴数控机床的配置形式多样,典型配置有绕X轴和Y轴旋转的两个摆动工作台,其二为主轴绕X轴或Y轴摆动,另外的工作台则相应绕Y轴或X轴摆动来构造空间 的五轴联动加工。对于主轴不摆动的五轴数控机床,其摆动轴存在主次依赖关系,即主摆动轴(Primary Table)的运动影响次摆动轴(Secondary Table)的空间位置,而次摆动轴的运动则不影响主摆动轴的空间位置状态。
FIDIA KR214为带旋转工作台的六轴五联动高速铣削加工中心,其中C轴为主动轴、A轴为从动依附轴、旋转工作台为W轴;由于现有的CAM软件大多不支持六轴联 动的数控程序后处理,且实际加工中,一般的五轴联动足够满足生成的需要。针对该机床加工的特性,根据需要可编制三个线性轴X、Y、Z、A、C五个轴联动后 处理程序以及包括三个线性轴及A/W的五轴后处理程序。这两种后处理程序方案即可满足工程需求,修改适合KR214(或K211)数控机床的后处理程序。
五、基于Vericut五坐标高速铣削机床运动模拟
由于五坐标高速铣削加工时,刀具轨迹比较复杂,且加工过程中刀具轴矢量变化控制频繁,尤其是在进行高速切削时,刀具运动速度非常快,因此在进行实际产品加 工前,进行数控程序的校对审核是非常必要的。由于五坐标联动高速切削其程序量大,许多程序采用手工的方法或者在CAM软件里进行模拟是难以有效的检查数控 程序和机床的实际输出是否存在问题。采用Vericut软可以很好的节省校对时间,进行真实的模拟加工,Vericut软件非常真实的模拟机床加工过程中 的干涉、过切、进退刀等状况,尤其能很好的模拟五轴加工及其RTCP功能。Vericut提供了许多功能,其中有对毛坯尺寸、位置和方位的完全图形显示, 可模拟2~5轴联动的铣削和钻削加工.
UGII/Vericut 切削仿真模块是集成在UGII软件中的第三方模块,它采用人机交互方式模拟、检验和显示NC加工程序,是一种方便的验证数控程序的方法。由于省去了试切样 件,可节省机床调试时间,减少刀具磨损和机床清理工作。通过定义被切零件的毛坯形状,调用NC刀位文件数据,就可检验由NC生成的刀具路径的正确性。 UGII/Vericut可以显示出加工后并着色的零件模型,用户可以容易的检查出不正确的加工情况。作为检验的另一部分,该模块还能计算出加工后零件的 体积和毛坯的切除量。UGII中的数字模型可直接传输到Vericut软件中,进行模拟,包括毛坯、产品、数控刀具轨迹与刀具等数字信息。图9为UGNX 环境下提供的Vericut接口界面,进行某整体叶轮机床加工时在Vericut软件中的模拟情况,为保证该产品的质量提供了较好的检测过程。
六、小结
本文从高速铣削加工中心的刀柄系统、五坐标高速铣削的刀具轨迹设计、数控编程后处理程序开发、高速铣削切削工艺参数的合理选择、五坐标高速铣削机床加工运动模拟等方面的关键技术及其应用进行了简单介绍,希望对读者有所借鉴作用。
BW 碧威股份有限公司針對客戶端改善切削方式、提供專業切削CNC數控刀具專業能力、製造客戶需求如:Cutting tool、切削刀具、HSS Cutting tool、Carbide end mills、Carbide cutting tool、NAS Cutting tool、Carbide end mill、Aerospace cutting tool、Carbide drill、High speed steel、Milling cutter、Core drill、鎢鋼銑刀、航太刀具、鎢鋼鑽頭、高速剛、鉸刀、中心鑽頭、Taperd end mills、斜度銑刀、Metric end mills、公制銑刀、Miniature end mills、微小徑銑刀、鎢鋼切削刀具、Pilot reamer、領先鉸刀、Electronics cutter、電子用切削刀具、Step drill、階梯鑽頭、Metal cutting saw、金屬圓鋸片、Double margin drill、領先階梯鑽頭、Gun barrel、Angle milling cutter、角度銑刀、Carbide burrs、滾磨刀、Carbide tipped cutter、銲刃刀具、Chamfering tool、倒角銑刀、IC card engraving cutter、IC晶片卡刀、Side cutter、側銑刀、NAS tool、DIN tool、德國規範切削刀具、Special tool、特殊刀具、Metal slitting saws、Shell end mills、滾筒銑刀、Side and face milling cutters、Side chip clearance saws、交叉齒側銑刀、Long end mills、長刃銑刀、Stub roughing end mills、粗齒銑刀、Dovetail milling cutters、鳩尾刀具、Carbide slot drills、Carbide torus cutters、鎢鋼圓鼻銑刀、Angeled carbide end mills、角度鎢鋼銑刀、Carbide torus cutters、短刃平銑刀、Carbide ball-noseed slot drills、鎢鋼球頭銑刀、Mould cutter、模具用刀具、BW微型渦流管槍、Tool manufacturer、刀具製造商等相關切削刀具、以服務客戶改善工廠加工條件、爭加競爭力。歡迎尋購~~~碧威股份有限公司www.tool- tool.com
- Apr 10 Tue 2007 20:25
单件和小批量车铣系统www.tool-tool.com
Bewise Inc. www.tool-tool.com
Reference source from the internet.
