公告版位

 

Bewise Inc. www.tool-tool.com Reference source from the internet.

Transformador.

Se denomina transformador a una máquina eléctrica que permite aumentar o disminuir el voltaje o tensión en un circuito eléctrico de corriente alterna, manteniendo la frecuencia. La potencia que ingresa al equipo, en el caso de un transformador ideal, esto es, sin pérdidas, es igual a la que se obtiene a la salida. Las máquinas reales presentan un pequeño porcentaje de pérdidas, dependiendo de su diseño, tamaño, etc.

Los transformadores son dispositivos basados en el fenómeno de la inducción electromagnética y están constituidos, en su forma más simple, por dos bobinas devanadas sobre un núcleo cerrado de hierro dulce o hierro silicio. Las bobinas o devanados se denominan primario y secundario según correspondan a la entrada o salida del sistema en cuestión, respectivamente. También existen transformadores con más devanados; en este caso, puede existir un devanado "terciario", de menor tensión que el secundario.

Funcionamiento [editar]

Representación esquemática del transformador.

Si se aplica una fuerza electromotriz alterna en el devanado primario, las variaciones de intensidad y sentido de la corriente alterna crearán un campo magnético variable dependiendo de la frecuencia de la corriente. Este campo magnético variable originará, por inducción electromagnética, la aparición de una fuerza electromotriz en los extremos del devanado secundario.

La relación entre la fuerza electromotriz inductora (Ep), la aplicada al devanado primario y la fuerza electromotriz inducida (Es), la obtenida en el secundario, es directamente proporcional al número de espiras de los devanados primario (Np) y secundario (Ns) .

\frac{Ep}{Es}=\frac{Np}{Ns}

La razón de transformación (m) del voltaje entre el bobinado primario y el secundario depende de los números de vueltas que tenga cada uno. Si el número de vueltas del secundario es el triple del primario, en el secundario habrá el triple de tensión.

\frac{Np}{Ns}=\frac{Vp}{Vs}= m

Esta particularidad se utiliza en la red de transporte de energía eléctrica: al poder efectuar el transporte a altas tensiones y pequeñas intensidades, se disminuyen las pérdidas por el efecto Joule y se minimiza el costo de los conductores.

Así, si el número de espiras (vueltas) del secundario es 100 veces mayor que el del primario, al aplicar una tensión alterna de 230 voltios en el primario, se obtienen 23.000 voltios en el secundario (una relación 100 veces superior, como lo es la relación de espiras). A la relación entre el número de vueltas o espiras del primario y las del secundario se le llama relación de vueltas del transformador o relación de transformación.

Ahora bien, como la potencia aplicada en el primario, en caso de un transformador ideal, debe ser igual a la obtenida en el secundario, el producto de la fuerza electromotriz por la intensidad (potencia) debe ser constante, con lo que en el caso del ejemplo, si la intensidad circulante por el primario es de 10 amperios, la del secundario será de solo 0,1 amperios (una centésima parte).

Historia [editar]

La invención del transformador, data del año de 1884 para ser aplicado en los sistemas de transmisión que en esa época eran de corriente directa y presentaban limitaciones técnicas y económicas. El primer sistema comercial de corriente alterna con fines de distribución de la energía eléctrica que usaba transformadores se puso en operación en 1886 en Great Barington, Massachussets, en los Estados Unidos de América. En ese mismo año, la electricidaa se transmitió a 2000 voltios en corriente alterna a una distancia de 30 kilómetros, en una línea construida en Cerchi, Italia. A partir de esta pequeñas aplicaciones iniciales, la industria eléctrica en el mundo, ha recorrido en tal forma, que en la actualidad es factor de desarrollo de los pueblos, formando parte importante en esta industria el transformador. El aparato que aquí se describe es una aplicación, entre tantas, derivada de la inicial bobina de Ruhmkorff o carrete de Ruhmkorff, que consistía en dos bobinas concéntricas. A una bobina, llamada primario, se le aplicaba una corriente continua proveniente de una batería, conmutada por medio de un ruptor movido por el magnetismo generado en un núcleo de hierro central por la propia energía de la batería. El campo magnético así creado variaba al compás de las interrupciones, y en el otro bobinado, llamado secundario y con mucho más espiras, se inducía una corriente de escaso valor pero con una fuerza eléctrica capaz de saltar entre las puntas de un chispómetro conectado a sus extremos.

También da origen a las antiguas bobinas de ignición del automóvil Ford T, que poseía una por cada bujía, comandadas por un distribuidor que mandaba la corriente a través de cada una de las bobinas en la secuencia correcta.

Tipos de transformadores [editar]

Transformador trifásico. Conexión estrella-triángulo.

Según sus aplicaciones [editar]

Transformador elevador/reductor de tensión [editar]

Son empleados en las subestaciones de la red de transporte de energía eléctrica, con el fin de disminuir las pérdidas por efecto Joule. Debido a la resistencia de los conductores, conviene transportar la energía eléctrica a tensiones elevadas, lo que origina la necesidad de reducir nuevamente dichas tensiones para adaptarlas a las de utilización.

Transformador de aislamiento [editar]

Proporciona aislamiento galvánico entre el primario y el secundario, de manera que consigue una alimentación o señal "flotante". Suele tener una relación 1:1. Se utiliza principalmente como medida de protección, en equipos que trabajan directamente con la tensión de red. También para acoplar señales procedentes de sensores lejanos, en equipos de electromedicina y allí donde se necesitan tensiones flotantes entre sí. no pasa nada

Transformador de alimentación [editar]

Pueden tener una o varias bobinas secundarias y proporcionan las tensiones necesarias para el funcionamiento del equipo. A veces incorporan fusibles que cortan su circuito primario cuando el transformador alcanza una temperatura excesiva, evitando que éste se queme, con la emisión de humos y gases que conlleva el riesgo de incendio. Estos fusibles no suelen ser reemplazables, de modo que hay que sustituir todo el transformador.

Transformador trifásico [editar]

Tienen tres bobinados en su primario y tres en su secundario. Pueden adoptar forma de estrella (Y) (con hilo de neutro o no) o de triángulo (Δ) y las combinaciones entre ellas: Δ-Δ, Δ-Y, Y-Δ y Y-Y. Hay que tener en cuenta que aún con relaciones 1:1, al pasar de Δ a Y o viceversa, las tensiones varían.

Transformador de pulsos [editar]

Es un tipo especial de transformador con respuesta muy rápida (baja autoinducción) destinado a funcionar en régimen de pulsos. y ademas un muy versátil utilidad en cuanto al control de tensión 220

Transformador de línea o flyback [editar]

Es un caso particular de transformador de pulsos. Se emplea en los televisores con TRC (CRT) para generar la alta tensión y la corriente para las bobinas de deflexión horizontal. Además suele proporcionar otras tensiones para el tubo (Foco, filamento, etc). Además de Poseer una respuesta en frecuencia más alta que muchos transformadores, tiene la característica de mantener diferentes niveles de potencia de salida debido a sus diferentes arreglos entre sus bobinados secundarios

Transformador con diodo dividido [editar]

Es un tipo de transformador de línea que incorpora el diodo rectificador para proporcionar la tensión contínua de MAT directamente al tubo. Se llama diodo dividido porque está formado por varios diodos más pequeños repartidos por el bobinado y conectados en serie, de modo que cada diodo sólo tiene que soportar una tensión inversa relativamente baja. La salida del transformador va directamente al ánodo del tubo, sin diodo ni triplicador.

Transformador de impedancia [editar]

Este tipo de transformador se emplea para adaptar antenas y líneas de transmisión (tarjetas de red, teléfonos...) y era imprescindible en los amplificadores de válvulas para adaptar la alta impedancia de los tubos a la baja de los altavoces. Si se coloca en el secundario una impedancia de valor Z, y llamamos n a Ns/Np, como Is=-Ip/n y Es=Ep.n, la impedancia vista desde el primario será Ep/Ip = -Es/n²Is = Z/n². Así, hemos conseguido transformar una impedancia de valor Z en otra de Z/n². Colocando el transformador al revés, lo que hacemos es elevar la impedancia en un factor .

Estabilizador de tensión [editar]

Es un tipo especial de transformador en el que el núcleo se satura cuando la tensión en el primario excede su valor nominal. Entonces, las variaciones de tensión en el secundario quedan limitadas. Tenía una labor de protección de los equipos frente a fluctuaciones de la red. Este tipo de transformador ha caído en desuso con el desarrollo de los reguladores de tensión electrónicos, debido a su volumen, peso, precio y baja eficiencia energética.

Transformador híbrido o bobina híbrida [editar]

Es un transformador que funciona como una híbrida. De aplicación en los teléfonos, tarjetas de red, etc.

Balun [editar]

Es muy utilizado como balun para transformar líneas equilibradas en no equilibradas y viceversa. La línea se equilibra conectando a masa la toma intermedia del secundario del transformador.

Transformador electrónico [editar]

Posee bobinas y componentes electrónicos. Son muy utilizados en la actualidad en aplicaciones como cargadores para celulares. No utiliza el transformador de núcleo en sí, sino que utiliza bobinas llamadas filtros de red y bobinas CFP (corrector factor de potencia) de utilización imprescindible en los circuitos de fuente de alimentaciones conmutadas.

Transformador de frecuencia variable [editar]

Son pequeños transformadores de núcleo de hierro, que funcionan en la banda de audiofrecuencias. Se utilizan a menudo como dispositivos de acoplamiento en circuitos electrónicos para comunicaciones, medidas y control.

Transformadores de medida [editar]

Entre los transformadores con fines especiales, los más importantes son los transformadores de medida para instalar instrumentos, contadores y relés protectores en circuitos de alta tensión o de elevada corriente. Los transformadores de medida aíslan los circuitos de medida o de relés, permitiendo una mayor normalización en la construcción de contadores, instrumentos y relés.

Según su construcción [editar]

Transformador de grano orientado

Autotransformador [editar]

Artículo principal: Autotransformador

El primario y el secundario del transformador están conectados en serie, constituyendo un bobinado único. Pesa menos y es más barato que un transformador y por ello se emplea habitualmente para convertir 220V a 125V y viceversa y en otras aplicaciones similares. Tiene el inconveniente de no proporcionar aislamiento galvánico entre el primario y el secundario.

Transformador toroidal [editar]

El bobinado consiste en un anillo, normalmente de compuestos artificiales de ferrita, sobre el que se bobinan el primario y el secundario. Son más voluminosos, pero el flujo magnético queda confinado en el núcleo, teniendo flujos de dispersión muy reducidos y bajas pérdidas por corrientes de Foucault.

Transformador de grano orientado [editar]

El núcleo está formado por una chapa de hierro de grano orientado, enrollada sobre sí misma, siempre en el mismo sentido, en lugar de las láminas de hierro dulce separadas habituales. Presenta pérdidas muy reducidas pero es caro. La chapa de hierro de grano orientado puede ser también utilizada en transformadores orientados (chapa en E), reduciendo sus perdidas.

Transformador de núcleo de aire [editar]

En aplicaciones de alta frecuencia se emplean bobinados sobre un carrete sin núcleo o con un pequeño cilindro de ferrita que se introduce más o menos en el carrete, para ajustar su inductancia.

Transformador de núcleo envolvente [editar]

Están provistos de núcleos de ferrita divididos en dos mitades que, como una concha, envuelven los bobinados. Evitan los flujos de dispersión.

Transformador piezoeléctrico [editar]

Para ciertas aplicaciones han aparecido en el mercado transformadores que no están basados en el flujo magnético para transportar la energía entre el primario y el secundario, sino que se emplean vibraciones mecánicas en un cristal piezoeléctrico. Tienen la ventaja de ser muy planos y funcionar bien a frecuencias elevadas. Se usan en algunos convertidores de tensión para alimentar los fluorescentes del backlight de ordenadores portátiles.

歡迎來到Bewise Inc.的世界,首先恭喜您來到這接受新的資訊讓產業更有競爭力,我們是提供專業刀具製造商,應對客戶高品質的刀具需求,我們可以協助客戶滿足您對產業的不同要求,我們有能力達到非常卓越的客戶需求品質,這是現有相關技術無法比擬的,我們成功的滿足了各行各業的要求,包括:精密HSS DIN切削刀具協助客戶設計刀具流程DIN or JIS 鎢鋼切削刀具設計NAS986 NAS965 NAS897 NAS937orNAS907 航太切削刀具,NAS航太刀具設計超高硬度的切削刀具醫療配件刀具設計複合式再研磨機PCD地板專用企口鑽石組合刀具NSK高數主軸與馬達專業模具修補工具-氣動與電動粉末造粒成型機主機版專用頂級電桿PCD V-Cut捨棄式圓鋸片組粉末成型機主機版專用頂級電汽車業刀具設計電子產業鑽石刀具木工產業鑽石刀具銑刀與切斷複合再研磨機銑刀與鑽頭複合再研磨機銑刀與螺絲攻複合再研磨機等等。我們的產品涵蓋了從民生刀具到工業級的刀具設計;從微細刀具到大型刀具;從小型生產到大型量產;全自動整合;我們的技術可提供您連續生產的效能,我們整體的服務及卓越的技術,恭迎您親自體驗!!

BW Bewise Inc. Willy Chen willy@tool-tool.com bw@tool-tool.com www.tool-tool.com skype:willy_chen_bw mobile:0937-618-190 Head &Administration Office No.13,Shiang Shang 2nd St., West Chiu Taichung,Taiwan 40356 http://www.tool-tool.com / FAX:+886 4 2471 4839 N.Branch 5F,No.460,Fu Shin North Rd.,Taipei,Taiwan S.Branch No.24,Sec.1,Chia Pu East Rd.,Taipao City,Chiayi Hsien,Taiwan

Welcome to BW tool world! We are an experienced tool maker specialized in cutting tools. We focus on what you need and endeavor to research the best cutter to satisfy users demand. Our customers involve wide range of industries, like mold & die, aerospace, electronic, machinery, etc. We are professional expert in cutting field. We would like to solve every problem from you. Please feel free to contact us, its our pleasure to serve for you. BW product including: cutting toolaerospace tool .HSS  DIN Cutting toolCarbide end millsCarbide cutting toolNAS Cutting toolNAS986 NAS965 NAS897 NAS937orNAS907 Cutting Tools,Carbide end milldisc milling cutter,Aerospace cutting toolhss drillФрезерыCarbide drillHigh speed steelCompound SharpenerMilling cutterINDUCTORS FOR PCDCVDD(Chemical Vapor Deposition Diamond )’PCBN (Polycrystalline Cubic Boron Nitride) Core drillTapered end millsCVD Diamond Tools Inserts’PCD Edge-Beveling Cutter(Golden FingerPCD V-CutterPCD Wood toolsPCD Cutting toolsPCD Circular Saw BladePVDD End Millsdiamond tool. INDUCTORS FOR PCD . POWDER FORMING MACHINE Single Crystal Diamond Metric end millsMiniature end millsСпециальные режущие инструменты Пустотелое сверло Pilot reamerFraisesFresas con mango PCD (Polycrystalline diamond) ‘FresePOWDER FORMING MACHINEElectronics cutterStep drillMetal cutting sawDouble margin drillGun barrelAngle milling cutterCarbide burrsCarbide tipped cutterChamfering toolIC card engraving cutterSide cutterStaple CutterPCD diamond cutter specialized in grooving floorsV-Cut PCD Circular Diamond Tipped Saw Blade with Indexable Insert PCD Diamond Tool Saw Blade with Indexable InsertNAS toolDIN or JIS toolSpecial toolMetal slitting sawsShell end millsSide and face milling cuttersSide chip clearance sawsLong end millsend mill grinderdrill grindersharpenerStub roughing end millsDovetail milling cuttersCarbide slot drillsCarbide torus cuttersAngel carbide end millsCarbide torus cuttersCarbide ball-nosed slot drillsMould cutterTool manufacturer.

Bewise Inc. www.tool-tool.com

ようこそBewise Inc.の世界へお越し下さいませ、先ず御目出度たいのは新たな

情報を受け取って頂き、もっと各産業に競争力プラス展開。

弊社は専門なエンドミルの製造メーカーで、客先に色んな分野のニーズ

豊富なパリエーションを満足させ、特にハイテク品質要求にサポート致します。

弊社は各領域に供給できる内容は:

(1)精密HSSエンドミルのR&D

(2)Carbide Cutting tools設計

(3)鎢鋼エンドミル設計

(4)航空エンドミル設計

(5)超高硬度エンドミル

(6)ダイヤモンドエンドミル

(7)医療用品エンドミル設計

(8)自動車部品&材料加工向けエンドミル設計

弊社の製品の供給調達機能は:

(1)生活産業~ハイテク工業までのエンドミル設計

(2)ミクロエンドミル~大型エンドミル供給

(3)小Lot生産~大量発注対応供給

(4)オートメーション整備調達

(5)スポット対応~流れ生産対応

弊社の全般供給体制及び技術自慢の総合専門製造メーカーに貴方のご体験を御待ちしております。

Bewise Inc. talaşlı imalat sanayinde en fazla kullanılan ve üç eksende (x,y,z) talaş kaldırabilen freze takımlarından olan Parmak Freze imalatçısıdır. Çok geniş ürün yelpazesine sahip olan firmanın başlıca ürünlerini Karbür Parmak Frezeler, Kalıpçı Frezeleri, Kaba Talaş Frezeleri, Konik Alın Frezeler, Köşe Radyüs Frezeler, İki Ağızlı Kısa ve Uzun Küresel Frezeler, İç Bükey Frezeler vb. şeklinde sıralayabiliriz.

BW специализируется в научных исследованиях и разработках, и снабжаем самым высокотехнологичным карбидовым материалом для поставки режущих / фрезеровочных инструментов для почвы, воздушного пространства и электронной индустрии. В нашу основную продукцию входит твердый карбид / быстрорежущая сталь, а также двигатели, микроэлектрические дрели, IC картонорезальные машины, фрезы для гравирования, режущие пилы, фрезеры-расширители, фрезеры-расширители с резцом, дрели, резаки форм для шлицевого вала / звездочки роликовой цепи, и специальные нано инструменты. Пожалуйста, посетите сайт  www.tool-tool.com  для получения большей информации.

BW is specialized in R&D and sourcing the most advanced carbide material with high-tech coating to supply cutting / milling tool for mould & die, aero space and electronic industry. Our main products include solid carbide / HSS end mills, micro electronic drill, IC card cutter, engraving cutter, shell end mills, cutting saw, reamer, thread reamer, leading drill, involute gear cutter for spur wheel, rack and worm milling cutter, thread milling cutter, form cutters for spline shaft/roller chain sprocket, and special tool, with nano grade. Please visit our web  www.tool-tool.com  for more info.

beeway 發表在 痞客邦 留言(0) 人氣()

 

Bewise Inc. www.tool-tool.com Reference source from the internet.

Transformatoro (aŭ transformilo) estas aparato, kiu transformas alternan kurenton kaj tension sen perdo de povumo (ideale) per elektra induktado. Ĝi havas kelkajn dratajn buklarojn (volvaĵojn, bobenojn). La volvaĵoj kovras kernon ĝenerale el magneta materialo.

[redakti] Bazaj Principoj

La transformatoro baziĝas je du principoj: unue, elektra kurento povas krei magnetan kampon kaj, due, varianta magneta kampo trapasanta elektran bobenon induktas tension inter la ekstremoj de tiu bobeno. Do, kiam oni varias la kurenton de la unua bobeno, tiam oni varias ankaŭ la intensecon de ties magneta kampo; ĉar la dua bobeno estas volvinta la saman magnetan cirkviton, tiel tensio estas induktata en ĝi.

Se la dua bobeno estus konektita al iu konsumanto, kiu ebligus flui kurenton, elektra povumo estus transmisiata de la unua cirkvito al la dua cirkvito. Ideale, la transformatoro estas perfekte efika: kiom da energio eniranta, tiom eliranta. Tiel kondiĉe, la jena ekvacio validas:

P_{\mathrm{en}} = I_{U} \cdot V_{U} = P_{\mathrm{el}} = I_{D} \cdot V_{D}

kondukante al la ekvacio de la ideala transformatoro

\frac{V_{D}}{V_{U}} = \frac{N_{D}}{N_{U}} = \frac{I_{U}}{I_{D}}

Do, se la tensio pliiĝas ( VD > VU ), tiel la kurento malpliiĝas ( ID < IU ) per la sama faktoro. Praktike, la plejmulto el la realaj transformatoroj estas tre efikaj, tial tiu formulo estas sufiĉe preciza ĝenerale.

Per disvolviĝo de tiu ekvacio, oni konstatas, ke la efekto de impedanco tra la transformilo varias laŭ la dua potenco de la volvo-faktoro. Ekzemple, se impedanco ZD konektiĝas al la terminaloj de la dueca bobeno, ĝi ŝajniĝas al la unueca flanko kiel

Z_D' = Z_D\!\left(\!\tfrac{N_U}{N_D}\!\right)^2\!\!

Kaj tiu interrilato estas reciproka, tio estas, se oni dezirus scii kiel ŝajnas impedanco ZU de la unueca flanko, rigardata de la dueca flanko, tiel oni aplikus:

Z_U' = Z_U\!\left(\!\tfrac{N_D}{N_U}\!\right)^2\!\!

[redakti] Eksteraj ligiloj

歡迎來到Bewise Inc.的世界,首先恭喜您來到這接受新的資訊讓產業更有競爭力,我們是提供專業刀具製造商,應對客戶高品質的刀具需求,我們可以協助客戶滿足您對產業的不同要求,我們有能力達到非常卓越的客戶需求品質,這是現有相關技術無法比擬的,我們成功的滿足了各行各業的要求,包括:精密HSS DIN切削刀具協助客戶設計刀具流程DIN or JIS 鎢鋼切削刀具設計NAS986 NAS965 NAS897 NAS937orNAS907 航太切削刀具,NAS航太刀具設計超高硬度的切削刀具醫療配件刀具設計複合式再研磨機PCD地板專用企口鑽石組合刀具NSK高數主軸與馬達專業模具修補工具-氣動與電動粉末造粒成型機主機版專用頂級電桿PCD V-Cut捨棄式圓鋸片組粉末成型機主機版專用頂級電汽車業刀具設計電子產業鑽石刀具木工產業鑽石刀具銑刀與切斷複合再研磨機銑刀與鑽頭複合再研磨機銑刀與螺絲攻複合再研磨機等等。我們的產品涵蓋了從民生刀具到工業級的刀具設計;從微細刀具到大型刀具;從小型生產到大型量產;全自動整合;我們的技術可提供您連續生產的效能,我們整體的服務及卓越的技術,恭迎您親自體驗!!

