公告版位

1 引言

由 于氧化铝薄膜具有令人关注的优异性能,如高温稳定性、化学稳定性、低的热导率和电 导率等,目前利用化学气相沉积(CVD) 涂覆氧化铝薄膜作为耐磨涂层材料已广泛应用于硬质合金切削刀片。它在其它领域没有得到广泛应用的主要原因是这类涂层的工业规模制备需利用高温CVD 进行处理。虽然CVD 处理方法有许多优点,但其最大的缺点是在处理过程中需要高温(1000 ℃) 。
利用物理气相沉积(PVD) 溅射技术在350~600 ℃的温度范围内沉积氧化铝,是由豪泽(Hauzer)技术镀层公司开发的一种新工艺。该工艺大大拓宽了氧化铝的应用领域,低的沉积温度使它能在其它材料如高速钢和模具钢上能进行涂镀处理。
最 初,涂层的开发是在Hauzer Flexicoat 750上开展的,其后这个过程被转移到一个生产型涂镀设备HTC21000上进行。该技术的产业化转化和重新设计是与德国Tü;bingen硬质合金切削 刀具的主要供应商瓦尔特股份有限公司(Walter AG)合作进行的。

1
图1 复合涂层系统截面

2 工艺过程

新的涂层系统采用复合涂层技术,结合阴极电弧镀和磁控溅射,电弧层作为过渡层或为整个涂层系统提供必需的耐磨性,而氧化铝则提供高温和化学稳定性。装置的截面如图1所示。
系 统配置有几个电弧和磁控溅射阴极。零件在沉积前要加热到 工艺温度并且系统要抽至低真空度;其后,用氩离子或金属离子刻蚀清洁工件表面;接着沉积电弧层,氧化铝顶层是利用金属靶在氩和氧混合气氛中的PVD溅射沉 积所成。此外,在特殊应用中,氧化铝涂层也可以在没有底层的情况下单层使用。氧化铝涂层采用Hauzer T模式沉积技术制备而成。T模式技术是由特殊设计的溅射阴极结合优化的气体分布系统来体现其特性的,通过电磁感应圈在基体周围产生闭合磁场来提供高离化率 的等离子体,以达到涂层性能的要求。该技术的优点是处理过程易于控制,稳定性好,重复性佳,沉积速率(≥015µm/h)足以达到工业化生产中较节省的处 理时间。

3 氧化铝涂层的工业化前景

在Flexicoat 750系统开发初始工艺的基础上,此工艺被转移到工业规模的HTC21000 设备。WalterAG是在硬质合金刀片和工具的数据管理上具有主导地位的生产商,拥有长期使用豪泽设备的经验。

1
图2 AlTiN+氧化铝涂层横截面显微照片(1000×)

1
图3 HRTEM分析的AlTiN-Al2O3界面

氧 化铝涂层广泛应用于硬质合金的刀片,其优点是能降低凹坑 磨损和热破裂。氧化铝涂层通常采用CVD 方法沉积。由于沉积温度高、碳化物易脆化,致使在金属切削(主要是铣削加工)方面的应用受到限制。在实际应用中,由于新的氧化铝PVD工艺沉积温度低,可 以实现刀片的切削刃所需要的高韧性,特别是在铣削不锈钢或难加工材料时,新的氧化铝涂层与传统的PVD 涂层相比,其性能提高了2倍。
在 重新设计和产业转化过程中,选定AlTiN+氧化铝 涂层系统。氧化铝涂层工艺的优化主要体现在提高涂层的性能上,如硬度和结构,优化目标是使新涂层在铣削加工方面与目前的AlTiN涂层技术相比能获得更好 的性能。图2所示为新涂层的横截面显微照片。由图可见,在硬质合金基体材料上可清晰见到3µm厚的AlTiN 层和1µm厚的氧化铝层。
用高分辨透射电镜(HRTEM) 来研究分析AlTiN-Al2O3的界面。图3所示为HRTEM分析的AlTiN-Al2O3界面区域。由图可见,氧化铝层与面心立方(fcc)晶体AlTiN层结合良好。此外,采用掠角X光衍射(GIXRD) 和选区电子衍射(SAED) 分析氧化铝涂层的结构为纳米晶的g- 相,晶粒尺寸约为5~10nm。最初的切削试验采用标准的SP12刀片干铣42CrMo4钢,图4为新涂层刀片和AlTiN 涂层刀片的平均磨损量和最大磨损量(切削条件见图4) 。氧化铝涂层刀片比AlTiN 涂层刀片具有更好的抗热破裂和耐磨性,这在切削后的刀片照片中也可见到(见图5) 。

11
图5 铣完4000mm后刀片磨损对比

4 结论

新的氧化铝涂层技术已成功地应用到工业涂层设备上,工艺稳定,可重复性强。通过上述铣削加工试验,证实了新氧化铝涂层用于刀片涂镀处理的可行性,Walter在2005年汉诺威EMO展览会上展示出使用新的氧化铝涂层技术的硬质合金刀片。

歡迎來到Bewise Inc.的世界,首先恭喜您來到這接受新的資訊讓產業更有競爭力,我們是提供專業刀具製造商,應對客戶高品質的刀具需求,我們可以協助客戶滿足您對產業的不同要求,我們有能力達到非常卓越的客戶需求品質,這是現有相關技術無法比擬的,我們成功的滿足了各行各業的要求,包括:精密HSS DIN切削刀具協助客戶設計刀具流程DIN or JIS 鎢鋼切削刀具設計NAS986 NAS965 NAS897 NAS937orNAS907 航太切削刀具,NAS航太刀具設計超高硬度的切削刀具醫療配件刀具設計汽車業刀具設計電子產業鑽石刀具木工產業鑽石刀具等等。我們的產品涵蓋了從民生刀具到工業級的刀具設計;從微細刀具到大型刀具;從小型生產到大型量產;全自動整合;我們的技術可提供您連續生產的效能,我們整體的服務及卓越的技術,恭迎您親自體驗!!

BW Bewise Inc. Willy Chen willy@tool-tool.com bw@tool-tool.com www.tool-tool.com skype:willy_chen_bw mobile:0937-618-190 Head &Administration Office No.13,Shiang Shang 2nd St., West Chiu Taichung,Taiwan 40356 http://www.tool-tool..com / FAX:+886 4 2471 4839 N.Branch 5F,No.460,Fu Shin North Rd.,Taipei,Taiwan S.Branch No.24,Sec.1,Chia Pu East Rd.,Taipao City,Chiayi Hsien,Taiwan

Welcome to BW tool world! We are an experienced tool maker specialized in cutting tools. We focus on what you need and endeavor to research the best cutter to satisfy users demand. Our customers involve wide range of industries, like mold & die, aerospace, electronic, machinery, etc. We are professional expert in cutting field. We would like to solve every problem from you. Please feel free to contact us, its our pleasure to serve for you. BW product including: cutting toolaerospace tool .HSS DIN Cutting toolCarbide end millsCarbide cutting toolNAS Cutting toolNAS986 NAS965 NAS897 NAS937orNAS907 Cutting Tools,Carbide end milldisc milling cutter,Aerospace cutting toolhss drillФрезерыCarbide drillHigh speed steelMilling cutterCVDD(Chemical Vapor Deposition Diamond )’PCBN (Polycrystalline Cubic Boron Nitride) Core drillTapered end millsCVD Diamond Tools Inserts’PCD Edge-Beveling Cutter(Golden FingerPCD V-CutterPCD Wood toolsPCD Cutting toolsPCD Circular Saw BladePVDD End Millsdiamond tool Single Crystal Diamond Metric end millsMiniature end millsСпециальные режущие инструменты Пустотелое сверло Pilot reamerFraisesFresas con mango PCD (Polycrystalline diamond) ‘FreseElectronics cutterStep drillMetal cutting sawDouble margin drillGun barrelAngle milling cutterCarbide burrsCarbide tipped cutterChamfering toolIC card engraving cutterSide cutterNAS toolDIN or JIS toolSpecial toolMetal slitting sawsShell end millsSide and face milling cuttersSide chip clearance sawsLong end millsStub roughing end millsDovetail milling cuttersCarbide slot drillsCarbide torus cuttersAngel carbide end millsCarbide torus cuttersCarbide ball-nosed slot drillsMould cutterTool manufacturer.

Bewise Inc. www.tool-tool.com

ようこそBewise Inc.の世界へお越し下さいませ、先ず御目出度たいのは新たな

情報を受け取って頂き、もっと各産業に競争力プラス展開。

弊社は専門なエンドミルの製造メーカーで、客先に色んな分野のニーズ

豊富なパリエーションを満足させ、特にハイテク品質要求にサポート致します。

弊社は各領域に供給できる内容は:

(1)精密HSSエンドミルのR&D

(2)Carbide Cutting tools設計

(3)鎢鋼エンドミル設計

(4)航空エンドミル設計

(5)超高硬度エンドミル

(6)ダイヤモンドエンドミル

(7)医療用品エンドミル設計

(8)自動車部品&材料加工向けエンドミル設計

弊社の製品の供給調達機能は:

(1)生活産業~ハイテク工業までのエンドミル設計

(2)ミクロエンドミル~大型エンドミル供給

(3)小Lot生産~大量発注対応供給

(4)オートメーション整備調達

(5)スポット対応~流れ生産対応

弊社の全般供給体制及び技術自慢の総合専門製造メーカーに貴方のご体験を御待ちしております。

BW специализируется в научных исследованиях и разработках, и снабжаем самым высокотехнологичным карбидовым материалом для поставки режущих / фрезеровочных инструментов для почвы, воздушного пространства и электронной индустрии. В нашу основную продукцию входит твердый карбид / быстрорежущая сталь, а также двигатели, микроэлектрические дрели, IC картонорезальные машины, фрезы для гравирования, режущие пилы, фрезеры-расширители, фрезеры-расширители с резцом, дрели, резаки форм для шлицевого вала / звездочки роликовой цепи, и специальные нано инструменты. Пожалуйста, посетите сайт www.tool-tool.com для получения большей информации.

BW is specialized in R&D and sourcing the most advanced carbide material with high-tech coating to supply cutting / milling tool for mould & die, aero space and electronic industry. Our main products include solid carbide / HSS end mills, micro electronic drill, IC card cutter, engraving cutter, shell end mills, cutting saw, reamer, thread reamer, leading drill, involute gear cutter for spur wheel, rack and worm milling cutter, thread milling cutter, form cutters for spline shaft/roller chain sprocket, and special tool, with nano grade. Please visit our web www.tool-tool.com for more info.

beeway 發表在 痞客邦 留言(0) 人氣()

Bewise Inc. www.tool-tool.com Reference source from the internet.

現今工業界對於沃斯田鐵型不銹鋼已廣泛的使用,而對於麻田散鐵型不銹鋼的了解及相關機械性質的可供參考數據十分的缺乏,根據統計目前機件的損壞有80%以上均是以疲勞的型式破壞。尤其當材料受反覆變化的作用力時此一類型的破壞極易產生,因其無法事先預知,如果情況一發生便容易造成莫大的損失。此時材料的疲勞強度比起彈性限重要許多。一般說來,材料的疲勞強度隨其化學成份、晶粒結構、表面處理等而異。


金屬材料熱處理後分析其疲勞強度、抗拉強度、硬度等並觀察金相組織。使用的儀器與包括:熱處理爐、CNC車床、勃氏硬度機、金相顯微鏡、MTS材料試驗機等等。所分析的材料是420J2麻田散鐵型不銹鋼,由於420J2不銹鋼其強度、硬度都比一般碳鋼高出許多,且在國內也尚未見到對420J2不銹鋼之疲勞強度作分析研究的報告。


SUS420J2
不銹鋼試件經熱處理後分別為:正常化、高溫回火、低溫回火,然後對其硬度、抗拉強度、抗疲勞性與金相組織等分析。由ASTM E466規範"執行金屬材料固定振幅軸向疲勞試驗之標準程序(standard practice for conducting constant amplitude axial fatigue tests of metallic material"主要適用於在彈性應變內的疲勞,此種疲勞壽命一般稱為高週疲勞(High Cycle FatigueHCF)。ASTM E606則為"固定振幅低週疲勞之標準建議程序(standard recommended practice for constant amplitude low cycle fatigue testing",低週疲軟牽涉到明顯程度的非彈性應變。

主要鋼種有:

1.沃斯田鐵 301

2.沃斯田鐵 303

3.沃斯田鐵 304

4.沃斯田鐵 316


歡迎來到Bewise Inc.的世界,首先恭喜您來到這接受新的資訊讓產業更有競爭力,我們是提供專業刀具製造商,應對客戶高品質的刀具需求,我們可以協助客戶滿足您對產業的不同要求,我們有能力達到非常卓越的客戶需求品質,這是現有相關技術無法比擬的,我們成功的滿足了各行各業的要求,包括:精密HSS DIN切削刀具協助客戶設計刀具流程DIN or JIS 鎢鋼切削刀具設計NAS986 NAS965 NAS897 NAS937orNAS907 航太切削刀具,NAS航太刀具設計超高硬度的切削刀具醫療配件刀具設計汽車業刀具設計電子產業鑽石刀具木工產業鑽石刀具等等。我們的產品涵蓋了從民生刀具到工業級的刀具設計;從微細刀具到大型刀具;從小型生產到大型量產;全自動整合;我們的技術可提供您連續生產的效能,我們整體的服務及卓越的技術,恭迎您親自體驗!!

