公告版位
Bewise Inc. www.tool-tool.com Reference source from the internet.

超伝導(ちょうでんどう、Superconductivity)は特定の物質が超低温に冷やされた時に、電気抵抗がゼロになったり、物質内部から磁力線が排除されたりする現象のこと。工学分野では、「超電導」と書かれることもある。

超伝導現象が生じる物質のことを「超伝導物質」 (Superconductor) と呼び、それが超伝導状態にある場合は「超伝導体」と呼ばれる。液体窒素の沸点である-196 °C (77 K)以上で超伝導現象を起こすものは高温超伝導物質と呼ばれる。物質内部から磁力線が排除されることはマイスナー効果と呼ばれる。

超伝導体は磁場に対する応答の違いから第一種超伝導体第二種超伝導体とに分類できる。 第二種超伝導体では、超伝導体中を磁束量子が格子状に貫通することで超伝導状態と磁場が共存可能になり、磁束が超伝導体中の不純物などに固定されるピン止め効果によりゼロ抵抗を維持している。いわゆる「磁気浮上」現象ではこの磁束のピン止めが重要な役割を果たす。

[編集] 歴史と概要

1911年当時、純度の高い金属が容易に得られる水銀を液体ヘリウムで冷却していったとき、温度 4.2 K で突然電気抵抗がほぼゼロになることがオランダのヘイケ・カメルリング・オネスによって初めて報告された。装置の性能の限界のために抵抗は10-5Ω以下であった。超伝導状態への移り変わりは温度 4.2 K で急激に生じており、電気抵抗も絶対零度に向けて漸近的にゼロに近づくというような振る舞いとはまったく異なる。水が氷になるように、まったく新しい相への突入(相転移)であることを意味する。このため超伝導相に移り変わる温度を、(超伝導)転移温度という。超伝導に転移する前の相は常伝導という。

超伝導の電気抵抗は直接測定しては、測定器自体が抵抗となってしまい限界がある。そのため、超伝導体で作った閉回路を流れる電流が作る磁場を測定する。磁場を測定できる限り閉回路に永久電流が流れているといえる。

超伝導発見以降、多くの超伝導を示す元素、物質が発見されている。しかし、アルカリ金属、金、銀、銅などの電気伝導性の高い金属は超伝導にならない。単体の元素で最も超伝導転移温度が高いものは、ニオブの 9.2 K(常圧下)である。常圧下において超伝導を示す金属は多いが、そうでない金属、あるいは非金属元素でも高圧下で(非金属の場合は金属化と同時に)超伝導を示すものがある。また、重い電子系における超伝導や、高温超伝導強磁性と超伝導が共存する物質など従来の超伝導物質と性格の異なるものも発見されている。

1933年にヴァルター・マイスナーによって超伝導体が外部磁場を退けるマイスナー効果が発見された。これにより、超伝導体は完全導体と違うことが決定付けられた。1935年にロンドン兄弟(フリッツ・ロンドンハインツ・ロンドン)が発表したロンドン方程式により、マイスナー効果は理論的に説明された。

1957年に発表されたジョン・バーディーンレオン・クーパー、ロバート・シュリーファーらのBCS理論により、超伝導現象の基本的なメカニズムが解明された。

超伝導現象は超高感度の磁気測定装置 (SQUID) や医療用のMRI装置を含む、各種の磁気共鳴用の超伝導電磁石など既に重要な応用分野を持っているが、今でもこれらの冷却には高価格な液体ヘリウムが用いられており、大規模な利用への障害になっている。そのため、より高い温度で超伝導を起こす物質を探すなど、最初の発見から100年近く経った現在でも超伝導についての研究が盛んに行なわれている。

1980年代に発見された銅酸化物高温超伝導体や、その後今世紀になって見つかった二ホウ化マグネシウム (MgB2) を実用化する試みが続いている。

[編集] 超伝導の特徴

[編集] 主な5つの特徴

完全導電性
電気抵抗がゼロのため、一度流し始めた電流が永続する。電圧降下なしに直流電流が流れる。オネスによる超伝導の発見の際に確認され、超伝導の基本的特徴として広く知られる。
マイスナー効果(完全反磁性)
超 伝導体内部から磁場を排除して内部磁場をゼロにする。超伝導体を磁石上で常伝導状態から徐々に冷やしていき、転移温度を超えた瞬間に浮き上がる 現象がマイスナー効果によるものである。これは常伝導状態で超伝導体内に磁束が侵入していたものが、超伝導になると同時に磁束を排除して浮き上がるもので ある。なお、単に超伝導体の上に磁石が浮く現象だけでは、永久電流による効果かマイスナー効果による効果かの判断はできない。
磁束の量子化
超伝導体内部を通る磁束は \frac{h}{2e} の整数倍のとびとびの値をとる。(hプランク定数e は素電荷)
ジョセフソン効果
絶縁体を間に挟んだ2つの超伝導体間を、電圧降下なしにトンネル電流が流れる。2つの超伝導体の間に挟まれた絶縁体には超伝導状態を表す波動関数の位相差に比例した電流が流れる。ミクロな波動関数という概念をマクロに観測できるため超伝導を象徴する現象である。(ジョセフソン効果を参照のこと。)
ピン止め効果
磁 束格子状態において、外部磁場の変化に対して磁束格子が追随して変化しない現象をピン止め、あるいはピン止め効果と呼ぶ。実用超伝導体において 重要な現象。この現象がなければ実質的に超伝導体に電流が流せないため実用化ができなくなる。ひずみや不純物などの欠陥を多く含む非理想的な第二種超伝導 体を貫く磁束は、これらの欠陥に引っかかり止められて動けない。(ピン止め効果を参照のこと。)

[編集] その他

磁束格子状態
第二種超伝導体では、その超伝導体に固有の磁場値(下部臨界磁場)以上の磁場を印加した場合、量子化した磁束が超伝導体内部に侵入する。混合状態とも呼ばれる。このとき磁束コア同士は互いに反発するため、多くの場合、最密構造つまり三角格子を形成する。ただしフェルミ面の形状などの寄与によっては四角格子を組む場合もあることが最近の研究から知られている。
臨界磁場の存在
一定以上の強度の磁場を加えることで超伝導状態は消失する。第二種超伝導体には、この意味での臨界磁場(上部臨界磁場 Hc2 と呼ぶ)と完全反磁性状態から磁束格子状態への転移を意味する下部臨界磁場 Hc1 が存在する。(臨界磁場を参照のこと。)
比熱の異常
超伝導への相転移は二次の相転移で、比熱に常伝導状態‐超伝導状態の間で“とび”が存在する。
クエンチ
超伝導電磁石において超伝導コイルの一部が超伝導状態から常伝導状態に戻ることを「クエンチ」 (quench) と呼ぶ。これに続いて全面的な常伝導化が進むので、電気的、磁気的、熱的、機械的に大きな変化が同時に起こる。
エネルギーギャップの存在(→BCS理論
同位体効果

歡迎來到Bewise Inc.的世界,首先恭喜您來到這接受新的資訊讓產業更有競爭力,我們是提供專業刀具製造商,應對客戶高品質的刀具需求,我們可以協助客戶滿足您對產業的不同要求,我們有能力達到非常卓越的客戶需求品質,這是現有相關技術無法比擬的,我們成功的滿足了各行各業的要求,包括:精密HSS DIN切削刀具協助客戶設計刀具流程DIN or JIS 鎢鋼切削刀具設計NAS986 NAS965 NAS897 NAS937orNAS907 航太切削刀具,NAS航太刀具設計超高硬度的切削刀具BW捨棄式鑽石V卡刀BW捨棄式金屬圓鋸片木工捨棄式金屬圓鋸片PCD木工圓鋸片醫療配件刀具設計汽車業刀具設計電子產業鑽石刀具全鎢鋼V卡刀-電路版專用全鎢鋼鋸片焊刃式側銑刀焊刃式千鳥側銑刀焊刃式T型銑刀焊刃式千鳥T型銑刀焊刃式螺旋機械鉸刀全鎢鋼斜邊刀電路版專用鎢鋼焊刃式高速鉸刀超微粒鎢鋼機械鉸刀超微粒鎢鋼定點鑽焊刃式帶柄角度銑刀焊刃式螺旋立銑刀焊刃式帶柄倒角銑刀焊刃式角度銑刀焊刃式筒型平面銑刀木工產業鑽石刀具等等。我們的產品涵蓋了從民生刀具到工業級的刀具設計;從微細刀具到大型刀具;從小型生產到大型量產;全自動整合;我們的技術可提供您連續生產的效能,我們整體的服務及卓越的技術,恭迎您親自體驗!!

BW Bewise Inc. Willy Chen willy@tool-tool.com bw@tool-tool.com www.tool-tool.com skype:willy_chen_bw mobile:0937-618-190 Head &Administration Office No.13,Shiang Shang 2nd St., West Chiu Taichung,Taiwan 40356 http://www.tool-tool..com / FAX:+886 4 2471 4839 N.Branch 5F,No.460,Fu Shin North Rd.,Taipei,Taiwan S.Branch No.24,Sec.1,Chia Pu East Rd.,Taipao City,Chiayi Hsien,Taiwan

Welcome to BW tool world! We are an experienced tool maker specialized in cutting tools. We focus on what you need and endeavor to research the best cutter to satisfy users demand. Our customers involve wide range of industries, like mold & die, aerospace, electronic, machinery, etc. We are professional expert in cutting field. We would like to solve every problem from you. Please feel free to contact us, its our pleasure to serve for you. BW product including: cutting toolaerospace tool .HSS DIN Cutting toolCarbide end millsCarbide cutting toolNAS Cutting toolNAS986 NAS965 NAS897 NAS937orNAS907 Cutting Tools,Carbide end milldisc milling cutter,Aerospace cutting toolhss drillФрезерыCarbide drillHigh speed steelMilling cutterCVDD(Chemical Vapor Deposition Diamond )’PCBN (Polycrystalline Cubic Boron Nitride) Core drillTapered end millsCVD Diamond Tools Inserts’PCD Edge-Beveling Cutter(Golden FingerEdge modifying knifeSolid carbide saw blade-V typeV-type locking-special use for PC boardMetal Slitting SawaCarbide Side milling CuttersCarbide Side Milling Cutters With Staggered TeethCarbide T-Slot Milling CuttersCarbide T-Slot Milling Cutters With Staggered TeethCarbide Machine ReamersHigh speed reamer-standard typeHigh speed reamer-long type’’PCD V-CutterPCD Wood toolsPCD Cutting toolsPCD Circular Saw BladePVDD End Millsdiamond tool V-type locking-special use for PC board Single Crystal Diamond Metric end millsMiniature end millsСпециальные режущие инструменты Пустотелое сверло Pilot reamerFraisesFresas con mango PCD (Polycrystalline diamond) ‘FreseElectronics cutterStep drillMetal cutting sawDouble margin drillGun barrelAngle milling cutterCarbide burrsCarbide tipped cutterChamfering toolIC card engraving cutterSide cutterNAS toolDIN or JIS toolSpecial toolMetal slitting sawsShell end millsSide and face milling cutters

beeway 發表在 痞客邦 留言(0) 人氣()

Bewise Inc. www.tool-tool.com Reference source from the internet.
A magnet levitating above a high-temperature superconductor, cooled with liquid nitrogen. Persistent electric current flows on the surface of the superconductor, acting to exclude the magnetic field of the magnet (the Meissner effect). This current effectively forms an electromagnet that repels the magnet.

A magnet levitating above a high-temperature superconductor, cooled with liquid nitrogen. Persistent electric current flows on the surface of the superconductor, acting to exclude the magnetic field of the magnet (the Meissner effect). This current effectively forms an electromagnet that repels the magnet.

Superconductivity is a phenomenon occurring in certain materials at very low temperatures, characterized by exactly zero electrical resistance and the exclusion of the interior magnetic field (the Meissner effect).

The electrical resistivity of a metallic conductor decreases gradually as the temperature is lowered. However, in ordinary conductors such as copper and silver, impurities and other defects impose a lower limit. Even near absolute zero a real sample of copper shows a non-zero resistance. The resistance of a superconductor, on the other hand, drops abruptly to zero when the material is cooled below its "critical temperature". An electric current flowing in a loop of superconducting wire can persist indefinitely with no power source. Like ferromagnetism and atomic spectral lines, superconductivity is a quantum mechanical phenomenon. It cannot be understood simply as the idealization of "perfect conductivity" in classical physics.

Superconductivity occurs in a wide variety of materials, including simple elements like tin and aluminium, various metallic alloys and some heavily-doped semiconductors. Superconductivity does not occur in noble metals like gold and silver, nor in most ferromagnetic metals.

In 1986 the discovery of a family of cuprate-perovskite ceramic materials known as high-temperature superconductors, with critical temperatures in excess of 90 kelvin, spurred renewed interest and research in superconductivity for several reasons. As a topic of pure research, these materials represented a new phenomenon not explained by the current theory. And, because the superconducting state persists up to more manageable temperatures, past the economically-important boiling point of liquid nitrogen (77 kelvin), more commercial applications are feasible, especially if materials with even higher critical temperatures could be discovered.