使用铣削和车削的加工中心可以提高单件和小批量零件生产的效率。不同型号的切削-切削时间最大为2.9s或3.4s,Fanuc公司或西门子公司的多程序处理计算机数控系统简化了编程工作。
生产制造工作的规划者们必须整天从早到晚地考虑,如何才能在保障所要求的质量的前提下,更快、更经济地制造出零件。有许多办法可以达到这一目的,机动灵活 和高效的制造可以通过各种方式实现:包括使用带有一个或多个主轴的独立的机床,自动化的综合制造以及机动灵活、自给自足的生产加工线等。加工工件的几何形 状、加工精度和需要加工的件数都促使人们在进行新的生产设备投资时考虑选择加工中心。
各种结构型号的车铣加工中心
位于Schlierbach的机床制造厂商Stama公司几乎可以为每一项不同的加工任务提供用于综合制造的车铣加工中心,不管是单件或大批量制造,不管是用棒料加工还是用卡盘加工,也不管加工中心是单轴还是双轴,抑或是一个双工位的加工中心,该公司都可以提供。
最近Stama公司在其车铣系统7和8系列中,又专门为单件和小批量制造推出了新的MC 826/MT-S 和MC 834/MT-S型加工中心。MC 826/MT-S装备了一个转速为12000r/min、转矩达142 N·m的37kW铣削主轴和一个转矩为180N·m、转速为4500r/min的45kW车削主轴。
最多使用两个夹具进行综合加工
例如可以用一个夹具、最多用两个夹具对锯条段、铸件毛坯和半成品进行综合加工。X、Y和Z轴的加工行程各为780、380和360mm,因此可以加工直径 达 250mm和长度达160mm的工件。A轴的转动范围是120°。在加速度达1.2g时, 快速行程速度可达 60m/min,切削-切削时间最大为2.9s。
较大的姊妹型号MC 834/MT-S配备了同样的车削主轴。其铣削主轴的功率较大,为60kW,转矩达200N·m。其X、Y和Z轴的加工行程各为800mm、520mm和 510mm,因此可以加工直径达350mm和长度达250mm的工件。除了一个在120°回转桥上整体安装的车削主轴之外,还有一个相应的夹紧装置和另一 个进行第6面加工的车削主轴。在加速度达1g时,快速行程速度可达 60m/min。切削-切削时间为3.4s。
不同结构的刀具库分别有42~64个刀具位置(外部刀具库有90或180个刀位),用来放置HSK 63 或短锥体 DIN 55026 AB 刀具。加工中心还配备有Fanuc公司(18i-MB)或西门子公司(840D)的多程序处理计算机数控系统,用于铣削和车削加工操作。
BW碧威 股份有限公司針對客戶端改善切削方式、提供專業切削CNC數控刀具專業能力、製造客戶需求如:Cutting tool、切削刀具、HSS Cutting tool、Carbide end mills、Carbide cutting tool、NAS Cutting tool、Carbide end mill、Aerospace cutting tool、Carbide drill、High speed steel、Milling cutter、Core drill、鎢鋼銑刀、航太刀具、鎢鋼鑽頭、高速剛、鉸刀、中心鑽頭、Taperd end mills、斜度銑刀、Metric end mills、公制銑刀、Miniature end mills、微小徑銑刀、鎢鋼切削刀具、Pilot reamer、領先鉸刀、Electronics cutter、電子用切削刀具、Step drill、階梯鑽頭、Metal cutting saw、金屬圓鋸片、Double margin drill、領先階梯鑽頭、Gun barrel、Angle milling cutter、角度銑刀、Carbide burrs、滾磨刀、Carbide tipped cutter、銲刃刀具、Chamfering tool、倒角銑刀、IC card engraving cutter、IC晶片卡刀、Side cutter、側銑刀、NAS tool、DIN tool、德國規範切削刀具、Special tool、特殊刀具、Metal slitting saws、Shell end mills、滾筒銑刀、Side and face milling cutters、Side chip clearance saws、交叉齒側銑刀、Long end mills、長刃銑刀、Stub roughing end mills、粗齒銑刀、Dovetail milling cutters、鳩尾刀具、Carbide slot drills、Carbide torus cutters、鎢鋼圓鼻銑刀、Angeled carbide end mills、角度鎢鋼銑刀、Carbide torus cutters、短刃平銑刀、Carbide ball-noseed slot drills、鎢鋼球頭銑刀、Mould cutter、模具用刀具、BW微型渦流管槍、Tool manufacturer、刀具製造商等相關切削刀具、以服務客戶改善工廠加工條件、爭加競爭力。歡迎尋購~~~碧威股份有限公司www.tool- tool.com
- Apr 10 Tue 2007 20:24
高速铣削的技术特点及在模具加工行业的应用www.tool-tool.com
Bewise Inc. www.tool-tool.com
Reference source from the internet.