BW Bewise Inc. Willy Chen willy@tool-tool.com bw@tool-tool.com www.tool-tool.com skype:willy_chen_bw mobile:0937-618-190 Head &Administration Office No.13,Shiang Shang 2nd St., West Chiu Taichung,Taiwan 40356 http://www.tool-tool..com / FAX:+886 4 2471 4839 N.Branch 5F,No.460,Fu Shin North Rd.,Taipei,Taiwan S.Branch No.24,Sec.1,Chia Pu East Rd.,Taipao City,Chiayi Hsien,Taiwan

Welcome to BW tool world! We are an experienced tool maker specialized in cutting tools. We focus on what you need and endeavor to research the best cutter to satisfy users demand. Our customers involve wide range of industries, like mold & die, aerospace, electronic, machinery, etc. We are professional expert in cutting field. We would like to solve every problem from you. Please feel free to contact us, its our pleasure to serve for you. BW product including: cutting toolaerospace tool .HSS DIN Cutting toolCarbide end millsCarbide cutting toolNAS Cutting toolNAS986 NAS965 NAS897 NAS937orNAS907 Cutting Tools,Carbide end milldisc milling cutter,Aerospace cutting toolhss drillФрезерыCarbide drillHigh speed steelMilling cutterCVDD(Chemical Vapor Deposition Diamond )PCBN (Polycrystalline Cubic Boron Nitride) Core drillTapered end millsCVD Diamond Tools InsertsPCD Edge-Beveling Cutter(Golden FingerPCD V-CutterPCD Wood toolsPCD Cutting toolsPCD Circular Saw BladePVDD End Millsdiamond tool Single Crystal Diamond Metric end millsMiniature end millsСпециальные режущие инструменты Пустотелое сверло Pilot reamerFraisesFresas con mango PCD (Polycrystalline diamond) FreseElectronics cutterStep drillMetal cutting sawDouble margin drillGun barrelAngle milling cutterCarbide burrsCarbide tipped cutterChamfering toolIC card engraving cutterSide cutterNAS toolDIN or JIS toolSpecial toolMetal slitting sawsShell end millsSide and face milling cuttersSide chip clearance sawsLong end millsStub roughing end millsDovetail milling cuttersCarbide slot drillsCarbide torus cuttersAngel carbide end millsCarbide torus cuttersCarbide ball-nosed slot drillsMould cutterTool manufacturer.

Bewise Inc. www.tool-tool.com

ようこそBewise Inc.の世界へお越し下さいませ、先ず御目出度たいのは新たな

情報を受け取って頂き、もっと各産業に競争力プラス展開。

弊社は専門なエンド・ミルの製造メーカーで、客先に色んな分野のニーズ、

豊富なパリエーションを満足させ、特にハイテク品質要求にサポート致します。

弊社は各領域に供給できる内容は:

(1)精密HSSエンド・ミルのR&D

(2)Carbide Cutting tools設計

(3)鎢鋼エンド・ミル設計

(4)航空エンド・ミル設計

(5)超高硬度エンド・ミル

(6)ダイヤモンド・エンド・ミル

(7)医療用品エンド・ミル設計

(8)自動車部品&材料加工向けエンド・ミル設計

弊社の製品の供給調達機能は:

(1)生活産業~ハイテク工業までのエンド・ミル設計

(2)ミクロ・エンド・ミル~大型エンド・ミル供給

(3)小Lot生産~大量発注対応供給

(4)オートメーション整備調達

(5)スポット対応~流れ生産対応

弊社の全般供給体制及び技術自慢の総合専門製造メーカーに貴方のご体験を御待ちしております。

BW специализируется в научных исследованиях и разработках, и снабжаем самым высокотехнологичным карбидовым материалом для поставки режущих / фрезеровочных инструментов для почвы, воздушного пространства и электронной индустрии. В нашу основную продукцию входит твердый карбид / быстрорежущая сталь, а также двигатели, микроэлектрические дрели, IC картонорезальные машины, фрезы для гравирования, режущие пилы, фрезеры-расширители, фрезеры-расширители с резцом, дрели, резаки форм для шлицевого вала / звездочки роликовой цепи, и специальные нано инструменты. Пожалуйста, посетите сайт www.tool-tool.com для получения большей информации.

BW is specialized in R&D and sourcing the most advanced carbide material with high-tech coating to supply cutting / milling tool for mould & die, aero space and electronic industry. Our main products include solid carbide / HSS end mills, micro electronic drill, IC card cutter, engraving cutter, shell end mills, cutting saw, reamer, thread reamer, leading drill, involute gear cutter for spur wheel, rack and worm milling cutter, thread milling cutter, form cutters for spline shaft/roller chain sprocket, and special tool, with nano grade. Please visit our web www.tool-tool.com for more info.

beeway 發表在 痞客邦 留言(0) 人氣()

Bewise Inc. www.tool-tool.com Reference source from the internet.

在空氣中或化學腐蝕介質中能夠抵抗腐蝕的一種高合金鋼,不鏽鋼是具有美觀的表面和耐腐蝕性能好,不必經過鍍色等表面處理,而發揮不鏽鋼所固有的表面性能,使用於多方面的鋼鐵的一種,通常稱為不鏽鋼。代表性能的有13鉻鋼,18-鉻鎳鋼等高合金鋼。
從金相學角度分析,因為不鏽鋼含有鉻而使表面形成很薄的鉻膜,這個膜隔離開與鋼內侵入的氧氣起耐腐蝕的作用。
為了保持不鏽鋼所固有的耐腐蝕性,鋼必須含有12%以上的鉻。
不鏽鋼種類:
不鏽鋼可以按用途、化學成分及金相組織來大體分類。
以奧氏體系類的鋼由18%-8%鎳為基本組成,各元素的加入量變化的不同,而開發各種用途的鋼種。
以化學成分分類:
CR系列:鐵素體系列、馬氏體系列
CR-NI系列:奧氏體系列,異常系列,析出硬化系列。
以金相組織的分類:
奧氏體不鏽鋼
鐵素體不鏽鋼
馬氏體不鏽鋼
雙相不鏽鋼
沉澱硬化不鏽鋼

不鏽鋼的標識方法

鋼的編號和表示方法
用國際化學元素符號和本國的符號來表示化學成份,用阿拉伯字母來表示成份含量:
如:中國、俄國 12CrNi3A
用固定位數數字來表示鋼類系列或數字;如:美國、日本、300系、400系、200系;
用拉丁字母和順序組成序號,只表示用途。
我國的編號規則
採用元素符號
用途、漢語拼音,平爐鋼:P 沸騰鋼:F 鎮靜鋼:B、甲類鋼:AT8:特8
GCr15
:滾珠
合結鋼、彈簧鋼,如:20CrMnTi 60SiMn、(用萬分之几表示C含量)
不鏽鋼、合金工具鋼(用千分之几表示C含量),如:1Cr18Ni9 千分之一(即
0.1%C
,不鏽 C≤0.08% 0Cr18Ni9,超低碳C≤0.03% 0Cr17Ni13Mo
國際不鏽鋼標示方法
美國鋼鐵學會是用三位數字來標示各種標準級的可鍛不鏽鋼的。其中:
奧氏體型不鏽鋼用200300系列的數字標示,
鐵素體和馬氏體型不鏽鋼用400系列的數字表示。例如,某些較普通的奧氏體不鏽鋼
是以201 304 316以及310為標記,
鐵素體不鏽鋼是以430446為標記,馬氏體不鏽鋼 是以410420以及440C為標
記,雙相(奧氏體-鐵素體),
不鏽鋼、沉澱硬化不鏽鋼以及含鐵量低於50%的高合金通常是採用專利名稱或商標命名。
4)
.標準的分類和分級
4-1
分級:
國家標準GB
行業標準YB
地方標準
企業標準Q/CB
4-2
分類:
產品標準
包裝標準
方法標準
基礎標準
4-3
標準水平(分三級):
Y
級:國際先進水平
I
級:國際一般水平
H
級:國內先進水平
4-4
國標
GB1220-84
不鏽棒材(I級)
GB4241-84
不鏽焊接盤園(H級)
GB4356-84
不鏽焊接盤園(I級)
GB1270-80
不鏽管材(I級)
GB12771-91
不鏽焊管(Y級)
GB3280-84
不鏽冷板(I級)
GB4237-84
不鏽熱板(I級)
GB4239-91
不鏽冷帶(I級)

不鏽鋼專業名詞

通 俗地說,不鏽鋼就是不容易生鏽的鋼,實際上一部分不鏽鋼,既有不鏽性,又有耐酸性(耐蝕性)。不鏽鋼的不鏽性和耐蝕性是由於其表面上富鉻氧化膜(鈍化膜) 的形成。這種不鏽性和耐蝕性是相對的。試驗表明,鋼在大氣、水等弱介質中和硝酸等氧化性介質中,其耐蝕性隨鋼中鉻含水量的增加而提高,當鉻含量達到一定的 百分比時,鋼的耐蝕性發生突變,即從易生鏽到不易生鏽,從不耐蝕到耐腐蝕。不鏽鋼的分類方法很多。按室溫下的組織結構分類,有馬氏體型、奧氏體型、鐵素體 和雙相不鏽鋼;按主要化學成分分類,基本上可分為鉻不鏽鋼和鉻鎳不鏽鋼兩大系統;按用途分則有耐硝酸不鏽鋼、耐硫酸不鏽鋼、耐海水不鏽鋼等等,按耐蝕類型 分可分為耐點蝕不鏽鋼、耐應力腐蝕不鏽鋼、耐晶間腐蝕不鏽鋼等;按功能特點分類又可分為無磁不鏽鋼、易切削不鏽鋼、低溫不鏽鋼、高強度不鏽鋼等等。由於不 鏽鋼材具有優異的耐蝕性、成型性、相容性以及在很寬溫度範圍內的強韌性等系列特點,所以在重工業、輕工業、生活用品行業以及建筑裝飾等行業中獲取得廣氾的 應用。

奧氏體不鏽鋼:在常溫下具有奧氏體組織的不鏽鋼。鋼中含Cr18%Ni 8%~10%C0.1%時,具有穩定的奧氏體組織。奧氏體鉻鎳不鏽鋼包括著名的18Cr-8Ni鋼和在此基礎上增加CrNi含量並加入MoCuSiNbTi等元素髮展起來的高Cr-Ni系列鋼。奧氏體不鏽鋼無磁性而且具有高韌性和塑性,但強度較低,不可能通過相變使之強化,僅能通過冷加工進行強化。如加入SCaSeTe等元素,則具有良好的易切削性。此類鋼除耐氧化性酸介質腐蝕外,如果含有MoCu等元素還能耐硫酸、磷酸以及甲酸、醋酸、尿素等的腐蝕。此類鋼中的含碳量若低於0.03%或含TiNi,就可顯著提高其耐晶間腐蝕性能。高硅的奧氏體不鏽鋼濃硝酸肯有良好的耐蝕性。由於奧氏體不鏽鋼具有全面的和良好的綜合性能,在各行各業中獲得了廣氾的應用。

鐵素體不鏽鋼:在使用狀態下以鐵素體組織為主的不鏽鋼。含鉻量在11%~30%,具有體心立方晶體結構。這類鋼一般不含鎳,有時還含有少量的MoTiNb等到元素,這類鋼具導熱係數大,膨脹係數小、抗氧化性好、抗應力腐蝕優良等特點,多用於製造耐大氣、水蒸氣、水及氧化性酸腐蝕的零部件。這類鋼存在塑性差、焊后塑性和耐蝕性明顯降低等缺點,因而限制了它的應用。爐外精鍊技術(AODVOD)的應用可使碳、氮等間隙元素大大降低,因此使這類鋼獲得廣氾應用。