[edit] Elementary properties of superconductors

Most of the physical properties of superconductors vary from material to material, such as the heat capacity and the critical temperature, critical field, and critical current density at which superconductivity is destroyed.

On the other hand, there is a class of properties that are independent of the underlying material. For instance, all superconductors have exactly zero resistivity to low applied currents when there is no magnetic field present. The existence of these "universal" properties implies that superconductivity is a thermodynamic phase, and thus possess certain distinguishing properties which are largely independent of microscopic details.

[edit] Zero electrical "dc" resistance

Electric cables for accelerators at CERN: top, regular cables for LEP; bottom, superconducting cables for the LHC.

Electric cables for accelerators at CERN: top, regular cables for LEP; bottom, superconducting cables for the LHC.

The simplest method to measure the electrical resistance of a sample of some material is to place it in an electrical circuit in series with a current source I and measure the resulting voltage V across the sample. The resistance of the sample is given by Ohm's law as R = \frac{V}{I}. If the voltage is zero, this means that the resistance is zero and that the sample is in the superconducting state.

Superconductors are also able to maintain a current with no applied voltage whatsoever, a property exploited in superconducting electromagnets such as those found in MRI machines. Experiments have demonstrated that currents in superconducting coils can persist for years without any measurable degradation. Experimental evidence points to a current lifetime of at least 100,000 years, and theoretical estimates for the lifetime of a persistent current exceed the estimated lifetime of the universe.

In a normal conductor, an electrical current may be visualized as a fluid of electrons moving across a heavy ionic lattice. The electrons are constantly colliding with the ions in the lattice, and during each collision some of the energy carried by the current is absorbed by the lattice and converted into heat, which is essentially the vibrational kinetic energy of the lattice ions. As a result, the energy carried by the current is constantly being dissipated. This is the phenomenon of electrical resistance.

The situation is different in a superconductor. In a conventional superconductor, the electronic fluid cannot be resolved into individual electrons. Instead, it consists of bound pairs of electrons known as Cooper pairs. This pairing is caused by an attractive force between electrons from the exchange of phonons. Due to quantum mechanics, the energy spectrum of this Cooper pair fluid possesses an energy gap, meaning there is a minimum amount of energy ΔE that must be supplied in order to excite the fluid. Therefore, if ΔE is larger than the thermal energy of the lattice, given by kT, where k is Boltzmann's constant and T is the temperature, the fluid will not be scattered by the lattice. The Cooper pair fluid is thus a superfluid, meaning it can flow without energy dissipation.

In a class of superconductors known as Type II superconductors, including all known high-temperature superconductors, an extremely small amount of resistivity appears at temperatures not too far below the nominal superconducting transition when an electrical current is applied in conjunction with a strong magnetic field, which may be caused by the electrical current. This is due to the motion of vortices in the electronic superfluid, which dissipates some of the energy carried by the current. If the current is sufficiently small, the vortices are stationary, and the resistivity vanishes. The resistance due to this effect is tiny compared with that of non-superconducting materials, but must be taken into account in sensitive experiments. However, as the temperature decreases far enough below the nominal superconducting transition, these vortices can become frozen into a disordered but stationary phase known as a "vortex glass". Below this vortex glass transition temperature, the resistance of the material becomes truly zero.

[edit] Superconducting phase transition

Behavior of heat capacity (cv, blue) and resistivity (ρ, green) at the superconducting phase transition

Behavior of heat capacity (cv, blue) and resistivity (ρ, green) at the superconducting phase transition

In superconducting materials, the characteristics of superconductivity appear when the temperature T is lowered below a critical temperature Tc. The value of this critical temperature varies from material to material. Conventional superconductors usually have critical temperatures ranging from around 20 K (Kelvin) to less than 1 K. Solid mercury, for example, has a critical temperature of 4.2 K. As of 2001, the highest critical temperature found for a conventional superconductor is 39 K for magnesium diboride (MgB2), although this material displays enough exotic properties that there is doubt about classifying it as a "conventional" superconductor. Cuprate superconductors can have much higher critical temperatures: YBa2Cu3O7, one of the first cuprate superconductors to be discovered, has a critical temperature of 92 K, and mercury-based cuprates have been found with critical temperatures in excess of 130 K. The explanation for these high critical temperatures remains unknown. Electron pairing due to phonon exchanges explains superconductivity in conventional superconductors, but it does not explain superconductivity in the newer superconductors that have a very high critical temperature.

The onset of superconductivity is accompanied by abrupt changes in various physical properties, which is the hallmark of a phase transition. For example, the electronic heat capacity is proportional to the temperature in the normal (non-superconducting) regime. At the superconducting transition, it suffers a discontinuous jump and thereafter ceases to be linear. At low temperatures, it varies instead as e−α /T for some constant α. This exponential behavior is one of the pieces of evidence for the existence of the energy gap.

The order of the superconducting phase transition was long a matter of debate. Experiments indicate that the transition is second-order, meaning there is no latent heat. Calculations in the 1970s suggested that it may actually be weakly first-order due to the effect of long-range fluctuations in the electromagnetic field. Only recently it was shown theoretically with the help of a disorder field theory, in which the vortex lines of the superconductor play a major role, that the transition is of second order within the type II regime and of first order (i.e., latent heat) within the type I regime, and that the two regions are separated by a tricritical point.

[edit] Meissner effect

When a superconductor is placed in a weak external magnetic field H, the field penetrates the superconductor for only a short distance λ, called the London penetration depth, after which it decays rapidly to zero. This is called the Meissner effect, and is a defining characteristic of superconductivity. For most superconductors, the London penetration depth is on the order of 100 nm.

The Meissner effect is sometimes confused with the kind of diamagnetism one would expect in a perfect electrical conductor: according to Lenz's law, when a changing magnetic field is applied to a conductor, it will induce an electrical current in the conductor that creates an opposing magnetic field. In a perfect conductor, an arbitrarily large current can be induced, and the resulting magnetic field exactly cancels the applied field.

The Meissner effect is distinct from this because a superconductor expels all magnetic fields, not just those that are changing. Suppose we have a material in its normal state, containing a constant internal magnetic field. When the material is cooled below the critical temperature, we would observe the abrupt expulsion of the internal magnetic field, which we would not expect based on Lenz's law.

The Meissner effect was explained by the brothers Fritz and Heinz London, who showed that the electromagnetic free energy in a superconductor is minimized provided

 \nabla^2\mathbf{H} = \lambda^{-2} \mathbf{H}\,

where H is the magnetic field and λ is the London penetration depth.

This equation, which is known as the London equation, predicts that the magnetic field in a superconductor decays exponentially from whatever value it possesses at the surface.

The Meissner effect breaks down when the applied magnetic field is too large. Superconductors can be divided into two classes according to how this breakdown occurs. In Type I superconductors, superconductivity is abruptly destroyed when the strength of the applied field rises above a critical value Hc. Depending on the geometry of the sample, one may obtain an intermediate state consisting of regions of normal material carrying a magnetic field mixed with regions of superconducting material containing no field. In Type II superconductors, raising the applied field past a critical value Hc1 leads to a mixed state in which an increasing amount of magnetic flux penetrates the material, but there remains no resistance to the flow of electrical current as long as the current is not too large. At a second critical field strength Hc2, superconductivity is destroyed. The mixed state is actually caused by vortices in the electronic superfluid, sometimes called fluxons because the flux carried by these vortices is quantized. Most pure elemental superconductors, except niobium, technetium, vanadium and carbon nanotubes, are Type I, while almost all impure and compound superconductors are Type II.

[edit] Theories of superconductivity

Since the discovery of superconductivity, great efforts have been devoted to finding out how and why it works. During the 1950s, theoretical condensed matter physicists arrived at a solid understanding of "conventional" superconductivity, through a pair of remarkable and important theories: the phenomenological Ginzburg-Landau theory (1950) and the microscopic BCS theory (1957). Generalizations of these theories form the basis for understanding the closely related phenomenon of superfluidity, because they fall into the Lambda transition universality class, but the extent to which similar generalizations can be applied to unconventional superconductors as well is still controversial. The four-dimensional extension of the Ginzburg-Landau theory, the Coleman-Weinberg model, is important in quantum field theory and cosmology.

[edit] History of superconductivity

Superconductivity was discovered in 1911 by Heike Kamerlingh Onnes, who was studying the resistance of solid mercury at cryogenic temperatures using the recently-discovered liquid helium as a refrigerant. At the temperature of 4.2 K, he observed that the resistance abruptly disappeared.[1] In subsequent decades, superconductivity was found in several other materials. In 1913, lead was found to superconduct at 7 K, and in 1941 niobium nitride was found to superconduct at 16 K.

The next important step in understanding superconductivity occurred in 1933, when Meissner and Ochsenfeld discovered that superconductors expelled applied magnetic fields, a phenomenon which has come to be known as the Meissner effect.[2] In 1935, F. and H. London showed that the Meissner effect was a consequence of the minimization of the electromagnetic free energy carried by superconducting current.[3]

In 1950, the phenomenological Ginzburg-Landau theory of superconductivity was devised by Landau and Ginzburg.[4]This theory, which combined Landau's theory of second-order phase transitions with a Schrödinger-like wave equation, had great success in explaining the macroscopic properties of superconductors. In particular, Abrikosov showed that Ginzburg-Landau theory predicts the division of superconductors into the two categories now referred to as Type I and Type II. Abrikosov and Ginzburg were awarded the 2003 Nobel Prize for their work (Landau having died in 1968).

Also in 1950, Maxwell and Reynolds et al. found that the critical temperature of a superconductor depends on the isotopic mass of the constituent element.[5] [6] This important discovery pointed to the electron-phonon interaction as the microscopic mechanism responsible for superconductivity.

The complete microscopic theory of superconductivity was finally proposed in 1957 by Bardeen, Cooper, and Schrieffer.[7] Independently, the superconductivity phenomenon was explained by Nikolay Bogolyubov. This BCS theory explained the superconducting current as a superfluid of Cooper pairs, pairs of electrons interacting through the exchange of phonons. For this work, the authors were awarded the Nobel Prize in 1972.

The BCS theory was set on a firmer footing in 1958, when Bogoliubov showed that the BCS wavefunction, which had originally been derived from a variational argument, could be obtained using a canonical transformation of the electronic Hamiltonian.[8] In 1959, Lev Gor'kov showed that the BCS theory reduced to the Ginzburg-Landau theory close to the critical temperature.[9]

In 1962, the first commercial superconducting wire, a niobium-titanium alloy, was developed by researchers at Westinghouse. In the same year, Josephson made the important theoretical prediction that a supercurrent can flow between two pieces of superconductor separated by a thin layer of insulator.[10] This phenomenon, now called the Josephson effect, is exploited by superconducting devices such as SQUIDs. It is used in the most accurate available measurements of the magnetic flux quantum \Phi_0 = \frac{h}{2e}, and thus (coupled with the quantum Hall resistivity) for Planck's constant h. Josephson was awarded the Nobel Prize for this work in 1973.

[edit] High Temperature superconductivity

Until 1986, physicists had believed that BCS theory forbade superconductivity at temperatures above about 30 K. In that year, Bednorz and Müller discovered superconductivity in a lanthanum-based cuprate perovskite material, which had a transition temperature of 35 K (Nobel Prize in Physics, 1987).[11] It was shortly found by M.K. Wu et al. that replacing the lanthanum with yttrium, i.e. making YBCO, raised the critical temperature to 92 K, which was important because liquid nitrogen could then be used as a refrigerant (at atmospheric pressure, the boiling point of nitrogen is 77 K)[12]. This is important commercially because liquid nitrogen can be produced cheaply on-site with no raw materials, and is not prone to some of the problems (solid air plugs, et cetera) of helium in piping. Many other cuprate superconductors have since been discovered, and the theory of superconductivity in these materials is one of the major outstanding challenges of theoretical condensed matter physics.

From about 1993 the highest temperature superconductor was a ceramic material consisting of thallium, mercury, copper, barium, calcium, and oxygen, with Tc=138 K.[13]

In February, 2008, another different, non copper but iron containing, family of high temperature superconductors was discovered.[14][15] Hideo Hosono of the Tokyo Institute of Technology and colleagues found that lanthanum oxygen fluorine iron arsenide (LaO1-xFxFeAs) a oxypnictide becomes a superconductor at 26 kelvin. Other researchers quickly found other materials in the same family of iron superconductors that have transition temperatures as high as 55K. Experts hope that having another family to study will simplify the task of explaining how these materials work.

[edit] Classification

There is not just one criterion to classify superconductors. The most common are:

[edit] Applications

Superconducting magnets are some of the most powerful electromagnets known. They are used in maglev trains, MRI and NMR machines and the beam-steering magnets used in particle accelerators. They can also be used for magnetic separation, where weakly magnetic particles are extracted from a background of less or non-magnetic particles, as in the pigment industries.