BW Bewise Inc. Willy Chen willy@tool-tool.com bw@tool-tool.com www.tool-tool.com skype:willy_chen_bw mobile:0937-618-190 Head &Administration Office No.13,Shiang Shang 2nd St., West Chiu Taichung,Taiwan 40356 http://www.tool-tool.com / FAX:+886 4 2471 4839 N.Branch 5F,No.460,Fu Shin North Rd.,Taipei,Taiwan S.Branch No.24,Sec.1,Chia Pu East Rd.,Taipao City,Chiayi Hsien,Taiwan

Welcome to BW tool world! We are an experienced tool maker specialized in cutting tools. We focus on what you need and endeavor to research the best cutter to satisfy users demand. Our customers involve wide range of industries, like mold & die, aerospace, electronic, machinery, etc. We are professional expert in cutting field. We would like to solve every problem from you. Please feel free to contact us, its our pleasure to serve for you. BW product including: cutting toolaerospace tool .HSS  DIN Cutting toolCarbide end millsCarbide cutting toolNAS Cutting toolNAS986 NAS965 NAS897 NAS937orNAS907 Cutting Tools,Carbide end milldisc milling cutter,Aerospace cutting toolhss drillФрезерыCarbide drillHigh speed steelCompound SharpenerMilling cutterINDUCTORS FOR PCDCVDD(Chemical Vapor Deposition Diamond )’PCBN (Polycrystalline Cubic Boron Nitride) Core drillTapered end millsCVD Diamond Tools Inserts’PCD Edge-Beveling Cutter(Golden FingerPCD V-CutterPCD Wood toolsPCD Cutting toolsPCD Circular Saw BladePVDD End Millsdiamond tool. INDUCTORS FOR PCD . POWDER FORMING MACHINE Single Crystal Diamond Metric end millsMiniature end millsСпециальные режущие инструменты Пустотелое сверло Pilot reamerFraisesFresas con mango PCD (Polycrystalline diamond) ‘FresePOWDER FORMING MACHINEElectronics cutterStep drillMetal cutting sawDouble margin drillGun barrelAngle milling cutterCarbide burrsCarbide tipped cutterChamfering toolIC card engraving cutterSide cutterStaple CutterPCD diamond cutter specialized in grooving floorsV-Cut PCD Circular Diamond Tipped Saw Blade with Indexable Insert PCD Diamond Tool Saw Blade with Indexable InsertNAS toolDIN or JIS toolSpecial toolMetal slitting sawsShell end millsSide and face milling cuttersSide chip clearance sawsLong end millsend mill grinderdrill grindersharpenerStub roughing end millsDovetail milling cuttersCarbide slot drillsCarbide torus cuttersAngel carbide end millsCarbide torus cuttersCarbide ball-nosed slot drillsMould cutterTool manufacturer.

Bewise Inc. www.tool-tool.com

ようこそBewise Inc.の世界へお越し下さいませ、先ず御目出度たいのは新たな

情報を受け取って頂き、もっと各産業に競争力プラス展開。

弊社は専門なエンドミルの製造メーカーで、客先に色んな分野のニーズ

豊富なパリエーションを満足させ、特にハイテク品質要求にサポート致します。

弊社は各領域に供給できる内容は:

(1)精密HSSエンドミルのR&D

(2)Carbide Cutting tools設計

(3)鎢鋼エンドミル設計

(4)航空エンドミル設計

(5)超高硬度エンドミル

(6)ダイヤモンドエンドミル

(7)医療用品エンドミル設計

(8)自動車部品&材料加工向けエンドミル設計

弊社の製品の供給調達機能は:

(1)生活産業~ハイテク工業までのエンドミル設計

(2)ミクロエンドミル~大型エンドミル供給

(3)小Lot生産~大量発注対応供給

(4)オートメーション整備調達

(5)スポット対応~流れ生産対応

弊社の全般供給体制及び技術自慢の総合専門製造メーカーに貴方のご体験を御待ちしております。

Bewise Inc. talaşlı imalat sanayinde en fazla kullanılan ve üç eksende (x,y,z) talaş kaldırabilen freze takımlarından olan Parmak Freze imalatçısıdır. Çok geniş ürün yelpazesine sahip olan firmanın başlıca ürünlerini Karbür Parmak Frezeler, Kalıpçı Frezeleri, Kaba Talaş Frezeleri, Konik Alın Frezeler, Köşe Radyüs Frezeler, İki Ağızlı Kısa ve Uzun Küresel Frezeler, İç Bükey Frezeler vb. şeklinde sıralayabiliriz.

BW специализируется в научных исследованиях и разработках, и снабжаем самым высокотехнологичным карбидовым материалом для поставки режущих / фрезеровочных инструментов для почвы, воздушного пространства и электронной индустрии. В нашу основную продукцию входит твердый карбид / быстрорежущая сталь, а также двигатели, микроэлектрические дрели, IC картонорезальные машины, фрезы для гравирования, режущие пилы, фрезеры-расширители, фрезеры-расширители с резцом, дрели, резаки форм для шлицевого вала / звездочки роликовой цепи, и специальные нано инструменты. Пожалуйста, посетите сайт  www.tool-tool.com  для получения большей информации.

BW is specialized in R&D and sourcing the most advanced carbide material with high-tech coating to supply cutting / milling tool for mould & die, aero space and electronic industry. Our main products include solid carbide / HSS end mills, micro electronic drill, IC card cutter, engraving cutter, shell end mills, cutting saw, reamer, thread reamer, leading drill, involute gear cutter for spur wheel, rack and worm milling cutter, thread milling cutter, form cutters for spline shaft/roller chain sprocket, and special tool, with nano grade. Please visit our web  www.tool-tool.com  for more info.

beeway 發表在 痞客邦 留言(0) 人氣()

 

Bewise Inc. www.tool-tool.com Reference source from the internet.

For other uses, see Transformer (disambiguation).

Pole-mounted single-phase transformer with center-tapped secondary. Note use of the ground conductor as one leg of the primary feeder.

A transformer is a device that transfers electrical energy from one circuit to another through inductively coupled conductors — the transformer's coils or "windings". Except for air-core transformers, the conductors are commonly wound around a single iron-rich core, or around separate but magnetically-coupled cores. A varying current in the first or "primary" winding creates a varying magnetic field in the core (or cores) of the transformer. This varying magnetic field induces a varying electromotive force (EMF) or "voltage" in the "secondary" winding. This effect is called mutual induction.

If a load is connected to the secondary, an electric current will flow in the secondary winding and electrical energy will flow from the primary circuit through the transformer to the load. In an ideal transformer, the induced voltage in the secondary winding (VS) is in proportion to the primary voltage (VP), and is given by the ratio of the number of turns in the secondary to the number of turns in the primary as follows:

\frac{V_{S}}{V_{P}} = \frac{N_{S}}{N_{P}}

By appropriate selection of the ratio of turns, a transformer thus allows an alternating current (AC) voltage to be "stepped up" by making NS greater than NP, or "stepped down" by making NS less than NP.

Transformers come in a range of sizes from a thumbnail-sized coupling transformer hidden inside a stage microphone to huge units weighing hundreds of tons used to interconnect portions of national power grids. All operate with the same basic principles, although the range of designs is wide. While new technologies have eliminated the need for transformers in some electronic circuits, transformers are still found in nearly all electronic devices designed for household ("mains") voltage. Transformers are essential for high voltage power transmission, which makes long distance transmission economically practical.

[edit] History

[edit] First steps: experiments with induction coils

What would become the "transformer principle" was revealed in 1831 by Michael Faraday in his demonstration of electromagnetic induction, but without recognition of its future role in manipulating EMF. The first "induction coils" to see wide use were invented by Rev. Nicholas Callan of Maynooth College, Ireland in 1836, one of the first researchers to realize that the more turns the secondary winding has in relation to the primary winding, the larger the increase in EMF. Induction coils evolved from scientists' and inventors' efforts to get higher voltages from batteries. Rather than alternating current (AC), their action relied upon a vibrating "make-and-break" mechanism that regularly interrupted the flow of direct current (DC) from the batteries. Between the 1830s and the 1870s, efforts to build better induction coils, mostly by trial and error, slowly revealed the basic principles of transformers. Efficient, practical designs did not appear until the 1880s,[1] but within a decade the "transformer" would be instrumental in the "War of Currents", and in seeing AC distribution systems triumph over their DC counterparts, a position in which they have remained dominant ever since.[1]

In 1876, Russian engineer Pavel Yablochkov invented a lighting system based on a set of induction coils where the primary windings were connected to a source of alternating current and the secondary windings could be connected to several "electric candles" (arc lamps) of his own design.[2][3] The coils used in the system behaved as primitive transformers.[2] The patent claimed the system could "provide separate supply to several lighting fixtures with different luminous intensities from a single source of electric power".[citation needed]

In 1878, the engineers of the Ganz Company in Hungary assigned part of its extensive engineering works to the manufacture of electric lighting apparatus for Austria-Hungary, and by 1883 made over fifty installations. It offered an entire system consisting of both arc and incandescent lamps, generators, and other accessories.[4]

Lucien Gaulard and John Dixon Gibbs first exhibited a device with an open iron core called a "secondary generator" in London in 1882, then sold the idea to the Westinghouse company in the United States.[5] They also exhibited the invention in Turin, Italy in 1884, where it was adopted for an electric lighting system.

Induction coils with open magnetic circuits are inefficient for transfer of power to loads. Various methods of adjusting the cores or bypassing magnetic flux around part of a coil were developed, since until about 1880 the paradigm for AC power transmission from a high voltage supply to a low voltage load was a series circuit. In practice, several coils with a ratio near 1:1 were connected with their primaries in series to allow use of a high voltage for transmission while presenting a low voltage to the lamps. The inherent flaw in this method was that turning off a single lamp affected all the others on the circuit, and many adjustable coil designs were introduced in an effort to accommodate this problematic characteristic of the series circuit.[6]

[edit] First transformers

Stanley's 1886 transformer, a redesigned commercial version of the earlier Hungarian "ZBD" transformer

Between 1884 and 1885, Hungarian engineers Zipernowsky, Bláthy and Déri from the Ganz company in Budapest created the efficient "ZBD" closed-core model, which were based on the design by Gaulard and Gibbs. (Gaulard and Gibbs designed just an open core model) [7][8] They discovered that all former (coreless or open-core) devices were incapable of regulating voltage, and were therefore impracticable. Their joint patent described a transformer with no poles and comprised two versions of it, the "closed-core transformer" and the "shell-core transformer. In the closed-core transformer the iron core is a closed ring around which the two coils are arranged uniformly. In the shell type transformer, the copper induction cables are passed through the core. In both designs, the magnetic flux linking the primary and secondary coils travels (almost entirely) in the iron core, with no intentional path through air. The core consists of iron cables or plates. Based on this invention, it became possible to provide economical and cheap lighting for industry and households."[9] Zipernowsky, Bláthy and Déri discovered the mathematical formula of transformers: Vs/Vp = Ns/Np.[citation needed] With this formula, transformers became calculable and proportionable. Their patent application made the first use of the word "transformer", a word that had been coined by Ottó Bláthy.[10] George Westinghouse had bought both Gaulard and Gibbs' and the "ZBD" patents in 1885. He entrusted William Stanley with the building of a ZBD-type transformer for commercial use.[11] Stanley built the core from interlocking E-shaped iron plates. This design was first used commercially in 1886.[1]

[edit] Early developments and applications

Russian engineer Mikhail Dolivo-Dobrovolsky developed the first three-phase transformer in 1889. In 1891 Nikola Tesla invented the Tesla coil, an air-cored, dual-tuned resonant transformer for generating very high voltages at high frequency. Audio frequency transformers (at the time called repeating coils) were used by the earliest experimenters in the development of the telephone.

[edit] Basic principles

The transformer is based on two principles: firstly, that an electric current can produce a magnetic field (electromagnetism) and secondly that a changing magnetic field within a coil of wire induces a voltage across the ends of the coil (electromagnetic induction). Changing the current in the primary coil changes the magnitude of the applied magnetic field. The changing magnetic flux extends to the secondary coil where a voltage is induced across its ends.

An ideal step-down transformer showing magnetic flux in the core.

A simplified transformer design is shown to the left. A current passing through the primary coil creates a magnetic field. The primary and secondary coils are wrapped around a core of very high magnetic permeability, such as iron; this ensures that most of the magnetic field lines produced by the primary current are within the iron and pass through the secondary coil as well as the primary coil.

[edit] Induction law

The voltage induced across the secondary coil may be calculated from Faraday's law of induction, which states that:

V_{S} = N_{S} \frac{\mathrm{d}\Phi}{\mathrm{d}t}

where VS is the instantaneous voltage, NS is the number of turns in the secondary coil and Φ equals the magnetic flux through one turn of the coil. If the turns of the coil are oriented perpendicular to the magnetic field lines, the flux is the product of the magnetic field strength B and the area A through which it cuts. The area is constant, being equal to the cross-sectional area of the transformer core, whereas the magnetic field varies with time according to the excitation of the primary. Since the same magnetic flux passes through both the primary and secondary coils in an ideal transformer,[12] the instantaneous voltage across the primary winding equals

V_{P} = N_{P} \frac{\mathrm{d}\Phi}{\mathrm{d}t}

Taking the ratio of the two equations for VS and VP gives the basic equation[13] for stepping up or stepping down the voltage

\frac{V_{S}}{V_{P}} = \frac{N_{S}}{N_{P}}

[edit] Ideal power equation

The ideal transformer as a circuit element

If the secondary coil is attached to a load that allows current to flow, electrical power is transmitted from the primary circuit to the secondary circuit. Ideally, the transformer is perfectly efficient; all the incoming energy is transformed from the primary circuit to the magnetic field and into the secondary circuit. If this condition is met, the incoming electric power must equal the outgoing power.

Pincoming = IPVP = Poutgoing = ISVS

giving the ideal transformer equation

\frac{V_{S}}{V_{P}} = \frac{N_{S}}{N_{P}} = \frac{I_{P}}{I_{S}}

If the voltage is increased (stepped up) (VS > VP), then the current is decreased (stepped down) (IS < IP) by the same factor. Transformers are efficient so this formula is a reasonable approximation.

The impedance in one circuit is transformed by the square of the turns ratio.[12] For example, if an impedance ZS is attached across the terminals of the secondary coil, it appears to the primary circuit to have an impedance of Z_S\!\left(\!\tfrac{N_P}{N_S}\!\right)^2\!\!. This relationship is reciprocal, so that the impedance ZP of the primary circuit appears to the secondary to be Z_P\!\left(\!\tfrac{N_S}{N_P}\!\right)^2\!\!.

[edit] Detailed operation

The simplified description above neglects several practical factors, in particular the primary current required to establish a magnetic field in the core, and the contribution to the field due to current in the secondary circuit.

Models of an ideal transformer typically assume a core of negligible reluctance with two windings of zero resistance.[14] When a voltage is applied to the primary winding, a small current flows, driving flux around the magnetic circuit of the core.[14]. The current required to create the flux is termed the magnetizing current; since the ideal core has been assumed to have near-zero reluctance, the magnetizing current is negligible, although still required to create the magnetic field.

The changing magnetic field induces an electromotive force (EMF) across each winding.[15] Since the ideal windings have no impedance, they have no associated voltage drop, and so the voltages VP and VS measured at the terminals of the transformer, are equal to the corresponding EMFs. The primary EMF, acting as it does in opposition to the primary voltage, is sometimes termed the "back EMF".[16] This is due to Lenz's law which states that the induction of EMF would always be such that it will oppose development of any such change in magnetic field.

[edit] Practical considerations

[edit] Leakage flux

Leakage flux of a transformer

Main article: Leakage inductance

The ideal transformer model assumes that all flux generated by the primary winding links all the turns of every winding, including itself. In practice, some flux traverses paths that take it outside the windings.[17] Such flux is termed leakage flux, and results in leakage inductance in series with the mutually coupled transformer windings.[16] Leakage results in energy being alternately stored in and discharged from the magnetic fields with each cycle of the power supply. It is not directly a power loss (see "Stray losses" below), but results in inferior voltage regulation, causing the secondary voltage to fail to be directly proportional to the primary, particularly under heavy load.[17] Transformers are therefore normally designed to have very low leakage inductance.

However, in some applications, leakage can be a desirable property, and long magnetic paths, air gaps, or magnetic bypass shunts may be deliberately introduced to a transformer's design to limit the short-circuit current it will supply.[16] Leaky transformers may be used to supply loads that exhibit negative resistance, such as electric arcs, mercury vapor lamps, and neon signs; or for safely handling loads that become periodically short-circuited such as electric arc welders.[18] Air gaps are also used to keep a transformer from saturating, especially audio-frequency transformers in circuits that have a direct current flowing through the windings.

[edit] Effect of frequency

The time-derivative term in Faraday's Law shows that the flux in the core is the integral of the applied voltage.[19] Hypothetically an ideal transformer would work with direct-current excitation, with the core flux increasing linearly with time.[20] In practice, the flux would rise to the point where magnetic saturation of the core occurred, causing a huge increase in the magnetizing current and overheating the transformer. All practical transformers must therefore operate with alternating (or pulsed) current.[20]

Transformer universal EMF equation

If the flux in the core is sinusoidal, the relationship for either winding between its rms Voltage of the winding E, and the supply frequency f, number of turns N, core cross-sectional area a and peak magnetic flux density B is given by the universal EMF equation:[14]

 E={\frac {2 \pi f N a B} {\sqrt{2}}} \! \approx 4.44 f N a B

The EMF of a transformer at a given flux density increases with frequency.[14] By operating at higher frequencies, transformers can be physically more compact because a given core is able to transfer more power without reaching saturation, and fewer turns are needed to achieve the same impedance. However properties such as core loss and conductor skin effect also increase with frequency. Aircraft and military equipment employ 400 Hz power supplies which reduce core and winding weight.[21]

Operation of a transformer at its designed voltage but at a higher frequency than intended will lead to reduced magnetizing current; at lower frequency, the magnetizing current will increase. Operation of a transformer at other than its design frequency may require assessment of voltages, losses, and cooling to establish if safe operation is practical. For example, transformers may need to be equipped with "volts per hertz" over-excitation relays to protect the transformer from overvoltage at higher than rated frequency.

Knowledge of natural frequencies of transformer windings is of importance for the determination of the transient response of the windings to impulse and switching surge voltages.

[edit] Energy losses

An ideal transformer would have no energy losses, and would be 100% efficient. In practical transformers energy is dissipated in the windings, core, and surrounding structures. Larger transformers are generally more efficient, and those rated for electricity distribution usually perform better than 98%.[22]

Experimental transformers using superconducting windings achieving efficiencies of 99.85%,[23] While the increase in efficiency is small, when applied to large heavily-loaded transformers the annual savings in energy losses are significant.

A small transformer, such as a plug-in "wall-wart" or power adapter type used for low-power consumer electronics, may be no more than 85% efficient, with considerable loss even when not supplying any load. Though individual power loss is small, the aggregate losses from the very large number of such devices is coming under increased scrutiny.[24]

The losses vary with load current, and may be expressed as "no-load" or "full-load" loss. Winding resistance dominates load losses, whereas hysteresis and eddy currents losses contribute to over 99% of the no-load loss. The no-load loss can be significant, meaning that even an idle transformer constitutes a drain on an electrical supply, which encourages development of low-loss transformers (also see energy efficient transformer).[25]

Transformer losses are divided into losses in the windings, termed copper loss, and those in the magnetic circuit, termed iron loss. Losses in the transformer arise from:

Winding resistance
Current flowing through the windings causes resistive heating of the conductors. At higher frequencies, skin effect and proximity effect create additional winding resistance and losses.
Hysteresis losses
Each time the magnetic field is reversed, a small amount of energy is lost due to hysteresis within the core. For a given core material, the loss is proportional to the frequency, and is a function of the peak flux density to which it is subjected.[25]
Eddy currents
Ferromagnetic materials are also good conductors, and a solid core made from such a material also constitutes a single short-circuited turn throughout its entire length. Eddy currents therefore circulate within the core in a plane normal to the flux, and are responsible for resistive heating of the core material. The eddy current loss is a complex function of the square of supply frequency and inverse square of the material thickness.[25]
Magnetostriction
Magnetic flux in a ferromagnetic material, such as the core, causes it to physically expand and contract slightly with each cycle of the magnetic field, an effect known as magnetostriction. This produces the buzzing sound commonly associated with transformers,[13] and in turn causes losses due to frictional heating in susceptible cores.
Mechanical losses
In addition to magnetostriction, the alternating magnetic field causes fluctuating electromagnetic forces between the primary and secondary windings. These incite vibrations within nearby metalwork, adding to the buzzing noise, and consuming a small amount of power.[26]
Stray losses
Leakage inductance is by itself lossless, since energy supplied to its magnetic fields is returned to the supply with the next half-cycle. However, any leakage flux that intercepts nearby conductive materials such as the transformer's support structure will give rise to eddy currents and be converted to heat.[27]

[edit] Equivalent circuit

Refer to the diagram below

The physical limitations of the practical transformer may be brought together as an equivalent circuit model (shown below) built around an ideal lossless transformer.[28] Power loss in the windings is current-dependent and is represented as in-series resistances RP and RS. Flux leakage results in a fraction of the applied voltage dropped without contributing to the mutual coupling, and thus can be modeled as reactances of each leakage inductance XP and XS in series with the perfectly-coupled region.