奧氏體--鐵素體雙相不鏽鋼:是奧氏體和鐵素體組織各約占一半的不鏽鋼。在含C較低的情況下,Cr含量在18%~28%Ni含量在3%~10%。有些鋼還含有MoCuSiNbTiN等合金元素。該類鋼兼有奧氏體和鐵素體不鏽鋼的特點,與鐵素體相比,塑性、韌性更高,無室溫脆性,耐晶間腐蝕性能和焊接性能均顯著提高,同時還保持有鐵素體不鏽鋼的475脆性以及導熱係數高,具有超塑性等特點。與奧氏體不鏽鋼相比,強度高且耐晶間腐蝕和耐氯化物應力腐蝕有明顯提高。雙相不鏽鋼具有優良的耐孔蝕性能,也是一種節鎳不鏽鋼。

馬氏體不鏽鋼:通過熱處理可以調整其力學性能的不鏽鋼,通俗地說,是一類可硬化的不鏽鋼。典型牌號為Cr13型,如2Cr13 ,3Cr13 ,4Cr13等。 粹火后硬度較高,不同回火溫度具有不同強韌性組合,主要用於蒸汽輪機葉片、餐具、外科手朮器械。根據化學成分的差異,馬氏體不鏽鋼可分為馬氏體鉻鋼和馬氏 體鉻鎳鋼兩類。根據組織和強化機理的不同,還可分為馬氏體不鏽鋼、馬氏體和半奧氏體(或半馬氏體)沉澱硬化不鏽鋼以及馬氏體時效不鏽鋼等。

不鏽鋼的物理化學機械特性
不鏽鋼的物理性能主要用以下幾方面來表示:
.熱膨脹係數:因溫度變化而引起物質量度元素的變化。膨脹係數是膨脹-溫度曲線的斜率,瞬時膨脹係數是特定溫度下的斜率,兩個指定的溫度之間的平均斜率是平均熱膨脹係數。膨脹係數可以用體積或者是長度表示,通常是用長度表示。
.密度:物質的密度是該物質單位體積的質量,單位是kg/m31b/in3。 
.彈性模量:當施加力于單位長度稜住的兩端能引起物體在長度上的單位變化時,單位面積上所需的力稱為彈性模量。單位為1b/in3N/m3
.電阻率:在單位長度立方體材料的兩對面之間測量的電阻,單位用Ω•mμΩ•cm或(已廢的)Ω/(circular mil.ft)來表示。
.磁導率:無量綱係數,表示物質易被磁化的程度,是磁感應強度與磁場強度之比。
.熔化溫度範圍:確定合金開始凝固和凝固完了的溫度。
.比熱: 單位質量的物質溫度改變1度所需要的熱量。在英制和CGs制中二者比熱的數值相同,因為熱量的單位(Biucal)取決于單位質量的水升高1度聽需的熱量。國際單位制中比熱的數值與英制或CGS制是不同的,因為能量的單位(J)是按不同的定義定的。比熱的單位是Btu(1b•0F)J/kg •k)。
.熱導率:物質導熱的速率的量度。在單位截面積物質上建立單位長度上的1度的溫度梯度時,那麼熱導率定義為單位時間傳導的熱量,熱導率的單位為 Btu/(h•ft•0F)w/(m •K)
.熱擴散率:是確定物質內部溫度前遷速率的一種性能,是熱導率對比熱和密度乘積的比值,熱擴散率單位以Btu/(h•ft•0F)w/(m•k)表示。

不鏽鋼的性能與組織
目前已知的化學元素有100多 種,在工業中常用的鋼鐵材料中可以遇到的化學元素約二十多種。對於人們在與腐蝕現象作長期鬥爭的實踐而形成的不鏽鋼這一特殊鋼系列來說,最常用的元素有十 幾種,除了組成鋼的基本元素鐵以外,對不鏽鋼的性能與組織影響最大的元素是:碳、鉻、鎳、錳、硅、鉬、鈦、鈮、鈦、錳、氮、銅、鈷等。這些元素中除碳、 硅、氮以外,都是化學元素週期表中位於過渡族的元素。
實際上工業上應用的不鏽鋼都是同時存在幾種以至十幾種元素的,當幾種元素共存於不鏽鋼這一個統一體中時,它們的影響要比單獨存在時複雜得多,因為在這種情況下不僅要考慮各元素自身的作用,而且要注意它們互相之間的影響,因此不鏽鋼的組織決定于各種元素影響的總和。

1)
.各種元素對不鏽鋼的性能和組織的影響和作用
1-1.
鉻 在不鏽鋼中的決定作用:決定不鏽鋼性屬的元素只有一種,這就是鉻,每種不鏽鋼都含有一定數量的鉻。迄今為止,還沒有不含鉻的不鏽鋼。鉻之所以成為決定不鏽 鋼性能的主要元素,根本的原因是向鋼中添加鉻作為合金元素以後,促使其內部的矛盾運動向有利於抵抗腐蝕破坏的方面發展。這種變化可以從以下方面得到說明:

鉻使鐵基固溶體的電極電位提高

鉻吸收鐵的電子使鐵鈍化
鈍化是由於陽極反應被阻止而引起金屬與合金耐腐蝕性能被提高的現象。構成金屬與合金鈍化的理論很多,主要有薄膜論、吸附論及電子排列論。

1-2.
碳在不鏽鋼中的兩重性
碳是工業用鋼的主要元素之一,鋼的性能與組織在很大程度上決定于碳在鋼中的含量及其分布的形式,在不鏽鋼中碳的影響尤為顯著。碳在不鏽鋼中對組織的影響主要表現在兩方面,一方面碳是穩定奧氏體的元素,並且作用的程度很大(約為鎳的30倍),另一方面由於碳和鉻的親和力很大,與鉻形成系列複雜的碳化物。所以,從強度與耐腐燭性能兩方面來看,碳在不鏽鋼中的作用是互相矛盾的。

認識了這一影響的規律,我們就可以從不同的使用要求出發,選擇不同含碳量的不鏽鋼。
例如工業中應用最廣氾的,也是最起碼的不鏽鋼——0Crl34Cr13這五個鋼號的標準含鉻量規定為1214%,就是把碳要與鉻形成碳化鉻的因素考慮進去以後才決定的,目的即在於使碳與鉻結合成碳化鉻以後,固溶體中的含鉻量不致低於11.7%這一最低限度的含鉻量。
就這五個鋼號來說由於含碳量不同,強度與耐腐蝕性能也是有區別的,0Cr132Crl3鋼的耐腐蝕性較好但強度低於3Crl34Cr13鋼,多用於製造結構零件,后兩個鋼號由於含碳較高而可獲得高的強度多用於製造彈簧、刀具等要求高強度及耐磨的零件。又如為了克服188鉻鎳不鏽鋼的晶間腐蝕,可以將鋼的含碳量降至0.03%以下,或者加入比鉻和碳親和力更大的元素(鈦或鈮),使之不形成碳化鉻,再如當高硬度與耐磨性成為主要要求時,我們可以在增加鋼的含碳量的同時適當地提高含鉻量,做到既滿足硬度與耐磨性的要求,又兼顧定的耐腐蝕功能,工業上用作軸承、量具與刃具有不鏽鋼9Cr189Cr17MoVCo鋼,含碳量雖高達0.850.95%,由於它們的含鉻量也相應地提高了,所以仍保証了耐腐蝕的要求。
總的來講,目前工業中獲得應用的不鏽鋼的含碳量都是比較低的,大多數不鏽鋼的含碳量在0.10.4%之間,耐酸鋼則以含碳0.10.2%的居多。含碳量大於0.4%的不鏽鋼僅占鋼號總數的一小部分,這是因為在大多數使用條件下,不鏽鋼總是以耐腐蝕為主要目的。此外,較低的含碳量也是出於某些工藝上的要求,如易於焊接及冷變形等。

1-3.
鎳在不鏽鋼中的作用是在與鉻配合后才發揮出來的
鎳是優良的耐腐蝕材料,也是合金鋼的重要合金化元素。鎳在鋼中是形成奧氏體的元素,但低碳鎳鋼要獲得純奧氏體組織,含鎳量要達到24%;而只有含鎳27%時才使鋼在某些介質中的耐腐蝕性能顯著改變。所以鎳不能單獨構成不鏽鋼。但是鎳與鉻同時存在於不鏽鋼中時,含鎳的不鏽鋼卻具有許多可貴的性能。
基於上面的情況可知,鎳作為合金元素在不鏽鋼中的作用,在於它使高鉻鋼的組織發生變化,從而使不鏽鋼的耐腐蝕性能及工藝性能獲得某些改善。

1-4.
錳和氮可以代替鉻鎳不鏽鋼中鎳
鉻鎳奧氏體鋼的優點雖然很多,但近几十年來由於鎳基耐熱合金與含鎳20%以下的熱強鋼的大量發展與應用,以及化學工業日益發展對不鏽鋼的需要量越來越大,而鎳的礦藏量較少且又集中分布在少數地區,因此在世界範圍內出現了鎳在供和需方面的矛盾。所以在不鏽鋼與許多其他合金領域(如大型鑄鍛件用鋼、工具鋼、熱強鋼等)中,特別是鎳 的資源比較缺乏的國家,廣氾地開展了節鎳和以其他元素代鎳的科學研究與生產實踐,在這方面研究和應用比較多的是以錳和氮來代替不鏽鋼與耐熱鋼中的鎳。
錳對於奧氏體的作用與鎳相似。但說得確切一些,錳的作用不在於形成奧氏體,而是在於它降低鋼的臨界淬火速度,在冷卻時增加奧氏體的穩定性,抑制奧氏體的分解,使高溫下形成的奧氏體得以保持到常溫。在提高鋼的耐腐蝕性能方面,錳的作用不大,如鋼中的 含錳量從0104%變化,也不使鋼在空氣與酸中的耐腐蝕性能發生明顯的改變。這是因為錳對提高鐵基固溶體的電極電位的作用不大,形成的氧化膜的防護作用也很低,所以工業上雖有以錳合金化的奧氏體鋼(如40Mn18Cr4,50Mn18Cr4WNZGMn13鋼等),但它們不能作為不鏽鋼使用。 錳在鋼中穩定奧氏體的作用約為鎳的二分之一,即2%的氮在鋼中的作用也是穩定奧氏體,並且作用的程度比鎳還要大。例如,欲使含18%鉻的鋼在常溫下獲得奧氏體組織,以錳和氮代鎳的低鎳不鏽鋼與元鎳的鉻錳氮不誘鋼,目前已在工業中獲得應用,有的已成功地代替了經典的18-8鉻鎳不鏽鋼。