Superconductors have also been used to make digital circuits (e.g. based on the Rapid Single Flux Quantum technology) and RF and microwave filters for mobile phone base stations.

Superconductors are used to build Josephson junctions which are the building blocks of SQUIDs (superconducting quantum interference devices), the most sensitive magnetometers known. Series of Josephson devices are used to define the SI volt. Depending on the particular mode of operation, a Josephson junction can be used as photon detector or as mixer. The large resistance change at the transition from the normal- to the superconducting state is used to build thermometers in cryogenic micro-calorimeter photon detectors.

Other early markets are arising where the relative efficiency, size and weight advantages of devices based on HTS outweigh the additional costs involved.

Promising future applications include high-performance transformers, power storage devices, electric power transmission, electric motors (e.g. for vehicle propulsion, as in vactrains or maglev trains), magnetic levitation devices, and Fault Current Limiters. However superconductivity is sensitive to moving magnetic fields so applications that use alternating current (e.g. transformers) will be more difficult to develop than those that rely upon direct current.

歡迎來到Bewise Inc.的世界,首先恭喜您來到這接受新的資訊讓產業更有競爭力,我們是提供專業刀具製造商,應對客戶高品質的刀具需求,我們可以協助客戶滿足您對產業的不同要求,我們有能力達到非常卓越的客戶需求品質,這是現有相關技術無法比擬的,我們成功的滿足了各行各業的要求,包括:精密HSS DIN切削刀具協助客戶設計刀具流程DIN or JIS 鎢鋼切削刀具設計NAS986 NAS965 NAS897 NAS937orNAS907 航太切削刀具,NAS航太刀具設計超高硬度的切削刀具BW捨棄式鑽石V卡刀BW捨棄式金屬圓鋸片木工捨棄式金屬圓鋸片PCD木工圓鋸片醫療配件刀具設計汽車業刀具設計電子產業鑽石刀具全鎢鋼V卡刀-電路版專用全鎢鋼鋸片焊刃式側銑刀焊刃式千鳥側銑刀焊刃式T型銑刀焊刃式千鳥T型銑刀焊刃式螺旋機械鉸刀全鎢鋼斜邊刀電路版專用鎢鋼焊刃式高速鉸刀超微粒鎢鋼機械鉸刀超微粒鎢鋼定點鑽焊刃式帶柄角度銑刀焊刃式螺旋立銑刀焊刃式帶柄倒角銑刀焊刃式角度銑刀焊刃式筒型平面銑刀</</body>

beeway 發表在 痞客邦 留言(0) 人氣()

Bewise Inc. www.tool-tool.com Reference source from the internet.
JRマグレブ MLX01-2。世界最高速度581km/h、山梨実験線にて。

JRマグレブ MLX01-2。世界最高速度581km/h、山梨実験線にて。
HSST - 愛知高速交通100L形(リニモ)

HSST - 愛知高速交通100L形(リニモ

磁気浮上式鉄道(じきふじょうしきてつどう)とは、磁力による反発または吸引で軌道から浮上する車両を使う鉄道である。東海旅客鉄道(JR東海)では英語の“magnetic levitation”(磁気浮上)を省略した“Maglev”(マグレブ)と表現することが多い。

主な磁気浮上式鉄道には、ジェイアール式マグレブ(以下JRマグレブ)、HSSTトランスラピッドなどがある。2007年現在、世界最高速度は、日本のJRマグレブが2003年に記録した581 km/hである。

車輪がないので通常の鉄道のように動輪で推進することができず、非接触の推進手段を使う。現在実用化されているものはすべて、リニアモーターで推進するリニアモーターカーである(実験車両などを含めればその限りではない)。一方、リニアモーターカーの中には通常の鉄道のように車輪で車体を支えるものもあるので、リニアモーターカーすべてが磁気浮上鉄道というわけではない。

[編集] 磁気浮上鉄道の特徴

磁気浮上鉄道の特徴として、浮上および推進を非接触で行うことができる点に尽きる。

[編集] 非接触推進による特徴

ダイレクトドライブ
車輪のような伝達部分を必要としない。特に鉄道では車輪とレールの摩擦係数が比較的低く、特に加速および制動時、斜面の登坂に対する性能には限界があった。しかし、磁気浮上式の場合はエネルギ効率の向上や加速・制動性能の大幅な向上が期待できる。
モータ構成の自由度が上がる
高速や低速の交通システムやコストに応じたモータタイプの選択ができる。

[編集] 非接触浮上による特徴

騒音や振動の低減
完全非接触の構成が取れれば、騒音の原因となるのは空気抵抗のみとなる
保守の手間が大幅に低減

すなわち、以下の利点に集約される。

  • 高速性
  • 低環境負荷(低騒音、省エネルギー)

[編集] 磁気浮上鉄道の技術

磁気浮上に必要な要素技術として、力の働く方向に浮上・案内・駆動の3種類に分類できる。

[編集] 磁気浮上の種類

磁石またはコイルの設置方法により、以下の三種類がある。

  • 反発浮上方式
  • 側面浮上方式
  • 吸引方式

反発浮上および側面浮上式は、設置する磁石またはコイルの位置関係で自然に浮上量が決定する。吸引式は吸引力の働いている間のギャップが減ると浮上力が増す関係にあるため、浮上量を一定に保つために電磁石などで吸引力を制御する必要がある。

また電磁気的作用により以下の分類方法も考えられる。

  • 永久磁石、電磁石同士の吸引・反発を利用して浮上
  • 移動する磁石と、コイル内で発生する電磁誘導作用に発生する起磁力による吸引・反発を利用して浮上
  • 磁石と鉄との間に働く吸引力を利用して浮上

実用的な磁気浮上鉄道を考えた場合、磁石同士の吸引または反発を利用する浮上方法は、軌道と車両の両方に磁石を設置することはコストおよび保守の面でかなり難しい。従って、技術・経済的に採用可能なものは以下の2つとなる。

電磁誘導浮上支持方式 (EDS, ElectroDynamic Suspension System)
車両側に電磁石を設置、軌道側に閉ループのコイルを並べる。車両が軌道上を走行すると、コイルに電磁誘導作用で電流が流れ、これにより磁界が発生する。結果、車両の電磁石と軌道のコイルの間に車体を支持する力が発生する方式。軌道側のコイルは軌道面に置けば、反発浮上式の構成となる。また側面において、側面浮上式の構成も可能である。
利 点としては車両の浮上量を設計で任意に取ることができ、結果として後述の電磁吸引支持方式より大きな浮上量が得られる。欠点としては、静止また は低速走行時に十分な浮上力が得られないため車輪等で支持する必要があることと、車両側に超強力な電磁石が必要となる点が挙げられる。
電磁吸引支持方式 (EMS, ElectroMagnetic Suspension System)
車 両側に吸引用の浮上電磁石を持つ。また軌道側に車両を引き付けるための鉄レール等を使うことができ、軌道側のコストが安く済む利点がある。ま た、停止時、低速時でも浮上可能である。しかし、磁石による吸引は磁界が一定の場合、ギャップが小さくなるほど吸引力は大きくなる関係にある(磁界強度は 距離の二乗に反比例する)。浮上中は、レールと車体とのギャップを常に計測し、浮上電磁石の磁力を制御する必要がある。
またギャップ長が制御できれば永久磁石を使用できる(この方法はM-Bahnで実用化された)。

[編集] 案内の種類

一般の鉄道の場合、レールと車輪の物理的接触により車両に対してレールの方向に案内する力が生じる。磁気浮上式鉄道の場合、非接触による軌道案内が必要になるが、磁気浮上で使用されるシステムをそのまま案内に使っている場合が多い。

[編集] 駆動の種類

非接触のままで推進力を得る手段としては、浮上用磁石と推進用磁石とで兼用ができるリニアモータによる駆動が一般的である。ロケットやジェットエンジン等を用いることもできるが、実際の営業運転を考えた場合、騒音の面で現実的な解ではない。

[編集] リニアモータの種類

リ ニアモータは、回転型のモータを直線に展開したものと考えてよい。一次(電機子)側と二次(界磁)側に並進力を得ることができるモータである。リ ニアモータには回転モータと同種の方式を取ることができる。しかし、磁気浮上鉄道の利点である非接触を行うためには、無整流子構造の交流モータが有利であ る。すなわち磁気浮上鉄道で採用されている構成はリニア同期モータかリニア誘導モータのどちらかとなる。

[編集] リニア同期モータ(リニアシンクロナスモータ、LSM)

車 両側と軌道側両方に電磁コイルを置き、どちら側かの電磁コイルで進行方向に対して吸引・反発力が得られるように磁界の向きを切り替えることで推進 力を得る。磁界を切り替える制御を行うコイルを一次側と呼ぶが、これを車上側に置くか軌道側に置くかで方法が分かれる。すなわち、前者を車上一次方式、後者を地上一次方式とよぶ。

リ ニア同期モータ式の磁気浮上鉄道では、地上一次式とすると車両側に推進に関わる制御装置を持つ必要が無く、車両側コイルを磁気浮上と共用とするこ ともできる。車両小型化に関しては地上一次側の採用にメリットが大きい。しかし、同期モータの場合は車上一次方式・地上一次方式のどちらの場合でも軌道側 にコイルを設置する必要があり、軌道建設の初期費用が膨らむ欠点がある。

[編集] リニア誘導モータ(リニアインダクションモータ、LIM)

誘 導モータは、一次側にコイルを持つが、二次側は単に導体板を置いたものである。磁界中にある導体板内に発生するうず電流から磁界に反発する力が発 生し、これが推進力となる。二次側にかご形や巻き線型も使用可能である。構造は同期モータに比べて単純であるが、エネルギー効率が劣る。

誘導モータにも車上一次、地上一次方式の両構成が可能であるが、軌道に導体板となるレールを敷設するだけで済む車上一次式が一般的である。また、レールと一次コイルの配置方法として、レールの片面のみにコイルを配置する片側式とレールの両面に配置する両側式がある。

[編集] 磁気浮上鉄道の要素技術分類

ここでは研究開発が行われたことのある磁気浮上鉄道を要素技術別で分類する。大分類としては、リニアモータ駆動の方法と磁気浮上力を得る方法に分けることができる。以下の表を参照のこと。

[隠す]
磁気浮上式鉄道
磁気浮上方式
リニアモータ方式
電磁吸引方式 電磁誘導方式
支持・案内分離式 支持・案内兼用式
地上一次リニア同期モータ トランスラピッド (TR-05~、独)
M-Bahn (旧西独)

JR式マグレブ (日)
EET (旧西独)
車上一次リニア誘導モータ KOMET(旧西独)
EML (日)
HSST(日)
バーミンガムピープルムーバ (英)
トランスラピッド (TR-02、旧西独)

推進方式未定
(リニアモータも可能)

インダクトラック (米)

[編集] 推進抵抗

磁気浮上であるため、車体と軌道等との接触はないため、これらの動摩擦力は働かないが、以下の2つが推進時の抵抗として働く。

[編集] 空気抵抗

特に高速移動を前提とする場合には、空気抵抗は速度の二乗に比例して増大するため、大きな問題となる。このため車両デザインには空力的に洗練されたものが要求される。

[編集] 磁気抵抗

磁 界中を移動する導体には電磁誘導により磁界に抗する力が発生するが、これが抵抗となる。磁気浮上鉄道では空気抵抗に比べて桁違いに小さいが、強力 な電磁石を用いて高速に移動する場合は無視できない。通常の鉄橋梁や鉄筋コンクリートの使用は磁気抵抗発生の原因となりうるため、低磁性や非磁性の材料の 使用が必要となる場合がある。

[編集] 磁気浮上鉄道と他の交通機関との比較

1人当りの輸送に係るエネルギー消費で比較した場合、磁気浮上式鉄道(500km/h)はガソリン自動車(100km/h)の約1/2、航空機(900km/h)の約1/3である。また高速移動可能であるにも関わらず騒音や振動は比較的少ない。

高速輸送での運用を考えた場合、速度は高速鉄道と航空機の中間に位置する。航空機と比べ前述のエネルギー効率を始め、運用コストや利便性では有利である。また乗用車と比較しても環境負荷や移動時間の正確性などで有利である。

磁 気浮上式鉄道の導入の一番のボトルネックは軌道の建設など初期投資が莫大であることが挙げられる。ドイツでは、1990年代にトランスラピッドを ハンブルグからベルリンまで導入する計画があり、調査が進められた。1998年に成立した連立政権は建設着工を公約としたが、予算の目処が立たずまた工事 による環境負荷による反対運動もあって、2000年に取りやめとなった。

[編集] 磁気浮上鉄道の歴史

[編集] 浮上鉄道のアイデア

浮上式の交通機関のアイデアは古くから存在する。大部分は航空機へとつながるアイデアであるが、19世紀頃には、気球を車体に取り付け、空中に設置された軌道を走行する鉄道や、水流に乗って走る鉄道の想像図が描かれ、特許も多数申請された。実際、1870年頃のフランスパリで行われた博覧会では、水を軌道から吹き上げ、車両を浮上させてその上を走る列車が運転された。