Iron losses are caused mostly by hysteresis and eddy current effects in the core, and are proportional to the square of the core flux for operation at a given frequency.[29] Since the core flux is proportional to the applied voltage, the iron loss can be represented by a resistance RC in parallel with the ideal transformer.

A core with finite permeability requires a magnetizing current IM to maintain the mutual flux in the core. The magnetizing current is in phase with the flux; saturation effects cause the relationship between the two to be non-linear, but for simplicity this effect tends to be ignored in most circuit equivalents.[29] With a sinusoidal supply, the core flux lags the induced EMF by 90° and this effect can be modeled as a magnetizing reactance (reactance of an effective inductance) XM in parallel with the core loss component. RC and XM are sometimes together termed the magnetizing branch of the model. If the secondary winding is made open-circuit, the current I0 taken by the magnetizing branch represents the transformer's no-load current.[28]

The secondary impedance RS and XS is frequently moved (or "referred") to the primary side after multiplying the components by the impedance scaling factor \left(\!\tfrac{N_P}{N_S}\!\right)^2\!\!.

Transformer equivalent circuit, with secondary impedances referred to the primary side

Transformer equivalent circuit, with secondary impedances referred to the primary side

The resulting model is sometimes termed the "exact equivalent circuit", though it retains a number of approximations, such as an assumption of linearity.[28] Analysis may be simplified by moving the magnetizing branch to the left of the primary impedance, an implicit assumption that the magnetizing current is low, and then summing primary and referred secondary impedances, resulting in so-called equivalent impedance.

The parameters of equivalent circuit of a transformer can be calculated from the results of two transformer tests: open-circuit test and short-circuit test.

[edit] Types

For more details on this topic, see Transformer types.

A wide variety of transformer designs are used for different applications, though they share several common features. Important common transformer types include:

[edit] Autotransformer

Main article: Autotransformer

An autotransformer with a sliding brush contact

An autotransformer has only a single winding with two end terminals, plus a third at an intermediate tap point. The primary voltage is applied across two of the terminals, and the secondary voltage taken from one of these and the third terminal. The primary and secondary circuits therefore have a number of windings turns in common.[30] Since the volts-per-turn is the same in both windings, each develops a voltage in proportion to its number of turns. An adjustable autotransformer is made by exposing part of the winding coils and making the secondary connection through a sliding brush, giving a variable turns ratio. [31]

[edit] Polyphase transformers

For more details on this topic, see Three-phase electric power.

Three-phase step-down transformer mounted between two utility poles.

For three-phase supplies, a bank of three individual single-phase transformers can be used, or all three phases can be incorporated as a single three-phase transformer. In this case, the magnetic circuits are connected together, the core thus containing a three-phase flow of flux.[32] A number of winding configurations are possible, giving rise to different attributes and phase shifts.[33] One particular polyphase configuration is the zigzag transformer, used for grounding and in the suppression of harmonic currents.[34]

[edit] Leakage transformers

Leakage transformer

A leakage transformer, also called a stray-field transformer, has a significantly higher leakage inductance than other transformers, sometimes increased by a magnetic bypass or shunt in its core between primary and secondary, which is sometimes adjustable with a set screw. This provides a transformer with an inherent current limitation due to the loose coupling between its primary and the secondary windings. The output and input currents are low enough to prevent thermal overload under all load conditions – even if the secondary is shorted.

Leakage transformers are used for arc welding and high voltage discharge lamps (neon lamps and cold cathode fluorescent lamps, which are series-connected up to 7.5 kV AC). It acts then both as a voltage transformer and as a magnetic ballast.

Other applications are short-circuit-proof extra-low voltage transformers for toys or doorbell installations.

[edit] Resonant transformers

A resonant transformer is a kind of the leakage transformer. It uses the leakage inductance of its secondary windings in combination with external capacitors, to create one or more resonant circuits. Resonant transformers such as the Tesla coil can generate very high voltages, and are able to provide much higher current than electrostatic high-voltage generation machines such as the Van de Graaff generator.[35] One of the applications of the resonant transformer is for the CCFL inverter. Another application of the resonant transformer is to couple between stages of a superheterodyne receiver, where the selectivity of the receiver is provided by tuned transformers in the intermediate-frequency amplifiers.[36]

[edit] Audio transformers

Main article: Transformer types#Audio transformers

Audio transformers are those specifically designed for use in audio circuits. They can be used to block radio frequency interference or the DC component of an audio signal, to split or combine audio signals, or to provide impedance matching between high and low impedance circuits, such as between a high impedance tube (valve) amplifier output and a low impedance loudspeaker, or between a high impedance instrument output and the low impedance input of a mixing console.

Such transformers were originally designed to connect different telephone systems to one another while keeping their respective power supplies isolated, and are still commonly used to interconnect professional audio systems or system components.

Being magnetic devices, audio transformers are susceptible to external magnetic fields such as those generated by AC current-carrying conductors. "Hum" is a term commonly used to describe unwanted signals originating from the "mains" power supply (typically 50 or 60 Hz). Audio transformers used for low-level signals, such as those from microphones, often included shielding to protect against extraneous magnetically-coupled signals.

[edit] Instrument transformers

Instrument transformers are used for measuring voltge,current, power and energy in electrical systems, and for protection and control. Where a voltage or current is too large to be conveniently measured by an instrument, it can be scaled down to a standardized low value. Instrument transformers isolate measurement and control circuitry from the high currents or voltages present on the circuits being measured or controlled.

Current transformers, designed for placing around conductors

A current transformer is a transformer designed to provide a current in its secondary coil proportional to the current flowing in its primary coil. [37]

Voltage transformers (VTs), also referred to as "potential transformers" (PTs), are used in high-voltage circuits. They are designed to present a negligible load to the supply being measured, to allow protective relay equipment to be operated at a lower voltages, and to have a precise winding ratio for accurate metering.[38]

[edit] Classification

Transformers can be classified in different ways:

  • By power capacity: from a fraction of a volt-ampere (VA) to over a thousand MVA;
  • By frequency range: power-, audio-, or radio frequency;
  • By voltage class: from a few volts to hundreds of kilovolts;
  • By cooling type: air cooled, oil filled, fan cooled, or water cooled;
  • By application: such as power supply, impedance matching, output voltage and current stabilizer, or circuit isolation;
  • By end purpose: distribution, rectifier, arc furnace, amplifier output;
  • By winding turns ratio: step-up, step-down, isolating (equal or near-equal ratio), variable.

[edit] Construction

[edit] Cores

Laminated core transformer showing edge of laminations at top of unit.

[edit] Laminated steel cores

Transformers for use at power or audio frequencies typically have cores made of high permeability silicon steel.[39] The steel has a permeability many times that of free space, and the core thus serves to greatly reduce the magnetizing current, and confine the flux to a path which closely couples the windings.[40] Early transformer developers soon realized that cores constructed from solid iron resulted in prohibitive eddy-current losses, and their designs mitigated this effect with cores consisting of bundles of insulated iron wires.[5] Later designs constructed the core by stacking layers of thin steel laminations, a principle that has remained in use. Each lamination is insulated from its neighbors by a thin non-conducting layer of insulation.[32] The universal transformer equation indicates a minimum cross-sectional area for the core to avoid saturation.

The effect of laminations is to confine eddy currents to highly elliptical paths that enclose little flux, and so reduce their magnitude. Thinner laminations reduce losses,[39] but are more laborious and expensive to construct.[41] Thin laminations are generally used on high frequency transformers, with some types of very thin steel laminations able to operate up to 10 kHz.

Laminating the core greatly reduces eddy-current losses

One common design of laminated core is made from interleaved stacks of E-shaped steel sheets capped with I-shaped pieces, leading to its name of "E-I transformer".[41] Such a design tends to exhibit more losses, but is very economical to manufacture. The cut-core or C-core type is made by winding a steel strip around a rectangular form and then bonding the layers together. It is then cut in two, forming two C shapes, and the core assembled by binding the two C halves together with a steel strap.[41] They have the advantage that the flux is always oriented parallel to the metal grains, reducing reluctance.

A steel core's remanence means that it retains a static magnetic field when power is removed. When power is then reapplied, the residual field will cause a high inrush current until the effect of the remaining magnetism is reduced, usually after a few cycles of the applied alternating current.[42] Overcurrent protection devices such as fuses must be selected to allow this harmless inrush to pass. On transformers connected to long, overhead power transmission lines, induced currents due to geomagnetic disturbances during solar storms can cause saturation of the core and operation of transformer protection devices.[43]

Distribution transformers can achieve low no-load losses by using cores made with low-loss high-permeability silicon steel or amorphous (non-crystalline) metal alloy. The higher initial cost of the core material is offset over the life of the transformer by its lower losses at light load.[44]

[edit] Solid cores

Powdered iron cores are used in circuits (such as switch-mode power supplies) that operate above main frequencies and up to a few tens of kilohertz. These materials combine high magnetic permeability with high bulk electrical resistivity. For frequencies extending beyond the VHF band, cores made from non-conductive magnetic ceramic materials called ferrites are common.[41] Some radio-frequency transformers also have movable cores (sometimes called 'slugs') which allow adjustment of the coupling coefficient (and bandwidth) of tuned radio-frequency circuits.

[edit] Toroidal cores

Small toroidal core transformer

Toroidal transformers are built around a ring-shaped core, which, depending on operating frequency, is made from a long strip of silicon steel or permalloy wound into a coil, powdered iron, or ferrite.[45] A strip construction ensures that the grain boundaries are optimally aligned, improving the transformer's efficiency by reducing the core's reluctance. The closed ring shape eliminates air gaps inherent in the construction of an E-I core.[46] The cross-section of the ring is usually square or rectangular, but more expensive cores with circular cross-sections are also available. The primary and secondary coils are often wound concentrically to cover the entire surface of the core. This minimizes the length of wire needed, and also provides screening to minimize the core's magnetic field from generating electromagnetic interference.

Toroidal transformers are more efficient than the cheaper laminated E-I types for a similar power level. Other advantages compared to E-I types, include smaller size (about half), lower weight (about half), less mechanical hum (making them superior in audio amplifiers), lower exterior magnetic field (about one tenth), low off-load losses (making them more efficient in standby circuits), single-bolt mounting, and greater choice of shapes. The main disadvantages are higher cost and limited power capacity (see "Classification" above).

Ferrite toroidal cores are used at higher frequencies, typically between a few tens of kilohertz to a megahertz, to reduce losses, physical size, and weight of switch-mode power supplies. A drawback of toroidal transformer construction is the higher cost of windings. As a consequence, toroidal transformers are uncommon above ratings of a few kVA. Small distribution transformers may achieve some of the benefits of a toroidal core by splitting it and forcing it open, then inserting a bobbin containing primary and secondary windings.

[edit] Air cores

A physical core is not an absolute requisite and a functioning transformer can be produced simply by placing the windings in close proximity to each other, an arrangement termed an "air-core" transformer. The air which comprises the magnetic circuit is essentially lossless, and so an air-core transformer eliminates loss due to hysteresis in the core material.[16] The leakage inductance is inevitably high, resulting in very poor regulation, and so such designs are unsuitable for use in power distribution.[16] They have however very high bandwidth, and are frequently employed in radio-frequency applications,[47] for which a satisfactory coupling coefficient is maintained by carefully overlapping the primary and secondary windings.

[edit] Windings

Windings are usually arranged concentrically to minimize flux leakage

Cut view through transformer windings. White: insulator. Green spiral: Grain oriented silicon steel. Black: Primary winding made of oxygen-free copper. Red: Secondary winding. Top left: Toroidal transformer. Right: C-core, but E-core would be similar. The black windings are made of film. Top: Equally low capacitance between all ends of both windings. Since most cores are at least moderately conductive they also need insulation. Bottom: Lowest capacitance for one end of the secondary winding needed for low-power high-voltage transformers. Bottom left: Reduction of leakage inductance would lead to increase of capacitance.

The conducting material used for the windings depends upon the application, but in all cases the individual turns must be electrically insulated from each other to ensure that the current travels throughout every turn.[19] For small power and signal transformers, in which currents are low and the potential difference between adjacent turns is small, the coils are often wound from enamelled magnet wire, such as Formvar wire. Larger power transformers operating at high voltages may be wound with copper rectangular strip conductors insulated by oil-impregnated paper and blocks of pressboard.[48]

High-frequency transformers operating in the tens to hundreds of kilohertz often have windings made of braided litz wire to minimize the skin-effect and proximity effect losses.[19] Large power transformers use multiple-stranded conductors as well, since even at low power frequencies non-uniform distribution of current would otherwise exist in high-current windings.[48] Each strand is individually insulated, and the strands are arranged so that at certain points in the winding, or throughout the whole winding, each portion occupies different relative positions in the complete conductor. The transposition equalizes the current flowing in each strand of the conductor, and reduces eddy current losses in the winding itself. The stranded conductor is also more flexible than a solid conductor of similar size, aiding manufacture.[48]

For signal transformers, the windings may be arranged in a way to minimize leakage inductance and stray capacitance to improve high-frequency response. This can be done by splitting up each coil into sections, and those sections placed in layers between the sections of the other winding. This is known as a stacked type or interleaved winding.

Both the primary and secondary windings on power transformers may have external connections, called taps, to intermediate points on the winding to allow selection of the voltage ratio. The taps may be connected to an automatic on-load tap changer for voltage regulation of distribution circuits. Audio-frequency transformers, used for the distribution of audio to public address loudspeakers, have taps to allow adjustment of impedance to each speaker. A center-tapped transformer is often used in the output stage of an audio power amplifier in a push-pull circuit. Modulation transformers in AM transmitters are very similar.

Certain transformers have the windings protected by epoxy resin. By impregnating the transformer with epoxy under a vacuum, one can replace air spaces within the windings with epoxy, thus sealing the windings and helping to prevent the possible formation of corona and absorption of dirt or water. This produces transformers more suited to damp or dirty environments, but at increased manufacturing cost.[49]

[edit] Coolant

Cut away view of three-phase oil-cooled transformer. The oil reservoir is visible at the top. Radiative fins aid the dissipation of heat.

High temperatures will damage the winding insulation. [50] Small transformers do not generate significant heat and are cooled by air circulation and radiation of heat. Power transformers rated up to several hundred kVA can be adequately cooled by natural convective air-cooling, sometimes assisted by fans.[51] In larger transformers, part of the design problem is removal of heat. Some power transformers are immersed in transformer oil that both cools and insulates the windings.[52] The oil is a highly refined mineral oil that remains stable at transformer operating temperature. Indoor liquid-filled transformers must use a non-flammable liquid, or must be located in fire resistant rooms.[53] Air-cooled dry transformers are preferred for indoor applications even at capacity ratings where oil-cooled construction would be more economical, because their cost is offset by the reduced building construction cost.

The oil-filled tank often has radiators through which the oil circulates by natural convection; some large transformers employ forced circulation of the oil by electric pumps, aided by external fans or water-cooled heat exchangers.[52] Oil-filled transformers undergo prolonged drying processes to ensure that the transformer is completely free of water vapor before the cooling oil is introduced. This helps prevent electrical breakdown under load. Oil-filled transformers may be equipped with Buchholz relays, which detect gas evolved during internal arcing and rapidly de-energize the transformer to avert catastrophic failure.[42]

Polychlorinated biphenyls have properties that once favored their use as a coolant, though concerns over their environmental persistence led to a widespread ban on their use.[54] Today, non-toxic, stable silicone-based oils, or fluorinated hydrocarbons may be used where the expense of a fire-resistant liquid offsets additional building cost for a transformer vault.[50][53] Before 1977, even transformers that were nominally filled only with mineral oils may also have been contaminated with polychlorinated biphenyls at 10-20 ppm. Since mineral oil and PCB fluid mix, maintenance equipment used for both PCB and oil-filled transformers could carry over small amounts of PCB, contaminating oil-filled transformers. [55]

Some "dry" transformers (containing no liquid) are enclosed in sealed, pressurized tanks and cooled by nitrogen or sulfur hexafluoride gas.[50].

Experimental power transformers in the 2 MVA range have been built with superconducting windings which eliminates the copper losses, but not the core steel loss. These are cooled by liquid nitrogen or helium.[56]

[edit] Terminals

Very small transformers will have wire leads connected directly to the ends of the coils, and brought out to the base of the unit for circuit connections. Larger transformers may have heavy bolted terminals, bus bars or high-voltage insulated bushings made of polymers or porcelain. A large bushing can be a complex structure since it must provide careful control of the electric field gradient without letting the transformer leak oil.[57]

[edit] Applications

A major application of transformers is to increase voltage before transmitting electrical energy over long distances through wires. Wires have resistance and so dissipate electrical energy at a rate proportional to the square of the current through the wire. By transforming electrical power to a high-voltage (and therefore low-current) form for transmission and back again afterwards, transformers enable economic transmission of power over long distances. Consequently, transformers have shaped the electricity supply industry, permitting generation to be located remotely from points of demand.[58] All but a tiny fraction of the world's electrical power has passed through a series of transformers by the time it reaches the consumer.[27]

Transformers are also used extensively in electronic products to step down the supply voltage to a level suitable for the low voltage circuits they contain. The transformer also electrically isolates the end user from contact with the supply voltage.

Signal and audio transformers are used to couple stages of amplifiers and to match devices such as microphones and record player s to the input of amplifiers. Audio transformers allowed telephone circuits to carry on a two-way conversation over a single pair of wires. Transformers are also used when it is necessary to couple a differential-mode signal to a ground-referenced signal, and for between external cables and internal circuits.

歡迎來到Bewise Inc.的世界,首先恭喜您來到這接受新的資訊讓產業更有競爭力,我們是提供專業刀具製造商,應對客戶高品質的刀具需求,我們可以協助客戶滿足您對產業的不同要求,我們有能力達到非常卓越的客戶需求品質,這是現有相關技術無法比擬的,我們成功的滿足了各行各業的要求,包括:精密HSS DIN切削刀具協助客戶設計刀具流程DIN or JIS 鎢鋼切削刀具設計NAS986 NAS965 NAS897 NAS937orNAS907 航太切削刀具,NAS航太刀具設計超高硬度的切削刀具醫療配件刀具設計複合式再研磨機PCD地板專用企口鑽石組合刀具NSK高數主軸與馬達專業模具修補工具-氣動與電動粉末造粒成型機主機版專用頂級電桿PCD V-Cut捨棄式圓鋸片組粉末成型機主機版專用頂級電汽車業刀具設計電子產業鑽石刀具木工產業鑽石刀具銑刀與切斷複合再研磨機銑刀與鑽頭複合再研磨機銑刀與螺絲攻複合再研磨機等等。我們的產品涵蓋了從民生刀具到工業級的刀具設計;從微細刀具到大型刀具;從小型生產到大型量產;全自動整合;我們的技術可提供您連續生產的效能,我們整體的服務及卓越的技術,恭迎您親自體驗!!

BW Bewise Inc. Willy Chen willy@tool-tool.com bw@tool-tool.com www.tool-tool.com skype:willy_chen_bw mobile:0937-618-190 Head &Administration Office No.13,Shiang Shang 2nd St., West Chiu Taichung,Taiwan 40356 http://www.tool-tool.com / FAX:+886 4 2471 4839 N.Branch 5F,No.460,Fu Shin North Rd.,Taipei,Taiwan S.Branch No.24,Sec.1,Chia Pu East Rd.,Taipao City,Chiayi Hsien,Taiwan

Welcome to BW tool world! We are an experienced tool maker specialized in cutting tools. We focus on what you need and endeavor to research the best cutter to satisfy users demand. Our customers involve wide range of industries, like mold & die, aerospace, electronic, machinery, etc. We are professional expert in cutting field. We would like to solve every problem from you. Please feel free to contact us, its our pleasure to serve for you. BW product including: cutting toolaerospace tool .HSS  DIN Cutting toolCarbide end millsCarbide cutting toolNAS Cutting toolNAS986 NAS965 NAS897 NAS937orNAS907 Cutting Tools,Carbide end milldisc milling cutter,Aerospace cutting toolhss drillФрезерыCarbide drillHigh speed steelCompound SharpenerMilling cutterINDUCTORS FOR PCDCVDD(Chemical Vapor Deposition Diamond )’PCBN (Polycrystalline Cubic Boron Nitride) Core drillTapered end millsCVD Diamond Tools Inserts’PCD Edge-Beveling Cutter(Golden FingerPCD V-CutterPCD Wood toolsPCD Cutting toolsPCD Circular Saw BladePVDD End Millsdiamond tool. INDUCTORS FOR PCD . POWDER FORMING MACHINE Single Crystal Diamond Metric end millsMiniature end millsСпециальные режущие инструменты Пустотелое сверло Pilot reamerFraisesFresas con mango PCD (Polycrystalline diamond) ‘FresePOWDER FORMING MACHINEElectronics cutterStep drillMetal cutting sawDouble margin drillGun barrelAngle milling cutterCarbide burrsCarbide tipped cutterChamfering toolIC card engraving cutterSide cutterStaple CutterPCD diamond cutter specialized in grooving floorsV-Cut PCD Circular Diamond Tipped Saw Blade with Indexable Insert PCD Diamond Tool Saw Blade with Indexable InsertNAS toolDIN or JIS toolSpecial toolMetal slitting sawsShell end millsSide and face milling cuttersSide chip clearance sawsLong end millsend mill grinderdrill grindersharpenerStub roughing end millsDovetail milling cuttersCarbide slot drillsCarbide torus cuttersAngel carbide end millsCarbide torus cuttersCarbide ball-nosed slot drillsMould cutterTool manufacturer.