1-5.
不鏽鋼中加鈦或鈮是為了防止晶間腐蝕。

1-6.
鉬和銅可以提高某些不鏽鋼的耐腐蝕性能。

1-7.
其他元素對不鏽鋼的性能和組織的影響

以 上主要的九種元素對不鏽鋼的性能和組織的影響,除這些元素對不鏽鋼性能與組織影響較大的元素以外,不鏽鋼中還含有一些其他的元素。有的是和一般鋼一樣為常 存雜質元素,如硅、硫、磷等.也有的是為了某些特定的目的而加入的,如鈷、硼、硒、稀土元素等。從不鏽鋼的耐腐蝕性能這一主要性質來說,這些元素相對於已 討論的九種元素,都是非主要方面的,雖然如此,但也不能完全忽略,因為它們對不鏽鋼的性能與組織同樣也發生影響。
硅是形成鐵素體的元素,在一般不鏽鋼中為常存雜質元素。
鈷作為合金元素在鋼中應用不多,這是因為鈷的價格高及其在其它方面(如高速鋼、硬質合金、鈷基耐熱合金、磁鋼或硬磁合金等)有著更重要的用途。在一般不鏽鋼中加鈷作合金元素的也不多,常用不鏽鋼如9Crl7MoVCo鋼(含1.2-1.8%鈷)加鈷,目的並不在於提高耐腐蝕性能而在於提高硬度,因為這種不鏽鋼的主要用途是製造切片機械刃具、剪刀及手朮刀片等。
硼:高鉻鐵素體不鏽鋼Crl7Mo2Ti鋼中加0005%硼,可使在沸騰的65%醋酸中的耐腐蝕性能提高。加微量的硼(0.00060.0007%)可使奧氏體不鏽鋼的熱態塑性改善。少量的硼由於形成低熔點共晶體,使奧氏體鋼焊接時產生熱裂紋的傾向增大,但含有較多的硼(0506%)時,反而可防止熱裂紋的產生。因為當含有0506% 的硼時,形成奧氏體-硼化物兩相組織,使焊縫的熔點降低。熔池的凝固溫度低於半溶化區時,母材在冷卻時產生的張應力,由處於液態.固態的焊縫金屬承受,此 時是不致引起裂縫的,即使在近縫區形成了裂紋,也可以為處於液態-固態的熔池金屬所填充。含硼的鉻鎳奧氏體不鏽鋼在原子能工業中有著特殊的用途。
磷:在一般不鏽鋼中都是雜質元素,但其在奧氏體不鏽鋼中的危害性不像在一般鋼中那樣顯著,故含量可允許高一些,如有的資料提出可達006%,以利於冶煉控制。個別的含錳的奧氏體鋼的含磷量可達006%(如2Crl3NiMn9鋼)以至0.08%(如Cr14Mnl4Ni鋼)。利用磷對鋼的強化作用,也有加磷作為時效硬化不鏽鋼的合金元素,PH1710P(025%磷)PHHNM鋼(含030磷)等。
硫和硒:在一般不鏽鋼中也是常有雜質元素。但向不鏽鋼中加0204%的硫,可提高不鏽鋼的切削性能,硒也具有同樣的作用。硫和硒提高不鏽鋼的切削性能,是因為它們降低不鏽鋼的韌性,例如一般188鉻鎳不鏽鋼的衝擊值可達30公斤/釐米2。含031%硫的188鋼(0084C1815Cr925Ni)的衝擊值為18公斤/平方釐米;含022%硒的188鋼(0094C184Cr9Ni)的衝擊值為324公斤/平方釐米。硫與硒均降低不鏽鋼的耐腐蝕性能,所以實際應用它們作為不鏽鋼的合金化元素的很少。
稀土元素:稀土元素應用於不鏽鋼,目前主要在於改善工藝性能方面。如向Crl7Ti鋼和Cr17Mo2Ti鋼中加少量的稀土元素,可以消除鋼錠中因氫氣引起的氣泡和減少鋼坯中的裂紋。奧氏體和奧氏體-鐵素體不鏽鋼中加00205%的稀土元素(鈰鑭合金),可顯著改善鍛造性能。曾有一種含195%鉻、23%鎳以及鉬銅錳的奧氏體鋼,由於熱加工工藝性能在過去只能生產鑄件,加稀土元素后則可軋製成各種型材。

2)
.按金相組織對不鏽鋼的分類及各類不鏽鋼的一般特點
按化學成分(主要是含鉻量)及用途,不鏽鋼分為不鏽與耐酸兩大類。工業上還按自高溫(900-1100度)加熱空氣冷卻后鋼的基體組織的類型對不鏽鋼進行分類,這是基於我們上面所討論的碳及合金元素對不鏽鋼組織影響的特點決定的。
工業上應用的不鏽鋼按金相組織可分為三大類:鐵素體不鏽鋼,馬氏體不鏽鋼,奧氏體不鏽鋼。可以把這三類不鏽鋼的特點歸納(如下表),但需要說明的是馬氏體不鏽鋼並不是都不可焊接,只是受某些條件的限制,如焊前應預熱焊后應作高溫回火等,而使焊接工藝比較複雜。實際生產中一些馬氏體不鏽鋼如1Cr13,2Cr13以及2Cr1345鋼焊接還是比較多的。
不鏽鋼的分類、主要成分及性能比較
分類 大概成分 % 淬火性 耐蝕性 加工性 可焊接性 磁性
C Cr Ni
鐵素體系 035以下 16-27 - 尚佳 尚可
馬氏體系 120以下 11-15 - 自硬性 不可
奧氏體系 025以下 16以上 7以上
以上分類僅是按鋼的基體組織分的,由於鋼中穩定奧氏體及形成鐵素體的元素的作用不能互相平衡,以及由於大量的鉻使平衡圖S點左移,工業中應用的不鏽鋼的組織除了上面講的三種基本類型以外,還有馬氏體鐵素體,奧氏體-鐵素體,奧氏體-馬氏體等過渡型的復相不鏽鋼,以及具有馬氏體-碳化物組織的不鏽鋼。

2-1.
鐵素體鋼
含鉻大於14%的低碳鉻不鏽鋼,含鉻大干

beeway 發表在 痞客邦 留言(0) 人氣()

Bewise Inc. www.tool-tool.com Reference source from the internet.

Eine Gasturbine ist eine kontinuierlich von Gas durchströmte Verbrennungskraftmaschine (Strömungsmaschine). Das Wirkungsprinzip beruht auf dem Kreisprozess (Joule-Prozess), den James Prescott Joule erdacht hatte. Dieser komprimiert über die Beschaufelung einer oder mehrerer Verdichterstufen Luft, mischt diese anschließend in der Brennkammer mit einem gasförmigen oder flüssigen Treibstoff, zündet und verbrennt. Außerdem wird die Luft zur Kühlung eingesetzt. So entsteht ein Heißgas (Mischung aus Verbrennungsgas und Luft): das entspannt im nachfolgenden Turbinenteil, wobei sich thermische in mechanische Energie wandelt und zunächst den Verdichter antreibt. Der verbleibende Anteil wird beim Wellentriebwerk zum Antrieb eines Generators, eines Propellers, eines Rotors, eines Kompressors oder einer Pumpe verwendet. Beim Strahltriebwerk dagegen beschleunigt die thermische Energie den heißen Gasstrom, was den Schub erzeugt.

Die Gasturbine ist eine Unterordnung der thermischen Fluidenergiemaschinen und thermischen Turbomaschine (von lat. turbare = drehen).

Gasturbine eines Turboproptriebwerks: A Propeller, B Getriebe, C Kompressor, D Brennkammer, E Turbine, F Abgasausstoß.

Gasturbine eines Turboproptriebwerks:
A Propeller, B Getriebe, C Kompressor, D Brennkammer, E Turbine, F Abgasausstoß.

Historischer Überblick [Bearbeiten]

Turboproptriebwerk Lycoming T 53 (Propellerabtrieb links über Reduktionsgetriebe)

Turboproptriebwerk Lycoming T 53 (Propellerabtrieb links über Reduktionsgetriebe)

Die ersten Erfindungen zur Gasturbine datieren auf das Jahr 1791: der Engländer John Barber ließ sich eine erste derartige Maschine patentieren. In der Praxis versagte seine Gasturbine jedoch - in erster Linie wegen der zu dieser Zeit zur Verfügung stehenden Werkstoffe.

An der Wende vom 19. zum 20. Jahrhundert nahmen die Ingenieure die Idee der Gasturbine wieder auf, wobei sie sich an der parallelen Entwicklung der Dampfturbine orientierten. Die zu diesem Zeitpunkt entwickelten Gasturbinen besaßen einen mit Ventilen abgeschlossenen Verbrennungsraum, aus dem unter Druck stehende Abgase der zuvor verbrannten Brennstoffe auf die eigentliche Turbine geleitet wurden. So eine Gleichraumturbine kam ohne einen Verdichter aus, besaß aber einen geringen Wirkungsgrad von maximal 13 %. Ab 1935 standen die ersten Gleichraumturbinen für den stationären Betrieb in Gaskraftwerken zur Verfügung; die Entwicklung dieses Turbinentypes geht auf das historische Patent von 1791 zurück - das schweizerische Unternehmen BBC machte sie marktreif. Die chemische Industrie setzte diese ersten Turbinen ein, die eine Leistung von 14 MW hatten. 1939 lieferte BBC eine Gasturbine an das britische Luftfahrtministerium, das sie zu Versuchszwecken verwendete. 1940 setzte ein Kraftwerk im schweizerischen Neuenburg die erste Gasturbine ein. Die Maschine hatte 4 MW Leistung und lieferte positive Betriebsergebnisse, so dass man eine ähnliche Turbine in eine Lokomotive (SBB Am 4/6 1101) einbaute. Wegen der hohen Verluste bei der Energiewandlung wurde jedoch von dieser Traktionsart Abstand genommen. Die Gasturbine wurde nach dem Zweiten Weltkrieg in erster Linie im Flugzeug verwendet und ist dort zur Zeit die wichtigste Antriebsmaschine. Bei den stationären Anlagen wird sie wegen ihrer Schnellstartfähigkeit als Kraftwerksreserve vorgehalten; in den nächsten Jahren kommt ihr eine weitere Bedeutung im GuD-Kraftwerk zu.

Aufbau [Bearbeiten]

Die Gasturbine besteht prinzipiell aus einem Einlauf, einem Verdichter, einer Brennkammer, einer Turbine und einer Düse für Düsentriebwerke bzw. einem Diffusor und einer Abtriebswelle für Wellentriebwerke. Es kann etwas verwirren, dass Turbine einerseits einen Bestandteil der Gasturbine, andererseits auch umgangssprachlich die Gasturbine als Ganzes bezeichnet. Bis auf Einlauf und Düse werden alle anderen Komponenten über eine oder auch mehrere Wellen gekoppelt.

Wellen-Gasturbinen gibt es als ein- und zweiwellige Maschinen. Bei der einwelligen Bauweise sitzen alle Verdichterstufen und alle Turbinenstufen hintereinander auf derselben Welle (mechanische Kopplung). Damit läuft die gesamte Maschine mit einer Drehzahl. Der Abtrieb kann am verdichter- oder am turbinenseitigen Wellenende liegen. Bei stationären Gasturbinen liegt der Abtrieb für den Generator zumeist am verdichterseitigen Wellenende, da so ein besserer Abgasdiffusor installiert werden kann, das Fluid den Generator nicht umströmen muss und die Wärmeverluste auf dem Weg zum Dampfprozess (bei GuD-Prozessen) nicht allzu groß sind.

Bei der zweiwelligen Anordnung lässt sich der Turbinenteil in Gasgenerator- und Nutzturbine unterscheiden. Dabei treiben die ersten Turbinenstufen den Verdichter an und bilden mit ihm die Gasgenerator-Einheit. Im selben Gehäuse unmittelbar dahinter läuft die Nutzturbine mit ihrer eigenen Drehzahl. Der Abtrieb liegt damit immer auf der Turbinenseite. Angetrieben werden mit dieser Maschine üblicherweise Pumpen oder Verdichter z. B. an Gas- oder Ölpipelines.

Eine besondere Bauart ist die sogenannten Aeroderivatives, bei denen als Gasgenerator eine modifizierte Flugzeugturbine zum Einsatz kommt.

Einlauf [Bearbeiten]

Der Einlauf dient der strömungstechnischen Anpassung zwischen der Einsatzumgebung und der Luftströmung im Verdichter. Bei stationärem Einsatz oder geringen Geschwindigkeiten dient der Einlauf nur der sauberen Luftführung ohne Verwirbelung oder Strömungsablösungen. Insbesondere bei hohen Geschwindigkeiten hat der Einlauf eine wichtige Funktion, da schon dort die einströmende Luftmasse abgebremst und vorverdichtet wird. Dies ist insbesondere bei Überschallgeschwindigkeit notwendig, da die Strömung im Triebwerk untersonisch ausgeführt werden sollte.

Verdichter/Kompressor [Bearbeiten]

CAD-Zeichnung eines Turbofantriebwerks im Bereich des Verdichters.

CAD-Zeichnung eines Turbofantriebwerks im Bereich des Verdichters.
17-stufiger Verdichter eines General Electric J79.

17-stufiger Verdichter eines General Electric J79.

Nach dem Lufteinlauf folgt der Verdichterkomplex, welcher aus mehreren Laufrädern mit Kompressorschaufeln in axialer Bauform besteht. Er wandelt die einströmende Luftmasse mit zugeführter kinetische Energie in den diffusorförmigen (d. h. sich erweiternden) Zwischenräumen der Kompressorschaufeln in Druckenergie. Nach dem Gesetz von Bernoulli erhöht sich in einem an Querschnittsfläche zunehmenden Kanal der statische Druck, während die Strömungsgeschwindigkeit sinkt. Die nun verlorene kinetische Energie wird in einer Rotorstufe wieder ausgeglichen. Eine komplette Verdichterstufe eines Axialverdichters besteht also aus einer Rotorstufe, in der sowohl Druck und Temperatur als auch die Geschwindigkeit steigen, und einer Statorstufe, in der der Druck zu Ungunsten der Geschwindigkeit steigt. Die Rotorstufen sind hintereinander auf einer gemeinsamen Trommel (heute: zwei bis drei Trommeln) angeordnet, die Statorstufen sind fest in die Innenseite des Verdichtergehäuses eingebaut.