第 二次世界大戦後、航空機や自動車の技術が発達すると鉄道に関しても高速化に関する研究が各国で始まる。鉄道の高速化に際し、鉄レールと鉄輪の組み 合わせがボトルネックになると考えられていた。そこで、車両そのものを浮上させて高速化を図ろうというアイデアが提案されるようになる。具体的には、磁気 浮上とエア浮上の2種類が考えられた。

[編集] 磁気浮上鉄道の基礎研究・開発

磁気浮上による車両浮上のアイデアは古くからあり、1914年に、イギリスのエミール・バチェレット(Emile Bachelet)が世界初の電磁誘導反発式の磁気浮上リニアモータのモデル実験を行っている。また、ドイツではトランスラピッドの源流ともなる電磁吸引式浮上がヘルマン・ケンペル(Hermann Kemper)により1922年に開発がはじまり、1934年にケンペルは磁気浮上鉄道の基本特許をドイツで取得した。

磁気浮上鉄道の研究が本格化したのは1960年代に入ってからで、各国で研究が始まった。特に旧西ドイツは国家的支援を受けて、メッサーシュミット・ベルコウ・ブローム(MBB)社が1966年から本格的に研究を始め、1971年、Prinzipfahrzeug(車上一次リニア誘導モータ)が90km/hの記録をつくる。また、1975年にKomet(Komponentenmeßtrager)が14mmの電磁吸引浮上で水蒸気ロケット推進ながら401.3km/hの記録をマーク。また、日本のHSSTの一部技術の基になった技術の導入元でもあったクラウス=マッファイ社が中心となったトランスラッピッド・プロジェクトのTR-02号機が1971年に164km/hをマーク。またシーメンス社が中心となり、超電導による電磁誘導式浮上のEET-01が1974年に280mの円形軌道で230km/hの走行実験を行った。

日本では、1963年から鉄道総合技術研究所を中心に研究が始まり、1972年に国鉄が日本の鉄道100周年を記念してML100による試験走行を公開。また日本航空がクラウス=マッファイ社の技術を導入してHSSTの開発プロジェクトを立ち上げ、1975年から開発を開始。また当時の運輸省は独自に通勤用の磁気浮上式鉄道イーエムエルプロジェクト(EMLプロジェクト)立ち上げ、1976年に実験を行っている。

アメリカでは、1970年代に磁気浮上の研究が行われていたがその後低調となり、ローマグ社(Romag)から開発を引き継いだボーイング社で1980年代中までは行われていたようである。

[編集] 磁気浮上鉄道の歴史

有人走行実験以降について述べる。

  • 1980年- 日本 - マグレブが宮崎実験線をU字型軌道に改良。有人走行車両MLU001を導入。
  • 1983年- 西独 - TR-06がエムスランド実験線(20.3km)で走行試験を始める。
  • 1984年- 英国 - バーミンガムピープルムーバがバーミンガム空港とバーミンガム駅間の世界初の 実用化路線として完成(1995年運行停止)。英国ではホバートレイン計画の中止後、イギリス国鉄や大学で磁気浮上鉄道の研究が行われていた。イギリス国 鉄は市場調査の結果、低速の市内交通に磁気浮上鉄道の可能性があるとし、小型低速タイプの研究を行っていたが、その成果である。
  • 1985年 - 日本 - つくば国際科学技術博覧会でHSST03が運転した。
  • 1986年 - カナダ - バンクーバー国際交通博覧会でHSST03が運転した。日本の磁気浮上鉄道が海外で運転されたのは初めて。
  • 1987年 - 日本 - 愛知県の葵博覧会でHSST03が運転した。
  • 1988年 - 日本 - 埼玉県のさいたま博覧会でHSSTが運転した。
  • 1989年- 西独 - M-Bahnが旧西ベルリングライスドライエック駅~ケンパープラッツ駅間約1.6kmで、実用線としては世界で2番目に運行開始。1973年に開発が始まり1987年に実用線が完成したが、1992年に廃止された。しかし、実用化に向けた開発・売り込みは続いており、ブラウンシュバイク工科大学のキャンパス内に全周1.3kmの実験線が建設され、日本の神戸製鋼所AEG社は技術提携を行い、日本国内等で売り込みが行われている模様である。
    • 西独では、それまでバラバラに行われていた磁気浮上式鉄道のプロジェクトの一本化をはかり、トランスラピッドを中心とした技術開発に集約された。
  • 1989年 - 日本 - 横浜博覧会でHSSTが営業運転した。期間限定・博覧会場内限定ながら第一種鉄道事業免許を得ており(YES'89線)、展示走行ではなく、磁気浮上式鉄道として運輸当局の認可を得た最初の営業運転である。
  • 1990年- 日本 - JR式マグレブの実用化実験のための山梨実験線の工事が始まる。
  • 1990年代- 日本 - 熊本工業大学で吸引式磁気浮上鉄道の研究が進められた。[1]
  • 1993年 - 韓国 - 大田国際科学技術博覧会で吸引式磁気浮上鉄道が運転された。
  • 1997年- 日本 - JR式マグレブが山梨の実験線で実用化を目指した開発へと移行。
  • 2000年6月- 中国 - ドイツ製のトランスラピッドが上海浦東国際空港のアクセス鉄道として採用が決定。
  • 2003年12月29日- 中国 - 上海トランスラピッド(ドイツ製)が上海浦東国際空港のアクセス用に、常設実用線としては、世界で3番目、万博などでの期間限定の実用線を含めれば、世界 で8番目に開業。営業最高速度430km/h。ただし、2003年はまだ、敷設工事が完成した段階で試行運転のみ。一般の乗客を乗せたのが2004年で、 本格的商用運転は2006年から。
  • 2005年- 日本 - HSSTが愛知高速交通東部丘陵線(リニモ)として、愛知県で開催された愛知万博に合わせ日本初の常設実用線として開業。最高速度100km/h。
  • 2005年5 月 - 中国 - 中華06号…大連で設計速度400km/hの車両が試運転された。中国が独自開発したとされる小型懸垂式リニアで、永久磁石を使用し浮上するのに電力を必 要としない設計。建設コストは、2007年時点で日独方式の半分程度ともいわれる。走行実験での速度は不明。(米国のインダクトラック、ドイツのM-Bahnも参照)。
  • 2006年7 月 - 中国 - 成都飛機工業集団(成都市)が2005年9月から開発開始したCM1型車両(愛称「ドルフィン(海豚)」)が、上海で設計最高速度500km/hでの試運 転を目指したとされるが、その後の結果は不明。中国国営テレビ局CCTV(2007年5月10日放送。NHKのBSニュースから)は、「中国は外国の技術 を習得し、今では国産化率85%、関連の知的財産権は全て中国に属する」と大々的なプロパガンダを行っている。しかし、ドイツではトランスラピッドの技術 が流出したと問題になっている。 また、上海TRの上海市から杭州までの約160kmの延伸が認められた。これからの建設計画参照。
  • 2007年 - 日本 - JR東海が2025年頃の中央新幹線の実現に向け、一般客の試乗運転を終了。長大編成車両や実験線の延伸、地質調査など、今まで以上に実用化に向けた研究に経営資源を集中させることを発表。
  • 2007年 - 中国 - 中華01号(永久磁石方式、最高速度500km/h以上を予定)の為の3kmの実験線が2008年の完成を目指して、遼寧省大連市で建設されている。

[編集] これからの建設計画

  • 日本 - JR東海は2007年10月16日に東京―名古屋間の用地買収を含む建設費を4兆-6兆円と試算していることを明らかにした。1km当たりの建設費は平均 すると150億-200億円と試算しており、これは東京―名古屋間を最短距離である280kmで結ぶことを前提としている。また、山梨県から長野県にまた がる区間は、南アルプスにトンネルを掘る計画を打ち出し、実現可能か検討を行うことになっている。このため、2008年2月よりボーリング調査が行われている。もし建設が決まった場合、2025年頃を目処に開業することを目指している。
  • ドイツ - 2008年3月27日、ドイツのティーフェンゼー運輸・建設相は、ミュンヘン国際空港ミュンヘン中央駅間の37.4kmのリニアモーターカー建設を断念し たと発表。建設コスト上昇が理由。総額18億5000万ユーロ(約3000億円)の事業予算を計上したが、最新の見積もりが32億-34億ユーロに膨れ上 がったため実現困難と判断した。2005年にドイツ連邦政府が1億1300万ユーロをTRに投入することを決め計画に弾みがつき、2007年にはドイツ鉄道ドイチェ・バーン)と正式合意し(AP通信)、同年9月24日、バイエルン州政府は2014年頃までの開業を目指し、2008年年夏にも着工するとしていた。事業主体はトランスラピッド・インターナショナル(ThyssenKruppとシーメンスのコンソーシアム)が担うはずだった。
  • 英国 - 2005年、トランスラピッドタイプの磁気高速鉄道、UK Ultraspeed線(最高速度500km/h)をロンドングラスゴー間などに導入するプロジェクトが立ち上げられた。
  • 中国 - 上海トランスラピッドの延伸計画や、新たな磁気浮上式鉄道の建設計画が目白押しであるものの、健康・騒音被害や建設コスト、用地買収、鉄輪式高速鉄道との 互換性の問題などが浮上し、今後の計画はどうなるかはまだ未知数な面がある。上海トランスラピッドの延伸計画は、現在のところ一部は休止されている。
  • 韓国 - 韓国政府は2016年を目標に、550km/hの高速リニアを開発すると発表。2007年中に研究・開発に着手し、2020年に商用化したい考え。
    • また、2012年頃の完成を目指し、都市型磁気浮上式鉄道の建設計画が浮上している。2両編成で定員は1両135人、最高速度110km/h。浮上方式は常電導吸引式。1989年から開発に着手し、1993年にドイツの技術指導を受けて列車を製作した。
  • 米国 - 米連邦政府はボストンニューヨークワシントンシカゴや、ロサンゼルスラスベガスなどの鉄道区間を磁気浮上式鉄道に置き換える計画、MDP(Maglev Deployment Program)を発表。
    • 米国では既に1988年からアナハイム―ラスベガス間で、磁気浮上式鉄道の建設計画があり、2007年に米国政府が4500万ドルの予算を計上したことで、俄に現実味を帯びてきた。ドイツのTRが売り込みを掛けている。
    • 米国には他にも、UniModal社とUniModal Transport Solutions社が開発を進めているSkytran(インダクトラック式)がある。
  • その他 - オランダ国内やベルリン―東欧諸都市間、スペインマドリードの空港と3つの都市間、イランテヘランマシュハド間、ベネズエラカラカスラグアイラ、そしてシモン・ボリバル国際空港間、インドムンバイデリー、ムンバイ中心地とムンバイ国際空港間などで、実現性は別として、TRの導入構想がある。

歡迎來到Bewise Inc.的世界,首先恭喜您來到這接受新的資訊讓產業更有競爭力,我們是提供專業刀具製造商,應對客戶高品質的刀具需求,我們可以協助客戶滿足您對產業的不同要求,我們有能力達到非常卓越的客戶需求品質,這是現有相關技術無法比擬的,我們成功的滿足了各行各業的要求,包括:精密HSS DIN切削刀具協助客戶設計刀具流程DIN or JIS 鎢鋼切削刀具設計NAS986 NAS965 NAS897 NAS937orNAS907 航太切削刀具,NAS航太刀具設計超高硬度的切削刀具BW捨棄式鑽石V卡刀BW捨棄式金屬圓鋸片木工捨棄式金屬圓鋸片PCD木工圓鋸片醫療配件刀具設計汽車業刀具設計電子產業鑽石刀具全鎢鋼V卡刀-電路版專用全鎢鋼鋸片焊刃式側銑刀焊刃式千鳥側銑刀焊刃式T型銑刀焊刃式千鳥T

beeway 發表在 痞客邦 留言(0) 人氣()

Bewise Inc. www.tool-tool.com Reference source from the internet.
Transrapid Shanghai Maglev Train stopping at terminus Longyang Road station

Transrapid Shanghai Maglev Train stopping at terminus Longyang Road station
Inside the Shanghai Transrapid maglev

Inside the Shanghai Transrapid maglev
Inside the Shanghai Transrapid maglev VIP section

Inside the Shanghai Transrapid maglev VIP section

A maglev, or magnetically levitating train is a form of transportation that suspends, guides and propels vehicles (predominantly trains) using electromagnetic force. This method has the potential to be faster and quieter than wheeled mass transit systems, potentially reaching velocities comparable to turboprop and jet aircraft (900 km/h, 600 mph).

The highest recorded speed of a maglev train is 581 km/h (361 mph), achieved in Japan in 2003, 6 km/h faster than the conventional TGV speed record.