Bewise Inc. www.tool-tool.com

ようこそBewise Inc.の世界へお越し下さいませ、先ず御目出度たいのは新たな

情報を受け取って頂き、もっと各産業に競争力プラス展開。

弊社は専門なエンドミルの製造メーカーで、客先に色んな分野のニーズ

豊富なパリエーションを満足させ、特にハイテク品質要求にサポート致します。

弊社は各領域に供給できる内容は:

(1)精密HSSエンドミルのR&D

(2)Carbide Cutting tools設計

(3)鎢鋼エンドミル設計

(4)航空エンドミル設計

(5)超高硬度エンドミル

(6)ダイヤモンドエンドミル

(7)医療用品エンドミル設計

(8)自動車部品&材料加工向けエンドミル設計

弊社の製品の供給調達機能は:

(1)生活産業~ハイテク工業までのエンドミル設計

(2)ミクロエンドミル~大型エンドミル供給

(3)小Lot生産~大量発注対応供給

(4)オートメーション整備調達

(5)スポット対応~流れ生産対応

弊社の全般供給体制及び技術自慢の総合専門製造メーカーに貴方のご体験を御待ちしております。

Bewise Inc. talaşlı imalat sanayinde en fazla kullanılan ve üç eksende (x,y,z) talaş kaldırabilen freze takımlarından olan Parmak Freze imalatçısıdır. Çok geniş ürün yelpazesine sahip olan firmanın başlıca ürünlerini Karbür Parmak Frezeler, Kalıpçı Frezeleri, Kaba Talaş Frezeleri, Konik Alın Frezeler, Köşe Radyüs Frezeler, İki Ağızlı Kısa ve Uzun Küresel Frezeler, İç Bükey Frezeler vb. şeklinde sıralayabiliriz.

BW специализируется в научных исследованиях и разработках, и снабжаем самым высокотехнологичным карбидовым материалом для поставки режущих / фрезеровочных инструментов для почвы, воздушного пространства и электронной индустрии. В нашу основную продукцию входит твердый карбид / быстрорежущая сталь, а также двигатели, микроэлектрические дрели, IC картонорезальные машины, фрезы для гравирования, режущие пилы, фрезеры-расширители, фрезеры-расширители с резцом, дрели, резаки форм для шлицевого вала / звездочки роликовой цепи, и специальные нано инструменты. Пожалуйста, посетите сайт  www.tool-tool.com  для получения большей информации.

BW is specialized in R&D and sourcing the most advanced carbide material with high-tech coating to supply cutting / milling tool for mould & die, aero space and electronic industry. Our main products include solid carbide / HSS end mills, micro electronic drill, IC card cutter, engraving cutter, shell end mills, cutting saw, reamer, thread reamer, leading drill, involute gear cutter for spur wheel, rack and worm milling cutter, thread milling cutter, form cutters for spline shaft/roller chain sprocket, and special tool, with nano grade. Please visit our web  www.tool-tool.com  for more info.

beeway 發表在 痞客邦 留言(0) 人氣()

 

Bewise Inc. www.tool-tool.com Reference source from the internet.

Τριφασικός μετασχηματιστής υποβιβασμού τάσης, αναρτημένος σε στύλο

Ο μετασχηματιστής είναι μια συσκευή η οποία μεταφέρει ηλεκτρική ενέργεια μεταξύ δύο κυκλωμάτων, διαμέσου επαγωγικά συζευγμένων ηλεκτρικών αγωγών. Οι μετασχηματιστές είναι ανάμεσα στις πιο αποδοτικές ηλεκτρικές μηχανές,[1] με κάποιες μεγάλες μονάδες να αποδίδουν έως και το 99.75% της ισχύος εισόδου τους στην έξοδό τους.[2] Οι μετασχηματιστές κατασκευάζονται σε ευρεία γκάμα μεγεθών, που κυμαίνονται από μέγεθος νυχιού (όπως αυτοί που βρίσκονται μέσα σε ένα μικρόφωνο) έως τεράστιες μονάδες με βάρος εκατοντάδων τόνων που χρησιμοποιούνται για τη διασύνδεση τμημάτων των εθνικών δικτύων ηλεκτροδότησης. Όλοι λειτουργούν με βάση τις ίδιες αρχές, αν και υπάρχει πληθώρα διαφορετικών υλοποιήσεων.

Ένα μεταβαλλόμενο ηλεκτρικό ρεύμα στο πρώτο κύκλωμα (το "πρωτεύον") δημιουργεί ένα μεταβαλλόμενο μαγνητικό πεδίο. Αυτό το μεταβαλλόμενο μαγνητικό πεδίο επάγει μεταβαλλόμενη τάση στο δεύτερο κύκλωμα (το "δευτερεύον"). Το φαινόμενο αυτό καλείται αμοιβαία επαγωγή.

Αν ένας ηλεκτρικός καταναλωτής[3] είναι συνδεδεμένος στο δευτερεύον κύκλωμα, τότε θα υπάρξει ροή ηλεκτρικού φορτίου στο δευτερεύον τύλιγμα του μετασχηματιστή. Αυτό το φορτίο θα μεταφέρει ενέργεια από το πρωτεύον κύκλωμα, στον καταναλωτή που είναι συνδεδεμένος στο δευτερεύον κύκλωμα.

Η επαγόμενη τάση VS στο δευτερεύον ενός ιδανικού μετασχηματιστή, είναι ανάλογη της τάσης VP στο πρωτεύον κατά ένα συντελεστή ίσο με το λόγο του αριθμού Ν των περιελίξεων του σύρματος στα αντίστοιχα τυλίγματα:

\frac{V_{S}}{V_{P}} = \frac{N_{S}}{N_{P}}

Οι δείκτες S,P προέρχονται από τις αγγλικές λέξεις secondary, primary, οι οποίες σημαίνουν αντίστοιχα δευτερεύον και πρωτεύον.

Με κατάλληλη επιλογή του αριθμού των περιελίξεων, ένας μετασχηματιστής επιτρέπει την ανύψωση μιας εναλλασσόμενης τάσης (αν NS > NP) ή τον υποβιβασμό της (αν NS < NP).

[Επεξεργασία] Ιστορία

Η αρχή λειτουργίας του μετασχηματιστή διατυπώθηκε το 1831 από τον Μάικλ Φαραντέι, αν και την χρησιμοποίησε μόνο για επίδειξη των αρχών της ηλεκτρομαγνητικής επαγωγής, χωρίς να προβλέψει την πρακτική της σημασία. Ο πρώτος μετασχηματιστής σε ευρεία χρήση ήταν το πηνίο επαγωγής, το οποίο εφηύρε ο Ιρλανδός κληρικός Νίκολας Κάλαν το 1836.[4] Ήταν ένας από τους πρώτους που κατάλαβαν την αρχή πως όσο περισσότερες περιελίξεις έχει το τύλιγμα ενός μετασχηματιστή, τόσο μεγαλύτερη ηλεκτρεγερτική δύναμη παράγει. Τα πηνία επαγωγής δημιουργήθηκαν από τις προσπάθειες των επιστημόνων για παροχή υψηλότερων τάσεων από μπαταρίες. Δεν τροφοδοτούνταν από εναλλασσόμενο ρεύμα, αλλά από συνεχές, προερχόμενο από μπαταρίες, το οποίο διακόπτονταν από ένα δονούμενο διακοπτικό μηχανισμό. Μεταξύ 1830-1870 οι προσπάθειες για δημιουργία καλύτερων επαγωγικών πηνίων, κυρίως με τη μέθοδο της συνεχούς δοκιμής (trial and error), αποκάλυψαν σταδιακά τις βασικές αρχές της λειτουργίας του μετασχηματιστή. Αποδοτικοί σχεδιασμοί δεν ανακαλύφθηκαν παρά μετά το 1880,[5] όμως μέσα σε λιγότερο από μια δεκαετία, ο μετασχηματιστής αποδείχτηκε ουσιώδης στην επικράτηση των συστημάτων εναλασσόμενου ρεύματος έναντι αυτών του συνεχούς, θέση την οποία κρατούν μέχρι και σήμερα.[5]

Το πηνίο του Κάλαν, 1836

Ο Ρώσος μηχανικός Πάβελ Γιαμπλότσκοφ εφηύρε το 1876 ένα σύστημα φωτισμού, βασισμένο σε ένα σύνολο από πηνία επαγωγής, όπου τα πρωτεύοντα τυλίγματα ήταν συνδεδεμένα σε πηγή εναλλασσόμενου ρεύματος, ενώ τα δευτερεύοντα μπορούσαν να συνδεθούν σε αρκετά "κεριά Γιαμπλότσκοφ" (είδος ηλεκτρικού λαμπτήρα τόξου). Στην πατέντα ισχυριζόταν ότι το σύστημα μπορούσε να "παρέχει ανεξάρτητα ισχύ σε διάφορους λαμπτήρες, με διαφορετική ισχύ φωτεινότητας, από μία πηγή ηλεκτρικής ισχύος". Προφανώς, το πηνίο επαγωγής σε αυτό το σύστημα λειτουργούσε ως μετασχηματιστής.

Οι Λουσιέν Γκολάρ και Τζον Ντίξον Γκιμπς επέδειξαν πρώτοι το 1882 στο Λονδίνο μια συσκευή με ανοιχτό πυρήνα σιδήρου που αποκαλούσαν "δευτερεύουσα γεννήτρια", ιδέα που πούλησαν στη συνέχεια στην αμερικανική εταιρεία Ουέστινγκχαους.[6] Την ίδια συσκευή επέδειξαν και το 1884 στο Τορίνο, όπου υιοθετήθηκε για ένα ηλεκτρικό σύστημα φωτισμού.

Οι Ούγγροι μηχανικοί Κάρολι Ζιπερνόφσκι, Όττο Μπλάθι και Μίκσα Ντέρι, από την εταιρεία Γκαντζ στην Βουδαπέστη δημιούργησαν το αποδοτικό μοντέλο κλειστού πυρήνα "ZBD" το 1885, βασισμένοι σε ένα σχέδιο των Γκολάρ και Γκιμπς.

Ένας φυσικός της Ουέστινγκχαους, ο Ουίλλιαμ Στάνλεϊ, δημιούργησε την πρώτη εμπορική υλοποίηση μετασχηματιστή το 1885, μετά την αγορά από τον Τζορτζ Ουέστινγκχαους των πατεντών των Γκολάρ και Γκιμπς. Ο πυρήνας ήταν κατασκευασμένος από πλάκες σιδήρου σχήματος "Ε", οι οποίες έμπαιναν η μία μέσα στην άλλη. Αυτό το σχέδιο χρησιμοποιήθηκε για πρώτη φορά στο εμπόριο το 1886.[5] Η αίτηση ευρεσιτεχνίας έκανε για πρώτη φορά αναφορά στη λέξη "μετασχηματιστής".[6] Ο Ρώσος μηχανικός Μικαΐλ Ντόλιβο-Ντομπροβόλσκι ανέπτυξε τον πρώτο τριφασικό μετασχηματιστή το 1889. Το 1891 ο Νίκολα Τέσλα εφηύρε το πηνίο Τέσλα, ένα μετασχηματιστή συντονισμού με πυρήνα αέρα, για την παραγωγή πολύ υψηλών τάσεων σε υψηλές συχνότητες. Μετασχηματιστές ακουστών συχνοτήτων χρησιμοποιήθηκαν για τα πρώτα πειράματα της ανάπτυξης του τηλεφώνου.

Παρότι νέες τεχνολογίες έχουν καταστήσει τους μετασχηματιστές παρωχημένους για ορισμένες ηλεκτρονικές εφαρμογές, μετασχηματιστές χρησιμοποιούνται ακόμα σε πολλές ηλεκτρονικές συσκευές. Οι μετασχηματιστές είναι επίσης βασικοί στην μετάδοση ρευμάτων υψηλής τάσης, τεχνική που κάνει οικονομικά βιώσιμη τη μετάδοση ηλεκτρικής ισχύος σε μεγάλες αποστάσεις.

[Επεξεργασία] Βασικές αρχές

Ο μετασχηματιστής βασίζεται σε δύο αρχές: πρώτον, ότι ένα ηλεκτρικό ρεύμα μπορεί να παράγει ένα μαγνητικό πεδίο (ηλεκτρομαγνητισμός) και, δεύτερον, ότι ένα μεταβαλλόμενο μαγνητικό πεδίο σε ένα τυλιγμένο σύρμα ("τύλιγμα"), επάγει διαφορά δυναμικού στα άκρα του τυλίγματος (ηλεκτρομαγνητική επαγωγή). Μεταβάλλοντας το ρεύμα στο πρωτεύον τύλιγμα, αλλάζει η ένταση του μαγνητικού του πεδίου. Εφόσον το μεταβαλλόμενο μαγνητικό πεδίο εκτείνεται και στο δευτερεύον τύλιγμα, επάγεται διαφορά δυναμικού στα άκρα του δευτερεύοντος.

Ένας ιδανικός μετασχηματιστής υποβιβασμού τάσης με επισημασμένη την μαγνητική ροή στον πυρήνα του

Στο σχήμα φαίνεται ένα απλοποιημένο διάγραμμα μετασχηματιστή. Ηλεκτρικό ρεύμα περνάει μέσα από το πρωτεύον τύλιγμα δημιουργώντας μαγνητικό πεδίο. Τόσο το πρωτεύον όσο και το δευτερεύον τύλιγμα περιελίσσονται γύρω από ένα μαγνητικό πυρήνα πολύ υψηλής μαγνητικής διαπερατότητας, π.χ. από σίδηρο. Με αυτόν τον τρόπο εξασφαλίζεται ότι όσο το δυνατόν περισσότερες γραμμές του μαγνητικού πεδίου που παράγει το πρωτεύον ρεύμα, βρίσκονται εντός του πυρήνα και περνούν τόσο από το πρωτεύον όσο και το δευτερεύον τύλιγμα.

[Επεξεργασία] Νόμος επαγωγής

Το δυναμικό που επάγεται στα άκρα του δευτερεύοντος μπορεί να υπολογιστεί από το νόμο της επαγωγής του Φάραντεϊ, ο οποίος δηλώνει πως:

V_{S} = N_{S} \frac{\mathrm{d}\Phi}{\mathrm{d}t}

όπου VS είναι η στιγμιαία τάση, NS είναι ο αριθμός των περιελίξεων (στροφών) στο δευτερεύον και Φ η μαγνητική ροή σε μία περιέλιξη του τυλίγματος. Αν οι στροφές του τυλίγματος είναι προσανατολισμένες κάθετα προς τις γραμμές του μαγνητικού πεδίου, η ροή είναι το γινόμενο της έντασης B του μαγνητικού πεδίου και της επιφάνειας Α μέσα από την οποία διέρχεται. Η επιφάνεια είναι σταθερή και ίση με την διατομή του πυρήνα του μετασχηματιστή, ενώ το μαγνητικό πεδίο μεταβάλλεται με το χρόνο, ανάλογα με την διέγερση του πρωτεύοντος.

Καθώς σε έναν ιδανικό μετασχηματιστή η ροή που περνά μέσα τόσο από το πρωτεύον όσο και από το δευτερεύον είναι ίδια,[1] η στιγμιαία τάση στα άκρα του πρωτεύοντος τυλίγματος ισούται με:

V_{P} = N_{P} \frac{\mathrm{d}\Phi}{\mathrm{d}t}

Αν διαιρέσουμε τις δύο πιο πάνω σχέσεις κατά μέλη, παίρνουμε την βασική εξίσωση[7] για την ανύψωση ή τον υποβιβασμό της τάσης:

\frac{V_{S}}{V_{P}} = \frac{N_{S}}{N_{P}}

[Επεξεργασία] Ιδανική εξίσωση ισχύος

Ο ιδανικός μετασχηματιστής ως στοιχείο κυκλώματος

Αν το δευτερεύον είναι συνδεδεμένο σε φορτίο που επιτρέπει την ροή ρεύματος, τότε έχουμε μετάδοση ισχύος από το πρωτεύον κύκλωμα στο δευτερεύον κύκλωμα. Ιδανικά ο μετασχηματιστής έχει τέλεια αποδοτικότητα, δηλαδή όλη η εισερχόμενη ενέργεια μεταφέρεται από το πρωτεύον, μέσω του μαγνητικού πεδίου, στο δευτερεύον. Αν αυτή η συνθήκη ισχύει, η εισερχόμενη ηλεκτρική ισχύς πρέπει να ισούται με την εξερχόμενη ισχύ.

Pincoming = IPVP = Poutgoing = ISVS

δίνοντας την εξίσωση του ιδανικού μετασχηματιστή

\frac{V_{S}}{V_{P}} = \frac{N_{S}}{N_{P}} = \frac{I_{P}}{I_{S}}

Αν η τάση αυξηθεί (ανυψωθεί) (VS > VP), τότε το ρεύμα μειώνεται (υποβιβάζεται) (IS < IP) κατά τον ίδιο συντελεστή. Οι μετασχηματιστές έχουν υψηλή αποδοτικότητα, οπότε αυτός ο τύπος αποτελεί ρεαλιστική προσέγγιση.

Η αντίσταση στο ένα κύκλωμα μετασχηματίζεται ανάλογα με το τετράγωνο του λόγου περιελίξεων.[1] Για παράδειγμα, αν μια αντίσταση ZS είναι συνδεδεμένη στα άκρα του δευτερεύοντος, εμφανίζεται στο πρωτεύον να έχει αντίσταση Z_S\!\left(\!\tfrac{N_P}{N_S}\!\right)^2\!\!. Αυτή η σχέση είναι αμφίδρομη, οπότε η αντίσταση ZP του πρωτεύοντος εμφανίζεται στο δευτερεύον ως Z_P\!\left(\!\tfrac{N_S}{N_P}\!\right)^2\!\!.

[Επεξεργασία] Ισοδύναμο κύκλωμα

Δείτε το πιο κάτω διάγραμμα

Οι φυσικοί περιορισμοί των πραγματικών μετασχηματιστών μπορούν να συνοψιστούν σε ένα μοντέλο ισοδύναμου κυκλώματος, το οποίο "χτίζεται" γύρω από το μοντέλο του ιδανικού, χωρίς απώλειες, μετασχηματιστή.[8] Η απώλεια ισχύος στα τυλίγματα εξαρτάται από το ρεύμα και αναπαρίσταται με τις σε σειρά συνδεδεμένες αντιστάσεις RP και RS. Η απώλεια ροής οδηγεί στην πτώση κλάσματος της εφαρμοζόμενης τάσης, πτώση η οποία δεν συνεισφέρει στην αμοιβαία σύζευξη και, κατά συνέπεια, μπορεί να μοντελοποιηθεί με τις επαγωγικές αντιδράσεις XP και XS, συνδεδεμένες σε σειρά με την τέλεια συζευγμένη περιοχή.

Οι απώλειες του πυρήνα οφείλονται κυρίως στην υστέρηση και στις επιπτώσεις των δινορευμάτων στον πυρήνα, ενώ είναι ανάλογα του τετραγώνου της ροής του πυρήνα για λειτουργία σε συγκεκριμένη συχνότητα.[9] Καθώς η ροή στον πυρήνα είναι ανάλογη της εφαρμοζόμενης τάσης, οι απώλειές του μπορούν να εκφραστούν με μια αντίσταση RC τοποθετημένη παράλληλα με τον ιδανικό μετασχηματιστή.

Ένας πυρήνας με πεπερασμένη διαπερατότητα απαιτεί ένα ρεύμα μαγνητισμού IM για να διατηρήσει την αμοιβαία ροή σε αυτόν. Το ρεύμα μαγνητισμού είναι συμφασικό με τη ροή. Φαινόμενα κορεσμού οδηγούν στην μη γραμμικότητα της σχέσης μεταξύ των δύο, για λόγους απλότητας όμως αυτό το φαινόμενο τείνει να αγνοείται στα περισσότερα ισοδύναμα κυκλώματα.[9] Με ένα ημιτονοειδές τροφοδοτικό, η ροή του πυρήνα υστερεί της επαγόμενης ΗΕΔ κατά 90ο και αυτό το φαινόμενο μπορεί να μοντελοποιηθεί ως αντίδραση μαγνητισμού XM παράλληλα με το στοιχείο απώλειας του πυρήνα. Οι RC και XM μερικές φορές αναφέρονται από κοινού ως ο "κλάδος μαγνητισμού" του μοντέλου. Αν το δευτερεύον είναι ανοιχτοκυκλωμένο, το ρεύμα I0 που λαμβάνουμε στον κλάδο μαγνητισμού, αναπαριστά το ρεύμα κενού φορτίου του μετασχηματιστή.[8]

Η δευτερεύουσα σύνθετη αντίσταση RS και XS συχνά ανάγεται στην πλευρά του πρωτεύοντος, αφού πολλαπλασιαστεί με τον τελεστή \left(\!\tfrac{N_P}{N_S}\!\right)^2\!\!.

Ισοδύναμο κύκλωμα μετασχηματιστή, με τις δευτερεύουσες σύνθετες αντιστάσεις ανηγμένες στην πλευρά του πρωτεύοντος

Ισοδύναμο κύκλωμα μετασχηματιστή, με τις δευτερεύουσες σύνθετες αντιστάσεις ανηγμένες στην πλευρά του πρωτεύοντος

Η ανάλυση μπορεί να απλοποιηθεί περαιτέρω μεταφέροντας τον κλάδο μαγνητισμού στα αριστερά της σύνθετης αντίστασης του πρωτεύοντος, μια έμμεση παραδοχή ότι το ρεύμα μαγνητισμού είναι χαμηλό, και με την άθροιση στη συνέχεια των σύνθετων αντιστάσεων του πρωτεύοντος και του ανηγμένου δευτερεύοντος, καταλήγοντας σε μια ισοδύναμη σύνθετη αντίσταση.

Οι παράμετροι του ισοδύναμου κυκλώματος ενός μετασχηματιστή μπορούν να υπολογιστούν από τα αποτελέσματα δύο δοκιμών στον μετασχηματιστή: της δοκιμής ανοιχτού κυκλώματος και της δοκιμής βραχυκυκλώματος.