Alte Verdichter mit 17 aufeinanderfolgenden Verdichterstufen erreichen lediglich eine Verdichtung von 12,5:1 (Druck am Ende des Verdichters : Umgebungsdruck), während moderne Triebwerke mit weniger Stufen wesentlich höhere Verdichtungen erzielen (43,9:1 mit 13 Stufen). Dies ermöglichen verbesserte Profile der Kompressorschaufeln, die selbst bei Überschallgeschwindigkeiten (resultierend aus Umfangsgeschwindigkeit der Schaufeln und Anströmgeschwindigkeit) sehr gute Strömungseigenschaften bieten. Die reine Durchströmgeschwindigkeit darf jedoch die örtliche Schallgeschwindigkeit nicht überschreiten, da sich sonst die Wirkung der diffusorförmigen Kanäle umkehren würde. Hierbei gilt es zu bedenken, dass die örtliche Schallgeschwindigkeit wegen der steigenden Temperatur im Kompressor (s. o. bis 600 °C) ebenfalls steigt.

Brennkammer [Bearbeiten]

CAD-Zeichnung: Brennkammer eines Turbofantriebwerks.

CAD-Zeichnung: Brennkammer eines Turbofantriebwerks.

Die hohe Kompression der Luft verursacht einen starken Temperaturanstieg. Die so erhitzte Luft strömt anschließend in die Brennkammer, wo ihr Kraftstoff zugeführt wird. Ihn zünden beim Triebwerksstart Zündkerzen. Anschließend erfolgt die Verbrennung kontinuierlich. Durch die exotherme Reaktion des Sauerstoff-Kohlenwasserstoff-Gemisches steigt die Temperatur erneut und das Gas dehnt sich aus. Diesen Abschnitt des Triebwerks belasten Temperaturen von bis zu 2500K (ca. 2200 °C) stark. Ohne Kühlung könnten auch die hochwertigen Materialien (oftmals Nickel-Basis-Legierungen) den Temperaturen nicht standhalten, denn die Brennkammer arbeitet im überkritischen Bereich. Daher wird der direkte Kontakt zwischen der Flamme und der Ummantelung unterbunden. Dies geschieht durch die sog. „Sekundärluft“, die nicht direkt in den Verbrennungsbereich gelangt, sondern um die Brennkammer herumgeleitet wird und erst dann, durch Bohrungen an den Blechstößen der schuppenartig aufgebauten Brennkammer, in sie gelangt und sich als Film zwischen die Verbrennungsgase und die Brennkammerwand legt. Dies wird Filmkühlung genannt. Rund 70 - 80 % der gesamten Luftmasse aus dem Verdichter werden als Sekundärluft genutzt, lediglich der Rest gelangt als Primärluft direkt in die Brennkammer. Damit die Flamme nicht erlischt, befinden sich die Einspritzventile für den Kraftstoff in einer geschützten Zone (in einem Windschatten der durchströmenden Luft). Weiterhin wird in unmittelbarer Umgebung die Luftdurchflussgeschwindigkeit reduziert (ca 25-30 m/s), um ein Erlöschen der Flamme zu verhindern und eine optimale Verbrennung zu erzielen. Die Brennkammer bestimmt durch ihre Auslegung den Schadstoffgehalt im Abgas. Man unterscheidet dabei zwischen Rohrbrennkammern, Ring-Rohrbrennkammern und Ringbrennkammern.

Rohrbrennkammer [Bearbeiten]
Rohrbrennkammern eines GE J79.

Rohrbrennkammern eines GE J79.

Diese Art der Brennkammer ist besonders für Triebwerke mit Radialverdichter geeignet, wie sie insbesondere am Anfang der Entwicklung in Großbritannien und heute bei Turbopropantrieben verwendet wird. Dies liegt an den einzelnen Diffusoren des Radialverdichters, der den Luftstrom bereits aufteilt. Jede Brennkammer besitzt ein eigenes Primär- und Sekundärluftsystem. Die Brennkammern sind über die Zündstege miteinander verbunden. Im Allgemeinen werden etwa 8-12 dieser Rohrbrennkammern radial am Triebwerk angeordnet. Sehr kleine Turbinen, etwa für APUs, besitzen nur eine einzelne Rohrbrennkammer. Dem Vorteil der einfachen Entwicklung, einfachen Brennstoffverteilung und guter Wartungsmöglichkeiten steht der Nachteil des hohen Konstruktionsgewichts einer solchen Anordnung gegenüber. Auch sind die Strömungsverhältnisse gegenüber anderen Brennkammerbauarten nachteilig.

Ring-Rohrbrennkammern [Bearbeiten]

Diese Brennkammerbauart kombiniert die Rohr- und die Ringbrennkammer und eignet sich besonders für sehr große und leistungsstarke Gasturbinen, weil sie sich mechanisch sehr stabil ausbilden lässt. Wesentlicher Unterschied zur Einzelbrennkammer ist der gemeinsame Brennkammeraustritt. Die Bauart kommt bei Strahlturbinenantrieben kaum vor.

Ringbrennkammern [Bearbeiten]

Die Ringbrennkammeranordnung stellt das gasdynamische Optimum für Strahlturbinentriebwerke dar. Sie ist dabei recht leicht und kann kurz gebaut werden, da vom Verdichter zur Turbine keine Umlenkungen stattfinden müssen. Die Brennkammer verfügt über eine Anzahl von Kraftstoffeinspritzventilen, die den Kraftstoff an einen ringförmigen Brennraum abgeben. Allerdings ist die Wartung recht schwierig. Auch ist die Entwicklung sehr aufwändig, da die Gasströmungen innerhalb einer solchen Brennkammer dreidimensional berechnet werden müssen. Die Ringbrennkammer ist heute der gebräuchliche Typ bei Luftfahrtstrahltriebwerken.

CAD-Zeichnung: Turbine eines Turbofantriebwerks: Die Hochdruckturbine treibt den Verdichter an, die Niederdruckturbine über eine koaxiale Welle den Fan.

CAD-Zeichnung: Turbine eines Turbofantriebwerks: Die Hochdruckturbine treibt den Verdichter an, die Niederdruckturbine über eine koaxiale Welle den Fan.
3-stufige Turbine eines GE J79.

3-stufige Turbine eines GE J79.

Turbine [Bearbeiten]

Die nach hinten austretenden Gase treffen anschließend auf eine Turbine. Diese treibt über eine Welle den Kompressor an. Bei den meisten Einstrom-Triebwerken wird der größte Teil der kinetischen Energie für den Rückstoß genutzt. Es wird also nur so viel Energie auf die Turbine übertragen, wie für den Betrieb des Kompressors gebraucht wird. Heute werden meist zwei- oder dreistufige Turbinen eingesetzt, die durch jeweils eine Welle einen Teil des ebenfalls mehrstufigen Kompressors antreiben.

Die Turbinenschaufeln werden normalerweise aufwendig gekühlt (Innen- und/ oder Film-Kühlung) und bestehen heute aus widerstandsfähigen Superlegierungen. Diese Stoffe werden darüber hinaus in einer Vorzugsrichtung erstarrt, erhalten in ihrem Kristallgitter also eine definierte Richtung und erlauben so, die optimalen Werkstoffeigenschaften entlang der höchsten Belastung wirksam werden zu lassen. Die erste Stufe der Hochdruckturbine besteht vermehrt aus Einkristallschaufeln. Der im Gasstrom liegende Teil der Schaufeln wird mit keramischen Beschichtungen gegen hohe Temperaturen und Erosion geschützt. Wegen der hohen Belastung bei Drehzahlen von über 10000 / min. ist dennoch ein Bruch infolge mechanischer oder thermischer Beschädigung nicht immer auszuschließen. Daher werden die Gehäuse von Turbinen dementsprechend ausgelegt. Im vorderen Bereich der Fan Schaufeln kommen Kevlar-Matten zum Einsatz, um zu verhindern, dass Triebwerksteile tragende Strukturen beschädigen oder Personen verletzen.

Turbinenschaufel eines Rolls-Royce/Turbo-Union RB 199. Gut zu sehen sind die Öffnungen für die Filmkühlung im Bereich der Nasenkante

Turbinenschaufel eines Rolls-Royce/Turbo-Union RB 199. Gut zu sehen sind die Öffnungen für die Filmkühlung im Bereich der Nasenkante

Die hohen Temperaturen im Turbinenbereich verhindern den Einsatz von Kevlar.

Schubdüse [Bearbeiten]

Hinter der Turbine ist eine konvergente Düse angebracht, durch die das Gas mit hoher Geschwindigkeit ausströmt und damit den Schub erzeugt, weshalb diese Düse Schubdüse genannt wird. Das am Turbinenausgang vorhandene Druckgefälle (Turbinenausgangsdruck – Umgebungsdruck) wird dabei vollständig in Geschwindigkeit umgesetzt. Hierbei ist es das Ziel, eine möglichst hohe Ausströmgeschwindigkeit zu erreichen, wobei der Druck des ausströmenden Gases am Schubdüsenende gleichzeitig den Umgebungsdruck erreicht haben soll, damit der Gasstrahl nicht aufplatzt.

Triebwerke mit Nachbrenner expandieren nicht vollständig, sondern führen dem verbliebenen Gasstrom bei vorhandenem Überdruck (zum Umgebungsdruck) im Nachbrenner nochmals Kraftstoff zu, was zu einer weiteren Beschleunigung des Gasstromes führt. Somit kann einer schnellen Schubanforderung entsprochen werden, wie sie etwa im Manöverflug erforderlich ist. Triebwerke mit Nachbrenner haben in der Regel eine in ihrer Geometrie veränderliche Düse (Nozzle), um stets den optimalen Wirkungsgrad zu erreichen.

Brennstoff [Bearbeiten]

Als Brennstoff kommen verschiedene Gas- und Flüssigtreibstoffe in Frage: neben Erd- und Synthesegas auch Deponiegas, Biogas, Kerosin, Heizöl -extraleicht- und Dieselkraftstoff bzw. Gasöl.

Gasturbinenbaureihen, die auch mit dem problematischen Treibstoff Rohöl betrieben werden können (z. B. für Pipeline-Druckerhöhungspumpen), sterben nach und nach aus bzw. werden durch Dieselmotoren verdrängt, die hier wesentlich bessere Wirkungsgrade erreichen.

Außerdem gibt es immer wieder Versuche, Kohlenstaub direkt oder nach vorheriger Vergasung einzusetzen. An vielen Standorten in Bergbauregionen werden Gasturbinen mit Grubengas (Methan) betrieben.

Es gibt auch Versuchsturbinen, die mit Festbrennstoff angetrieben werden. Dazu wird der Brennraum mit Brennstoff gefüllt und gezündet. Die Turbine läuft dann so lange, bis aller Brennstoff verbraucht ist und neu nachgefüllt werden muss. Zu einer kommerziellen Verwendung ist es dabei noch nicht gekommen.

Funktionsweise [Bearbeiten]

Der thermodynamische Vergleichsprozess ist der Joule-Prozess, welcher idealisiert aus zwei Isentropen und zwei Isobaren besteht; er wird auch Gleichdruckprozess genannt. Der Verdichter (auch Kompressor genannt) saugt aus der Umgebung Luft an, verdichtet sie (1 -> 2)und führt sie schließlich der Brennkammer zu. Dort wird sie zusammen mit eingespritztem Brennstoff unter nahezu konstantem Druck verbrannt (2 -> 3). Bei der Verbrennung entstehen Verbrennungsgase mit einer Temperatur von bis zu 1500 °C. Diese heißen Verbrennungsgase strömen mit hoher Geschwindigkeit in die Turbine. In der Turbine wird das Fluid entspannt und die im Fluid enthaltene Enthalpie in mechanische Energie umgewandelt (3 -> 4). Ein Teil der mechanischen Energie (bis zu zwei Drittel) wird zum Antrieb des Verdichters genutzt, der verbleibende Teil steht als nutzbare mechanische Energie wT zur Verfügung. Der Wirkungsgrad einer Gasturbine ist umso höher, je höher die Turbineneintrittstemperatur der Brenngase und das Druckverhältnis der Turbine ist. Die maximal zulässige Materialtemperatur der gekühlten Turbinenschaufeln begrenzt die Turbineneintrittstemperatur.

Gasturbinen zeichnen sich im Gegensatz zu Kolbenmaschinen durch einen ruhigen Lauf aus, da sie kontinuierlich arbeiten und nur drehende Teile besitzen. Der Drehmomentverlauf ist flacher als bei Kolbenmaschinen.