一、前言
在 现代模具生产中,随着对塑件的美观度及功能要求得越来越高,塑件内部结构设计得越来越复杂,模具的外形设计也日趋复杂,自由曲面所占比例不断增加,相应的 模具结构也设计得越来越复杂。这些都对模具加工技术提出了更高要求,不仅应保证高的制造精度和表面质量,而且要追求加工表面的美观。随着对高速加工技术研 究的不断深入,尤其在加工机床、数控系统、刀具系统、CAD/CAM软件等相关技术不断发展的推动下,高速加工技术已越来越多地应用于模具型腔的加工与制 造中。
数控高速切削加工作为模具制造中最为重要的一项先进制造技术,是集高效、优质、低耗于一身的先进制造技术。相对于传统的切削加工, 其切削速度、进给速度有了很大的提高,而且切削机理也不相同。高速切削使切削加工发生了本质性的飞跃,其单位功率的金属切除率提高了30%~40%,切削 力降低了30%,刀具的切削寿命提高了70%,留于工件的切削热大幅度降低,低阶切削振动几乎消失。随着切削速度的提高,单位时间毛坯材料的去除率增加 了,切削时间减少了,加工效率提高了,从而缩短了产品的制造周期,提高了产品的市场竞争力。同时,高速加工的小量快进使切削力减少了,切屑的高速排出减少 了工件的切削力和热应力变形,提高了刚性差和薄壁零件切削加工的可能性。由于切削力的降低,转速的提高使切削系统的工作频率远离机床的低阶固有频率,而工 件的表面粗糙度对低阶频率最为敏感,由此降低了表面粗糙度。在模具的高淬硬钢件 (HRC45~HRC65)的加工过程中,采用高速切削可以取代电加工和磨削抛光的工序,从而避免了电极的制造和费时的电加工,大幅度减少了钳工的打磨与 抛光量。对于一些市场上越来越需要的薄壁模具工件,高速铣削也可顺利完成,而且在高速铣削CNC加工中心上,模具一次装夹可完成多工步加工。
高 速加工技术对模具加工工艺产生了巨大影响,改变了传统模具加工采用的“退火→铣削加工→热处理→磨削”或“电火花加工→手工打磨、抛光”等复杂冗长的工艺 流程,甚至可用高速切削加工替代原来的全部工序。高速加工技术除可应用于淬硬模具型腔的直接加工(尤其是半精加工和精加工)外,在EDM电极加工、快速样 件制造等方面也得到了广泛应用。大量生产实践表明,应用高速切削技术可节省模具后续加工中约80%的手工研磨时间,节约加工成本费用近30%,模具表面加 工精度可达1 m,刀具切削效率可提高1倍。
二、高速铣削加工机床
高速切削技术是切削加工技术的主要发展方向之一,它随 着CNC技术、微电子技术、新材料和新结构等基础技术的发展而迈上更高的台阶。由于模具加工的特殊性以及高速加工技术的自身特点,对模具高速加工的相关技 术及工艺系统(加工机床、数控系统、刀具等)提出了比传统模具加工更高的要求。
1. 高稳定性的机床支撑部件
高速切削机 床的床身等支撑部件应具有很好的动、静刚度,热刚度和最佳的阻尼特性。大部分机床都采用高质量、高刚性和高抗张性的灰铸铁作为支撑部件材料,有的机床公司 还在底座中添加高阻尼特性的聚合物混凝土,以增加其抗振性和热稳定性,这不但可保证机床精度稳定,也可防止切削时刀具振颤。采用封闭式床身设计,整体铸造 床身,对称床身结构并配有密布的加强筋等也是提高机床稳定性的重要措施。一些机床公司的研发部门在设计过程中,还采用模态分析和有限元结构计算等,优化了 结构,使机床支撑部件更加稳定可靠。
2. 机床主轴
高速机床的主轴性能是实现高速切削加工的重要条件。高速切削机床主轴 的转速范围为10000~100000m/min,主轴功率大于15kW。通过主轴压缩空气或冷却系统控制刀柄和主轴间的轴向间隙不大于0.005mm。 还要求主轴具有快速升速、在指定位置快速准停的性能(即具有极高的角加减速度),因此高速主轴常采用液体静压轴承式、空气静压轴承式、热压氮化硅 (Si3N4)陶瓷轴承磁悬浮轴承式等结构形式。润滑多采用油气润滑、喷射润滑等技术。主轴冷却一般采用主轴内部水冷或气冷。
3. 机床驱动系统
为满足模具高速加工的需要,高速加工机床的驱动系统应具有下列特性:
(1) 高的进给速度。研究表明,对于小直径刀具,提高转速和每齿进给量有利于降低刀具磨损。目前常用的进给速度范围为20~30m/min,如采用大导程滚珠丝杠传动,进给速度可达60m/min;采用直线电机则可使进给速度达到120m/min。
(2)高的加速度。对三维复杂曲面廓形的高速加工要求驱动系统具有良好的加速度特性,要求提供高速进给的驱动器(快进速度约40m/min,3D轮廓加工速度为10m/min),能够提供0.4m/s2到10m/s2的加速度和减速度。
机 床制造商大多采用全闭环位置伺服控制的小导程、大尺寸、高质量的滚珠丝杠或大导程多头丝杠。随着电机技术的发展,先进的直线电动机已经问世,并成功应用于 CNC机床。先进的直线电动机驱动使CNC机床不再有质量惯性、超前、滞后和振动等问题,加快了伺服响应速度,提高了伺服控制精度和机床加工精度。
4. 数控系统
先进的数控系统是保证模具复杂曲面高速加工质量和效率的关键因素,模具高速切削加工对数控系统的基本要求为:
(1) 高速的数字控制回路(Digital control loop),包括:32位或64位并行处理器及1.5Gb以上的硬盘;极短的直线电机采样时间。
(2)速度和加速度的前馈控制(Feed forward control);数字驱动系统的爬行控制(Jerk control)。
(3) 先进的插补方法( 基于NURBS的样条插补),以获得良好的表面质量、精确的尺寸和高的几何精度。
(4) 预处理(Look-ahead)功能。要求具有大容量缓冲寄存器,可预先阅读和检查多个程序段(如DMG机床可多达500个程序段,Simens系统可达 1000~2000个程序段),以便在被加工表面形状(曲率)发生变化时可及时采取改变进给速度等措施以避免过切等。