[edit] History

In the 1960s, Great Britain held the lead in maglev research;[1] Eric Laithwaite, Professor of Heavy Electrical Engineering at Imperial College, developed a functional maglev passenger vehicle. It weighed 1 ton (1 tonne) and could carry four passengers.[1] Additional funding for his work was also provided by British Rail, the British Transport Commission, Manchester University, Surrey University and the Wolfson Foundation.[1] His maglev had one mile (1.6 km) of track and was thoroughly tested, but his research was cut off in 1973 due to lack of funding; and his progress was not sufficient. British Rail also set up a Maglev Experimental Centre at their Railway Technical Centre based at Derby.

In the 1970s, Germany and Japan also began research and after some failures both nations developed mature technologies in the 1990s.

[edit] First patents

High speed transportation patents would be granted to various inventors throughout the world.[2] Early United States patents for a linear motor propelled train were awarded to the inventor, Alfred Zehden (German). The inventor would gain U.S. Patent 782,312 (June 21, 1902) and U.S. Patent RE12,700 (August 21, 1907).[3] In 1907, another early electromagnetic transportation system was developed by F. S. Smith.[4] A series of German patents for magnetic levitation trains propelled by linear motors were awarded to Hermann Kemper between 1937 and 1941.[5] An early modern type of maglev train was described in U.S. Patent 3,158,765 , Magnetic system of transportation, by G. R. Polgreen (August 25, 1959). The first use of "maglev" in a United States patent was in "Magnetic levitation guidance"[6] by Canadian Patents and Development Limited.

[edit] Upton, NY, 1968

In 1961, when he was delayed during rush hour traffic on the Throgs Neck Bridge, James Powell, a researcher at Brookhaven National Laboratory (BNL), thought of using magnetically levitated transportation to solve the traffic problem. Powell and BNL colleague Gordon Danby jointly worked out a MagLev concept using static magnets mounted on a moving vehicle to induce electrodynamic lifting and stabilizing forces in specially shaped loops on a guideway. The two researchers obtained a patent on the technology in 1968.[7]

[edit] Hamburg, Germany 1979

There is conflict in this information. Transrapid 05 was the first maglev train with longstator propulsion licensed for passenger transportation. In 1979 a 908 m track was open in Hamburg for the first International Transportation Exhibition (IVA 79). There was so much interest that operation had to be extended three months after exhibition finished, after carrying more than 50,000 passengers. It was reassembled in Kassel in 1980.

[edit] Birmingham, England 1984–1995

The world's first commercial automated system was a low-speed maglev shuttle that ran from the airport terminal of Birmingham International Airport to the nearby Birmingham International railway station from 1984 to 1995. Based on experimental work commissioned by the British government at the British Rail Research Division laboratory at Derby, the length of the track was 600 meters (1,969 ft), and trains "flew" at an altitude of 15 millimeters (0.6 in). It was in operation for nearly eleven years, but obsolescence problems with the electronic systems (lack of spare parts) made it unreliable in its later years and it has now been replaced with a cable-drawn system. One of the original cars now sits in part of the airport.

Several favourable conditions existed when the link was built:

  1. The British Rail Research vehicle was 3 tons (3 tonne) and extension to the 8 ton (8 tonne) vehicle was easy.
  2. Electrical power was easily available.
  3. The Airport and rail buildings were suitable for terminal platforms.
  4. Only one crossing over a public road was required and no steep gradients were involved
  5. Land was owned by the Railway or Airport
  6. Local industries and councils were supportive
  7. Some Government finance was provided and because of sharing work, the cost per organization was not high.

[edit] Japan, 1980s

Maglev speeds on the Miyazaki test track had regularly hit 517 km/h by 1979, but after an accident that destroyed the train, a new design was decided upon. Tests through the 1980s continued in Miyazaki before transferring a far larger and elaborate test track (20 km long) in Yamanashi in the late 1990s.

In Tsukuba, Japan (1985), the HSST-03 (Linimo) wins popularity in spite of being 30 km/h slower Tsukuba World Exposition. In Okazaki, Japan (1987), the JR-Maglev took a test ride at the Okazaki exhibition. In Saitama, Japan (1988), the HSST-04-1 was revealed at the Saitama exhibition performed in Kumagaya. Its fastest recorded speed was 30 km/h. In Yokohama, Japan (1989), the HSST-05 acquires a business driver's license at Yokohama exhibition and carries out general test ride driving. Maximum speed 42 km/h.

[edit] Vancouver, Canada & Hamburg, Germany 1986-1988

In Vancouver, Canada (1986), the JR-Maglev took a test ride at holding Vancouver traffic exhibition and runs. In Hamburg, Germany (1988), the TR-07 in international traffic exhibition (IVA88) performed Hamburg.

[edit] Berlin, Germany 1989–1991

Main article: M-Bahn

In West Berlin, the M-Bahn was built in the late 1980s. It was a driverless maglev system with a 1.6 km track connecting three stations. Testing in passenger traffic started in August 1989, and regular operation started in July 1991. Although the line largely followed a new elevated alignment, it terminated at the U-Bahn station Gleisdreieck, where it took over a platform that was then no longer in use; it was from a line that formerly ran to East Berlin. After the fall of the Berlin Wall, plans were set in motion to reconnect this line (today's U2). Deconstruction of the M-Bahn line began only two months after regular service began and was completed in February 1992.

[edit] Commercial operation

The first commercial Maglev "people-mover" was officially opened in 1984 in Birmingham, England. It operated on an elevated 600-metre (1,969 ft) section of monorail track between Birmingham International Airport and Birmingham International railway station. It ran at 42 km/h (26 mph) until the system was eventually closed in 1995 due to reliability and design problems.

The best-known high-speed maglev currently operating commercially is the IOS (initial operating segment) demonstration line of the German built Transrapid train in Shanghai, China that transports people 30 km (18.6 miles) to the airport in just 7 minutes 20 seconds, achieving a top velocity of 431 km/h (268 mph), averaging 250 km/h (150 mph).

Other commercially operating lines exist in Japan, such as the Linimo line. Maglev projects worldwide are being studied for feasibility. In Japan at the Yamanashi test track, current maglev train technology is mature, but costs and problems remain a barrier to development, alternative technologies are being developed to address those issues.

[edit] Technology

All operational implementations of maglev technology have had minimal overlap with wheeled train technology and have not been compatible with conventional rail tracks. Because they cannot share existing infrastructure, maglevs must be designed as complete transportation systems. The term "maglev" refers not only to the vehicles, but to the railway system as well, specifically designed for magnetic levitation and propulsion.

See also fundamental technology elements in the JR-Maglev article, Technology in the Transrapid article, Magnetic levitation

There are two primary types of maglev technology:

Another experimental technology, which was designed, proven mathematically, peer reviewed, and patented, but is yet to be built, is the magnetodynamic suspension (MDS), which uses the attractive magnetic force of a permanent magnet array near a steel track to lift the train and hold it in place.

[edit] Electromagnetic suspension

In current EMS systems, the train levitates above a steel rail while electromagnets, attached to the train, are oriented toward the rail from below. The electromagnets use feedback control to maintain a train at a constant distance from the track, at approximately 15 millimeters (0.6 in).[8][9]

[edit] Electrodynamic suspension

EDS Maglev Propulsion via propulsion coils

EDS Maglev Propulsion via propulsion coils

In Electrodynamic suspension (EDS), both the rail and the train exert a magnetic field, and the train is levitated by the repulsive force between these magnetic fields. The magnetic field in the train is produced by either electromagnets (as in JR-Maglev) or by an array of permanent magnets (as in Inductrack). The repulsive force in the track is created by an induced magnetic field in wires or other conducting strips in the track.

At slow speeds, the current induced in these coils and the resultant magnetic flux is not large enough to support the weight of the train. For this reason the train must have wheels or some other form of landing gear to support the train until it reaches a speed that can sustain levitation.

Propulsion coils on the guideway are used to exert a force on the magnets in the train and make the train move forward. The propulsion coils that exert a force on the train are effectively a linear motor: An alternating current flowing through the coils generates a continuously varying magnetic field that moves forward along the track. The frequency of the alternating current is synchronized to match the speed of the train. The offset between the field exerted by magnets on the train and the applied field create a force moving the train forward.

[edit] Pros and cons of different technologies

Each implementation of the magnetic levitation principle for train-type travel involves advantages and disadvantages. Time will tell us which principle, and whose implementation, wins out commercially.


Technology Pros Cons

EMS (Electromagnetic) Magnetic fields inside and outside the vehicle are insignificant; proven, commercially available technology that can attain very high speeds (500 km/h); no wheels or secondary propulsion system needed

The separation between the vehicle and the guideway must be constantly monitored and corrected by computer systems to avoid collision due to the unstable nature of electromagnetic attraction; due to the system's inherent instability and the required constant corrections by outside systems, vibration issues may occur.


EDS (Electrodynamic) Onboard magnets and large margin between rail and train enable highest recorded train speeds (581 km/h) and heavy load capacity; has recently demonstrated (December 2005) successful operations using high temperature superconductors in its onboard magnets, cooled with inexpensive liquid nitrogen

Strong magnetic fields onboard the train would make the train inaccessible to passengers with pacemakers or magnetic data storage media such as hard drives and credit cards, necessitating the use of magnetic shielding; limitations on guideway inductivity limit the maximum speed of the vehicle; vehicle must be wheeled for travel at low speeds; used in JR-Maglev.


Inductrack System (Permanent Magnet EDS) Failsafe Suspension - no power required to activate magnets; Magnetic field is localized below the car; can generate enough force at low speeds (around 5 km/h) to levitate maglev train; in case of power failure cars slow down on their own safely; Halbach arrays of permanent magnets may prove more cost-effective than electromagnets

Requires either wheels or track segments that move for when the vehicle is stopped. New technology that is still under development (as of 2008) and as yet has no commercial version or full scale system prototype.

Neither Inductrack nor the Superconducting EDS are able to levitate vehicles at a standstill, although Inductrack provides levitation down to a much lower speed. Wheels are required for these systems. EMS systems are wheel-less.

The German Transrapid, Japanese HSST (Linimo), and Korean Rotem EMS maglevs levitate at a standstill, with electricity extracted from guideway using power rails for the latter two, and wirelessly for Transrapid. If guideway power is lost on the move, the Transrapid is still able to generate levitation down to 10 km/h speed, using the power from onboard batteries. This is not the case with the HSST and Rotem systems.

[edit] Propulsion

An EMS system can provide both levitation and propulsion using an onboard linear motor. EDS systems can only levitate the train using the magnets onboard, not propel it forward. As such, vehicles need some other technology for propulsion. A linear motor (propulsion coils) mounted in the track is one solution. Over long distances where the cost of propulsion coils could be prohibitive, a propeller or jet engine could be used.

[edit] Stability

Earnshaw's theorem shows that any combination of static magnets cannot be in a stable equilibrium. However, the various levitation systems achieve stable levitation by violating the assumptions of Earnshaw's theorem. Earnshaw's theorem assumes that the magnets are static and unchanging in field strength and that permeability is constant everywhere. EMS systems rely on active electronic stabilization. Such systems constantly measure the bearing distance and adjust the electromagnet current accordingly. All EDS systems are moving systems (no EDS system can levitate the train unless it is in motion).

Because Maglev vehicles essentially fly, stabilisation of pitch, roll and yaw is required by magnetic technology. In addition translations, surge (forward and backward motions), sway (sideways motion) or heave (up and down motions) can be problematic with some technologies.

[edit] Pros and cons of maglev

[edit] Maglev vs. conventional trains

Maglev trains are not compatible with conventional track, and therefore require all new infrastructure for their entire route. By contrast conventional high speed trains such as the TGV are able to run at reduced speeds on existing rail infrastructure, thus reducing expenditure where new infrastructure would be particularly expensive (such as the final approaches to city terminals), or on extensions where traffic does not justify new infrastructure.

Due to the lack of physical contact between the track and the vehicle, Maglev trains experience no rolling friction, leaving only air resistance and electromagnetic drag, potentially improving power efficiency.[10]

The weight of the large electromagnets in EMS and EDS designs is a major design issue. A very strong magnetic field is required to levitate a massive train. For this reason one research path is using superconductors to improve the efficiency of the electromagnets.

The high speed of some maglev trains translates to more sound due to air displacement, which gets louder as the trains go faster. A study found that high speed maglev trains are 5 dB noisier than traditional trains.[11][12] At low speeds, however, maglev trains are nearly silent. However, two trains passing at a combined 1,000 km/h has been successfully demonstrated without major problems in Japan.

Braking issues and overhead wire wear are problems for the Fastech 360 railed Shinkansen. Maglev would eliminate these issues, but not the noise pollution issue.

Issues relating to magnets are also a factor. See suspension types.

As linear motors must fit within or straddle their track over the full length of the train, track design is challenging for anything other than point-to-point services. Curves must be gentle and avoid camber, while switches are very long and need care to avoid breaks in current.