Wellenturbine und Strahltriebwerk [Bearbeiten]

Gasturbinen können ihre Leistung in Form eines Abgasstrahls abgeben, der ein Flugzeug antreibt. Die Leistung kann jedoch auch auf eine Abtriebswelle übertragen werden, die dann beispielsweise beim Hubschraubertriebwerk den Rotor eines Hubschraubers, den Generator eines Kraftwerks, den Propeller eines Turboprop-Flugzeugs, oder einen Schiffspropeller antreibt. Gasturbinen der letzteren Art werden häufig als Wellenturbinen oder -triebwerke bezeichnet. Sie werden entweder mit ein, zwei oder drei Wellen gebaut.

Eine Mischform stellt das Mantelstromtriebwerk (Turbofan) dar, bei dem ein Teil der Leistung genutzt wird, um einen Turbofan anzutreiben. Es ist Standard bei großen Verkehrsflugzeugen.

Ab und zu wird der Ausdruck "Wellentriebwerk" auch für herkömmliche Strahlturbinen gebraucht, weil sie im Gegensatz zum Staustrahltriebwerk zumindest eine Welle als bewegliches Teil hat.



Einsatzgebiete [Bearbeiten]

Luftfahrt [Bearbeiten]

Durch ihr niedriges Leistungsgewicht (Masse/Leistungs-Verhältnis) im Vergleich zu anderen Verbrennungsmotoren eignen sich Gasturbinen sehr gut für Anwendungen im Luftfahrtbereich, da das Gesamtgewicht des Fluggeräts verringert und die Flugleistung gesteigert bzw. Treibstoff eingespart wird.

Beim Antrieb von Hubschraubern und Turboprop-Flugzeugen wird die Wellenleistung der Gasturbine genutzt und über ein Getriebe an Rotor oder Propeller abgegeben.

Für den Rückstoßantrieb von Flugzeugen (Jets) werden Strahltriebwerke (Turbojets) eingesetzt, eine Sonderform der Gasturbine. Es fehlt dabei die Abtriebswelle, welche die Leistung an externe Komponenten überträgt. Hinter Verdichter, Brennkammer und Turbine folgt nur noch eine Düse, durch die der heiße Abgasstrahl mit hoher Geschwindigkeit austritt. Der Turbinenteil eines Strahltriebwerks erzeugt dabei nur soviel mechanische Energie, wie für den Antrieb des Verdichters und der Nebenaggregate benötigt wird, und der Vorschub entsteht nur durch die austretenden heißen Gase.

Die gewichtssparende Ausführung ist meist wesentliches Auslegungskriterium. Weiterhin spielt der Wirkungsgrad, also eine gute Ausnutzung des Brennstoffs, eine Rolle, sowie geringe Schallemissionen und gute Wartbarkeit.

Siehe: Strahltriebwerk

Militärtechnik [Bearbeiten]

Gasturbinen dienen als Antriebsaggregat verschiedener Fahrzeuge, u. a. des amerikanischen Panzers M1 Abrams und des russischen T-80.

In Militärfahrzeugen insbesondere der Luftabwehr werden Gasturbinen als Stromerzeuger eingesetzt, um so auch ohne Starten des Fahrmotors und des damit verbundenen Generators die Kampftechnik versorgen zu können. Beispiel sind die Startrampen und Raketenleitstation des russischen SA-4-Ganef-Systems (Startrampen je 20 kW, Leitstation 35 kW) Vorteil ist auch hier die hohe Leistungsdichte und das rasche Hochfahren bei jeder Aussentemperatur. Der hohe Treibstoffverbrauch der meist nur wenige kW starken Turbinen wird dafür in Kauf genommen.

Mechanischer Antrieb [Bearbeiten]

Gasturbinen finden darüber hinaus Einsatz im Gasturbinenkraftwerk und in Pump- und Verdichterstationen, wie sie für Öl- und Erdgaspipelines benötigt werden. Darüber hinaus werden sie für den Antrieb von Schiffen, speziell Militärschiffen oder Luftkissenbooten, und schweren Landfahrzeugen wie z. B. Panzern eingesetzt.

Antrieb basierend auf Gasturbinekopplung mit elektrischem Generator [Bearbeiten]

Gasturbinen gekoppelt mit elektrischen Generatoren werden im Eisenbahnverkehr als Antrieb eingesetzt. Bereits anfangs der 1940er Jahre wurde in der Schweiz die von Brown Boveri gebaute Lokomotive AM 4/6 mit einer 2.200 PS-Turbine (1.6 MW) ausgeliefert. Typische Vertreter dieses Loktyps waren der französische Turbotrain oder die US-amerikanische Union Pacific UP18. Der kanadische Anbieter Bombardier stellte 2002 den JetTrain vor, der bisher noch keinen Einsatz fand.

Anwendungen (Beispiele) [Bearbeiten]

Hersteller [Bearbeiten]

Da die Herstellung von Gasturbinen hohe Investitionen (sowohl materiell als auch in Forschung und Entwicklung) erfordert, gibt es weltweit nur wenige Hersteller großer Gasturbinen: Siemens Power Generation und Alstom Power in Europa, General Electric in den USA und Mitsubishi in Japan. Alle weiteren Hersteller sind durch Lizenzen letztlich an einen der vier genannten Konzerne gebunden.

Im Bereich mittelgroßer Gasturbinen für den Industrieeinsatz (sowohl zur Stromerzeugung als auch als mechanische Antriebsmaschinen) sind die Firmen Siemens Power Generation General Electric, Rolls-Royce plc, Pratt&Whitney, Hitachi, MAN TURBO, die Caterpillar-Tochtergesellschaft Solar Turbines sowie Kawasaki zu nennen.

Im Bereich der großen Flugantriebe dominieren die Konzerne General Electric, Rolls-Royce und Pratt&Whitney. Weitere Hersteller kooperieren mit diesen als Technologiepartner oder als Unterlieferant für einzelne Systeme. Aufgrund der sehr hohen Entwicklungskosten für neue Triebwerke gibt es viele Flugtriebwerksprogramme, bei denen mehrere Hersteller gemeinsam an der Entwicklung und Fertigung eines neuen Produktes zusammenarbeiten.

Seit ca. 1990 gibt es die sogenannten Mikrogasturbinen. Neben der kleinen Leistung im Bereich zwischen 30 kW und 500 kW, zeichnen sich die Turbinen durch eine einfache Technik aus. Die niedrigere Turbineneintrittstemperatur lässt ungekühlte Schaufeln zu. Um den Wirkungsgrad anzuheben verwenden Mikrogasturbinen Rekuperatoren, die die verdichtete Luft vor dem Eintritt in die Brennkammer mit der Wärme des Abgases vorwärmen. Hierdurch sind Wirkungsgrade um die 30 % möglich. Größter Hersteller ist die amerikanische Firma Capstone. Weiter Hersteller sind Turbec, Elliot und Ingersoll Rand.


歡迎來到Bewise Inc.的世界,首先恭喜您來到這接受新的資訊讓產業更有競爭力,我們是提供專業刀具製造商,應對客戶高品質的刀具需求,我們可以協助客戶滿足您對產業的不同要求,我們有能力達到非常卓越的客戶需求品質,這是現有相關技術無法比擬的,我們成功的滿足了各行各業的要求,包括:精密HSS DIN切削刀具協助客戶設計刀具流程DIN or JIS 鎢鋼切削刀具設計NAS986 NAS965 NAS897 NAS937orNAS907 航太切削刀具,NAS航太刀具設計超高硬度的切削刀具醫療配件刀具設計汽車業刀具設計電子產業鑽石刀具木工產業鑽石刀具等等。我們的產品涵蓋了從民生刀具到工業級的刀具設計;從微細刀具到大型刀具;從小型生產到大型量產;全自動整合;我們的技術可提供您連續生產的效能,我們整體的服務及卓越的技術,恭迎您親自體驗!!

BW Bewise Inc. Willy Chen willy@tool-tool.com bw@tool-tool.com www.tool-tool.com skype:willy_chen_bw mobile:0937-618-190 Head &Administration Office No.13,Shiang Shang 2nd St., West Chiu Taichung,Taiwan 40356 http://www.tool-tool..com / FAX:+886 4 2471 4839 N.Branch 5F,No.460,Fu Shin North Rd.,Taipei,Taiwan S.Branch No.24,Sec.1,Chia Pu East Rd.,Taipao City,Chiayi Hsien,Taiwan

Welcome to BW tool world! We are an experienced tool maker specialized in cutting tools. We focus on what you need and endeavor to research the best cutter to satisfy users demand. Our customers involve wide range of industries, like mold & die, aerospace, electronic, machinery, etc. We are professional expert in cutting field. We would like to solve every problem from you. Please feel free to contact us, its our pleasure to serve for you. BW product including: cutting toolaerospace tool .HSS DIN Cutting toolCarbide end millsCarbide cutting tool

beeway 發表在 痞客邦 留言(0) 人氣()

Bewise Inc. www.tool-tool.com Reference source from the internet.

球铁是近40年来我国发展起来的重要铸造金属材料。由于球状石墨造成的应力集中小,对基体的割裂作用也较小,故球铁的抗拉强度,塑性和韧性均高于其他铸铁。与相应组织的钢相比,塑性低于钢,疲劳强度接近一般中碳钢,屈强比可达0 70 8,几乎是一般碳钢的2倍,而成本比钢低,因此其应用日趋广泛。

当 然,球铁也不是十全十美的,它除了会产生一般的铸造 缺陷外,还会产生一些特有的缺陷,如缩松、夹渣、皮下气孔、球化不良及衰退等。这些缺陷影响铸件性能,使铸件废品率增高。为了防止这些缺陷的发生,有必要 对其进行分析,总结出各种影响因素,提出防止措施,才能有效降低缺陷的产生,提高铸件的力学性能及生产效益。本文将讨论球铁件的主要常见缺陷:缩孔、缩松、夹渣、皮下气孔、石墨漂浮、球化不良及球化衰退。

1 缩孔缩松

1.1影响因素

(1)碳当量:提高碳量,增大了石墨化膨胀,可减少缩孔缩松。此外,提高碳当量还可提高球铁的流动性,有利于补缩。生产优质铸件的经验公式为C%+1/7Si%>3 9%。但提高碳当量时,不应使铸件产生石墨漂浮等其他缺陷。

(2)磷:铁液中含磷量偏高,使凝固范围扩大,同时低熔点磷共晶在最后凝固时得不到补给,以及使铸件外壳变弱,因此有增大缩孔、缩松产生的倾向。一般工厂控制含磷量小于0 08%

(3)稀土和镁:稀土残余量过高会恶化石墨形状,降低球化率,因此稀土含量不宜太高。而镁又是一个强烈稳定碳化物的元素,阻碍石墨化。由此可见,残余镁量及残余稀土量会增加球铁的白口倾向,使石墨膨胀减小,故当它们的含量较高时,亦会增加缩孔、缩松倾向。

(4)壁厚:当铸件表面形成硬壳以后,内部的金属液温度越高,液态收缩就越大,则缩孔、缩松的容积不仅绝对值增加,其相对值也增加。另外,若壁厚变化太突然,孤立的厚断面得不到补缩,使产生缩孔缩松倾向增大。

(5)温度:浇注温度高,有利于补缩,但太高会增加液态收缩量,对消除缩孔、缩松不利,所以应根据具体情况合理选择浇注温度,一般以13001350℃为宜。

(6)砂型的紧实度:若砂型的紧实度太低或不均匀,以致浇注后在金属静压力或膨胀力的作用下,产生型腔扩大的现象,致使原来的金属不够补缩而导致铸件产生缩孔缩松。

(7)浇冒口及冷铁:若浇注系统、冒口和冷铁设置不当,不能保证金属液顺序凝固;另外,冒口的数量、大小以及与铸件的连接当否,将影响冒口的补缩效果。

1.2 防止措施

(1)控制铁液成分:保持较高的碳当量(>3 9%);尽量降低磷含量(<0 face="宋体">;降低残留镁量(<0 face="宋体">;采用稀土镁合金来处理,稀土氧化物残余量控制在0 02%0 04%

(2)工艺设计要确保铸件在凝固中能从冒口不断地补充高温金属液,冒口的尺寸和数量要适当,力求做到顺序凝固。

(3)必要时采用冷铁与补贴来改变铸件的温度分布,以利于顺序凝固。

(4)浇注温度应在13001350℃,一包铁液的浇注时间不应超过25min,以免产生球化衰退。

(5)提高砂型的紧实度,一般不低于90;撞砂均匀,含水率不宜过高,保证铸型有足够的刚度。


2 夹渣

2 .1 影响因素

(1)硅:硅的氧化物也是夹渣的主要组成部分,因此尽可能降低含硅量。

(2)硫:铁液中的硫化物是球铁件形成夹渣缺陷的主要原因之一。硫化物的熔点比铁液熔点低,在铁液凝固过程中,硫化物将从铁液中析出,增大了铁液的粘度,使铁液中的熔渣或金属氧化物等不易上浮。因而铁液中硫含量太高时,铸件易产生夹渣。球墨铸铁原铁液含硫量应控制在0 06%以下,当它在0 09%0 135%时,铸铁夹渣缺陷会急剧增加。