(5)误差补偿功能,包括因直线电机、主轴等发热导致的热误差补偿、象限误差补偿、测量系统误差补偿等功能。 此外,模具高速切削加工对数据传输速度的要求也很高。
(6) 传统的数据接口, 如RS232串行口的传输速度为19.2kb,而许多先进的加工中心均已采用以太局域网(Ethernet)进行数据传输,速度可达200kb。
5. 冷却润滑
高 速加工采用带涂层的硬质合金刀具,在高速、高温的情况下不用切削液,切削效率更高。这是因为:铣削主轴高速旋转,切削液若要达到切削区,首先要克服极大的 离心力;即使它克服了离心力进入切削区,也可能由于切削区的高温而立即蒸发,冷却效果很小甚至没有;同时切削液会使刀具刃部的温度激烈变化,容易导致裂纹 的产生,所以要采用油/气冷却润滑的干式切削方式。这种方式可以用高压气体迅速吹走切削区产生的切削,从而将大量的切削热带走,同时经雾化的润滑油可以在 刀具刃部和工件表面形成一层极薄的微观保护膜,可有效地延长刀具寿命并提高零件的表面质量。
三、高速切削加工的刀柄和刀具
由 于高速切削加工时离心力和振动的影响,要求刀具具有很高的几何精度和装夹重复定位精度以及很高的刚度和高速动平衡的安全可靠性。由于高速切削加工时较大的 离心力和振动等特点,传统的7:24锥度刀柄系统在进行高速切削时表现出明显的刚性不足、重复定位精度不高、轴向尺寸不稳定等缺陷,主轴的膨胀引起刀具及 夹紧机构质心的偏离,影响刀具的动平衡能力。目前应用较多的是HSK高速刀柄和国外现今流行的热胀冷缩紧固式刀柄。热胀冷缩紧固式刀柄有加热系统,刀柄一 般都采用锥部与主轴端面同时接触,其刚性较好,但是刀具可换性较差,一个刀柄只能安装一种连接直径的刀具。由于此类加热系统比较昂贵,在初期时采用HSK 类的刀柄系统即可。当企业的高速机床数量超过3台以上时,采用热胀冷缩紧固式刀柄比较合适。
刀具是高速切削加工中最活跃重要的因素之一, 它直接影响着加工效率、制造成本和产品的加工精度。刀具在高速加工过程中要承受高温、高压、摩擦、冲击和振动等载荷,高速切削刀具应具有良好的机械性能和 热稳定性,即具有良好的抗冲击、耐磨损和抗热疲劳的特性。高速切削加工的刀具技术发展速度很快,应用较多的如金刚石(PCD)、立方氮化硼(CBN)、陶 瓷刀具、涂层硬质合金、(碳)氮化钛硬质合金TIC(N)等。
在加工铸铁和合金钢的切削刀具中,硬质合金是最常用的刀具材料。硬质合金刀 具耐磨性好,但硬度比立方氮化硼和陶瓷低。为提高硬度和表面光洁度,采用刀具涂层技术,涂层材料为氮化钛(TiN)、氮化铝钛(TiALN)等。涂层技术 使涂层由单一涂层发展为多层、多种涂层材料的涂层,已成为提高高速切削能力的关键技术之一。直径在10~40mm范围内,且有碳氮化钛涂层的硬质合金刀片 能够加工洛氏硬度小于42的材料,而氮化钛铝涂层的刀具能够加工洛氏硬度为42甚至更高的材料。高速切削钢材时,刀具材料应选用热硬性和疲劳强度高的P类 硬质合金、涂层硬质合金、立方氮化硼(CBN)与CBN复合刀具材料(WBN)等。切削铸铁,应选用细晶粒的K类硬质合金进行粗加工,选用复合氮化硅陶瓷 或聚晶立方氮化硼(PCNB)复合刀具进行精加工。精密加工有色金属或非金属材料时,应选用聚晶金刚石PCD或CVD金刚石涂层刀具。选择切削参数时,针 对圆刀片和球头铣刀,应注意有效直径的概念。高速铣削刀具应按动平衡设计制造。刀具的前角比常规刀具的前角要小,后角略大。主副切削刃连接处应修圆或导 角,来增大刀尖角,防止刀尖处热磨损。应加大刀尖附近的切削刃长度和刀具材料体积,提高刀具刚性。在保证安全和满足加工要求的条件下,刀具悬伸尽可能短, 刀体中央韧性要好。刀柄要比刀具直径粗壮,连接柄呈倒锥状,以增加其刚性。尽量在刀具及刀具系统中央留有冷却液孔。球头立铣刀要考虑有效切削长度,刃口要 尽量短,两螺旋槽球头立铣刀通常用于粗铣复杂曲面,四螺旋槽球头立铣刀通常用于精铣复杂曲面。
四、模具高速加工工艺及策略
高速加工包括以去除余量为目的的粗加工、残留粗加工,以及以获取高质量的加工表面及细微结构为目的的半精加工、精加工和镜面加工等。
1. 粗加工
模 具粗加工的主要目标是追求单位时间内的材料去除率,并为半精加工准备工件的几何轮廓。高速加工中的粗加工所应采取的工艺方案是高切削速度、高进给率和小切 削用量的组合。等高加工方式是众多CAM软件普遍采用的一种加工方式。应用较多的是螺旋等高和等Z轴等高两种方式,也就是在加工区域仅一次进刀,在不抬刀 的情况下生成连续光滑的刀具路径,进、退刀方式采用圆弧切入、切出。螺旋等高方式的特点是,没有等高层之间的刀路移动,可避免频繁抬刀、进刀对零件表面质 量的影响及机械设备不必要的耗损。对陡峭和平坦区域分别处理,计算适合等高及适合使用类似3D偏置的区域,并且可以使用螺旋方式,在很少抬刀的情况下生成 优化的刀具路径,获得更好的表面质量。在高速加工中,一定要采取圆弧切入、切出连接方式,以及拐角处圆弧过渡,避免突然改变刀具进给方向,禁止使用直接下 刀的连接方式,避免将刀具埋入工件。加工模具型腔时,应避免刀具垂直插入工件,而应采用倾斜下刀方式(常用倾斜角为20°~30°),最好采用螺旋式下刀 以降低刀具载荷。加工模具型芯时,应尽量先从工件外部下刀然后水平切入工件。刀具切入、切出工件时应尽可能采用倾斜式(或圆弧式)切入、切出,避免垂直切 入、切出。采用攀爬式切削可降低切削热,减小刀具受力和加工硬化程度,提高加工质量。
2. 半精加工
模具半精加工的主要目标是使工件轮廓形状平整,表面精加工余量均匀,这对于工具钢模具尤为重要,因为它将影响精加工时刀具切削层面积的变化及刀具载荷的变化,从而影响切削过程的稳定性及精加工表面质量。