[Επεξεργασία] Παραπομπές

  1. 1,0 1,1 1,2 Flanagan, William M. (1993-01-01). Handbook of Transformer Design and Applications. McGraw-Hill Professional. ISBN 0070212910, Chap. 1, p. 1–2.
  2. ENERGIE (1999). The scope for energy saving in the EU through the use of energy-efficient electricity distribution transformers (PDF).
  3. Με τον όρο "ηλεκτρικός καταναλωτής" εννοούμε κάθε συσκευή που καταναλώνει ηλεκτρική ενέργεια
  4. Fleming, John Ambrose (1896). The Alternate Current Transformer in Theory and Practice, Vol.2. The Electrician Publishing Co.. p.16-18
  5. 5,0 5,1 5,2 Coltman, J. W. (January 1988), "The Transformer", Scientific American: 86–95
  6. 6,0 6,1 Allan, "Power transformers – the second century", Power Engineering Journal
  7. Winders. Power Transformer Principles and Applications, pp. 20–21.
  8. 8,0 8,1 Daniels, A. R.. Introduction to Electrical Machines, pp. 47–49.
  9. 9,0 9,1 Say, M. G. (February, 1984). Alternating Current Machines, Fifth Edition. Halsted Press. ISBN 0470274514, pp. 142–143.

歡迎來到Bewise Inc.的世界,首先恭喜您來到這接受新的資訊讓產業更有競爭力,我們是提供專業刀具製造商,應對客戶高品質的刀具需求,我們可以協助客戶滿足您對產業的不同要求,我們有能力達到非常卓越的客戶需求品質,這是現有相關技術無法比擬的,我們成功的滿足了各行各業的要求,包括:精密HSS DIN切削刀具協助客戶設計刀具流程DIN or JIS 鎢鋼切削刀具設計NAS986 NAS965 NAS897 NAS937orNAS907 航太切削刀具,NAS航太刀具設計超高硬度的切削刀具醫療配件刀具設計複合式再研磨機PCD地板專用企口鑽石組合刀具NSK高數主軸與馬達專業模具修補工具-氣動與電動粉末造粒成型機主機版專用頂級電桿PCD V-Cut捨棄式圓鋸片組粉末成型機主機版專用頂級電汽車業刀具設計電子產業鑽石刀具木工產業鑽石刀具銑刀與切斷複合再研磨機銑刀與鑽頭複合再研磨機銑刀與螺絲攻複合再研磨機等等。我們的產品涵蓋了從民生刀具到工業級的刀具設計;從微細刀具到大型刀具;從小型生產到大型量產;全自動整合;我們的技術可提供您連續生產的效能,我們整體的服務及卓越的技術,恭迎您親自體驗!!

BW Bewise Inc. Willy Chen willy@tool-tool.com bw@tool-tool.com www.tool-tool.com skype:willy_chen_bw mobile:0937-618-190 Head &Administration Office No.13,Shiang Shang 2nd St., West Chiu Taichung,Taiwan 40356 http://www.tool-tool.com / FAX:+886 4 2471 4839 N.Branch 5F,No.460,Fu Shin North Rd.,Taipei,Taiwan S.Branch No.24,Sec.1,Chia Pu East Rd.,Taipao City,Chiayi Hsien,Taiwan

Welcome to BW tool world! We are an experienced tool maker specialized in cutting tools. We focus on what you need and endeavor to research the best cutter to satisfy users demand. Our customers involve wide range of industries, like mold & die, aerospace, electronic, machinery, etc. We are professional expert in cutting field. We would like to solve every problem from you. Please feel free to contact us, its our pleasure to serve for you. BW product including: cutting toolaerospace tool .HSS  DIN Cutting toolCarbide end millsCarbide cutting toolNAS Cutting toolNAS986 NAS965 NAS897 NAS937orNAS907 Cutting Tools,Carbide end milldisc milling cutter,Aerospace cutting toolhss drillФрезерыCarbide drillHigh speed steelCompound SharpenerMilling cutterINDUCTORS FOR PCDCVDD(Chemical Vapor Deposition Diamond )’PCBN (Polycrystalline Cubic Boron Nitride) Core drillTapered end millsCVD Diamond Tools Inserts’PCD Edge-Beveling Cutter(Golden FingerPCD V-CutterPCD Wood toolsPCD Cutting toolsPCD Circular Saw BladePVDD End Millsdiamond tool. INDUCTORS FOR PCD . POWDER FORMING MACHINE Single Crystal Diamond Metric end millsMiniature end millsСпециальные режущие инструменты Пустотелое сверло Pilot reamerFraisesFresas con mango PCD (Polycrystalline diamond) ‘FresePOWDER FORMING MACHINEElectronics cutterStep drillMetal cutting sawDouble margin drillGun barrelAngle milling cutterCarbide burrsCarbide tipped cutterChamfering toolIC card engraving cutterSide cutterStaple CutterPCD diamond cutter specialized in grooving floorsV-Cut PCD Circular Diamond Tipped Saw Blade with Indexable Insert PCD Diamond Tool Saw Blade with Indexable InsertNAS toolDIN or JIS toolSpecial toolMetal slitting sawsShell end millsSide and face milling cuttersSide chip clearance sawsLong end millsend mill grinderdrill grindersharpenerStub roughing end millsDovetail milling cuttersCarbide slot drillsCarbide torus cuttersAngel carbide end millsCarbide torus cuttersCarbide ball-nosed slot drillsMould cutterTool manufacturer.

Bewise Inc. www.tool-tool.com

ようこそBewise Inc.の世界へお越し下さいませ、先ず御目出度たいのは新たな

情報を受け取って頂き、もっと各産業に競争力プラス展開。

弊社は専門なエンドミルの製造メーカーで、客先に色んな分野のニーズ

豊富なパリエーションを満足させ、特にハイテク品質要求にサポート致します。

弊社は各領域に供給できる内容は:

(1)精密HSSエンドミルのR&D

(2)Carbide Cutting tools設計

(3)鎢鋼エンドミル設計

(4)航空エンドミル設計

(5)超高硬度エンドミル

(6)ダイヤモンドエンドミル

(7)医療用品エンドミル設計

(8)自動車部品&材料加工向けエンドミル設計

弊社の製品の供給調達機能は:

(1)生活産業~ハイテク工業までのエンドミル設計

(2)ミクロエンドミル~大型エンドミル供給

(3)小Lot生産~大量発注対応供給

(4)オートメーション整備調達

(5)スポット対応~流れ生産対応

弊社の全般供給体制及び技術自慢の総合専門製造メーカーに貴方のご体験を御待ちしております。

Bewise Inc. talaşlı imalat sanayinde en fazla kullanılan ve üç eksende (x,y,z) talaş kaldırabilen freze takımlarından olan Parmak Freze imalatçısıdır. Çok geniş ürün yelpazesine sahip olan firmanın başlıca ürünlerini Karbür Parmak Frezeler, Kalıpçı Frezeleri, Kaba Talaş Frezeleri, Konik Alın Frezeler, Köşe Radyüs Frezeler, İki Ağızlı Kısa ve Uzun Küresel Frezeler, İç Bükey Frezeler vb. şeklinde sıralayabiliriz.

BW специализируется в научных исследованиях и разработках, и снабжаем самым высокотехнологичным карбидовым материалом для поставки режущих / фрезеровочных инструментов для почвы, воздушного пространства и электронной индустрии. В нашу основную продукцию входит твердый карбид / быстрорежущая сталь, а также двигатели, микроэлектрические дрели, IC картонорезальные машины, фрезы для гравирования, режущие пилы, фрезеры-расширители, фрезеры-расширители с резцом, дрели, резаки форм для шлицевого вала / звездочки роликовой цепи, и специальные нано инструменты. Пожалуйста, посетите сайт  www.tool-tool.com  для получения большей информации.

BW is specialized in R&D and sourcing the most advanced carbide material with high-tech coating to supply cutting / milling tool for mould & die, aero space and electronic industry. Our main products include solid carbide / HSS end mills, micro electronic drill, IC card cutter, engraving cutter, shell end mills, cutting saw, reamer, thread reamer, leading drill, involute gear cutter for spur wheel, rack and worm milling cutter, thread milling cutter, form cutters for spline shaft/roller chain sprocket, and special tool, with nano grade. Please visit our web  www.tool-tool.com  for more info.

beeway 發表在 痞客邦 留言(0) 人氣()

 

Bewise Inc. www.tool-tool.com Reference source from the internet.

VEW Transformatorstation Recklinghausen

Ölgefüllter Transformator für Mittelspannung (ohne Öl, angeschnittenes Gehäuse

Ein 30 VA-Netztransformator für eine Spannung von 12 V an der Sekundärseite (Breite etwa 60 mm)

Ein Transformator, kurz Trafo, ist ein Bauteil in der Elektrotechnik, das elektrische Energie oder Information zwischen induktiv gekoppelten Stromkreisen verlustarm überträgt. Transformatoren arbeiten mit Wechselspannung. Eine Gleichspannung kann nicht transformiert werden. In der Energiewirtschaft wird er auch als ruhende elektrische Maschine bezeichnet, da er im Gegensatz zu motorisch betriebenen Spannungsumformern keine mechanisch bewegten Teile besitzt.

Grundlagen

Die Spulen, oder Wicklungen, eines Transformators sind in der Regel galvanisch voneinander getrennt und nur magnetisch miteinander gekoppelt. Um diese Kopplung zu erhöhen, sind die Spulen meist auf einem gemeinsamen Eisen- oder Ferritkern angeordnet, dem Transformatorkern.

Die an der Primärwicklung angelegte Wechselspannung kann in der Sekundärwicklung erhöht oder verringert werden. Die Spannungsübersetzung richtet sich dabei nach dem Verhältnis der Windungszahlen der Wicklungen. Eingangs- und Ausgangsleistung sind aufgrund des in der Regel hohen Wirkungsgrades nahezu gleich.

Transformatoren zur Energieübertragung mit der Frequenz des Stromnetzes nennt man Umspanner (Bestandteil des Stromnetzes) oder Netztransformatoren (Bestandteil von Geräten und Anlagen, die am Stromnetz arbeiten). Transformatoren für messtechnische Zwecke sind Messwandler oder Stromwandler und jene für die Signalübertragung in der Nachrichtentechnik sowie auch in Schaltnetzteilen nennt man oft Übertrager.

Mit Transformatoren lässt sich elektrische Energie so umwandeln (hochtransformieren), dass sie über Hochspannungsleitungen über weite Strecken wirtschaftlich übertragen werden kann. In Netzteilen stellen sie Betriebsspannungen für elektronische Geräte zur Verfügung und sorgen für eine sichere Trennung vom Stromnetz. Bei der Übertragung von Signalen werden mit ihnen Impedanzen angepasst.

Die grundsätzliche Struktur dieses Artikels bedarf einer Überarbeitung. Näheres ist auf der Diskussionsseite: Die grundsätzliche Struktur angegeben. Hilf mit, ihn zu verbessern, und entferne anschließend diese Markierung.

Geschichte

Transformator von Zipernowsky, Déry und Bláthy

Patentzeichnung von William Stanley 1886

Die Erscheinung der Magnetfelderzeugung aus dem elektrischen Stromfluss und umgekehrt der Stromerzeugung aus einem veränderlichen Magnetfeld war seit Michael Faradays Entdeckungen 1831 bekannt. Aber erst in den achtziger Jahren des selben Jahrhunderts wurde das Transformator-Prinzip entwickelt.

Die Ungarn Károly Zipernowsky und Miksa Déri ließen 1882 die selbsterregende Wechselstrommaschine eintragen und beide entwickelten 1884 den aus zwei Maschinen (Generator und Motor) kombinierten Einankerumformer (siehe Umformer), aus dem nach der Einbeziehung von Ottó Titusz Bláthy die gemeinsame Erfindung, der Transformator wurde.

1885 ließen sich die Ungarn Károly Zipernowsky, Miksa Déri und Ottó Titusz Bláthy ein Patent auf den Transformator erteilen. Dieser war mechanisch nach dem umgekehrten Prinzip der heutigen Transformatoren aufgebaut; die Leiterspulen waren um einen soliden Kern aus unmagnetischem Material gewunden, darüber wurden dicke Eisendraht-Lagen gelegt, die eine ferromagnetische Schale bildeten. Dieser Transformator wurde von der Firma Ganz & Cie in Budapest weltweit vertrieben.

Wesentlichen Anteil an der Verbreitung des Wechselstromsystems und mit ihm des Transformators hatte der US-Amerikaner George Westinghouse, der ansonsten durch die Erfindung der Druckluftbremse berühmt wurde. Westinghouse erkannte die Schwächen der damals von Edison betriebenen und favorisierten Gleichstrom-Energieverteilung und setzte vorrangig auf Wechselstrom. 1885 importierte Westinghouse eine Anzahl Gaulard-Gibbs-Transformatoren und einen Siemens-Wechselspannungsgenerator für die elektrische Beleuchtung in Pittsburgh. William Stanley führte im gleichen Jahr als Chefingenieur von Westinghouse in Pittsburgh wesentliche Verbesserungen an Lucien Gaulards und John Gibbs’ Gerät durch.

Westinghouse installierte 1886 in Great Barrington, Massachusetts, einen Wechselspannungsgenerator, dessen 500 Volt Wechselspannung zur Verteilung auf 3000 Volt hochtransformiert und dann zum Betrieb der elektrischen Beleuchtung an den Anschlussstellen wieder auf 100 Volt heruntertransformiert wurde.

Der dann zunehmende Einsatz von Transformatoren führte in Verbindung mit der Schaffung von Wechselstrom-Stromnetzen zur weiten Verbreitung der Elektroenergie, weil nur Hochspannungsleitungen den Transport von den Energielieferanten über große Entfernungen ohne allzu große Energieverluste ermöglichen.

Physikalische Grundlagen

Darstellung der baulichen und physikalischen Komponenten

Schaltbild eines Transformators mit Eisenkern; mit elektrischen Primär- (p) und Sekundärgrößen (s)

Ein geöffneter 100-VA-Trafo. Oben die Primärwicklung (230 V), unten die zwei Sekundärwicklungen (9 V).

Für die Wirkweise eines Transformators sind zwei physikalische Erscheinungen wesentlich:

  • Ein von elektrischem Strom durchflossener Leiter erzeugt ein Magnetfeld (Elektromagnetismus)
  • Wenn sich der magnetische Fluss in einer Spule ändert, wird in ihr eine Spannung induziert.

Eine an die erste Spule („Primärspule“) im Primärstromkreis angelegte Wechselspannung erzeugt dem Induktionsgesetz folgend ein veränderliches Magnetfeld im Kern. Dieses Feld durchsetzt die zweite Spule („Sekundärspule“) in einem zweiten Stromkreis und erzeugt hier durch Induktion wiederum eine Spannung („Sekundärspannung“).

Eine primäre Wechselspannung wird dabei mit Hilfe des magnetischen Wechselfeldes in eine zu ihr proportionale sekundäre Spannung transformiert, wobei das Verhältnis zwischen Primär- und Sekundärspannung (im Idealfall) gleich dem Windungszahlverhältnis der beiden Spulen ist.

Da in der Sekundärspule nur dann eine Spannung induziert wird, wenn der sie durchsetzende magnetische Fluss sich ändert, ist das magnetische Wechselfeld und damit die primäre Wechselspannung als Betriebsspannung unerlässlich.

Soll eine Gleichspannung mittels Transformatoren auf eine andere Spannungsebene umgesetzt werden, ist die Umwandlung des Gleichstroms in Wechselstrom mittels Wechselrichter nötig, um anschließend transformiert werden zu können. Danach ist eine Gleichrichtung notwendig.

Kleinere kostengünstige Transformatoren bedingen hohe Frequenzen. So wird eine Wechselspannung über eine Gleichspannung in eine hochfrequente Spannung gewandelt. Diese Techniken finden beispielsweise bei Schaltnetzteilen Anwendung.

Die maximale Höhe der induzierten Spannung hängt neben der Eingangsspannung von der Windungszahl der Sekundärspule ab, die maximale Höhe des Stromes von deren Leiterquerschnitten und von den Kühlungsbedingungen.

In obiger Beschreibung wird kein (gemeinsamer) Eisenkern der Spulen erwähnt, trotzdem besitzen fast alle Transformatoren einen Kern aus Eisenblechen, Eisendrähten oder Ferrit. Der Grund liegt darin, dass bei tiefen Frequenzen (50 Hz) ohne Eisenkern extrem viele Windungen erforderlich wären, um den „Leerlaufstrom“ bei geringer Belastung ausreichend klein zu halten. Das würde erstens einen unwirtschaftlich hohen Kupferanteil erfordern, andererseits werden bei höheren Strömen in diesem sehr langen Draht enorme Ohmsche Verluste (= Erwärmung) erzeugt. Außerdem konzentriert der Eisenkern das Magnetfeld und verringert Streuverluste, die in der Praxis so gut wie immer dadurch auftreten, dass nicht alle Feldlinien des primären Magnetfeldes die Sekundärspule durchsetzen. Minimieren kann man diese durch ideal ineinander gewickelte Ringspulen (Toroidspulen), was aber nur bei speziellen Anwendungen Verwendung findet.

Beides kann man stark verringern, indem die Induktivität der Primärspule durch einen Eisenkern um ein Vielfaches vergrößert wird. Je höher die Betriebsfrequenz ist, desto kleiner kann der Eisenkern sein, bei einigen 100 kHz wie im Tesla-Transformator darf er vollständig entfallen.

Prinzipielle Ausführung

Spulen

Die Ausführung eines Transformators aus ausgestreckt nebeneinanderliegenden Leitern würde bewirken, dass ein großer Teil des Magnetfeldes als wirkungsloses Streufeld in der Umgebung entsteht. Dieses Streufeld würde einen großen Leerlaufstrom erfordern, der nicht für den eigentlichen Übertragungsvorgang zur Verfügung steht.

Daher werden die Leiter in Form von Spulen angelegt. Um den Verlust durch Streufelder möglichst klein zu halten, werden die Primär- und Sekundärspulen möglichst klein und eng ineinandergeschachtelt. Eine Nebenbedingung ist hierbei, dass die Leiter und auch die Spulen als Ganzes gegeneinander elektrisch isoliert sind, wozu meistens lackierte Drähte und die nachfolgende Lack- oder Gießharztränkung im Vakuum angewendet werden. Der Spulenkörper ist ein aus nichtmagnetischem Material, meistens aus Kunststoff bestehendes Formteil, das die Wicklungen aufnimmt, ihnen mechanische Stabilität gibt und sie nötigenfalls auch voneinander isoliert.

Die Spule für die Eingangsspannung wird Primärspule oder Primärwicklung genannt, die Spule, in der die Ausgangsspannung induziert wird, heißt Sekundärspule oder Sekundärwicklung. Das Verhältnis der Spannungen an den beiden Spulen ist theoretisch exakt das Verhältnis ihrer Windungszahlen, in der Praxis ist die Spannung an der Sekundärspule aufgrund von Streufeldern und Verlusten kleiner als der theoretische Wert.

Beispiel

Ein Transformator mit 1000 Windungen auf der Primärwicklung, 100 Windungen auf der Sekundärwicklung und 230 Volt Primärspannung erzeugt in der Sekundärwicklung eine Leerlaufspannung von 23 Volt. Diese Spannung entsteht im Leerlauf-Betrieb des Transformators. Die tatsächlich nutzbare Betriebs- oder Nennspannung sinkt jedoch mit zunehmender Belastung durch die Last, weil der Ausgangsstrom in den Spulen einen ohmschen Spannungsabfall bewirkt und sich das Streufeld erhöht.

Auslegung der Spulenwicklungen

Wie schon oben erwähnt, ist die Ausgangsspannung der Transformator-Sekundärspule theoretisch exakt so groß, wie es das Windungszahlverhältnis zwischen den Wicklungen und die Primärspannung vorgeben.

Es gilt:

\frac {U_1} {U_2} = \frac {I_2} {I_1} = \frac{n_1}{n_2} \,

mit

U1 – Primärspannung
U2 – Sekundärspannung
n1 – Primärwindungszahl
n2 – Sekundärwindungszahl

Dies gilt jedoch nur für den Leerlauf bzw. den unbelasteten Zustand. Sobald in der Sekundärspule ein Strom zu einem äußeren Verbraucher fließt, teilt sich die Leerlaufspannung auf die inneren elektrischen Widerstände des Transformators und des Verbrauchers auf. Die Streuinduktivität führt ebenfalls zu einer Verringerung der Spannung.

Wenn also eine bestimmte Spannung bei einer bestimmten Leistung entnommen werden soll, muss die Windungszahl der Sekundärspule für eine entsprechend höhere Leerlaufspannung ausgelegt werden. Die Spannung, die der Spule bei Nennleistung entnommen werden kann, wird „Nennspannung“ genannt. Die Nennleistung ist die für den regulären Dauerbetrieb vorgesehene Abgabeleistung auf der Sekundärseite. Rechnerisch kann stattdessen auch mit dem Nennstrom gearbeitet werden.

Beispiel: Für einen Transformatortyp ist von der Größe und vom Material her ein Leistungsverlust bei der Übertragung von 10 % bekannt. Bei der vorgesehenen Nennleistung soll die Sekundärspule genau 240 Volt abgeben. Die Windungszahl wird daher für eine Leerlaufspannung von

\frac{240\ \mathrm{V}}{1 - 0{,}1} = 266{,}\bar{6}\ \mathrm{V} \,

ausgelegt.

Bei Nennleistung liefert die Sekundärspule dann eine Spannung von

266{,}\bar{6}\ \mathrm{V} - 26{,}\bar{6}\ \mathrm{V} = 240\ \mathrm{V} \,

Ein Transformator kann statt einer einzelnen auch mehrere getrennte Sekundärwicklungen für unterschiedliche Spannungen oder für getrennte Stromkreise haben. Die Sekundärwicklungen können eine oder mehrere Anzapfungen haben: so kann man auch mit einem Transformator mit nur einer Sekundärwicklung mehrere unterschiedlich hohe Sekundärspannungen erhalten.