(3)稀土和镁:近年来研究认为夹渣主要是由于镁、稀土等元素氧化而致,因此残余镁和稀土不应太高。

(4)浇注温度:浇注温度太低时,金属液内的金属氧化物等因金属液的粘度太高,不易上浮至表面而残留在金属液内; 温度太高时,金属液表面的熔渣变得太稀薄,不易自液体表面去除,往往随金属液流入型内。而实际生产中,浇注温度太低是引起夹渣的主要原因之一。此外,浇注温度的选取还应考虑碳、硅含量的关系。


(5)浇注系统:浇注系统设计应合理,具有挡渣功能,使金属液能平稳地充填铸型,力求避免飞溅及紊流。

(6)型砂:若型砂表面粘附有多余的砂子或涂料,它们可与金属液中的氧化物合成熔渣,导致夹渣产生;砂型的紧实度不均匀,紧实度低的型壁表面容易被金属液侵蚀和形成低熔点的化合物,导致铸件产生夹渣。

2.2 防止措施

(1)控制铁液成分:尽量降低铁液中的含硫量(<0 face="宋体">,适量加入稀土合金(0 1%0 2%)以净化铁液,尽可能降低含硅量和残镁量。

(2)熔炼工艺:要尽量提高金属液的出炉温度,适宜的镇静,以利于非金属夹杂物的上浮、聚集。扒干净铁液表面的渣子,铁液表面应放覆盖剂(珍珠岩、草木灰等),防止铁液氧化。选择合适的浇注温度,最好不低于1350℃。

(3)浇注系统要使铁液流动平稳,应设有集渣包和挡渣装置(如滤渣网等),避免直浇道冲砂。

(4)铸型紧实度应均匀,强度足够;合箱时应吹净铸型中的砂子。

3 石墨漂浮

3. 1 影响因素

(1)碳当量:碳当量过高,以致铁液在高温时就析出大量石墨。由于石墨的密度比铁液小,在镁蒸汽的带动下,使石墨漂浮到铸件上部。碳当量越高,石墨漂浮现象越严重。应当指出,碳当量太高是产生石墨漂浮的主要原因,但不是唯一原因,铸件大小、壁厚也是影响石墨漂浮的重要因素。

(2)硅:在碳当量不变的条件下,适当降低含硅量,有助于降低产生石墨漂浮的倾向。

(3)稀土:稀土含量过少时,碳在铁液中的溶解度会降低,铁液将析出大量石墨,加重石墨漂浮。

(4)球化温度与孕育温度:为了提高镁及稀土元素的吸收率,国内试验研究表明,球化处理时最适当的铁液温度是13801450℃。在此温度区间,随着温度升高,镁和稀土的吸收率增加。

(5)浇注温度:一般情况下,浇注温度越高,出现石墨漂浮的倾向越大,这是因为铸件长时间处于液态有利于石墨的析出。A.P.Druschitz与W..haput研究发现,若缩短凝固时间,随着浇注温度升高,石墨漂浮倾向降低。

(6)滞留时间:孕育处理后至浇注完毕之间的停留时间太长,为石墨的析出提供了条件,一般这段时间应控制在10min以内。

3 2 防止措施

(1)控制铁液成分:严格控制碳当量,不得大于4 6%;铁液的含碳量不得大于4 0%,可用废钢来调整铁液的含碳量;采用低硅(<1>

(2)控制稀土的加入量:在保证球化的前提下,加入量要少。

(3)改进铸件的结构,使壁厚尽量均匀,且小于60mm;若壁厚相差很大、热节很大,可在厚壁或者热节处加放冷铁;若是热节或厚壁位置在铸件顶部,可在此处加冒口。

(4)严格控制温度:通常要求在1380~1450℃进行球化处理,1360~1400℃进行浇注。同时,尽量缩短铁液出炉到浇注之间的滞留时间。

(5)必要情况下,可以加入钼等反石墨化元素,提高碳在铁液中的溶解度,从而减少石墨析出。

4 皮下气孔

4. 1 影响因素

(1)碳当量:适当增加含硅量有助于皮下气孔的减少。同时,在硅量保持不变的情况下,随着含碳量的增加,球铁中皮下气孔的个数呈现出单峰曲线,且峰值点总保持在共晶点左右,因此,最好将碳硅含量选择得高一些,以使球铁的碳当量稍大于共晶点。

(2)硫:硫高会引起皮下气孔等缺陷,这是因为产生H2S气体而形成。当含硫量超过0 .094%时就会产生皮下气孔,含硫量越高,情况越严重。

(3)稀土:铁液中加入稀土元素能脱氧、脱硫,提高铁液表面张力,因此有利于防止产生皮下气孔。但稀土含量太高,会增加铁液中氧化物的含量,使气泡外来核心增加,皮下气孔率增加。残余稀土量应控制在0. 043%以下。

(4)镁:过高的镁将会加剧铁液的吸氢倾向,大量的镁气泡和氧化物进入型腔,增加气泡的外来核心;此外镁蒸汽直接与砂型中的水分作用,产生MgO烟气及氢 气,也会产生皮下气孔。试验表明,残镁量大于0 .05%后便易出现皮下气孔,残镁越高越严重。因此在保证球化基础上,尽量降低残留镁量。

(5)铝:铁液中的铝是铸件产生氢气孔的主要原因。据报道,当湿型铸造球墨铸铁的残留铝量为 0.030%~0 .050%时,将产生皮下气孔。E.R.Kaczmarek等人研究认为,铁液与铸型中的水反应生成FeO与H2,由于铝的脱氧作用,又生成Al2O3, 其即为气泡生成的核心而又能吸附一定的气体,增加了球铁产生皮下气孔的倾向。但是在减少渣中的FeO成分时,镁的存在使得铝显得多余,故铝的敏感含量是有 一定范围的。

(6)壁厚:皮下气孔还有“壁厚效应”特征,即气孔的产生在一定壁厚范围内,实际上这与铸件的凝固速度有关。铸件壁厚大时,其凝固结皮时间推迟,有利于气泡逸出。因此,一般来说壁厚小于6mm或大于25mm时不易产生皮下气孔。

(7)浇注温度:浇注温度类似于壁厚效应,也有一个温度范围,在1285~1304℃时,皮下气孔相当严重。笔者进一步研究认为,不同的壁厚其危险温度也 不相同,因此,应根据铸件壁厚共同确定浇注温度。当然,提高浇注温度能延缓氧化膜的生成,防止熔渣进入型腔,同时对砂型烘烤时间加长使水分向外迁移。

(8)型砂含水率:铸型产生皮下气孔的倾向按下列顺序依次减小:湿型、干型、水玻璃型、壳型。司乃潮的研究也证明了这一点,即随着型砂水分的提高,球铁产生皮下气孔的倾向增大,而当型砂水分小于4 .8%时,皮下气孔率接近于零。

(9)型砂紧实度与透气性:型砂的透气性太低,导致型壁所产生的气体不能排出型外,而向金属侵入,致使铸件产生气孔;随着型砂紧实度的增加,皮下气孔的倾 向也加大,但当紧实度相当高时,倾向又减小,这可能是由于表层砂紧实度高,增大了水分向铸件方向的迁移阻力,但若型砂水分也高,将使水蒸气爆炸的可能性增 加。

(10)浇冒口:合理设计浇冒口,使铁液平稳浇注,并具有较强的挡渣功能;同时,适当增加直浇道和冒口的高度,以增加金属液的静压力。

4 2 防止措施

(1)严格控制铁液化学成分,使碳当量稍大于共晶点成分,含硫量不大于0 .094%;残余稀土小于0.043%;残留镁含量不大于0.05%;铝含量在0.03%~0.05%范围以外。

(2)合理设计铸件结构,使壁厚不小于25mm;根据壁厚确定浇注温度,薄壁小件不得小于1320℃;中件不得小于1300℃;大件不得小于1280℃。

(3)金属炉料、孕育剂和所用工具应干燥,表面无锈蚀和油污。同时型砂水分不宜过高,尽量小于4.8%,煤粉、重油等发气物质的含量要适当控制,减少粘土含量,并可附加一些增加透气性的物质,如木屑等。

(4)合理设计浇注系统,使之为开放式,可在型腔的最高处设置出气孔,同时应保证浇冒口高度,以提高液态金属的静压力。

5 球化衰退及球化不良

5.1 影响因素

(1)碳当量:铁液的碳当量太高时(尤其是硅含量也高时)将使石墨球化受到影响。试验表明,对于厚壁铸件,当碳当量超过共晶成分时就有可能产生开花状石 墨。但是提高铁液的含碳量有利于镁回收率的提高。因此生产中大多采用高碳低硅的原则,通常含硅量控制在2%左右。此外,碳当量的选取还与铸件壁厚有关:当 壁厚为6.5~76mm时,碳当量为4.35%~4.7%;当壁厚>76mm,碳当量为4.3%~4 .35%。

(2)硫:当铁液中的含硫量太高时,硫与镁和稀土生成硫化物,因其密度小而上浮到铁液表面,而这些硫化物与空气中的氧发生反应生成硫,硫又回到铁液,又重复上述过程,从而降低了镁与稀土含量。当铁液中的硫大于0.1%时,即使加入多量的球化剂,也不能使石墨完全球化。

(3)稀土与镁:稀土与镁含量过低时,往往产生球化不良或球化衰退现象。一般工厂要求球化剂的加入量为1.8%~2.2%。

(4)壁厚:铸件壁太厚也容易产生球化不良及衰退缺陷,主要是因为铁液在铸型中长时间处于液态,镁蒸汽上浮,造成镁含量降低;共晶时大量石墨生成而释放出的结晶潜热使奥氏体壳重新熔化,石墨伸出壳外而畸形长大,形成非球状石墨。

(5)温度:若铁液温度过高,铁液氧化严重,由于镁与稀土易与氧化物产生还原反应,而使得镁、稀土含量降低,同时高温也将增加镁的烧损和蒸发;铁液温度太低,球化剂不能熔化和被铁液吸收,而上浮至铁液表面燃烧或被氧化。

(6)滞留时间:铁液中镁的含量是随孕育处理后停留时间的增加而减少,其主要原因是因硫及镁、稀土的氧化与蒸发造成的。一般情况下,滞留时间不超过20min。

(7)浇冒口:浇冒口若设计不合理,会产生浇注时间太长、铁液飞溅以及卷入空气,使镁、稀土氧化严重。

5.2 防止措施

(1)严格控制铁液成分:选择合适的碳当量;铁液中的含硫量应小于0 08%(其中生铁含硫不得大于0 03%,焦碳含硫不得大于0 08%),可采用小苏打进行脱硫。

(2)加入足够的球化剂,一般为1.8%~2.2%;此外应注意球化剂的质量,若球化剂破碎后使用,放置时间不得超过一周。处理后的球铁铁液中稀土镁的残留量不应过低,Mg残>0 02%,RE残>0 02%。

(3)合理设计铸件结构,避免壁厚过大,也可在壁厚处加冷铁以提高凝固速度,缩短液态时间,从而防止球化衰退及不良。

(4)注意处理温度。出炉温度应低于1460℃,以防球化剂严重烧损;要防止高温下的氧化现象,盖好覆盖球化剂的铁板(厚度应>3mm);铁液扒渣 后应用草木灰等盖好;当铁液温度>1350℃出现球化不良及衰退时,可补加球化剂;而当<1350℃时就不能补加球化剂,也不得浇注球铁件, >

(5)铁液出炉后应及时浇注,滞留时间不得超过20min。

(6)合理设计浇冒口,,采用型内和型上球化处理,加强孕育。


歡迎來到Bewise Inc.的世界,首先恭喜您來到這接受新的資訊讓產業更有競爭力,我們是提供專業刀具製造商,應對客戶高品質的刀具需求,我們可以協助客戶滿足您對產業的不同要求,我們有能力達到非常卓越的客戶需求品質,這是現有相關技術無法比擬的,我們成功的滿足了各行各業的要求,包括:精密HSS DIN切削刀具協助客戶設計刀具流程DIN or JIS 鎢鋼切削刀具設計NAS986 NAS965 NAS897 NAS937orNAS907 航太切削刀具,NAS航太刀具設計超高硬度的切削刀具醫療配件刀具設計汽車業刀具設計電子產業鑽石刀具木工產業鑽石刀具等等。我們的產品涵蓋了從民生刀具到工業級的刀具設計;從微細刀具到大型刀具;從小型生產到大型量產;全自動整合;我們的技術可提供您連續生產的效能,我們整體的服務及卓越的技術,恭迎您親自體驗!!