粗 加工是基于体积模型,精加工则是基于面模型。以前开发的CAD/CAM系统对零件的几何描述是不连续的,由于没有描述粗加工后、精加工前加工模型的中间信 息,故粗加工表面的剩余加工余量分布及最大剩余加工余量均是未知的。因此应对半精加工策略进行优化以保证半精加工后工件表面具有均匀的剩余加工余量。优化 过程包括:粗加工后轮廓的计算、最大剩余加工余量的计算、最大允许加工余量的确定、对剩余加工余量大于最大允许加工余量的型面分区(如凹槽、拐角等过渡半 径小于粗加工刀具半径的区域)以及半精加工时刀心轨迹的计算等。
现有的模具高速加工C A D /CAM软件大都具备剩余加工余量分析功能,并能根据剩余加工余量的大小及分布情况采用合理的半精加工策略。如MasterCAM软件提供了束状铣削 (Pencil milling)和剩余铣削(Rest milling)等方法来清除粗加工后剩余加工余量较大的角落以保证后续工序均匀的加工余量。
3. 精加工
模 具的高速精加工策略取决于刀具与工件的接触点,而刀具与工件的接触点随着加工表面的曲面斜率和刀具有效半径的变化而变化。对于由多个曲面组合而成的复杂曲 面加工,应尽可能在一个工序中进行连续加工,而不是对各个曲面分别进行加工,以减少抬刀、下刀的次数。然而,由于加工中表面斜率的变化,如果只定义加工的 侧吃刀量(Step over),就可能造成在斜率不同的表面上实际步距不均匀,从而影响加工质量。
一般情况下,精加工曲面的曲率半径应大于刀具半径的1.5倍,以避免进给方向的突然转变。在模具的高速精加工中,在每次切入、切出工件时,进给方向的改变应尽量采用圆弧或曲线转接,避免采用直线转接,以保持切削过程的平稳性。
高 速精加工策略包括三维偏置、等高精加工和最佳等高精加工、螺旋等高精加工等策略。这些策略可保证切削过程光顺、稳定,确保能快速切除工件上的材料,得到高 精度、光滑的切削表面。精加工的基本要求是要获得很高的精度、光滑的零件表面质量,轻松实现精细区域的加工,如小的圆角、沟槽等。对许多形状来说,精加工 最有效的策略是使用三维螺旋策略。使用这种策略可避免使用平行策略和偏置精加工策略中会出现的频繁的方向改变,从而提高加工速度,减少刀具磨损。这个策略 可以在很少抬刀的情况下生成连续光滑的刀具路径。这种加工技术综合了螺旋加工和等高加工策略的优点,刀具负荷更稳定,提刀次数更少,可缩短加工时间,减小 刀具损坏机率。它还可以改善加工表面质量,最大限地减小精加工后手工打磨的需要。在许多场合需要将陡峭区域的等高精加工和平坦区域三维等距精加工方法结合 起来使用。
数控编程也要考虑几何设计和工艺安排,在使用CAM 系统进行高速加工数控编程时,除刀具和加工参数根据具体情况选择外,加工方法的选择和采用的编程策略就成为了关键。一名出色的使用CAD/CAM工作站的 编程工程师应该同时也是一名合格的设计与工艺师,他应对零件的几何结构有一个正确的理解,具备对于理想工序安排以及合理刀具轨迹设计的知识和概念。
五、高速切削数控编程
高 速铣削加工对数控编程系统的要求越来越高,价格昂贵的高速加工设备对软件提出了更高的安全性和有效性要求。高速切削有着比传统切削特殊的工艺要求,除了要 有高速切削机床和高速切削刀具外,具有合适的CAM编程软件也是至关重要的。数控加工的数控指令包含了所有的工艺过程,一个优秀的高速加工CAM编程系统 应具有很高的计算速度、较强的插补功能、全程自动过切检查及处理能力、自动刀柄与夹具干涉检查、进给率优化处理功能、待加工轨迹监控功能、刀具轨迹编辑优 化功能和加工残余分析功能等。高速切削编程首先要注意加工方法的安全性和有效性;其次,要尽一切可能保证刀具轨迹光滑平稳,这会直接影响加工质量和机床主 轴等零件的寿命;最后,要尽量使刀具载荷均匀,这会直接影响刀具的寿命。
1. CAM系统应具有很高的计算编程速度
高速加工中采用非常小的进给量与切深,其NC程序比对传统数控加工程序要大得多,因而要求软件计算速度要快,以节省刀具轨迹编辑和优化编程的时间。
2. 全程自动防过切处理能力及自动刀柄干涉检查能力
高速加工以传统加工近10倍的切削速度进行加工,一旦发生过切对机床、产品和刀具将产生灾难性的后果,所以要求其CAM系统必须具有全程自动防过切处理的能力及自动刀柄与夹具干涉检查、绕避功能。系统能够自动提示最短夹持刀具长度,并自动进行刀具干涉检查。
3. 丰富的高速切削刀具轨迹策略
高 速加工对加工工艺走刀方式比传统方式有着特殊要求,为了能够确保最大的切削效率,又保证在高速切削时加工的安全性,CAM系统应能根据加工瞬时余量的大小 自动对进给率进行优化处理,能自动进行刀具轨迹编辑优化、加工残余分析并对待加工轨迹监控,以确保高速加工刀具受力状态的平稳性,提高刀具的使用寿命。
采 用高速加工设备之后,对编程人员的需求量将会增加,因高速加工工艺要求严格,过切保护更加重要,故需花多的时间对NC指令进行仿真检验。一般情况下,高速 加工编程时间比一般加工编程时间要长得多。为了保证高速加工设备足够的使用率,需配置更多的CAM人员。现有的CAM软件,如PowerMILL、 MasterCAM、UnigraphicsNX、Cimatron等都提供了相关功能的高速铣削刀具轨迹策略。
六、结束语
高 速切削技术是切削加工技术的主要发展方向之一,目前主要应用于汽车工业和模具行业,尤其是在加工复杂曲面的领域、工件本身或刀具系统刚性要求较高的加工领 域等,是多种先进加工技术的集成,其高效、高质量为人们所推崇。它不仅涉及到高速加工工艺,而且还包括高速加工机床、数控系统、高速切削刀具及 CAD/CAM技术等。模具高速加工技术目前已在发达国家的模具制造业中普遍应用,而在我国的应用范围及应用水平仍有待提高,由于其具有传统加工无可比拟 的优势,仍将是今后加工技术必然的发展方向。