Wicklungsanordnung

Bei Netztransformatoren mit nur einer Wickelkammer ist die Primärwicklung meist zuunterst gewickelt – bei niedrigeren Ausgangsspannungen schützt so der meist dickere Draht der Sekundärwicklung den dünnen Draht der Primärwicklung. Bei hoher Ausgangsspannung wird durch diesen Wicklungsaufbau die Isolation zum Kern erleichtert.

Audio-Transformatoren (Übertrager und Ausgangstransformatoren) haben oft ineinander greifende (sog. verschachtelte) Wicklungen, um die Streuinduktivität zu verringern und so die Übertragung hoher Frequenzen zu verbessern.

Bei Sicherheitstransformatoren sind Primär- und Sekundärwicklung in getrennten Kammern des aus Isolierstoff bestehenden Wickelkörpers untergebracht, um sie sicher voneinander zu isolieren.

Anzapfungen

Die Primärwicklung kann mehrere Anzapfungen haben; damit ist ein solcher Transformator für unterschiedlich hohe Primärspannungen geeignet, wobei dennoch auf gleiche Ausgangsspannungen transformiert wird.

Ein Transformator, der sowohl für den amerikanischen (120 Volt) als auch den europäischen Markt (230 Volt) einsetzbar sein soll, kann z. B. mit einer Anzapfung der Primärwicklung am Netztransformator und einem Umschalter versehen sein. Oft werden hierzu jedoch zwei Wicklungen für je 120 Volt aufgebracht, die wahlweise parallel oder in Reihe geschaltet werden können. Dadurch kann man die geringe Spannungsabweichung zugunsten des geringeren Kupferbedarfes meistens in Kauf nehmen. Auch die Sekundärwicklung kann Anzapfungen besitzen, um den Transformator zum Beispiel an unterschiedliche Belastungsfälle anzupassen oder mehrere Spannungen mit gleichem Bezug zu erzeugen.

Bei der Stromversorgung werden Netztransformatoren häufig mit schaltbaren Anzapfungen an der Primär- oder Sekundärwicklung ausgestattet. Die Anzapfungen können unter Last mit speziellen Lastschaltern je nach Erfordernis (Spannungs- oder Leistungsänderung) frei gewählt werden, beispielsweise bei elektrischen Lichtbogenöfen oder Bahnfahrzeugen. Eine Stromunterbrechung wird dabei durch kleine Hilfs-Stelltransformatoren vermieden.

Eine Sonderbauart ist der Spartransformator, der nur eine Spule besitzt, die eine oder mehrere zusätzliche Anzapfungen aufweist. Infolge Fehlens galvanischer Trennung der einzelnen Spannungsebenen ist seine Verwendung auf Spezialeinsätze beschränkt.

Beim Spartransformator ist nur eine einzige Wicklung mit einer oder mehreren Anzapfungen vorhanden – bei dieser Bauform ist nur Spannungsanpassung, jedoch keine galvanische Trennung zwischen Ein- und Ausgangsspannung gegeben. Sein Vorteil ist die bei gleicher Übertragungsleistung geringere Masse – Eisen- und Kupferbedarf sind bei gleicher Nennlast wesentlich geringer.

Mittenanzapfung

Schaltzeichen eines Transformators mit Mittenanzapfung

Wird die Wicklung der Sekundärseite nach der Hälfte der Gesamtanzahl der Windungen aufgetrennt und nach außen geführt, so wird dies als Mitten- oder Mittelanzapfung bezeichnet. So stehen drei Spannungen im Verhältnis 1:1:2 zur Verfügung. Solche Transformatoren werden als Treiber- oder Ausgangsübertrager von Gegentakt-Endstufen sowie zur Speisung einer Zweiwege-Gleichrichtung eingesetzt. Eine solche „Mittelanzapfung“ kann man auch schaffen, indem man zwei Wicklungen mit gleicher Anzahl von Windungen auf die Sekundärseite aufbringt und diese polrichtig in Reihe schaltet. Dadurch erhält man zwei gleiche Spannungen, die sich addieren.

Lufttransformator bzw. eisenloser Transformator

Die kernlose Ausführung (Lufttransformator) ist bei niedrigen Frequenzen nicht effizient bzw. realisierbar. Ursache ist, dass die Primärspule dann extrem viele Windungen besitzen müsste, um die erforderliche hohe Primärinduktivität zu erzeugen. Der dann erforderliche sehr lange Draht hätte aber so großen Widerstand, dass darin ein Großteil der zugeführten Leistung in Wärme verwandelt würde.

Das von einem stromdurchflossenen Leiter erzeugte Magnetfeld ist in der Luft oder im Vakuum mit einer Flussdichte von relativ geringer Stärke verbunden, magnetische Kopplung und Induktivität der Spulen sind gering und würden sehr hohe Betriebsfrequenzen erfordern.

Lufttransformatoren haben den Vorteil, in der Sekundärspule eine Spannung mit exakter Nachbildung der zeitlichen Veränderung des Primärstroms zu liefern, auch wenn der Primärwechselstrom relativ hohe Frequenzen enthält. Dies ist besonders dann vorteilhaft, wenn die Frequenzanteile des Stromes sich über eine große Bandbreite erstrecken. Daher werden für manche Zwecke Lufttransformatoren als Übertrager verwendet.

Beispiele sind der Teslatransformator, Koppel- und Anpassspulen in der Hochfrequenztechnik und die Rogowskispule.

Eisenkerntransformator

Ölgekühlter Transformator ohne Gehäuse

Das Öl im Transformatorgehäuse dient sowohl der Isolation der Wicklungen als auch dem Kühlen. Der Querschnitt der Wickelungsdrähte wird aus Kostengründen so klein wie möglich gehalten, was eine starke Erwärmung zur Folge hat. Nachteilig ist die Entflammbarkeit des Öls bei hohen Temperaturen. Insofern ergibt sich eine hohe Brandlast. Daher werden derzeit zunehmend Transformatoren mit Epoxydharz-isolierten Wicklungen gebaut. Diese werden als Trockentransformatoren bezeichnet (Beispiel: Geafol).

Es ist möglich, die Flussdichte erheblich zu steigern, indem das magnetische Feld der Spulen in einem geschlossenen magnetischen Kreis aus ferromagnetischem Material, bei Netztransformatoren z. B. Eisen – dem Transformatorkern – geführt wird. Für Netztransformatoren (Betriebsfrequenz 50 oder 60 Hz) verwendet man überwiegend Eisen-Silizium-Legierungen, kornorientertes Elektroblech (Texturblech) nach DIN EN 10107. Bei Signalübertragern werden auch die höherwertigen Eisen-Nickel-Legierungen und bei hohen Frequenzen (z. B. Schaltnetzteil-Übertrager) weichmagnetische Ferritkerne eingesetzt.

Die Steigerung der Flussdichte bei ferromagnetischen Werkstoffen beruht darauf, dass sich mit zunehmender Stärke eines von außen angelegten Magnetfeldes die regellos ausgerichteten magnetischen Kristallbereiche (Weiss-Bezirke) in eine gemeinsame Richtung umordnen. Diese magnetische Polarisation M des Werkstoffes liefert einen 1000 bis 100.000 mal höheren Beitrag zur Flussdichte B als die magnetische Feldstärke H. Diese Verhältniszahl nennt man Magnetische Suszeptibilität χ, es gilt

M=\chi H \,

Für die magnetische Flussdichte B gilt

B=\mu_0(H+M)=\mu_0(H+\chi H)=\mu_0(1+\chi)H \,

und daraus schließlich

B=\mu_0\mu_r H \,
\mu_0 \, ist die magnetische Feldkonstante.

Die dimensionslose Zahl μr = 1 + χ wird relative Permeabilitätskonstante oder Permeabilitätszahl genannt und ist werkstoffspezifisch.

Für die Leistungsübertragung im Stromnetz verwendete Transformatoren haben immer einen geschlossenen Eisenkern, auf den die Spulen aufgebracht werden. Der Querschnitt des Eisenkerns wird so gewählt, dass die Flussdichte möglichst im gesamten Eisen-Kern konstant ist und nicht zu nahe an die magnetische Sättigungsflussdichte kommt. Kerne für einphasige Transformatoren aus drei Schenkeln mit Primär- und Sekundärspule auf dem Mittelschenkel (M-Kerne) haben daher Außenschenkel mit dem halben Querschnitt des Mittelschenkels.

Die maximale Flussdichte liegt bei Eisen je nach Spezifikation bei 1,5…2 T. Bei Ferriten liegt sie bei etwa 400 mT.

Bei der Auslegung des Eisenkerns und der Windungszahl n sind folgende Zusammenhänge unter bestimmten Randbedingungen (sinusförmige Spannungsform, homogener luftspaltloser magnetischer Kreis) gültig:

(1)n = \frac{50 \cdot 45 \cdot U}{f \cdot A_\text{Fe} \cdot \Delta B} \,

mit

n – Windungszahl
ΔB – Induktionsamplitude (Flussdichteänderung) in Tesla
U – Effektivwert der Spannung in Volt
AFe – magnetischer Kernquerschnitt in cm2
f – Frequenz in Hz

An manche Transformatoren werden besonders hohe Anforderungen an die Linearität der Strom-Spannungs-Kennlinie gestellt oder sie dienen gleichzeitig der Zwischenspeicherung magnetischer Energie (Sperrwandler). Dies kann durch einen Luftspalt im magnetischen Kreis erreicht werden (quasi eine Mischform von Lufttransformator und Eisenkerntransformator). Der Feldstärkebedarf und damit der Magnetisierungsstrom steigen, die Kennlinie wird geschert bzw. linearisiert. Die im Luftspalt gespeicherte magnetische Energie vergrößert die Blindleistung, wird jedoch fast verlustfrei wieder abgegeben.

Luftspalte vergrößern den Streufluss, der möglicherweise anderswo, z. B. im Trafokessel, zu Verlusten und Störungen führt.

Luftspalte werden bei Gleichstrom-Anteilen im Primärstrom (siehe Ausgangsübertrager) und bei Sperrwandler-Übertragern benötigt.

Flachtransformator zur Montage auf Leiterplatten

Leistungstransformatoren für Frequenzen unterhalb von etwa 1 kHz haben meistens Kerne, die aus elektrisch gegeneinander isolierten Eisenblechen (Elektroblech) bestehen. Die Kerne müssen geblecht sein, weil unter dem Einfluss des Magnetfeldes im Eisen als leitendem Material genauso wie in der Sekundärspule Spannungen induziert werden, die im Vollmaterial zu Wirbelströmen führen. Diese Wirbelströme erzeugen Verluste, die umso höher sind, je besser die elektrische Leitfähigkeit des Kernes ist. Der Stromweg wird durch die Verwendung von dünnen Blechen, die voneinander isoliert sind, unterbrochen. Eine Beschädigung der Isolierung der einzelnen Blechpakete kann bei großen Transformatoren zu einer erheblichen lokalen Erwärmung des Paketes führen.

Der Eisenkern verursacht weiterhin Ummagnetisierungsverluste, die durch die fortwährende Umpolung der magnetischen Domänen (Weiss-Bezirke) entstehen und auch bei Leerlauf auftreten. Silizium-Eisen-Legierungen mit spezieller Textur haben bei Blechdicken von etwa 0,2 bis 0,3 mm bei 50 Hz Verluste von etwa 0,5 bis 1 W/kg je nach der Stärke des Magnetfelds, das durch die Spulen induziert wird.

Das Magnetisierungsverhalten des Eisens ist bis zur Sättigungsflussdichte weitgehend linear. Durch das lineare Verhalten bleibt der aufgenommene Leerlauf-Wechselstrom weitgehend sinusförmig. Bei der Transformation bleibt die Kurvenform der Eingangsspannung weitestgehend erhalten – lediglich Oberwellen werden aufgrund der Streuinduktivität gedämpft, was jedoch bei Netztransformatoren sogar erwünscht ist.

Eisen hat wie andere ferromagnetische Werkstoffe eine Grenze für die Linearität zwischen Feldstärke und magnetischem Fluss, die dann erreicht wird, wenn alle Weiss-Bezirke seiner Struktur einheitlich ausgerichtet sind. Bei dieser Sättigungsmagnetisierung kann das Eisen keiner weiteren Verstärkung der Feldstärke folgen, der Primärstrom steigt dann steil an. Bei der Konstruktion des Transformators muss daher der Kern möglichst exakt so bemessen werden, dass das Eisen sich auch bei Überspannungen im Stromnetz noch im linearen Bereich seiner Hysterese-Kennlinie befindet.

Ob ein Transformatorkern in die unerwünschte magnetische Sättigung gerät, hängt von der Höhe der Primärspannung ab – ist die Primärspannung in Bezug zu Kernquerschnitt bzw. Kernmaterial, Windungszahl und Frequenz zu hoch, gerät der Transformator in die Sättigung. Die Stromaufnahme steigt steil an. Die magnetische Sättigung setzt bei Belastung des Transformators bei etwas höherer Spannung ein, da die magnetische Feldstärke aufgrund des Spannungsabfalles am ohmschen Widerstand der Primärwicklung etwas abnimmt. Eine starke Belastung oder gar ein Kurzschluss der Sekundärseite führt zu einer wesentlich geringeren magnetischen Feldstärke im Kern und gleichzeitig zu einem starken Streufeld. Dieses kann zum Auslösen eines Kurzschlussschutzes (magnetische Sicherung) genutzt werden.

Die Hysterese-Kennlinie bildet den Zusammenhang zwischen Magnetfeldstärke und Erregerfeld bei dessen Anstieg und Rückgang ab. An ihr kann man sowohl die Sättigungsinduktion als auch die Ummagnetisierungsverluste erkennen.

Für Transformatoren für höhere Frequenzen werden für die Kerne statt Eisen auch andere weichmagnetische Werkstoffe wie z. B. Ferrite, amorphe Metallbandkerne oder Pulverkerne verwendet.

Kernbauformen

Ringkerntransformator

Datei:Kern und Ringkerntrafo 100VA.JPG

Kern und daraus hergestellter 100-VA-Ringkerntrafo

Transformatoren mit Ringkernen haben bei gleicher Masse, verglichen mit anderen Kernbauformen, den höchsten Wirkungsgrad, da aufgrund der geschlossenen, luftspaltfreien Ringkernform die Leerlaufverluste, davon hauptsächlich die Ummagnetisierungsverluste, minimal und bis zu 40-mal geringer als bei eckigen Kernbauformen sind.

Trafo-Ringkerne können aus ferromagnetischem Blech und für höhere Frequenzen aus Ferriten oder sintermetallurgisch aus ferromagnetischen Pulvern hergestellt werden.

Eisen-Ringkerne bestehen aus einzelnen Blechlagen, die durch ein zu einem Ring aufgewickeltes Band gebildet werden. Das dünne Band, meist aus kornorientiertem Weicheisenblech, wird so gewickelt, dass in der Mitte ein Kernloch zur Durchführung der Kupferwicklungen freibleibt. Die Windungen aller Wicklungen werden möglichst gleichmäßig auf dem Eisenring verteilt, um Streufelder zu vermeiden. Dazu wird der Drahtvorrat einer Wicklung zunächst auf ein Magazin gewickelt, welches dann zum Aufbringen der Wicklung maschinell durch das Kernloch um den Kernring herum geführt wird.

Ringkerntransformatoren können mit höherer magnetischer Flussdichte und geringeren Hystereseverlusten arbeiten, wenn texturierte, also kornorientierte Blechbänder verwendet werden. Auch dies trägt maßgeblich zur Verringerung der Baugröße bei. Anders als bei einem gestanzten Blechschnitt für beispielsweise einen EI-Kern-Transformator liegt die Kornorientierung für alle Teile des Kerns in der für die Magnetfeldlinien günstigen Vorzugsrichtung. Ringkerne werden auch für Stelltransformatoren verwendet. Bei diesen kontaktiert ein drehbar gelagerter Schleifer die einzelnen Spulenwindungen. Zur Kontaktgabe für den Schleifer sind die Windungen der Spule an den Außenseiten freigelegt, wobei die Isolierung der Lackdrähte abgeschliffen wird.

Trotz ihrer Vorteile kommen Ringkerntransformatoren für 50 Hz erst in den letzten Jahren mehr und mehr zum Einsatz, weil u. a. die Bewicklung eines geschlossenen Ringkerns aufwendiger ist. Inzwischen kann man jedoch Kerne bis zu 100 kW Leistung mit Automaten bewickeln.

Aufgrund der wertvollen Materialien für den Kern und die Wicklung besitzt der Ringkerntransformator gegenüber anderen Bauformen Vorteile, da er bei gegebener Leistung die geringsten Materialmengen benötigt. Seine Fertigung ist jedoch aufwendiger.
Ringkerntransformatoren lassen sich gut in Anwendungen einsetzen, wo es auf geringste Standby-Verluste ankommt. Durch Überdimensionieren des Transformators lassen sich darüber hinaus auch bei Belastung die Kupfer-Verluste verringern; sie betragen bei 50% Teillast nur noch 1/4 derjenigen bei Nennlast.

Beispiel

Ein 1-kVA-Ringkerntrafo hat ca. 6 Watt Eisenverluste (entspricht etwa dem Leerlaufverlust), ein 1-kVA-EI-Trafo hat dagegen ca. 45 Watt Eisenverluste. Die Kupferverluste sind bei beiden Trafotypen bei 1kVA Größe mit ca. 24 Watt etwa gleich. Wählt man für diese Anwendung einen 2-kVA-Transformator, entwickelt die Ringkern-Bauform bei 1 kW Last

12 + 24/4 = 18 Watt,

ein Trafo mit EI-Kern dagegen

90 + 24/4 = 96 Watt

Verlustleistung.

Ringkerntransformatoren verursachen aufgrund der hohen Remanenz im Kern beim Einschalten große Stromspitzen, weil ihr Kern dabei leichter als bei anderen Transformatoren in Sättigung geraten kann. Diese Stromspitzen lassen sich durch Sanftanlaufgeräte oder Transformatorschaltrelais völlig vermeiden oder mit Einschaltstrombegrenzern (NTC) soweit verringern, dass Schalter und Sicherungen geschont werden.

Ringkerntransformatoren werden für spezielle Anwendungen auch mit amorphen und nanokristallinen Bändern hergestellt.

Schnittbandkern

Eine Kompromisslösung stellen Schnittbandkerne dar: ein Blechband (Dicke 0,025–0,3 mm) wird auf einen Dorn mit rechteckigem Querschnitt aufgewickelt und verklebt. Anschließend wird der Wickel in der Mitte quer zerteilt und die Trennflächen werden poliert. Die Hälften werden dann in die bewickelten Spulenkörper gesteckt und verklebt. Für Schnittbandkerne werden ebenfalls auch texturierte Blechbänder eingesetzt.
Schnittbandkerne haben aufgrund ihrer Restluftspalte eine kleine Remanenz und damit kleinere Einschaltströme als Ringkerntransformatoren. Durch die beiden Rest-Luftspalte im Kern und dessen rechteckige Form ist die Materialausnutzung jedoch nicht so hoch wie beim Ringkerntransformator.
Schnittbandkerne haben dennoch ähnlich gute Eigenschaften wie Ringkerne, die Wicklungsherstellung ist gegenüber jenen einfacher, die Schnittbandkern-Herstellung ist jedoch etwas teurer gegenüber anderen Kernbauformen.

Baureihen: SM, SE, SU, SG, S3U
Siehe auch: DIN 41309 und IEC 329

Gestapelte Blechkerne

Die meisten Transformatoren für Netzfrequenz und bis etwa 400 Hz (bei Übertragern bis 20 kHz) bestehen aus gestapelten Eisenblechen. Folgende Formen sind gebäuchlich:

  • EI-Kern: gleichsinnig (Luftspalt!) oder wechselseitig geschichteter Stapel aus Blechen in E- und I-Form; die Außenschenkel der E-Bleche sind halb so breit wie der Mittelschenkel; ein Wickel auf dem Mittelschenkel. Der Luftspalt (gleichsinnige Montage) ist bei der Montage durch Zwischenlagen variierbar.
  • M-Kern: Blechform in der Form eines unten geschlossenen M, der Mittelteil ist am Ende unterbrochen, um die Bleche in den Wickel stapeln zu können, ein Wickel auf dem Mittelschenkel. M-Kerne bzw. -Bleche können einen Luftspalt aufweisen. Der Mittelschenkel ist doppelt so breit wie die Außenschenkel.
  • UI-Kern: wechselseitig gestapelte Bleche in der Form eines U und eines I; zwei Spulenwickel auf den langen Seiten des U.
  • LL-Kern: zwei L-förmige Bleche werden jeweils umgekehrt gegeneinander gelegt und wechselseitig orientiert gestapelt. Zwei Wickel auf den langen Seiten. LL-Kerne können eine Jochverstärkung aus rechteckigen Blechen neben den Wickeln aufweisen, wenn längs der Wickel texturierte (kornorientierte) Bleche zum Einsatz kommen.
  • Die Bleche von Kernen für die jeweils drei Spulensätze von Drehstromtransformatoren sind rechteckig mit speziellen Maßen zugeschnitten und ineinander geschachtelt oder sie bestehen aus E-förmigen Blechen gleicher Schenkelbreiten sowie zugehörigen, die "E"-Enden überbrückenden I-Blechen für das Joch.

Drehstromtransformator

Drehstrom-Trockentransformator

Hauptartikel: Dreiphasenwechselstrom-Transformator

Der aus drei einzelnen "Stromphasen" bestehende Drehstrom lässt sich prinzipiell mit drei gleichen Einphasentransformatoren übertragen. Effizienter ist es jedoch, die drei Eisenkerne zu einem gemeinsamen Kern mit drei Schenkelteilen zusammenzufassen. Die Schenkel sind in der praktischen Ausführung nebeneinander angeordnet und oben und unten mit jeweils einem Kern-Joch von gleicher Stärke wie die Schenkel verbunden.