Maglev needs very fast-responding control systems to maintain a stable height above the track; this needs careful design in the event of a failure in order to avoid crashing into the track during a power fluctuation.

[edit] Maglev vs aircraft

One advantage of maglev's higher speed would be extension of the serviceable area (3 hours radius) that can outcompete subsonic commercial aircraft.

For many systems, it is possible to define a lift-to-drag ratio. These ratios can exceed that of aircraft (for example Inductrack can approach 200:1 at high speed, far higher than any aircraft). This can make it more efficient per mile, and potentially give greater range.

Aircraft travel at high altitude where the airdrag is lower, and hence can travel faster, and can service more destinations.

[edit] Economics

The Shanghai maglev cost 9.93 billion yuan (US$1.2 billion) to build.[13] This total includes infrastructure capital costs such as manufacturing and construction facilities, and operational training. At 50 yuan per passenger[14] and the current 7,000 passengers per day, income from the system is incapable of recouping the capital costs (including interest on financing) over the expected lifetime of the system, even ignoring operating costs[citation needed].

China aims to limit the cost of future construction extending the maglev line to approximately 200 million yuan (US$24.6 million) per kilometer.[13] These costs compare competitively with airport construction (e.g., Hong Kong Airport cost US$20 billion to build in 1998) and eight-lane Interstate highway systems that cost around US$50 million per mile (US$31 million per kilometer) in the US.

While high-speed maglevs are expensive to build, they are less expensive to operate and maintain than traditional high-speed trains, planes or intercity buses.[citation needed] Data from the Shanghai maglev project indicates that operation and maintenance costs are covered by the current relatively low volume of 7,000 passengers per day.[citation needed] Passenger volumes on the Pudong International Airport line are expected to rise dramatically once the line is extended from Longyang Road metro station all the way to Shanghai's downtown train depot.

The proposed Chūō Shinkansen maglev in Japan is estimated to cost approximately US$82 billion to build, with a route blasting long tunnels through mountains. A Tokaido maglev route replacing current Shinkansen would cost some 1/10th the cost, as no new tunnel blasting would be needed, but noise pollution issues would make it infeasible.

The only low-speed maglev (100 km/h) currently operational, the Japanese Linimo HSST, cost approximately US$100 million/km to build.[15] Besides offering improved operation and maintenance costs over other transit systems, these low-speed maglevs provide ultra-high levels of operational reliability and introduce little noise and zero air pollution into dense urban settings.

As maglev systems are deployed around the world, experts expect construction costs to drop as new construction methods are perfected.[citation needed]

[edit] History of maximum speed record by a trial run

  • 1971 - West Germany - Prinzipfahrzeug - 90 km/h
  • 1971 - West Germany -TR-02(TSST)- 164 km/h
  • 1972 - Japan - ML100 - 60 km/h - (manned)
  • 1973 - West Germany - TR04 - 250 km/h (manned)
  • 1974 - West Germany - EET-01 - 230 km/h (unmanned)
  • 1975 - West Germany - Komet - 401.3 km/h (by steam rocket propulsion, unmanned)
  • 1978 - Japan - HSST-01 - 307.8 km/h (by supporting rockets propulsion, made in Nissan, unmanned)
  • 1978 - Japan - HSST-02 - 110 km/h (manned)
  • 1979-12-12 - Japan-ML-500R - 504 km/h (unmanned) It succeeds in operation over 500 km/h for the first time in the world.
  • 1979-12-21 - Japan -ML-500R- 517 km/h (unmanned)
  • 1987 - West Germany - TR06 - 406 km/h (manned)
  • 1987 - Japan - MLU001 - 400.8 km/h (manned)
  • 1988 - West Germany - TR-06 - 412.6 km/h (manned)
  • 1989 - West Germany - TR-07 - 436 km/h (manned) 
  • 1993 - Germany - TR-07 - 450 km/h (manned)
  • 1994 - Japan - MLU002N - 431 km/h (unmanned)
  • 1997 - Japan - MLX01 - 531 km/h (manned)
  • 1997 - Japan - MLX01 - 550 km/h (unmanned)
  • 1999 - Japan - MLX01 - 548 km/h (unmanned)
  • 1999 - Japan - MLX01 - 552 km/h (manned/five formation).

Guinness authorization.

  • 2003 - China - TR-08 - 501 km/h (manned)
  • 2003 - Japan - MLX01 - 581 km/h (manned/three formation).

[edit] Existing maglev systems

[edit] Emsland, Germany

Transrapid at the Emsland test facility

Transrapid at the Emsland test facility
Main article: Emsland test facility

Transrapid, a German maglev company, has a test track in Emsland with a total length of 31.5 km (19.6 mi). The single track line runs between Dörpen and Lathen with turning loops at each end. The trains regularly run at up to 420 km/h (261 mph). The construction of the test facility began in 1980 and finished in 1984.

[edit] JR-Maglev, Japan

JR-Maglev at Yamanashi. 581 km/h. Guinness World Records authorization.

JR-Maglev at Yamanashi. 581 km/h. Guinness World Records authorization.
Main article: JR-Maglev

Japan has a demonstration line in Yamanashi prefecture where test trains JR-Maglev MLX01 have reached 581 km/h (361 mph), slightly faster than any wheeled trains (the current TGV speed record is 574.8 km/h, 357.0 mph).

These trains use superconducting magnets which allow for a larger gap, and repulsive-type Electro-Dynamic Suspension (EDS). In comparison Transrapid uses conventional electromagnets and attractive-type Electro-Magnetic Suspension (EMS). These "Superconducting Maglev Shinkansen", developed by the Central Japan Railway Company (JR Central) and Kawasaki Heavy Industries, are currently the fastest trains in the world, achieving a record speed of 581 km/h on December 2, 2003. Yamanashi Prefecture residents (and government officials) can sign up to ride this for free, and some 100,000 have done so already.

[edit] Linimo (Tobu Kyuryo Line, Japan)

Linimo train approaching Banpaku Kinen Koen, towards Fujigaoka Station in March 2005

Linimo train approaching Banpaku Kinen Koen, towards Fujigaoka Station in March 2005
Main article: Linimo

The world's first commercial automated "Urban Maglev" system commenced operation in March 2005 in Aichi, Japan. This is the nine-station 8.9 km long Tobu-kyuryo Line, otherwise known as the Linimo. The line has a minimum operating radius of 75 m and a maximum gradient of 6%. The linear-motor magnetic-levitated train has a top speed of 100 km/h. The line serves the local community as well as the Expo 2005 fair site. The trains were designed by the Chubu HSST Development Corporation, which also operates a test track in Nagoya. Urban-type maglevs patterned after the HSST have been constructed and demonstrated in Korea, and a Korean commercial version Rotem is now under construction in Daejeon and projected to go into operation by April 2007.

[edit] FTA's UMTD program

In the US, the Federal Transit Administration (FTA) Urban Maglev Technology Demonstration program has funded the design of several low-speed urban maglev demonstration projects. It has assessed HSST for the Maryland Department of Transportation and maglev technology for the Colorado Department of Transportation. The FTA has also funded work by General Atomics at California University of Pennsylvania to demonstrate new maglev designs, the MagneMotion M3 and of the Maglev2000 of Florida superconducting EDS system. Other US urban maglev demonstration projects of note are the LEVX in Washington State and the Massachusetts-based Magplane.

[edit] Southwest Jiaotong University, China

On December 31, 2000, the first crewed high-temperature superconducting maglev was tested successfully at Southwest Jiaotong University, Chengdu, China. This system is based on the principle that bulk high-temperature superconductors can be levitated or suspended stably above or below a permanent magnet. The load was over 530 kg (1166 lb) and the levitation gap over 20 mm (0.79 in). The system uses liquid nitrogen, which is very cheap, to cool the superconductor.

[edit] Shanghai Maglev Train

A maglev train coming out of the Pudong International Airport.

A maglev train coming out of the Pudong International Airport.
Main article: Shanghai Maglev Train

Transrapid, in Germany, constructed the first operational high-speed conventional maglev railway in the world, the Shanghai Maglev Train from downtown Shanghai (Shanghai Metro) to the Pudong International Airport. It was inaugurated in 2002. The highest speed achieved on the Shanghai track has been 501 km/h (311 mph), over a track length of 30 km. The plan for the Shanghai-Hangzhou Maglev Train was approved by the central government in February 2006, with plans for completion by 2010.

[edit] Under construction

[edit] Old Dominion University

A track of less than a mile in length has been constructed at Old Dominion University in Norfolk, Virginia, USA. Although the system was initially built by AMT, problems caused the company to abandon the project and turn it over to the University.[16][17] The system is currently not operational, but research is ongoing to resolve stability issues with the system. This system uses a "smart train, dumb track" that involves most of the sensors, magnets, and computation occurring on the train rather than the track. This system will cost less to build per mile than existing systems. The $14 million originally planned did not allow for completion.

[edit] AMT Test Track - Powder Springs, Georgia

The same principle is involved in the construction of a second prototype system in Powder Springs, Georgia, USA, by American Maglev Technology, Inc.

[edit] Proposed systems

beeway 發表在 痞客邦 留言(0) 人氣()

Bewise Inc. www.tool-tool.com Reference source from the internet.
Oscar class submarine
Class overview
Preceded by: Papa class submarine
Succeeded by: none
Completed: 13
Lost: 1
Retired: 6
Preserved: 0
General characteristics
Displacement: 13,900 tons surfaced
18,300 tons submerged
Length: 154 m (505 ft 3 in)
Beam: 18.2 m (59 ft 9 in)
Draught: 9 m (29 ft 6 in)
Propulsion: 2 × pressurized water cooled reactors powering two steam turbines delivering 73,070 kW (98,000 shp) to two shafts
Speed: 15 knots (28 km/h) surfaced
28 knots (52 km/h) submerged
Complement: 107
Armament: 4 × 533mm (21 in) and 2 × 650mm (25.6 in) torpedo tubes in bow
28 × 533 mm and 650 mm weapons, including Tsakra (SS-N-15 Starfish) anti-submarine missiles with 15-kT nuclear warheads and Vodopad/Veder (SS-N-16 Stallion) and anti-submarine missiles with 200-kT nuclear warhead or Type 40 anti-submarine torpedo or 32 ground mines
24 × P-700 Granit (SS-N-19 Shipwreck) cruise missiles with 750 kg (1,655 lb) HE or 500-kT nuclear warheads

The Project 949 (Granit) and Project 949A (Antey) Soviet cruise missile submarines are known in the West by their NATO reporting names: the Oscar-I and Oscar-II classes respectively.

Oscars are the largest guided missile submarines in service as of 2006, being slightly larger than converted Ohio-class submarines of the United States Navy, displacing less when surfaced but more when submerged, as they are shorter in length but broader in beam.

[edit] Oscar-I

Two Oscar-I submarines were built at Severodvinsk and assigned to the Soviet Northern Fleet:

[edit] Oscar-II

Eleven Oscar-II submarines were built at Severodvinsk. Five were assigned to the Soviet Northern Fleet:

Six were assigned to the Soviet Pacific Fleet:

One more Oscar-II submarine, K-329 Belgorod, laid down in July 1992, is currently under construction in Severodvinsk. Its construction was frozen several times due to lack of funds. Finally, on July 20, 2006, Russian Minister of Defense Sergey Ivanov announced, "The Ministry of Defense does not need Belgorod... therefore, it will not finance its further construction."[1] If the submarine is going to be finished, it is not clear which country is going to pay for it.

Bow view

Bow view

At one stage it had been planned to develop a new fourth-generation follow-on to the Oscar but this plan was later scrapped. [2]

Like other Soviet submarines, the Oscar not only has a bridge open to the elements on top of the sail but, for use in inclement weather, an enclosed bridge forward of this station in the sail.

A distinguishing mark is a slight bulge at the top of the fin. A large door on either side of the fin reaches this bulge. These are wider at the top than on the bottom, and are hinged on the bottom. It is reported in the Federation of American Scientists' web page [1] that this submarine carries an emergency crew escape capsule, and as there is no more likely visible feature, these doors apparently cover it.

歡迎來到Bewise Inc.的世界,首先恭喜您來到這接受新的資訊讓產業更有競爭力,我們是提供專業刀具製造商,應對客戶高品質的刀具需求,我們可以協助客戶滿足您對產業的不同要求,我們有能力達到非常卓越的客戶需求品質,這是現有相關技術無法比擬的,我們成功的滿足了各行各業的要求,包括:精密HSS DIN切削刀具協助客戶設計刀具流程DIN or JIS 鎢鋼切削刀具設計NAS986 NAS965 NAS897 NAS937orNAS907 航太切削刀具,NAS航太刀具設計超高硬度的切削刀具BW捨棄式鑽石V卡刀BW捨棄式金屬圓鋸片木工捨棄式金屬圓鋸片PCD木工圓鋸片醫療配件刀具設計汽車業刀具設計電子產業鑽石刀具全鎢鋼V卡刀-電路版專用全鎢鋼鋸片焊刃式側銑刀焊刃式千鳥側銑刀焊刃式T型銑刀焊刃式千鳥T型銑刀焊刃式螺旋機械鉸刀全鎢鋼斜邊刀電路版專用鎢鋼焊刃式高速鉸刀超微粒鎢鋼機械鉸刀超微粒鎢鋼定點鑽焊刃式帶柄角度銑刀焊刃式螺旋立銑刀焊刃式帶柄倒角銑刀焊刃式角度銑刀焊刃式筒型平面銑刀木工產業鑽石刀具等等。我們的產品涵蓋了從民生刀具到工業級的刀具設計;從微細刀具到大型刀具;從小型生產到大型量產;全自動整合;我們的技術可提供您連續生產的效能,我們整體的服務及卓越的技術,恭迎您親自體驗!!