BW碧威股份有限公司針對客戶端改善切削方式、提供專業切削CNC數控刀具專業能力、製造客戶需求 如:Cutting tool、切削刀具、HSS Cutting tool、Carbide end mills、Carbide cutting tool、NAS Cutting tool、Carbide end mill、Aerospace cutting tool、Carbide drill、High speed steel、Milling cutter、Core drill、鎢鋼銑刀、航太刀具、鎢鋼鑽頭、高速剛、鉸刀、中心鑽頭、Taperd end mills、斜度銑刀、Metric end mills、公制銑刀、Miniature end mills、微小徑銑刀、鎢鋼切削刀具、Pilot reamer、領先鉸刀、Electronics cutter、電子用切削刀具、Step drill、階梯鑽頭、Metal cutting saw、金屬圓鋸片、Double margin drill、領先階梯鑽頭、Gun barrel、Angle milling cutter、角度銑刀、Carbide burrs、滾磨刀、Carbide tipped cutter、銲刃刀具、Chamfering tool、倒角銑刀、IC card engraving cutter、IC晶片卡刀、Side cutter、側銑刀、NAS tool、DIN tool、德國規範切削刀具、Special tool、特殊刀具、Metal slitting saws、Shell end mills、滾筒銑刀、Side and face milling cutters、Side chip clearance saws、交叉齒側銑刀、Long end mills、長刃銑刀、Stub roughing end mills、粗齒銑刀、Dovetail milling cutters、鳩尾刀具、Carbide slot drills、Carbide torus cutters、鎢鋼圓鼻銑刀、Angeled carbide end mills、角度鎢鋼銑刀、Carbide torus cutters、短刃平銑刀、Carbide ball-noseed slot drills、鎢鋼球頭銑刀、Mould cutter、模具用刀具、BW微型渦流管槍、Tool manufacturer、刀具製造商等相關切削刀具、以服務客戶改善工廠加工條件、爭加競爭力。歡迎尋購~~~碧威股份有限公司www.tool- tool.com
Bewise Inc. www.tool-tool.com
- Apr 10 Tue 2007 20:24
铣削加工中心刀具半径补偿的应用www.tool-tool.com
Bewise Inc. www.tool-tool.com
Reference source from the internet.
前言
1. 刀具半径补偿的基本概念
1
图1 加工中的刀具半径补偿
在轮廓加工过程中,由于刀具总有一定的半径(如铣刀半径或线切割机的钼丝半径等),刀具中心的运动轨迹与所需加工零件的实际轮廓并不重合。如在图1中,粗 实线为所需加工的零件轮廓,点划线为刀具中心轨迹。由图可见在进行内轮廓加工时,刀具中心偏离零件的内轮廓表面一个刀具半径值。在进行外轮廓加工时,刀具 中心又偏离零件的外轮廓表面一个刀具半径值。这种偏移,称为刀具半径补偿。
2. 采用刀具半径补偿的作用和意义
数控机床一般都具备刀具半径补偿的功能。在加工中,使用数控系统的刀具半径补偿功能,就能避开数控编程过程中的繁琐计算,而只需计算出刀具中心轨迹的起始 点坐标值就可。同时,利用刀具半径补偿功能,还可以实现同一程序的粗、精加工以及同一程序的阴阳模具加工等功能。
3. 刀具半径补偿指令的使用方式
根据ISO 标准规定,当刀具中心轨迹在编程轨迹前进方向的左边时,称为左刀补,用G41表示;刀具中心轨迹在编程轨迹前进方向的右边时,称为右刀补,用G42表示;注销刀具半径补偿时用G40表示。
2 刀具半径补偿过程
1. 刀具半径补偿建立:当输入BS缓冲器的程序段包含有G41/G42命令时,系统认为此时已进入刀补建立状态。当以下条件成立时,加工中心以移动坐标轴的形式开始补偿动作。
1. 有G41或G42被指定;
2. 在补偿平面内有轴的移动;
3. 指定了一个补偿号或已经指定一个补偿号但不能是D00;
4. 偏置(补偿)平面被指定或已经被指定;
5. G00或G01模式有效。
2. 补偿模式:在刀具补偿进行期间,刀具中心轨迹始终偏离编程轨迹一个刀具半径值的距离。此时半径补偿在G00、G01、G02、G03情况下均有效。
3. 取消补偿:使用G40指令消去程序段偏置值,使刀具撤离工件,回到起始位置,从而使刀具中心与偏程轨迹重合。当以下两种情况之一发生时加工中心补偿模式被取消。①给出G40同时要有补偿平面内坐标轴移动。②刀具补偿号为D00。
3 刀具半径补偿在加工中心中的应用
有了刀具半径自动补偿功能,除可免去刀心轨迹的人工计算外,还可利用同一加工程序去完成粗、精加工及阴阳模具加工等。
1
图2 G18指令的使用
1. 不同平面内的半径补偿
刀具半径补偿用G17、G18、G19命令在被选择的工作平面内进行补偿。即当G18命令执行后,刀具半径补偿仅影响X、Z移动,而对Y轴没有作用。
铣削如图2所示圆柱面,使用刀具是半径为10mm的球形立铣刀。编程控制点有两个,即刀尖、球心,这里使用球心。O0001
N1 G9054G18G00X60.0Y0S1000M03;
N2 Z0;
N3 G91G01 G41X-20.0D01 F100;
N4 G02X-80.0I40.0;
N5 G40GG0lX20.0;
┇
┇
N22vG90G00Z100.0;
N23vX0 Y0M05;
N24 M30;
2. 实现同一程序的粗、精加工:刀具半径补偿除方便编程外,还可改变补偿大小的方法以用实现同一程序的粗精加工。
粗加工刀具补偿量=刀具半径+精加工余量,精加工刀具补偿量=刀具半径+修正量
3. 实现同一程序的阴阳模具加工
1
图3 内、外两种型面的加工