In den Schenkelkernen sind die magnetischen Flüsse wirksam, die sich gemäß der jeweils zugeordneten Wechselstromphase verändern. Der Phasenwinkel zwischen den drei einzelnen Wechselströmen beträgt jeweils ±120°, sodass sich die Magnetfelder in den verbindenden Jochen im Idealfall zu Null hin aufheben.

Drehstromtransformatoren werden mit Nennleistungen von etwa 100 VA bis 1100 MVA gebaut.

Die Formel für das Übersetzungsverhältnis ü = n1/n2 gilt für Drehstromtransformatoren nur bei gleicher Schaltung von Ober- und Unterspannungsseite wie etwa bei der Schaltgruppe Yy0.

Bei besonders großen Transformatoren können zur besseren Transportierbarkeit drei Einphasentransformatoren zu einer „Drehstrombank“ zusammengesetzt werden. Hierbei müssen jedoch die Stufenschalter und viele Meldeeinrichtungen jeweils dreifach vorhanden sein, so dass diese Anordnung eher selten ausgeführt wird.

Vertiefende Themen

Modellbetrachtungen

Hauptartikel: Modell des Transformators

Die verschiedenen Modellbetrachtungen beschreiben, meist vereinfacht, die elektrischen und magnetischen Verhältnisse eines Transformators. Das Ziel ist durch die vorgenommenen Vereinfachungen und Beschränkungen auf wesentliche Einflussfaktoren Zusammenhänge und Gesetzmässigkeiten zu bilden und im Rahmen einer Theorie allgemein beschreiben zu können.

Einschaltstromstoß

Hauptartikel: Einschalten des Transformators

Das Einschalten eines Eisenkern-Transformators, also zum Beispiel eines Netztransformators, erzeugt meistens einen Einschaltstromstoß. Dabei gerät das Transformatoreisen mehr oder weniger in Sättigung und kann durch die anliegende Netzspannung für den Rest der Spannungshalbschwingung nicht mehr weiter magnetisiert werden. Der Strom, der dann zum Beispiel bei einem Einphasentransformators in die Primärspule hineinfließt, wird dann nur noch durch den Kupferwiderstand derselben begrenzt und kann dann einige Perioden lang einen erhöhten Wert und zu Beginn das etwa fünf- bis achtzigfache des Nennstromes betragen. Je höher die Effizienz des Transformators, desto höher kann dieser Wert sein.

Anwendungen

Geöffneter Transformator einer Elektrolokomotive, erkennbar sind die Anzapfungen für verschiedene Schaltstufen

Normen und geltende Richtlinien für Transformatoren

Ein Transformator, der mit Spannungen bis 1000 Volt betrieben wird, darf innerhalb der Europäischen Union nur dann in den Handel und in den Betrieb gebracht werden, wenn er entsprechend der europäischen Niederspannungsrichtlinie beschaffen ist. In Deutschland wird dies mit der Anwendung der Ersten Verordnung zum Geräte- und Produktsicherheitsgesetz umgesetzt.

Neben der allgemein für alle elektrische Geräte geltenden Niederspannungsrichtlinie muss ein Transformator in Europa noch mit weiteren spezielleren Regelungen übereinstimmen, speziell der jeweiligen nationalen Fassung der Norm EN 61558 IEC 61558.

Die Übereinstimmung des Transformators mit den europäischen Richtlinien wird mit der CE-Kennzeichnung dokumentiert. Der Transformator kann dann ohne weitere Kontrollen und Prüfungen innerhalb der EU in den Verkehr gebracht werden. In Teil 1 der EN 61558 IEC 61558 werden allgemeine Anforderungen und Prüfungen beschrieben. Im Teil 2 sind die speziellen Transformatortypen wie z. B. Sicherheitstransformatoren (Teil 2–6) oder Schaltnetzteiltransformatoren (Teil 2–17) jeweils als eigene Norm aufgeführt, die sich jedoch auf Teil 1 für die grundlegenden Anforderungen beziehen.

Deutsche DIN-Fassung der Europäischen Norm EN 61558 IEC 61558 (bzw. die entsprechenden VDE-Richtlinien-Dokumente) für Transformatoren sind:

  • DIN EN 61558-2-1 (VDE 0570 Teil 2-1): 1998-07, Sicherheit von Transformatoren, Netzgeräten, Besondere Anforderungen an Netztransformatoren für allgemeine Anwendungen
  • DIN EN 61558-2-2 (VDE 0570 Teil 2-2): 1998-10, Besondere Anforderungen an Steuertransformatoren
  • DIN EN 61558-2-3 (VDE 0570 Teil 2-3): 2000-09, Besondere Anforderungen an Zündtransformatoren für Gas- und Ölbrenner
  • DIN EN 61558-2-4 (VDE 0570 Teil 2-4): 1998-07, Besondere Anforderungen an Trenntransformatoren für allg. Anwendungen
  • DIN EN 61558-2-6 (VDE 0570 Teil 2-6): 1998-07, Besondere Anforderungen an Sicherheitstransformatoren für allgemeine Anwendungen
  • DIN EN 6158-2-8 (VDE 0570 Teil 2-8): 1999-06, Besondere Anforderungen an Klingel- und Läutewerkstransformatoren
  • DIN EN 61558-2-13 (VDE 0570 Teil 2-13): 2000-08, Besondere Anforderungen an Spartransformatoren für allg. Anwendungen
  • DIN EN 61558-2-15 (VDE 0570 Teil 2-15): 2001-11, Anforderungen für Trenntransformatoren zur Versorgung medizinischer Räume
  • DIN EN 61558-2-17 (VDE 0570 Teil 2-17): 1998-07, Besondere Anforderungen an Transformatoren für Schaltnetzteile
  • DIN EN 61558-2-19 (VDE 0570 Teil 2-19): 2001-09, Besondere Anforderungen an Störminderungstransformatoren
  • DIN EN 61558-2-20 (VDE 0570 Teil 2-20): 2001-04, Besondere Anforderungen an Kleindrosseln

Siehe auch

Literatur

  • Hans-Ulrich Giersch, Hans Harthus, Norbert Vogelsang: Elektrische Maschinen. 5 Auflage. Teubner Verlag, 2003, ISBN 3-519-46821-2.
  • Rudolf Janus: Transformatoren. VDE-Verlag, ISBN 3-8007-1963-0.
  • Helmut Vosen: Kühlung und Belastbarkeit von Transformatoren. VDE-Verlag, ISBN 3-800-72225-9.
  • Rolf Fischer: Elektrische Maschinen. 12 Auflage. Hanser, ISBN 3-446-22693-1, S. 408.
  • Adolf J. Schwab: Elektroenergiesysteme – Erzeugung, Transport, Übertragung und Verteilung elektrischer Energie. Springer-Verlag, 2006, ISBN 3-540-29664-6.

Weblinks

Wiktionary Wiktionary: Transformator – Bedeutungserklärungen, Wortherkunft, Synonyme, Übersetzungen und Grammatik

歡迎來到Bewise Inc.的世界,首先恭喜您來到這接受新的資訊讓產業更有競爭力,我們是提供專業刀具製造商,應對客戶高品質的刀具需求,我們可以協助客戶滿足您對產業的不同要求,我們有能力達到非常卓越的客戶需求品質,這是現有相關技術無法比擬的,我們成功的滿足了各行各業的要求,包括:精密HSS DIN切削刀具協助客戶設計刀具流程DIN or JIS 鎢鋼切削刀具設計NAS986 NAS965 NAS897 NAS937orNAS907 航太切削刀具,NAS航太刀具設計超高硬度的切削刀具醫療配件刀具設計複合式再研磨機PCD地板專用企口鑽石組合刀具NSK高數主軸與馬達專業模具修補工具-氣動與電動粉末造粒成型機主機版專用頂級電桿PCD V-Cut捨棄式圓鋸片組粉末成型機主機版專用頂級電汽車業刀具設計電子產業鑽石刀具木工產業鑽石刀具銑刀與切斷複合再研磨機銑刀與鑽頭複合再研磨機銑刀與螺絲攻複合再研磨機等等。我們的產品涵蓋了從民生刀具到工業級的刀具設計;從微細刀具到大型刀具;從小型生產到大型量產;全自動整合;我們的技術可提供您連續生產的效能,我們整體的服務及卓越的技術,恭迎您親自體驗!!

BW Bewise Inc. Willy Chen willy@tool-tool.com bw@tool-tool.com www.tool-tool.com skype:willy_chen_bw mobile:0937-618-190 Head &Administration Office No.13,Shiang Shang 2nd St., West Chiu Taichung,Taiwan 40356 http://www.tool-tool.com / FAX:+886 4 2471 4839 N.Branch 5F,No.460,Fu Shin North Rd.,Taipei,Taiwan S.Branch No.24,Sec.1,Chia Pu East Rd.,Taipao City,Chiayi Hsien,Taiwan

Welcome to BW tool world! We are an experienced tool maker specialized in cutting tools. We focus on what you need and endeavor to research the best cutter to satisfy users demand. Our customers involve wide range of industries, like mold & die, aerospace, electronic, machinery, etc. We are professional expert in cutting field. We would like to solve every problem from you. Please feel free to contact us, its our pleasure to serve for you. BW product including: cutting toolaerospace tool .HSS  DIN Cutting toolCarbide end millsCarbide cutting toolNAS Cutting toolNAS986 NAS965 NAS897 NAS937orNAS907 Cutting Tools,Carbide end milldisc milling cutter,Aerospace cutting toolhss drillФрезерыCarbide drillHigh speed steelCompound SharpenerMilling cutterINDUCTORS FOR PCDCVDD(Chemical Vapor Deposition Diamond )’PCBN (Polycrystalline Cubic Boron Nitride) Core drillTapered end millsCVD Diamond Tools Inserts’PCD Edge-Beveling Cutter(Golden FingerPCD V-CutterPCD Wood toolsPCD Cutting toolsPCD Circular Saw BladePVDD End Millsdiamond tool. INDUCTORS FOR PCD . POWDER FORMING MACHINE Single Crystal Diamond Metric end millsMiniature end millsСпециальные режущие инструменты Пустотелое сверло Pilot reamerFraisesFresas con mango PCD (Polycrystalline diamond) ‘FresePOWDER FORMING MACHINEElectronics cutterStep drillMetal cutting sawDouble margin drillGun barrelAngle milling cutterCarbide burrsCarbide tipped cutterChamfering toolIC card engraving cutterSide cutterStaple CutterPCD diamond cutter specialized in grooving floorsV-Cut PCD Circular Diamond Tipped Saw Blade with Indexable Insert PCD Diamond Tool Saw Blade with Indexable InsertNAS toolDIN or JIS toolSpecial toolMetal slitting sawsShell end millsSide and face milling cuttersSide chip clearance sawsLong end millsend mill grinderdrill grindersharpenerStub roughing end millsDovetail milling cuttersCarbide slot drillsCarbide torus cuttersAngel carbide end millsCarbide torus cuttersCarbide ball-nosed slot drillsMould cutterTool manufacturer.

Bewise Inc. www.tool-tool.com

ようこそBewise Inc.の世界へお越し下さいませ、先ず御目出度たいのは新たな

情報を受け取って頂き、もっと各産業に競争力プラス展開。

弊社は専門なエンドミルの製造メーカーで、客先に色んな分野のニーズ

豊富なパリエーションを満足させ、特にハイテク品質要求にサポート致します。

弊社は各領域に供給できる内容は:

(1)精密HSSエンドミルのR&D

(2)Carbide Cutting tools設計

(3)鎢鋼エンドミル設計

(4)航空エンドミル設計

(5)超高硬度エンドミル

(6)ダイヤモンドエンドミル

(7)医療用品エンドミル設計

(8)自動車部品&材料加工向けエンドミル設計

弊社の製品の供給調達機能は:

(1)生活産業~ハイテク工業までのエンドミル設計

(2)ミクロエンドミル~大型エンドミル供給

(3)小Lot生産~大量発注対応供給

(4)オートメーション整備調達

(5)スポット対応~流れ生産対応

弊社の全般供給体制及び技術自慢の総合専門製造メーカーに貴方のご体験を御待ちしております。

Bewise Inc. talaşlı imalat sanayinde en fazla kullanılan ve üç eksende (x,y,z) talaş kaldırabilen freze takımlarından olan Parmak Freze imalatçısıdır. Çok geniş ürün yelpazesine sahip olan firmanın başlıca ürünlerini Karbür Parmak Frezeler, Kalıpçı Frezeleri, Kaba Talaş Frezeleri, Konik Alın Frezeler, Köşe Radyüs Frezeler, İki Ağızlı Kısa ve Uzun Küresel Frezeler, İç Bükey Frezeler vb. şeklinde sıralayabiliriz.

BW специализируется в научных исследованиях и разработках, и снабжаем самым высокотехнологичным карбидовым материалом для поставки режущих / фрезеровочных инструментов для почвы, воздушного пространства и электронной индустрии. В нашу основную продукцию входит твердый карбид / быстрорежущая сталь, а также двигатели, микроэлектрические дрели, IC картонорезальные машины, фрезы для гравирования, режущие пилы, фрезеры-расширители, фрезеры-расширители с резцом, дрели, резаки форм для шлицевого вала / звездочки роликовой цепи, и специальные нано инструменты. Пожалуйста, посетите сайт  www.tool-tool.com  для получения большей информации.

BW is specialized in R&D and sourcing the most advanced carbide material with high-tech coating to supply cutting / milling tool for mould & die, aero space and electronic industry. Our main products include solid carbide / HSS end mills, micro electronic drill, IC card cutter, engraving cutter, shell end mills, cutting saw, reamer, thread reamer, leading drill, involute gear cutter for spur wheel, rack and worm milling cutter, thread milling cutter, form cutters for spline shaft/roller chain sprocket, and special tool, with nano grade. Please visit our web  www.tool-tool.com  for more info.

beeway 發表在 痞客邦 留言(0) 人氣()

 

Bewise Inc. www.tool-tool.com Reference source from the internet.

Lavfrekvens-transformatorer (laveffekt). Formålet med kobberfolien om transformatoren til venstre er at dæmpe den magnetiske udstråling, den er ikke en egentlig vikling. Bemærk jern-lamineringen.

En transformator, transformer eller trafo er et arrangement af mindst 2 magnetisk tæt koblede spoler, hvoraf mindst én fødes med vekselstrøm med en vis strømstyrke og spænding - og resten (mindst én) leverer en vekselstrøm ved en anden strømstyrke og spænding. Transformatorer designes til at have en høj virkningsgrad.

Transformator stregtegning. Til venstre (Primær spole) kommer vekselstrøm ind, i eksemplet er det 12 volt og 1 ampere, det er altså 12 watt. Til højre (sekundær spole) kommer der også vekselstrøm ud, nu er det dog 24 volt og 0,5 ampere, altså stadigvæk 12 watt.

[redigér] Sådan virker en transformator

I en "almindelig" transformator er to lange elektriske ledere ("ledninger", som regel tråde af kobber belagt med en elektrisk isolerende "lak") viklet op omkring den samme kerne.

De to frie ender af den ene trådvikling, den såkaldte primærvikling ell. primærspolen, tilsluttes en vekselstrømskilde - derved danner denne vikling et magnetfelt som skifter retning og styrke med samme frekvens som vekselstrømmen.

I den anden trådvikling, sekundær-viklingen ell. sekundærspolen, inducerer det vekslende magnetfelt en elektrisk strøm, og derved kommer sekundærviklingen i sig selv til at fungere som en vekselstrømskilde - selv om der ikke er nogen "direkte" (galvanisk) forbindelse mellem den oprindelige vekselstrømskilde og transformatorens sekundære trådvikling.

[redigér] Mål og egenskaber for en transformator

En sort-hvid TV højspændingstransformator.

En af transformatorens primære anvendelser er at omsætte vekselstrøm ved én spænding og strømstyrke, til vekselstrøm ved en anden spænding og strømstyrke. Dette opnås ved at have forskellige antal vindinger (antal gange tråden er ført rundt om kernen) i hhv. primær og sekundærviklingen, idet spændingerne over de to tråde er ligefrem proportionale med antallet af vindinger.

For at overholde den klassiske fysiks lov om energiens bevarelse, skal den elektriske effekt der omsættes i primær- og sekundær-kredsløbet være lige store i den ideelle, tabsfri transformator (I en praktisk transformator er der altid en lille smule tab, som viser sig ved at transformatoren bliver "håndlun" eller decideret varm når den har arbejdet i nogen tid). Som en følge af energiens bevarelse samt primær- og sekundær-spændingernes proportionalitet med antallet af vindinger, er strømstyrken i primær- og sekundær-kredsløbene omvendt proportionale med antallet af vindinger.

50 Hz LF-effekttransformatorer til elnettet og HF-effekttransformatorer til SMPS (10–500 kHz):

  • Her er det primære VA (voltampere) opgivelsen, hvilket er produktet af max. spænding og max. strøm for et givet transformatorkernetværsnitsareal. For en given spole med n vindinger og en magnetisk kerne, vil kernetværsnitsareal og materialevalget sætte en øvre grænse for strømmen. Overskrides strømmen (og dermed spændingen) vil selvinduktionen og dermed reaktansen for den givne frekvens falde fordi kernen mættes.

En 60/10 kilovolt transformer, der forsyner et mindre bysamfund i Danmark.

LF-audio transformatorer er noget af det sværeste at designe fordi den i princippet skal kunne formidle fra 20–20.000 Hz med:

Problemet er bl.a. at ved lave frekvenser fordres mange vindinger for at høj reaktans kan opnås, men som bieffekt fås en stor kondensatorvirkning mellem spolens vindinger - og for høje frekvenser lav kondensatorvirkning.

Laveffekts HF-svingningskredstransformatorer:

  • Det forsøges også at minske spolernes egenkondensatorvirkning.
  • Designes til en høj Q-faktor, hvilket betyder lave tab ved mindre effekter. De lave tab opnås ved at:
    • Vælge en isoleret trådtykkelse som er mindre en fortrængningsdybden.
    • Trådens isolationsmateriale skal have lave tab ved det frekvensområde svingningskredsen skal anvendes ved.
    • Vælge og udforme et kernemateriale så lave tab opnås ved det frekvensområde svingningskredsen skal anvendes ved.
    • Vælge en spoleholder, som har lave tab ved det frekvensområde svingningskredsen skal anvendes ved.
    • Lave en metalklokke eller anden afskærmning med god elektrisk ledeevne (kobber, aluminium), så omgivelserne ikke indvirker.

En simpel tommelfingerregel for beregning af spændingen i sekundærspolen er: spændingen følger viklingerne. Det betyder, at hvis antallet af viklinger i sekundærspolen er dobbelt så stort som i primærspolen, så er volttallet i sekundærspolen dobbelt så stort som i primærspolen. Amperetallet halveres så i henhold til den fysiske lov om energiens bevarelse (hvis man ser bort fra varmetab mm.

Et eksempel: Der føres 12V og 1 amp ind i primærspolen, det er i alt 12 watt. I primærspolen er der 200 viklinger, i sekunderspolen er der 400. Antallet af viklinger fordobles altså, så fordobles volttallet også, så der nu er 24V, og da watt-tallet stadig skal være 12 halveres antallet af ampere, så der nu kun er 0,5 amp.

[redigér] Begrænsning af hvirvelstrømstab

I mange transformatorer er kernen udformet som en "blok" af talrige tynde plader af jern i samme facon, som ved hjælp af en isolerende "lak" holdes mekanisk sammen, men elektrisk isoleret fra hinanden.

Havde man brugt en massiv jernblok som kerne i transformatoren, ville der dannes hvirvelstrømme - elektriske strømme der "løber i ring" inde i den elektrisk ledende jernkerne. Dette hvirvelstrømstab (der giver sig til kende ved at transformatoren bliver varm) begrænses, men elimineres ikke helt, af at kernen deles op i tynde, elektrisk isolerede plader.

[redigér] Transformatorer i radioudstyr

HF spoler og transformatorer. Den nederste transformator er en kombineret langbølge- og mellembølge-transformator som bliver koblet som svingningskreds. Den fungerer også som antenne, da den kobler til LB og MB elektromagnetiske signaler via magnetisk kobling fordi ferritstaven ikke er lukket i en sluttet kurve.

I radioteknisk udstyr bruges transformatorer også til impedanstilpasning - disse transformatorer arbejder dog ved så høje frekvenser, at metoden med den lagdelte kerne ikke fungerer, fordi de dannede hvirvelstrømme her kan "cirkulere" inden i de enkelte, isolerede jernplader.

Skal en transformator til brug ved høje frekvenser forsynes med en kerne, laves denne ofte af ferrit, som er pulveriseret jern indstøbt i et elektrisk isolerende stof. De enkelte jernkorn er for små til at selv højfrekvente hvirvelstrømme kan dannes, men tilsammen forbedrer de den magnetiske induktion mellem de to trådviklinger.

[redigér] Litzetråd

Den kombinerede langbølge(venstre)- og mellembølge(højre)-transformator/radioantenne på billedet er viklet med litzetråd. Litzetråd er mange individuelt isolerede tynde kobbertråde, som samlet er omspundet med f.eks. bomuld eller pålagt teflon.

Formålet med litzetråd er at tage højde for strømfortrængningen for vekselstrømme, ved at øge ledningens yderzone. Strømfortrængning er et fysisk fænomen, som har den virkning, at strømmen hovedsageligt løber i yderzonen af en leder. For f.eks. 50 Hz løber 95% af strømmmen i de yderste 7-9 mm kobber.

En massiv kobberstang med f.eks. en radius på 50 mm er ligesågod en leder for 50 Hz som et kobberrør med samme radius, men med en godstykkelse på 7-9 mm.

For langbølgesignaler på ca. 100-500 kHz er strømmens indtrængningsdybde langt mindre, end for 50 Hz.

De 3 spoler foroven til venstre i billedet, er også vilket med litzetråd.

[redigér] Krydsviklede spoler

I billedet ses også at langbølge-transformatorens "store" spole er krydsviklet, hvilket har det formål at minske en spoleviklings utilsigtede egenkondensatorvirkning fra vinding til vinding.