BW Bewise Inc. Willy Chen willy@tool-tool.com bw@tool-tool.com www.tool-tool.com skype:willy_chen_bw mobile:0937-618-190 Head &Administration Office No.13,Shiang Shang 2nd St., West Chiu Taichung,Taiwan 40356 http://www.tool-tool..com / FAX:+886 4 2471 4839 N.Branch 5F,No.460,Fu Shin North Rd.,Taipei,Taiwan S.Branch No.24,Sec.1,Chia Pu East Rd.,Taipao City,Chiayi Hsien,Taiwan

Welcome to BW tool world! We are an experienced tool maker specialized in cutting tools. We focus on what you need and endeavor to research the best cutter to satisfy users demand. Our customers involve wide range of industries, like mold & die, aerospace, electronic, machinery, etc. We are professional expert in cutting field. We would like to solve every problem from you. Please feel free to contact us, its our pleasure to serve for you. BW product including: cutting toolaerospace tool .HSS DIN Cutting toolCarbide end millsCarbide cutting toolNAS Cutting toolNAS986 NAS965 NAS897 NAS937orNAS907 Cutting Tools,Carbide end milldisc milling cutter,Aerospace cutting toolhss drillФрезерыCarbide drillHigh speed steelMilling cutterCVDD(Chemical Vapor Deposition Diamond )’PCBN (Polycrystalline Cubic Boron Nitride) Core drillTapered end millsCVD Diamond Tools Inserts’PCD Edge-Beveling Cutter(Golden FingerEdge modifying knifeSolid carbide saw blade-V typeV-type locking-special use for PC boardMetal Slitting SawaCarbide Side milling CuttersCarbide Side Milling Cutters With Staggered TeethCarbide T-Slot Milling CuttersCarbide T-Slot Milling Cutters With Staggered TeethCarbide Machine ReamersHigh speed reamer-standard typeHigh speed reamer-long type’’PCD V-CutterPCD Wood toolsPCD Cutting toolsPCD Circular Saw BladePVDD End Millsdiamond tool V-type locking-special use for PC board Single Crystal Diamond Metric end millsMiniature end millsСпециальные режущие инструменты Пустотелое сверло Pilot reamerFraisesFresas con mango PCD (Polycrystalline diamond) ‘FreseElectronics cutterStep drillMetal cutting sawDouble margin drillGun barrelAngle milling cutterCarbide burrsCarbide tipped cutterChamfering toolIC card engraving cutterSide cutterNAS toolDIN or JIS toolSpecial toolMetal slitting sawsShell end millsSide and face milling cuttersSide chip clearance sawsLong end millsStub roughing end millsDovetail milling cuttersCarbide slot drillsCarbide torus cuttersAngel carbide end millsCarbide torus cuttersCarbide ball-nosed slot drills<

beeway 發表在 痞客邦 留言(0) 人氣()

Bewise Inc. www.tool-tool.com Reference source from the internet.
Lockheed Martin
Type Public (NYSE: LMT)
Founded 1912 (in 1995, company took on current name)
Headquarters Bethesda, Maryland
Key people Robert J. Stevens: Chairman, President, and Chief Executive Officer
Industry Aerospace and defense
Products ATC systems, ballistic missiles, munitions, NMD elements, transport aircraft, fighter aircraft, radar, satellites, Atlas launch vehicles, NASA's Orion spacecraft, numerous others
Revenue 41.862 billion USD (2007), and a backlog of $74.825 billion USD.
Employees 140,000
Website www.lockheedmartin.com

Lockheed Martin (NYSE: LMT) is a leading multinational aerospace manufacturer and advanced technology company formed in 1995 by the merger of Lockheed Corporation with Martin Marietta. It is headquartered in Bethesda, an unincorporated area in Montgomery County, Maryland and a suburb of Washington, D.C. Lockheed Martin employs 140,000 people worldwide. Robert J. Stevens is the current Chairman, President, and Chief Executive Officer.

Lockheed Martin is the world's largest defense contractor (by revenue).[1] As of 2005, 95% of Lockheed Martin's revenues came from the United States Department of Defense, other U.S. federal government agencies, and foreign military customers.

A team led by prime contractor Lockheed Martin won the 2006 Collier Trophy for the development of the F-22 Raptor fighter jet.

[edit] History

Merger talks between Lockheed Corporation and Martin Marietta began in March 1994, with the companies announcing their $10 billion planned merge on August 30, 1994.[2] The deal was finalized on March 15, 1995 when the two companies' shareholders approved the merger.[3] The segments of the two companies not retained by the new company formed the basis for the present L-3 Communications, a mid-size defense contractor in its own right.

Both companies contributed important products to the new portfolio. Lockheed products included the Trident missile, P-3 Orion, F-16 Fighting Falcon, F-22 Raptor, C-130 Hercules, A-4AR Fightinghawk and the DSCS-3 satellite. Martin Marietta products included Titan rockets, Sandia National Laboratories (management contract acquired in 1993), Space Shuttle External Tank, Viking 1 and Viking 2 landers, the Transfer Orbit Stage (under subcontract to Orbital Sciences Corporation) and various satellite models.

On April 22, 1996, Lockheed Martin completed the acquisition of Loral Corporation's defense electronics and system integration businesses for $9.1 billion, the deal having been announced in January. The remainder of Loral became Loral Space & Communications.[4]

Lockheed Martin abandoned plans for a $8.3 billion merger with Northrop Grumman on July 16, 1998 due to government concerns over the potential strength of the new group; Lockheed/Northrop would have had control of 25% of the Department of Defense's procurement budget.[5]

In May 2000, Lockheed Martin sold Lockheed Martin Control Systems to BAE Systems. On November 27, 2000, Lockheed completed the sale of its Aerospace Electronic Systems business to BAE Systems for $1.67 billion, a deal announced in July 2000. This group encompassed Sanders Associates, Fairchild Systems, and Lockheed Martin Space Electronics & Communications.[6][7]

In 2001, Lockheed Martin won the contract to build the F-35 Lightning II; this was largest fighter aircraft procurement project since the F-16, with an initial order of 3,000 worth $200 billion before export orders.

On May 12, 2006, The Washington Post reported that when Robert Stevens took control of Lockheed Martin in 2004, he faced the dilemma that within 10 years 100,000 of the about 130,000 Lockheed Martin employees would be retiring.[8]

On August 31, 2006, Lockheed Martin won a $3.9 billion contract from NASA to design and build the CEV capsule, also known as the Orion – the next spaceship for human flight – for the Ares I rocket in the Constellation Program.

C-130 Hercules; in production since the 1950s, now as the C-130J

C-130 Hercules; in production since the 1950s, now as the C-130J

[edit] Controversy

In September 1999, the Mars Climate Orbiter smashed into the surface of Mars and was destroyed. Lockheed accepted blame for the demise of the craft after an investigation revealed that the Lockheed team incorrectly programmed the Mars Climate Orbiter with English units instead of metric units.

In 2000, Lockheed agreed to pay a $13 million settlement to the U.S. government for breaching the Arms Export Control Act. The company had passed information to AsiaSat, of which a major shareholder is the Chinese government. According to the U.S. Department of State, the information given to AsiaSat may have helped China improve its missiles.

In 2003, Lockheed Martin benefited from a U.S. Air Force decision to punish the Boeing Company for conducting industrial espionage against its rival. The USAF revoked $1 billion worth of contracts from Boeing and awarded them to Lockheed Martin. The company sued Boeing in 1998 for stealing documents related to a military contract.

On January 12, 2006, the U.S. Army canceled a $879 million Aerial Common Sensor contract with Lockheed Martin. The Army found that the weight of the Aerial Common Sensor electronics payload exceeded the Embraer 145 airframe, which was Lockheed's selected aircraft.

On November 2, 2006, the $154 million Mars Global Surveyor suffered a critical malfunction from a faulty command sent from Lockheed Martin Space Systems in Denver. The spacecraft was lost when the power loss cut off communications with the orbiter. On December 1, 2006 all of Lockheed Martin's commercial launch operations were transferred to the United Launch Alliance. The joint venture between Lockheed Martin and Boeing was first announced May 2, 2005.

On February 13, 2007 a New Mexico state court found Sandia Corporation, a wholly owned subsidiary of Lockheed Martin, liable for $4.7 million in damages for the firing of a former network security analyst, Shawn Carpenter. Carpenter had reported to his supervisors that hundreds of military installations and defense contractors' networks were compromised and sensitive information was being stolen – including hundreds of sensitive Lockheed documents on the Mars Reconnaissance Orbiter project.

[edit] Organization

[edit] Aeronautics

Lockheed Martin/BAE/Northrop Grumman X-35 (F-35 Prototype)

Lockheed Martin/BAE/Northrop Grumman X-35 (F-35 Prototype)
Submarine launch of a Lockheed Trident missile

Submarine launch of a Lockheed Trident missile

[edit] Electronic Systems

[edit] Information Systems and Global Services

[edit] Space Systems

[edit] Others

[edit] Joint ventures

The Protector USV.

The Protector USV.

[edit] Corporate governance

Current members of the board of directors of Lockheed Martin are: Edward Aldridge, Nolan Archibald, Marcus Bennett, James O. Ellis, Gwendolyn King, James Loy, Douglas McCorkindale, Eugene Murphy, Joseph Ralston, Frank Savage, Anne Stevens, Robert J. Stevens, James Ukropina and Douglas Yearley.

[edit] Environmental record

Lockheed Martin's lean initiatives have helped to clean the environment eroded by chemicals from hazardous waste.[9]

The company has partnered with the Environmental Protection Agency in a pilot project to gain information about better environmental protection practices. This experiment, taking place in Palmdale, California, is intended to provide insight into methods and development of pollution prevention.[10]

歡迎來到Bewise Inc.的世界,首先恭喜您來到這接受新的資訊讓產業更有競爭力,我們是提供專業刀具製造商,應對客戶高品質的刀具需求,我們可以協助客戶滿足您對產業的不同要求,我們有能力達到非常卓越的客戶需求品質,這是現有相關技術無法比擬的,我們成功的滿足了各行各業的要求,包括:精密HSS DIN切削刀具協助客戶設計刀具流程DIN or JIS 鎢鋼切削刀具設計NAS986 NAS965 NAS897 NAS937orNAS907 航太切削刀具,NAS航太刀具設計超高硬度的切削刀具BW捨棄式鑽石V卡刀BW捨棄式金屬圓鋸片木工捨棄式金屬圓鋸片PCD木工圓鋸片醫療配件刀具設計汽車業刀具設計電子產業鑽石刀具全鎢鋼V卡刀-電路版專用全鎢鋼鋸片焊刃式側銑刀焊刃式千鳥側銑刀焊刃式T型銑刀焊刃式千鳥T型銑刀焊刃式螺旋機械鉸刀全鎢鋼斜邊刀電路版專用鎢鋼焊刃式高速鉸刀超微粒鎢鋼機械鉸刀超微粒鎢鋼定點鑽焊刃式帶柄角度銑刀焊刃式螺旋立銑刀焊刃式帶柄倒角銑刀焊刃式角度銑刀焊刃式筒型平面銑刀木工產業鑽石刀具等等。我們的產品涵蓋了從民生刀具到工業級的刀具設計;從微細刀具到大型刀具;從小型生產到大型量產;全自動整合;我們的技術可提供您連續生產的效能,我們整體的服務及卓越的技術,恭迎您親自體驗!!

BW Bewise Inc. Willy Chen willy@tool-tool.com bw@tool-tool.com www.tool-tool.com skype:willy_chen_bw mobile:0937-618-190 Head &Administration Office No.13,Shiang Shang 2nd St., West Chiu Taichung,Taiwan 40356 http://www.tool-tool..com / FAX:+886 4 2471 4839 N.Branch 5F,No.460,Fu Shin North Rd.,Taipei,Taiwan S.Branch No.24,Sec.1,Chia Pu East Rd.,Taipao City,Chiayi Hsien,Taiwan

Welcome to BW tool world! We are an experienced tool maker specialized in cutting tools. We focus on what you need and endeavor to research the best cutter to satisfy users demand. Our customers involve wide range of industries, like mold & die, aerospace, electronic, machinery, etc. We are professional expert in cutting field. We would like to solve every problem from you. Please feel free to contact us, its our pleasure to serve for you. BW product including: cutting toolaerospace tool .HSS DIN Cutting toolCarbide end millsCarbide cutting toolNAS Cutting toolNAS986 NAS965 NAS897 NAS937orNAS907 Cutting Tools,Carbide end milldisc milling cutter,Aerospace cutting toolhss drillФрезерыCarbide drillHigh speed steelMilling cutterCVDD(Chemical Vapor Deposition Diamond )’PCBN (Polycrystalline Cubic Boron Nitride)

beeway 發表在 痞客邦 留言(0) 人氣()

Bewise Inc. www.tool-tool.com Reference source from the internet.