在加工同一公称尺寸的内、外两种型面时,可分别调用G41、G42指令,利用同一程序(G41G42互换)完成内、外两种型面的加工。如图3。
4 使用刀具半径补偿时常见的问题
1. 半径补偿时的过切问题
1. 无被选择的工作平面内的移动指令:当刀具半径补偿指令发出时,第一段程序先被读入BS,在BS中算得的第一段编程轨迹被送到CS暂存后,又将第二段程序读 入 BS,算出第二段的编程轨迹。接着对第一和第二两段的编程轨迹的连接方式进行判别。根据判别结果,再对CS中的第一段编程轨迹作相应的修正。修正结束后, 顺序地将修正后的第一段编程轨迹由CS 送AS第二段编程轨迹由BS送入CS。随后,由CPU将AS中的内容送到OS进行插补运算,运算结果送伺服装置予以执行。如接下的两个程序段在被选择的工 作平面内无移动指令,机床无法判断刀具半径补偿的方向,此时机床不发出报警信号,补偿继续进行,只是补偿的起始点发生变化,从而导致工件发生过切现象。 例,如图4。
1
图4 半径补偿中的过切现象
O0002
N1 G90G54G17 G00X0Y0S2000M03
N2 Z100.0
N3 G41 X40.0Y10.0D01
N4 Z2.0 } 连续两句Z 轴移动
N5 G01Z-10.0F100 而没有XY 轴移动
N6Y100.0
N7X100.0
N8Y40.0
N9X20.0
N10G00Z100.0
N11G40X0Y0M05
N12M30
2. 刀具补偿值大于被加工部分内圆弧半径:当零件上的圆弧半径小于刀具半径补偿值时,向圆弧、圆心方向的半径补偿将会导致过切,这时程序运行到该程序段时,机床将发出报警并停止在将要过切程序段的起始点上,如图5所示。
1
图5 不停机导致过切
1
图6 不停机导致过切
3. 被铣削部分的槽底宽小于刀具直径:当刀具半径补偿使刀具中心向编程路径反方向运动,将会导致过切。此时机床将会报警并停留在该程序段的起始点,如图6 所示。
2. G40 执行前改变补偿号
刀具半径补偿号要在刀具补偿取消后才能改变,如果在G40下变换补偿号,当前程序段的目的点的补偿量将按照新的给定值,而当前程序段开始点补偿量则不变,从而可能导致欠切削或过切。
3. 在G02、G03模式下取消刀具补偿
刀具补偿必须在G00、G01模式下取消在G02、G03模式下取消刀具补偿时,系统将发出报警。
4. M96模式与M97模式
在圆角过渡模式M96下,用G41或G42进行刀具半径补偿时,如果相邻程序轨迹交角为180°或更大,刀具将以圆弧插补方式绕着交点回转。相反在交角过 渡模式M97下,刀具中心将运动至二相邻刀心轨迹的点而不是进行圆弧插补。当加工零件上的阶台高度比刀具半径小时,用M96模式将会引起过切,如用M97 模式则可以顺利通过,如图7 所示。
1
图7
5 结论
当数控机床具有刀具半径补偿功能时会极大方便计算和编程,但在使用此项功能时应注意机床的硬件条件以及工件轮廓几何要素的过渡处的处理,以避免产生欠切削和过切等问题,提高工件的加工精度。
BW 碧威股份有限公司針對客戶端改善切削方式、提供專業切削CNC數控刀具專業能力、製造客戶需求如:Cutting tool、切削刀具、HSS Cutting tool、Carbide end mills、Carbide cutting tool、NAS Cutting tool、Carbide end mill、Aerospace cutting tool、Carbide drill、High speed steel、Milling cutter、Core drill、鎢鋼銑刀、航太刀具、鎢鋼鑽頭、高速剛、鉸刀、中心鑽頭、Taperd end mills、斜度銑刀、Metric end mills、公制銑刀、Miniature end mills、微小徑銑刀、鎢鋼切削刀具、Pilot reamer、領先鉸刀、Electronics cutter、電子用切削刀具、Step drill、階梯鑽頭、Metal cutting saw、金屬圓鋸片、Double margin drill、領先階梯鑽頭、Gun barrel、Angle milling cutter、角度銑刀、Carbide burrs、滾磨刀、Carbide tipped cutter、銲刃刀具、Chamfering tool、倒角銑刀、IC card engraving cutter、IC晶片卡刀、Side cutter、側銑刀、NAS tool、DIN tool、德國規範切削刀具、Special tool、特殊刀具、Metal slitting saws、Shell end mills、滾筒銑刀、Side and face milling cutters、Side chip clearance saws、交叉齒側銑刀、Long end mills、長刃銑刀、Stub roughing end mills、粗齒銑刀、Dovetail milling cutters、鳩尾刀具、Carbide slot drills、Carbide torus cutters、鎢鋼圓鼻銑刀、Angeled carbide end mills、角度鎢鋼銑刀、Carbide torus cutters、短刃平銑刀、Carbide ball-noseed slot drills、鎢鋼球頭銑刀、Mould cutter、模具用刀具、BW微型渦流管槍、Tool manufacturer、刀具製造商等相關切削刀具、以服務客戶改善工廠加工條件、爭加競爭力。歡迎尋購~~~碧威股份有限公司www.tool- tool.com
- Apr 10 Tue 2007 20:23
铣削加工优质伞齿轮的关键探讨www.tool-tool.com
Bewise Inc. www.tool-tool.com
Reference source from the internet.