[redigér] Se også

歡迎來到Bewise Inc.的世界,首先恭喜您來到這接受新的資訊讓產業更有競爭力,我們是提供專業刀具製造商,應對客戶高品質的刀具需求,我們可以協助客戶滿足您對產業的不同要求,我們有能力達到非常卓越的客戶需求品質,這是現有相關技術無法比擬的,我們成功的滿足了各行各業的要求,包括:精密HSS DIN切削刀具協助客戶設計刀具流程DIN or JIS 鎢鋼切削刀具設計NAS986 NAS965 NAS897 NAS937orNAS907 航太切削刀具,NAS航太刀具設計超高硬度的切削刀具醫療配件刀具設計複合式再研磨機PCD地板專用企口鑽石組合刀具NSK高數主軸與馬達專業模具修補工具-氣動與電動粉末造粒成型機主機版專用頂級電桿PCD V-Cut捨棄式圓鋸片組粉末成型機主機版專用頂級電汽車業刀具設計電子產業鑽石刀具木工產業鑽石刀具銑刀與切斷複合再研磨機銑刀與鑽頭複合再研磨機銑刀與螺絲攻複合再研磨機等等。我們的產品涵蓋了從民生刀具到工業級的刀具設計;從微細刀具到大型刀具;從小型生產到大型量產;全自動整合;我們的技術可提供您連續生產的效能,我們整體的服務及卓越的技術,恭迎您親自體驗!!

BW Bewise Inc. Willy Chen willy@tool-tool.com bw@tool-tool.com www.tool-tool.com skype:willy_chen_bw mobile:0937-618-190 Head &Administration Office No.13,Shiang Shang 2nd St., West Chiu Taichung,Taiwan 40356 http://www.tool-tool.com / FAX:+886 4 2471 4839 N.Branch 5F,No.460,Fu Shin North Rd.,Taipei,Taiwan S.Branch No.24,Sec.1,Chia Pu East Rd.,Taipao City,Chiayi Hsien,Taiwan

Welcome to BW tool world! We are an experienced tool maker specialized in cutting tools. We focus on what you need and endeavor to research the best cutter to satisfy users demand. Our customers involve wide range of industries, like mold & die, aerospace, electronic, machinery, etc. We are professional expert in cutting field. We would like to solve every problem from you. Please feel free to contact us, its our pleasure to serve for you. BW product including: cutting toolaerospace tool .HSS  DIN Cutting toolCarbide end millsCarbide cutting toolNAS Cutting toolNAS986 NAS965 NAS897 NAS937orNAS907 Cutting Tools,Carbide end milldisc milling cutter,Aerospace cutting toolhss drillФрезерыCarbide drillHigh speed steelCompound SharpenerMilling cutterINDUCTORS FOR PCDCVDD(Chemical Vapor Deposition Diamond )’PCBN (Polycrystalline Cubic Boron Nitride) Core drillTapered end millsCVD Diamond Tools Inserts’PCD Edge-Beveling Cutter(Golden FingerPCD V-CutterPCD Wood toolsPCD Cutting toolsPCD Circular Saw BladePVDD End Millsdiamond tool. INDUCTORS FOR PCD . POWDER FORMING MACHINE Single Crystal Diamond Metric end millsMiniature end millsСпециальные режущие инструменты Пустотелое сверло Pilot reamerFraisesFresas con mango PCD (Polycrystalline diamond) ‘FresePOWDER FORMING MACHINEElectronics cutterStep drillMetal cutting sawDouble margin drillGun barrelAngle milling cutterCarbide burrsCarbide tipped cutterChamfering toolIC card engraving cutterSide cutterStaple CutterPCD diamond cutter specialized in grooving floorsV-Cut PCD Circular Diamond Tipped Saw Blade with Indexable Insert PCD Diamond Tool Saw Blade with Indexable InsertNAS toolDIN or JIS toolSpecial toolMetal slitting sawsShell end millsSide and face milling cuttersSide chip clearance sawsLong end millsend mill grinderdrill grindersharpenerStub roughing end millsDovetail milling cuttersCarbide slot drillsCarbide torus cuttersAngel carbide end millsCarbide torus cuttersCarbide ball-nosed slot drillsMould cutterTool manufacturer.

Bewise Inc. www.tool-tool.com

ようこそBewise Inc.の世界へお越し下さいませ、先ず御目出度たいのは新たな

情報を受け取って頂き、もっと各産業に競争力プラス展開。

弊社は専門なエンドミルの製造メーカーで、客先に色んな分野のニーズ

豊富なパリエーションを満足させ、特にハイテク品質要求にサポート致します。

弊社は各領域に供給できる内容は:

(1)精密HSSエンドミルのR&D

(2)Carbide Cutting tools設計

(3)鎢鋼エンドミル設計

(4)航空エンドミル設計

(5)超高硬度エンドミル

(6)ダイヤモンドエンドミル

(7)医療用品エンドミル設計

(8)自動車部品&材料加工向けエンドミル設計

弊社の製品の供給調達機能は:

(1)生活産業~ハイテク工業までのエンドミル設計

(2)ミクロエンドミル~大型エンドミル供給

(3)小Lot生産~大量発注対応供給

(4)オートメーション整備調達

(5)スポット対応~流れ生産対応

弊社の全般供給体制及び技術自慢の総合専門製造メーカーに貴方のご体験を御待ちしております。

Bewise Inc. talaşlı imalat sanayinde en fazla kullanılan ve üç eksende (x,y,z) talaş kaldırabilen freze takımlarından olan Parmak Freze imalatçısıdır. Çok geniş ürün yelpazesine sahip olan firmanın başlıca ürünlerini Karbür Parmak Frezeler, Kalıpçı Frezeleri, Kaba Talaş Frezeleri, Konik Alın Frezeler, Köşe Radyüs Frezeler, İki Ağızlı Kısa ve Uzun Küresel Frezeler, İç Bükey Frezeler vb. şeklinde sıralayabiliriz.

BW специализируется в научных исследованиях и разработках, и снабжаем самым высокотехнологичным карбидовым материалом для поставки режущих / фрезеровочных инструментов для почвы, воздушного пространства и электронной индустрии. В нашу основную продукцию входит твердый карбид / быстрорежущая сталь, а также двигатели, микроэлектрические дрели, IC картонорезальные машины, фрезы для гравирования, режущие пилы, фрезеры-расширители, фрезеры-расширители с резцом, дрели, резаки форм для шлицевого вала / звездочки роликовой цепи, и специальные нано инструменты. Пожалуйста, посетите сайт  www.tool-tool.com  для получения большей информации.

BW is specialized in R&D and sourcing the most advanced carbide material with high-tech coating to supply cutting / milling tool for mould & die, aero space and electronic industry. Our main products include solid carbide / HSS end mills, micro electronic drill, IC card cutter, engraving cutter, shell end mills, cutting saw, reamer, thread reamer, leading drill, involute gear cutter for spur wheel, rack and worm milling cutter, thread milling cutter, form cutters for spline shaft/roller chain sprocket, and special tool, with nano grade. Please visit our web  www.tool-tool.com  for more info.

beeway 發表在 痞客邦 留言(0) 人氣()

 

Bewise Inc. www.tool-tool.com Reference source from the internet.

VN transformátor z televizního přijímače s výstupním napětím 25KV.

Transformátor jednofázový - schematická značka

Transformátor je elektrický netočivý stroj, který umožňuje přenášet elektrickou energii z jednoho obvodu do jiného pomocí vzájemné elektromagnetické indukce. Používá se většinou pro přeměnu střídavého napětí (např. z nízkého napětí na vysoké) nebo pro galvanické oddělení obvodů.

[editovat] Rozdělení transformátorů

  • jednofázový
  • trojfázový
  • vícefázový

  • plášťový
  • jádrový
  • toroidní

  • rozptylový (s magnetickým bočníkem…)
  • speciální
  • bezpečnostní pro napájení například dětských hraček

….

  • dvojvinuťový (primár, sekundár)
  • trojvinuťový (primár, sekundár, terciár)
  • vícevinuťový

[editovat] Popis transformátoru

[editovat] Princip činnosti

=

Základní princip transformátoru

Transformátor pracuje na principu elektromagnetické indukce časovou změnou magnetického toku. Primární cívka ve svém obvodu působí jako spotřebič, sekundární jako zdroj. Do primárního vinutí přivedeme střídavé napětí a protože je uzavřený obvod, tak prochází proud střídavý. Okolo primární cívky se vytvoří magnetické pole charakterizované magnetickým tokem Φ [Fí] a ten je také střídavý. Tento tok se uzavírá převážně jádrem transformátoru a svými účinky zasahuje vinutí sekundární cívky. Vlivem časové změny magnetického toku se v sekundárních vodičích indukuje střídavé napětí.

[editovat] Magnetické obvody a ztráty v transformátoru

[editovat] Ztráty nakrátko („v mědi“)
  • Transformátor nakrátko je napájen do vstupního vinutí proudem obvykle harmonického průběhu (tj. sinusového průběhu) a současně má svorky jednoho výstupního vinutí spojeny napřímo = nakrátko.
  • Na svorkách zkratovaného výstupního vinutí můžeme naměřit proud, odpovídající velikosti napájecího proudu, přepočteného obrácenou hodnotou závitového převodu (z důvodu rozptylů je menší).
  • Napájecí proud má takovou velikost, aby byla dosažena hodnota jmenovitého proudu v napájecím nebo zkratovaném vinutí (rozhoduje menší hodnota).
  • Napětí na vstupním vinutí je malé.
  • Z výstupních vinutí není odebíráno žádné napětí ani výkon.
  • Ztráty nakrátko (výkon odebíraný z napájecího zdroje) jsou využívány na pokrytí ztrát Jouleova tepla ve vinutích transformátoru. Magnetické toky jsou malé, ztráty v magnetickém obvodu (vířivé proudy) jsou zanedbatelné. Proto se onačují „ztráty nakrátko = ztráty v mědi“.

[editovat] Ztráty naprázdno („v železe“)
  • Transformátor naprázdno je napájen do vstupního vinutí jmenovitým napětím, obvykle harmonického průběhu (tj. sinusového průběhu) a současně má všechny ostatní svorky rozpojeny = bez zátěže.
  • Na svorkách výstupních vinutí můžeme naměřit napětí odpovídající velikosti napájecího napětí přepočteného závitovým převodem (z důvodu rozptylů je menší).
  • Proud vstupního vinutí je malý.
  • Z výstupních vinutí není odebírán žádný proud ani výkon.
  • Ztráty naprázdno (výkon odebíraný z napájecího zdroje) jsou využívány na magnetizaci jádra (vytvoření magnetického toku) a krytí ztrát v magnetickém obvodu (vířivé proudy). Proto se označují „ztráty naprázdno = ztráty v železe“.
  • V jádru transformátoru dochází v důsledku přiloženého napětí k jevu magnetostrikce - malým změnám rozměrů jako funkce napětí. Tyto periodické změny jsou pak dobře slyšitelné jako tichý tón o frekvenci budícího napětí.

[editovat] Vinutí

Vinutí pro síťové transformátory jsou zhotovována z emailovaných drátů různého průměru. Cívka se navíjí na cívkové tělísko závit po závitu a jednotlivé vrstvy vinutí jsou prokládány impregnovaným papírem. Povrch cívky je izolován lepenkou nebo plátnem. Čím je vinutí dimenzováno na vyšší napětí a větší proudy, tím je výroba cívek obtížnější.[zdroj?]

[editovat] Řízení napětí

[editovat] Autotransformátory

Autotransformátory jsou transformátory, u kterých se pro primární i sekundární vinutí používá stejná cívka. Z mechanického hlediska jde vlastně o cívku na železném jádře s odbočkou pro primární a pro sekundární vinutí. Nevýhodou je, že při takové konstrukci přicházíme o galvanické oddělení primárního a sekundárního vinutí. Odbočka sekundárního vinutí může být realizována pomocí pohyblivého jezdce, přičemž nastavením tohoto jezdce je pak možné regulovat velikost sekundárního napětí. Tento jezdec může být nastavován elektrickým pohonem - odtud zřejmě pochází název autotransformátor - ve smyslu automatický transformátor. Autotransformátory často najdeme v elektrických laboratořích, kde se používají jako regulovatelné zdroje střídavého napětí. Používá se také v dopravě při pohonu trakčních kolejových vozidel (elektrických lokomotiv), kde se využívá především menší hmotnost tohoto typu transformátoru.

Schéma autotransformátoru

[editovat] Hodinový úhel

Charakteristická vlastnost zapojení trojfázového transformátoru. Jedná se o fázový posuv odpovídajících si napětí měřených od fázoru vyššího napětí k nižšímu ve smyslu sledu fází. Udává se v hodinách přičemž 1h odpovídá 30°.

[editovat] Chlazení transformátorů

Malé transformátory jsou obvykle chlazeny vzduchem. Velké transformátory se chladí olejem, protože voda je i při nepatrném znečištění vodivá a vířivými proudy se rozkládá na vodík a kyslík.

[editovat] Druhy chladiv a jejich označení
  • O - oleje
  • A - vzduch
  • W - voda
  • L - nehořlavá izolační kapalina
  • G - plyn
  • S - pevný izolant

[editovat] Označení způsobu oběhu chladiva
  • N - přirozený
  • F - nucený neřízený
  • D - nucený řízený

[editovat] Druhy zkoušek transformátorů

Zkouší se, zda stroj vyhovuje požadavkům kladeným na jakost materiálu, konstrukci rozměry, vlastnost a zároveň vhodnost zdroje pro dané použití.

[editovat] Rozdělení zkoušek
  • podle rozsahu
  • podle účelu
  • podle počtu
  • podle opakování

[editovat] Druhy zkoušek
  • měření izolačního odporu
  • měření odporu vinutí za studena
  • měření převodu napětí
  • kontrola fází
  • zkouška přiloženým napětím
  • zkouška indukovaným napětím
  • měření ztrát naprázdno
  • měření charakteristiky naprázdno
  • měření netočivé impedance
  • měření ztrát nakrátko
  • oteplovací
  • nárazovým napětím plnou vlnou
  • zkratová odolnost
  • nárazovým napětím kusou vlnou
  • měření kapacity vinutí
  • měření hluku
  • elektrické pevnosti oleje
  • mechanická (přepínače odboček)

[editovat] Trendy vývoje transformátoru

Transformátor může pracovat pouze se střídavým proudem, pro stejnosměrný proud je nutné použít měnič (např. rotační, nebo polovodičový měnič s oscilátorem). Transformátor se skládá z primární a sekundární cívky, které bývají pro zvýšení účinnosti navinuty na společném feromagnetickém jádru. Jádro bývá vyrobeno z tenkých plíšků.

Poměr počtu závitů primární a sekundární cívky udává poměr vstupního napětí k výstupnímu.

Pro laboratorní získávání vysokého napětí se využívá speciální Teslův transformátor.

Transformátoru se konstrukcí podobá tlumivka, která je zařazována jako indukční zátěž do obvodů a někdy se využívá i jako zdroj magnetického pole pro rušení magnetických záznamů.

[editovat] Související články

歡迎來到Bewise Inc.的世界,首先恭喜您來到這接受新的資訊讓產業更有競爭力,我們是提供專業刀具製造商,應對客戶高品質的刀具需求,我們可以協助客戶滿足您對產業的不同要求,我們有能力達到非常卓越的客戶需求品質,這是現有相關技術無法比擬的,我們成功的滿足了各行各業的要求,包括:精密HSS DIN切削刀具協助客戶設計刀具流程DIN or JIS 鎢鋼切削刀具設計NAS986 NAS965 NAS897 NAS937orNAS907 航太切削刀具,NAS航太刀具設計超高硬度的切削刀具醫療配件刀具設計複合式再研磨機PCD地板專用企口鑽石組合刀具NSK高數主軸與馬達專業模具修補工具-氣動與電動粉末造粒成型機主機版專用頂級電桿PCD V-Cut捨棄式圓鋸片組粉末成型機主機版專用頂級電汽車業刀具設計電子產業鑽石刀具木工產業鑽石刀具銑刀與切斷複合再研磨機銑刀與鑽頭複合再研磨機銑刀與螺絲攻複合再研磨機等等。我們的產品涵蓋了從民生刀具到工業級的刀具設計;從微細刀具到大型刀具;從小型生產到大型量產;全自動整合;我們的技術可提供您連續生產的效能,我們整體的服務及卓越的技術,恭迎您親自體驗!!

BW Bewise Inc. Willy Chen willy@tool-tool.com bw@tool-tool.com www.tool-tool.com skype:willy_chen_bw mobile:0937-618-190 Head &Administration Office No.13,Shiang Shang 2nd St., West Chiu Taichung,Taiwan 40356 http://www.tool-tool.com / FAX:+886 4 2471 4839 N.Branch 5F,No.460,Fu Shin North Rd.,Taipei,Taiwan S.Branch No.24,Sec.1,Chia Pu East Rd.,Taipao City,Chiayi Hsien,Taiwan

Welcome to BW tool world! We are an experienced tool maker specialized in cutting tools. We focus on what you need and endeavor to research the best cutter to satisfy users demand. Our customers involve wide range of industries, like mold & die, aerospace, electronic, machinery, etc. We are professional expert in cutting field. We would like to solve every problem from you. Please feel free to contact us, its our pleasure to serve for you. BW product including: cutting toolaerospace tool .HSS  DIN Cutting toolCarbide end millsCarbide cutting toolNAS Cutting toolNAS986 NAS965 NAS897 NAS937orNAS907 Cutting Tools,Carbide end milldisc milling cutter,Aerospace cutting toolhss drillФрезерыCarbide drillHigh speed steelCompound SharpenerMilling cutterINDUCTORS FOR PCDCVDD(Chemical Vapor Deposition Diamond )’PCBN (Polycrystalline Cubic Boron Nitride) Core drillTapered end millsCVD Diamond Tools Inserts’PCD Edge-Beveling Cutter(Golden FingerPCD V-CutterPCD Wood toolsPCD Cutting toolsPCD Circular Saw BladePVDD End Millsdiamond tool. INDUCTORS FOR PCD . POWDER FORMING MACHINE Single Crystal Diamond Metric end millsMiniature end millsСпециальные режущие инструменты Пустотелое сверло Pilot reamerFraisesFresas con mango PCD (Polycrystalline diamond) ‘FresePOWDER FORMING MACHINEElectronics cutterStep drillMetal cutting sawDouble margin drillGun barrelAngle milling cutterCarbide burrsCarbide tipped cutterChamfering toolIC card engraving cutterSide cutterStaple CutterPCD diamond cutter specialized in grooving floorsV-Cut PCD Circular Diamond Tipped Saw Blade with Indexable Insert PCD Diamond Tool Saw Blade with Indexable InsertNAS toolDIN or JIS toolSpecial toolMetal slitting sawsShell end millsSide and face milling cuttersSide chip clearance sawsLong end millsend mill grinderdrill grindersharpenerStub roughing end millsDovetail milling cuttersCarbide slot drillsCarbide torus cuttersAngel carbide end millsCarbide torus cuttersCarbide ball-nosed slot drillsMould cutterTool manufacturer.

Bewise Inc. www.tool-tool.com

ようこそBewise Inc.の世界へお越し下さいませ、先ず御目出度たいのは新たな

情報を受け取って頂き、もっと各産業に競争力プラス展開。

弊社は専門なエンドミルの製造メーカーで、客先に色んな分野のニーズ

豊富なパリエーションを満足させ、特にハイテク品質要求にサポート致します。

弊社は各領域に供給できる内容は:

(1)精密HSSエンドミルのR&D

(2)Carbide Cutting tools設計

(3)鎢鋼エンドミル設計

(4)航空エンドミル設計

(5)超高硬度エンドミル

(6)ダイヤモンドエンドミル

(7)医療用品エンドミル設計

(8)自動車部品&材料加工向けエンドミル設計

弊社の製品の供給調達機能は:

(1)生活産業~ハイテク工業までのエンドミル設計

(2)ミクロエンドミル~大型エンドミル供給

(3)小Lot生産~大量発注対応供給

(4)オートメーション整備調達

(5)スポット対応~流れ生産対応

弊社の全般供給体制及び技術自慢の総合専門製造メーカーに貴方のご体験を御待ちしております。

Bewise Inc. talaşlı imalat sanayinde en fazla kullanılan ve üç eksende (x,y,z) talaş kaldırabilen freze takımlarından olan Parmak Freze imalatçısıdır. Çok geniş ürün yelpazesine sahip olan firmanın başlıca ürünlerini Karbür Parmak Frezeler, Kalıpçı Frezeleri, Kaba Talaş Frezeleri, Konik Alın Frezeler, Köşe Radyüs Frezeler, İki Ağızlı Kısa ve Uzun Küresel Frezeler, İç Bükey Frezeler vb. şeklinde sıralayabiliriz.

BW специализируется в научных исследованиях и разработках, и снабжаем самым высокотехнологичным карбидовым материалом для поставки режущих / фрезеровочных инструментов для почвы, воздушного пространства и электронной индустрии. В нашу основную продукцию входит твердый карбид / быстрорежущая сталь, а также двигатели, микроэлектрические дрели, IC картонорезальные машины, фрезы для гравирования, режущие пилы, фрезеры-расширители, фрезеры-расширители с резцом, дрели, резаки форм для шлицевого вала / звездочки роликовой цепи, и специальные нано инструменты. Пожалуйста, посетите сайт  www.tool-tool.com  для получения большей информации.

BW is specialized in R&D and sourcing the most advanced carbide material with high-tech coating to supply cutting / milling tool for mould & die, aero space and electronic industry. Our main products include solid carbide / HSS end mills, micro electronic drill, IC card cutter, engraving cutter, shell end mills, cutting saw, reamer, thread reamer, leading drill, involute gear cutter for spur wheel, rack and worm milling cutter, thread milling cutter, form cutters for spline shaft/roller chain sprocket, and special tool, with nano grade. Please visit our web  www.tool-tool.com  for more info.

beeway 發表在 痞客邦 留言(0) 人氣()