准干式切削(Near Dry Machining)和微量润滑系统(MQL)-干式切削摘要:定义,概念: 准干式切削:是相对干式切削和湿式切削而言的,是在切削刀具的切削刃上喷上一层润滑油,切削加工的时候,润滑油在刀具和工件间形成一层油膜,保护刀具和工 件,避免热量产生,提高工件加工精度,特别是在精密加工中。 微量润滑系统:简单的说就是精密控制油 2002:机床,入世是挑战更是机遇 专家指出要加大我国数控机床研发力度 加快普及型数控机床的发展 漫话中国机床制造业的服务竞争 中国铣床和加工中心市场的现状和展望 国内外车床的技术水平和发展方向 世界加工中心的生产、需求和发展动向 国内外机床发展趋势 世界数控系统发展趋势 切削加工技术和数控机床的发展 现代机床产品技术发展趋势 我国高速加工技术现状及发展趋势 利用先进制造技术提升汽车活塞加工水平 瓶盖及瓶口模具上特殊螺纹的数控车削 深孔的螺纹加工 数控车床螺纹切削方法分析与应用 磨削蜗杆砂轮的修整 精密零件多台阶面磨削的新方法 曲轴连杆颈的跟踪磨削工艺

定义,概念:

准干式切削:是相对干式切削和湿式切削而言的,是在切削刀具的切削刃上喷上一层润滑油,切削加工的时候,润滑油在刀具和工件间形成一层油膜,保护刀具和工件,避免热量产生,提高工件加工精度,特别是在精密加工中。

微量润滑系统:简单的说就是精密控制油量的喷油装置,通常分为外喷油和内喷油装置。外喷油装置是润滑油和压缩空气分别独立调节,压缩空气在喷嘴出口处将润滑油通过高速气流吹向切削刀刃,实现润滑作用。

1


一喷雾冷却的机理

切 削液在金属切削中主要起两个作用,一是润滑作用;二是冷却作用。切削液能否充分发挥有效的润滑作用,其渗透能力强弱是一个重要的因素。常规的浇注式切削液 在切削加工中的渗透以液体渗透和气体渗透两种方式进行:浇注的液体渗透效率较低,在高速切削时效率更低;气体渗透是由于浇注在切屑表面裂纹中的液体随着切 削温度的上升发生汽化而向前刀面进行渗透的。试验证明,常规切削液的渗透能力不强,能够被汽化的液体量很少,使润滑效果受到限制。而喷雾冷却形成的两相流 体,能够弥补切削液渗透能力的不足。气液两相流体喷射到切削区时,有较高的速度,动能较大,因此渗透能力较强。此外,在气液两相射流中微量液体的尺寸很 小,遇到温度较高的金属极易汽化,可从多个方面向刀具前刀面渗透。虽然射流中的液体量很少,但被汽化的部分则比连续浇注切削液时多,因而润滑效果较好。在 金属加工中切削热主要来源于金属的塑性变形,切削区的冷却过程就是固体与流体之间的传热过程。由于流体与固体分子之间的吸引力和流体粘度作用,在固体表面 就有一个流体滞流层,从而增加了热阻。滞流层越厚,热阻越大,而滞流层的厚度主要取决于流体的流动性即粘度。粘度小的流体冷却效果比粘度大的流体冷却效果 好。
气液两相流体喷出时,体积骤然膨胀对外做功,消耗了内能,可使温度降低10℃左右。喷雾冷却中两相流体有较高的速度,能够及时将铁屑冲走,并带走大量的热量,进一步增强了降温效果。因此,喷雾冷却实际上综合了气液两种流体的降温效果和优点。

二喷雾冷却装置的工作原理

喷雾冷却就是把微量液体混入压力气流中,形成雾状的气液两相流体,通过喷雾产生射流,喷射到切削区,使工件和刀具得到充分冷却和润滑。

喷雾冷却装置工作时,压缩空气经分水滤气器滤除水分等杂质,通过电磁阀后一小部分压缩空气进入冷却液箱内,将冷却液压出到喷嘴;绝大部分压缩空气经调压阀将压力调至0.32~0.35MPa后经压缩空气软管到喷嘴与冷却液混合,雾化后喷射到切削区。

喷 雾冷却技术的关键在于能否把冷却液充分雾化。由于冷却液的压力略大于压缩空气的压力,二者在气液混合室内混合后,经蛇皮管式冷却管5由喷嘴头喷出。反 之,若冷却液的压力小于压缩空气的压力,则冷却液将被压回到冷却液箱内。在一些进口机床的喷雾冷却装置中,压缩空气是从调压阀后进入冷却液箱的,因此喷出 冷却液时往往有“喘气”现象。若将压缩空气改为从电磁阀后直接进入冷却液箱,就可避免“喘气”现象。

为了调节喷出的冷却液流量,在喷嘴上 安装了冷却液流量调节阀。一些进口机床所采用的喷雾冷却装置,其喷嘴调节阀为锥形,使用时通过调整锥面配合间隙的大小 来调节冷却液流量。由于加工这种结构的喷嘴调节阀比较困难,阀杆与阀体锥面的同心度不易保证,从而不能有效地调节冷却液的流量。试验证明,如将锥阀改成平 阀、将锥面改成平面,并增加一个密封圈,则冷却液的流量可以任意调节。

三喷雾冷却液的选择

由 于从喷嘴喷出的冷却液成雾状,其中大部分喷到切削区,一小部分弥散在空气中,为了避免环境污染及对操作者造成伤害,冷却液的选择非常重要。通过使用非传 统的切削液-植物油,包括脂类,环境成本显著减少。这些产品的技术优点包括具有清洗剂,分散剂的性能,低发泡,快速放气,着火点相对较高以及表层兼容。基 于植物的润滑油可迅速被生物降解,大多数情况下,润滑油在21天内即被分解,这样就无长期清洁的后顾之忧。这些润滑油也已经得到改进,具有低雾化的特点, 有助于短期清洁。

1


对润滑剂的要求:

首先,润滑剂要求较低的粘度。
其次,润滑剂有很好的渗透性和表面附着系数。
第三,润滑剂要具有超级的润滑性。
第四,润滑剂需要优良的极压性能。
第五,润滑剂环保、安全、可再生(植物性)。

歡迎來到Bewise Inc.的世界,首先恭喜您來到這接受新的資訊讓產業更有競爭力,我們是提供專業刀具製造商,應對客戶高品質的刀具需求,我們可以協助客戶滿足您對產業的不同要求,我們有能力達到非常卓越的客戶需求品質,這是現有相關技術無法比擬的,我們成功的滿足了各行各業的要求,包括:精密HSS DIN切削刀具協助客戶設計刀具流程DIN or JIS 鎢鋼切削刀具設計NAS986 NAS965 NAS897 NAS937orNAS907 航太切削刀具,NAS航太刀具設計超高硬度的切削刀具BW捨棄式鑽石V卡刀BW捨棄式金屬圓鋸片木工捨棄式金屬圓鋸片PCD木工圓鋸片醫療配件刀具設計汽車業刀具設計電子產業鑽石刀具全鎢鋼V卡刀-電路版專用全鎢鋼鋸片焊刃式側銑刀焊刃式千鳥側銑刀焊刃式T型銑刀焊刃式千鳥T型銑刀焊刃式螺旋機械鉸刀全鎢鋼斜邊刀電路版專用鎢鋼焊刃式高速鉸刀超微粒鎢鋼機械鉸刀超微粒鎢鋼定點鑽焊刃式帶柄角度銑刀焊刃式螺旋立銑刀焊刃式帶柄倒角銑刀焊刃式角度銑刀焊刃式筒型平面銑刀木工產業鑽石刀具等等。我們的產品涵蓋了從民生刀具到工業級的刀具設計;從微細刀具到大型刀具;從小型生產到大型量產;全自動整合;我們的技術可提供您連續生產的效能,我們整體的服務及卓越的技術,恭迎您親自體驗!!

BW Bewise Inc. Willy Chen willy@tool-tool.com bw@tool-tool.com www.tool-tool.com skype:willy_chen_bw mobile:0937-618-190 Head &Administration Office No.13,Shiang Shang 2nd St., West Chiu Taichung,Taiwan 40356 http://www.tool-tool..com / FAX:+886 4 2471 4839 N.Branch 5F,No.460,Fu Shin North Rd.,Taipei,Taiwan S.Branch No.24,Sec.1,Chia Pu East Rd.,Taipao City,Chiayi Hsien,Taiwan

Welcome to BW tool world! We are an experienced tool maker specialized in cutting tools. We focus on what you need and endeavor to research the best cutter to satisfy users demand. Our customers involve wide range of industries, like mold & die, aerospace, electronic, machinery, etc. We are professional expert in cutting field. We would like to solve every problem from you. Please feel free to contact us, its our pleasure to serve for you. BW product including: cutting toolaerospace tool .HSS DIN Cutting toolCarbide end millsCarbide cutting toolNAS Cutting toolNAS986 NAS965 NAS897 NAS937orNAS907 Cutting Tools,Carbide end milldisc milling cutter,Aerospace cutting toolhss drillФрезерыCarbide drillHigh speed steelMilling cutterCVDD(Chemical Vapor Deposition Diamond )’PCBN (Polycrystalline Cubic Boron Nitride) Core drillTapered end millsCVD Diamond Tools Inserts’PCD Edge-Beveling Cutter(Golden FingerEdge modifying knifeSolid carbide saw blade-V typeV-type locking-special use for PC boardMetal Slitting SawaCarbide Side milling CuttersCarbide Side Milling Cutters With Staggered TeethCarbide T-Slot Milling CuttersCarbide T-Slot Milling Cutters With Staggered TeethCarbide Machine ReamersHigh speed reamer-standard typeHigh speed reamer-long type’’PCD V-CutterPCD Wood toolsPCD Cutting toolsPCD Circular Saw BladePVDD End Millsdiamond tool V-type locking-special use for PC board Single Crystal Diamond Metric end millsMiniature end millsСпециальные режущие инструменты Пустотелое сверло Pilot reamerFraisesFresas con mango PCD (Polycrystalline diamond) ‘FreseElectronics cutterStep drillMetal cutting sawDouble margin drillGun barrelAngle milling cutterCarbide burrsCarbide tipped cutterChamfering toolIC card engraving cutterSide cutterNAS toolDIN or JIS toolSpecial toolMetal slitting sawsShell end millsSide and face milling cuttersSide chip clearance sawsLong end millsStub roughing end millsDovetail milling cuttersCarbide slot drillsCarbide torus cuttersAngel carbide end millsCarbide torus cuttersCarbide ball-nosed slot drillsMould cutterTool manufacturer.

Bewise Inc. www.tool-tool.com

ようこそBewise Inc.の世界へお越し下さいませ、先ず御目出度たいのは新たな

情報を受け取って頂き、もっと各産業に競争力プラス展開。

弊社は専門なエンドミルの製造メーカーで、客先に色んな分野のニーズ

豊富なパリエーションを満足させ、特にハイテク品質要求にサポート致します。

弊社は各領域に供給できる内容は:

(1)精密HSSエンドミルのR&D

(2)Carbide Cutting tools設計

(3)鎢鋼エンドミル設計

(4)航空エンドミル設計

(5)超高硬度エンドミル

(6)ダイヤモンドエンドミル

(7)医療用品エンドミル設計

(8)自動車部品&材料加工向けエンドミル設計

弊社の製品の供給調達機能は:

(1)生活産業~ハイテク工業までのエンドミル設計

(2)ミクロエンドミル~大型エンドミル供給

(3)小Lot生産~大量発注対応供給

(4)オートメーション整備調達

(5)スポット対応~流れ生産対応

弊社の全般供給体制及び技術自慢の総合専門製造メーカーに貴方のご体験を御待ちしております。

BW специализируется в научных исследованиях и разработках, и снабжаем самым высокотехнологичным карбидовым материалом для поставки режущих / фрезеровочных инструментов для почвы, воздушного пространства и электронной индустрии. В нашу основную продукцию входит твердый карбид / быстрорежущая сталь, а также двигатели, микроэлектрические дрели, IC картонорезальные машины, фрезы для гравирования, режущие пилы, фрезеры-расширители, фрезеры-расширител

beeway 發表在 痞客邦 留言(0) 人氣()