1 问题的提出
合格的伞齿轮,应齿形正确(渐开线形状、齿向正确及齿形位于工件中心对称位置),周节均匀,大、小端齿厚合格、粗糙度好。所以,除了渐开线形状是由铣刀保 证,周节均匀由分度头精度及正确分度得到外,铣好伞齿轮的关键。在实际生产中主要在于如何正确铣去大端余量及对好中心。
2 正确铣削大端余量问题
正确铣削大端余量问题原则的实质,是一个偏移量大小及对称性问题。而偏移量大小虽可按多种公式计算,但由于各种因素的影响,如果用算出的数值直接来调整机床,则铣出的轮齿常不合要求,所以计算所得数值只能仅作为参考。
1. 偏移量的对称性
要使齿形处于正确位置,必须是铣齿两侧时所移动均偏移量大小及分度头所借孔数相等。摇动横向手柄时,手势要均匀,其移动大小也可用百分表控制。
铣削过程中也可能出现这样情况:齿厚尺寸还肥,但再借一孔则齿厚必瘦。因此单纯从一边横向移动使齿厚减薄,是不恰当的。解决的办法是,应使铣两边时分度手 柄所借孔数不等,但必须使两边所摇偏移量保持相同。因铣两边时若相差一孔,则对齿形的对称性影响甚微。
2. 借孔数与偏移量的关系
若大端要铣去的佘量较多而小端较少时,则应多借孔数少摇偏移量,因每借一孔大端所转过的弧长比小端大得多,若大端要少铣去些而小端要略多一些时,则少借孔 数及少摇偏移量,若大、小端所要铣去的余量均较多时,则应少借孔数多摇偏移量。具体调整时,要按伞齿轮上B与L的不同比例关系分别对待。对此,分3种情况 来进行具体讨论:
1. 若这时大端尚有余量,而刀痕与第一刀铣出齿面已基本接平,说明可少借或不借孔,而横向还要移动一定距离。
2. 若大端已基本铣到尺寸,而齿面中途刀痕估计延伸到小端附近又可接平,则可手动进刀,让铣刀铣到小端附近(不到小端)再退出,观察这时刀痕在哪个位置接平, 如果在停刀位置与齿面接平,则可不借孔而作横向移动,其值等于大端尚需切去余量。
3. 若大端还有较多余量,而中途刀痕却已基本接平,则可多借孔数而横向仅作少量移动;若大端还有较多余量,中途的刀痕距接平又相差较远,则要多摇横向,并适当选定借孔数。
3. 结论
一般要铣两刀以上才能借好一个齿面。而在铣最后一刀时,为了防止小端刀痕未接平,而铣刀另一面却己碰到邻齿小端,这时操作者应站在纵向,边摇边从小端观察铣刀两侧离齿槽两边间隙大小,使铣刀逐步铣出小端。
这样铣出的齿,如大小端齿形尺寸达到要求,则大小端齿顶棱边宽度以及无折线齿面等要求,一般也就同时达到,因为这几方面是互相影响和直接相关的。
1
图1 小椭圆法对刀
3 正确铣削的中心正问题
对中心是使铣刀两侧渐开线的对称线(以下称厚室中心)通过工件中心,一般称之为对刀。中心不对准,会使齿形向一边歪斜。
对刀的方法较多,一般采用划线法及小椭圆法。前者己常应用,这里主要讨论后者:
在卧铣上加工伞齿轮时,应用小椭圆法对刀的操作过程如下:
先使铣刀停留在齿面靠外径处,然后开车并上升工作台,使铣刀微微切着工件表面,再使工作台在横向慢慢来回移动,铣刀就在工件表面切出个小椭圆形(如图1) ,切深越浅,小椭圆形越小:而横向移动越慢(或车速越快),则小椭圆成形越完整。
由于小椭圆中心就是工件中心,所以使铣刀厚度中心位于小椭圆中心,则中心已对准。为达此目的,先使铣刀中心大致位于小椭圆中心,然后开车并上升工作台,这 样就在这个小椭圆中心附近切了一刀,即把小椭圆切成了两个半边,若这时如图1中那样所剩两边尺寸a相等,则中心已对好。这时,横向刻度就是工件中心与铣刀 厚度中心相重合的基准。若小椭圆两边残形尺寸a不等则再调整横向并切深一点,直至目测不能发现两边a有差别为止。a 越小,则辨别越容易,一般使a在O.5mm以下为宜,这样,两边即使相差0.05mm~0.1mm 也相当容易辨别。采用小椭圆法对刀,精确度高、操作方便,又容易掌握,是一种理想的对刀法。
BW碧威股份有限公司針對客戶端改善切削方式、提供專 業切削CNC數控刀具專業能力、製造客戶需求如:Cutting tool、切削刀具、HSS Cutting tool、Carbide end mills、Carbide cutting tool、NAS Cutting tool、Carbide end mill、Aerospace cutting tool、Carbide drill、High speed steel、Milling cutter、Core drill、鎢鋼銑刀、航太刀具、鎢鋼鑽頭、高速剛、鉸刀、中心鑽頭、Taperd end mills、斜度銑刀、Metric end mills、公制銑刀、Miniature end mills、微小徑銑刀、鎢鋼切削刀具、Pilot reamer、領先鉸刀、Electronics cutter、電子用切削刀具、Step drill、階梯鑽頭、Metal cutting saw、金屬圓鋸片、Double margin drill、領先階梯鑽頭、Gun barrel、Angle milling cutter、角度銑刀、Carbide burrs、滾磨刀、Carbide tipped cutter、銲刃刀具、Chamfering tool、倒角銑刀、IC card engraving cutter、IC晶片卡刀、Side cutter、側銑刀、NAS tool、DIN tool、德國規範切削刀具、Special tool、特殊刀具、Metal slitting saws、Shell end mills、滾筒銑刀、Side and face milling cutters、Side chip clearance saws、交叉齒側銑刀、Long end mills、長刃銑刀、Stub roughing end mills、粗齒銑刀、Dovetail milling cutters、鳩尾刀具、Carbide slot drills、Carbide torus cutters、鎢鋼圓鼻銑刀、Angeled carbide end mills、角度鎢鋼銑刀、Carbide torus cutters、短刃平銑刀、Carbide ball-noseed slot drills、鎢鋼球頭銑刀、Mould cutter、模具用刀具、BW微型渦流管槍、Tool manufacturer、刀具製造商等相關切削刀具、以服務客戶改善工廠加工條件、爭加競爭力。歡迎尋購~~~碧威股份有限公司www.tool- tool.com