BW Bewise Inc. Willy Chen willy@tool-tool.com bw@tool-tool.com www.tool-tool.com skype:willy_chen_bw mobile:0937-618-190 Head &Administration Office No.13,Shiang Shang 2nd St., West Chiu Taichung,Taiwan 40356 http://www.tool-tool..com / FAX:+886 4 2471 4839 N.Branch 5F,No.460,Fu Shin North Rd.,Taipei,Taiwan S.Branch No.24,Sec.1,Chia Pu East Rd.,Taipao City,Chiayi Hsien,Taiwan

Welcome to BW tool world! We are an experienced tool maker specialized in cutting tools. We focus on what you need and endeavor to research the best cutter to satisfy users demand. Our customers involve wide range of industries, like mold & die, aerospace, electronic, machinery, etc. We are professional expert in cutting field. We would like to solve every problem from you. Please feel free to contact us, its our pleasure to serve for you. BW product including: cutting toolaerospace tool .HSS DIN Cutting toolCarbide end millsCarbide cutting toolNAS Cutting toolNAS986 NAS965 NAS897 NAS937orNAS907 Cutting Tools,Carbide end milldisc milling cutter,Aerospace cutting toolhss drillФрезерыCarbide drillHigh speed steelMilling cutterCVDD(Chemical Vapor Deposition Diamond )PCBN (Polycrystalline Cubic Boron Nitride) Core drillTapered end millsCVD Diamond Tools InsertsPCD Edge-Beveling Cutter(Golden FingerPCD V-CutterPCD Wood toolsPCD Cutting toolsPCD Circular Saw BladePVDD End Millsdiamond tool Single Crystal Diamond Metric end millsMiniature end millsСпециальные режущие инструменты Пустотелое сверло Pilot reamerFraisesFresas con mango PCD (Polycrystalline diamond) FreseElectronics cutterStep drillMetal cutting sawDouble margin drillGun barrelAngle milling cutterCarbide burrsCarbide tipped cutterChamfering toolIC card engraving cutterSide cutterNAS toolDIN or JIS toolSpecial toolMetal slitting sawsShell end millsSide and face milling cuttersSide chip clearance sawsLong end millsStub roughing end millsDovetail milling cuttersCarbide slot drillsCarbide torus cuttersAngel carbide end millsCarbide torus cuttersCarbide ball-nosed slot drillsMould cutterTool manufacturer.

Bewise Inc. www.tool-tool.com

ようこそBewise Inc.の世界へお越し下さいませ、先ず御目出度たいのは新たな

情報を受け取って頂き、もっと各産業に競争力プラス展開。

弊社は専門なエンド・ミルの製造メーカーで、客先に色んな分野のニーズ、

豊富なパリエーションを満足させ、特にハイテク品質要求にサポート致します。

弊社は各領域に供給できる内容は:

(1)精密HSSエンド・ミルのR&D

(2)Carbide Cutting tools設計

(3)鎢鋼エンド・ミル設計

(4)航空エンド・ミル設計

(5)超高硬度エンド・ミル

(6)ダイヤモンド・エンド・ミル

(7)医療用品エンド・ミル設計

(8)自動車部品&材料加工向けエンド・ミル設計

弊社の製品の供給調達機能は:

(1)生活産業~ハイテク工業までのエンド・ミル設計

(2)ミクロ・エンド・ミル~大型エンド・ミル供給

(3)小Lot生産~大量発注対応供給

(4)オートメ

beeway 發表在 痞客邦 留言(0) 人氣()

Bewise Inc. www.tool-tool.com Reference source from the internet.


a)普通铸铁的组织 b)球墨铸铁的组织
图1 普通铸铁与球墨铸铁的组织

铸铁:龟裂崩碎型切屑
图2 崩碎型切屑

图3 球墨铸铁的切屑

图4 全黑UC5105与UC5115刀片与涂层结构

a)全黑超平滑涂层

b)一般CVD涂层
图5 全黑超平滑涂层与一般CVD涂层表面粗糙度比较

图6 切削铸铁刀具材料与断屑槽选择
铸 铁一般分普通铸铁与球墨铸铁。普通铸铁亦称灰口铸铁,其组织中含片状石磨(图1a)石墨是固体润滑剂,有自润滑作用,故自身耐磨性很好,机床的 床身,发动机的缸体等重要零件常用之,但片状石哪是易剥落的脆性结晶,不耐冲击,其切屑不能连续伸长,形成崩碎型切屑(图2)造成切削力不断波动,在切削 过程中产生高频振动.铸件表面的粗糙与不平,切削时使刀具产生机械磨损。切屑粘接(Adhesion) ,熔接(Welding)在刀具表面.切削中也会由此造成磨损及缺损(Chipping)破损(Broken)。
球墨铸铁指组织中 的石墨经特殊处理形成球墨状的铸铁(图1b)从而使性能大为增强,其抗拉伸强度甚至可达900MPa。它有一定的 延伸率,故切屑可能呈连续带状(图3)。刀具前刀面磨损会增大,由于含有石墨组织,切削力乃有波动。当其基体组织为珠光体时,因硬度高刀具破损较大,当其 组织为铁素体时.则切屑易粘结.熔结在刀具上。
各刀具大制造商为高效加工铸铁零件都在不断努力环发新的刀具材料、涂层与更好的几何 形状结构的刀具。三菱公司新开发了针对各类铸铁 零件加工的全黑,超平滑优质涂层UC5105与UC5115令人瞩目(图4)。这二类刀片在汽车制造业,压缩机制造业等许多行业中取得很大成就。
图4为UC5105与UC5115的涂层组织。这种组织特点是:
  1. 耐磨性高,其原因在于采用厚膜微拉Al2O3与纤维状做粒TiCN涂层,这比原有的CVD涂层耐磨性提高很多。
  2. 耐 缺损、耐破损性高,缺损或称缺口,微崩。破损,俗称崩刃,它是硬质合金等烧结硬脆刀具材料的一种特有损伤形式。它是在承受力的冲击或 热应力急剧变化所形成热冲击时,引起的脆性损伤,也可能是因切屑粘接熔接在刀具上而造成,一般的粘结、熔结磨损是金属零件磨损原因之一。对于硬脆的烧结刀 具材料来说,更主要的是如果在刀具表面上有牢固粘接(Adhesion) .熔接(Wolding )的切屑或积屑瘤,它们在被后续加工冲击后,强行使它与刀具表面分离,在分离的同时使刀具表面或刃口上部分材料也一齐带走,这称粘接熔接缺损与破损。 UC5105与UC5115除涂敷坚硬耐磨的抗粘接熔接的优质Al2O3层外,还采取特殊的平滑涂层(Even Coating)方法使表面平滑度大幅度提高,从面使抗粘接熔接性能进步提高,粘结与熔结物的减少,这方面造成的换伤也大大减少了。图5为超级平淆涂层与一般涂层的表面粗糙度比较,这种涂层材料所加工零件表面质量也可改善。
  3. 改善硬质合基底材料性能,UC5105采用高硬度基体材料.适应高速连续切削铸铁。UC5115采用特别强韧的基体材料适应断续切削,在不明切削条件的情况下UC5115是首选材料。图6中,红圆代表连续切削,带四缺口红圆表断续切削、带一个缺口红圆表一般切削。
    图6 中纵座标表示切深。S表轻切削(ap=0.5~1.5mm),M表中切削(ap=1.5~4.4mm) ,G表准重切削(ap=4~7mm),横座标表进给量。图中齐椭圆上方是推荐的断屑槽.如MA,全周,平顶(即无断屑槽)等,下方表推荐的刀具材料。 UC5105、UC5115与ISO硬质合金标准对照与推荐切削条件如图7。UC5105是要求车削加工时,耐磨性高时选用的刀片材料.UC5115是车 削加工时,同时要求耐磨性与韧性均好,二种性能能做到平衡时,应选用的刀片。表中可知UC5115也能切削碳钢,合金钢。图8是此二种材料,应用实例。当 精加工用比轻切削更低的切削用量时.可用金属陶瓷NX2525 ,带锋利磨制出断屑槽R/L-F的刀片去加工。
20世纪50年代开始许多研究所,公司那怀着一种理想.想创制一种新型的铸铁,它的强度、硬度比普通铸铁高,它的可铸性,热传导性,可加工性比球多铸铁更一些,这类铸铁的石墨结构呈蠕虫状,称蠕墨铸铁又简称CGI。
蠕 墨铸铁显微结构中的石墨形成了三维的蠕虫状粒子.这种结构在扫描电子显微镜(SEM)下看起来象珊瑚。其石墨形态再加上圆形边缘不规 则表面,使石墨与基体间具有很大的结合力限止了裂纹生成与发展,故其抗拉强度可比普通铸铁高75%,硬度高45% ,在高温条件下其耐疲劳强度比铝高5倍。由于蠕墨铸铁的优异的综合性能,为需承受高机械与热负荷的复余零件提供了应用场所,目前它已在柴油发动机和气缸盖 等多方面用得越来越广,因为它可以承受更高的燃烧压力。当气缸中压力增大,燃烧过程就变得更洁净,二氧化碳、微粒,氧化氮等废气、污染物质的排放就大大降 低,其环保愈义很大。
蠕墨铸铁至今尚未与普通铸铁、球墨铸铁一样被标准化,因此切削加工时,由于蠕墨化状况,部分石墨球化率、珠光 体量的不同,被切削性 能可能差异很大,加工它时.一般最重要延选择切削速度,通常大致选普通铸铁与球墨铸铁之间而更接近于球墨铸铁适用推荐伏,大致可选比普通铸铁低10%,比 球墨铸铁高5%,约20m/min较适当(原文如此。切削技术网站编辑认为是120m/min较适当)。加工时进给量与切深(背吃力量)对刀具寿命不是那 么大,但蠕墨铸铁多作薄壁零件,切削时往往仅切削铸件表层.表层多为硬的变质相,粗加工宜尽量切得探些。此时切削速度则宜适当降低。在实际加工时,尚需注 意某些情况蠕墨铸铁的拉伸强度、硬度、02%屈服强度可能比球墨铸铁还高,被切削性比球墨铸铁还差的情况也有。

图7 二种刀片材料适用范围与推荐的切削条件


图8 应用实例

1
图9 蠕墨铸铁组织


歡迎來到Bewise Inc.的世界,首先恭喜您來到這接受新的資訊讓產業更有競爭力,我們是提供專業刀具製造商,應對客戶高品質的刀具需求,我們可以協助客戶滿足您對產業的不同要求,我們有能力達到非常卓越的客戶需求品質,這是現有相關技術無法比擬的,我們成功的滿足了各行各業的要求,包括:精密HSS DIN切削刀具協助客戶設計刀具流程DIN or JIS 鎢鋼切削刀具設計NAS986 NAS965 NAS897 NAS937orNAS907 航太切削刀具,NAS航太刀具設計超高硬度的切削刀具醫療配件刀具設計汽車業刀具設計電子產業鑽石刀具木工產業鑽石刀具等等。我們的產品涵蓋了從民生刀具到工業級的刀具設計;從微細刀具到大型刀具;從小型生產到大型量產;全自動整合;我們的技術可提供您連續生產的效能,我們整體的服務及卓越的技術,恭迎您親自體驗!!

BW Bewise Inc. Willy Chen willy@tool-tool.com bw@tool-tool.com www.tool-tool.com skype:willy_chen_bw mobile:0937-618-190 Head &Administration Office No.13,Shiang Shang 2nd St., West Chiu Taichung,Taiwan 40356 http://www.tool-tool..com / FAX:+886 4 2471 4839 N.Branch 5F,No.460,Fu Shin North Rd.,Taipei,Taiwan S.Branch No.24,Sec.1,Chia Pu East Rd.,Taipao City,Chiayi Hsien,Taiwan

Welcome to BW tool world! We are an experienced tool maker specialized in cutting tools. We focus on what you need and endeavor to research the best cutter to satisfy users demand. Our customers involve wide range of industries, like mold & die, aerospace, electronic, machinery, etc. We are professional expert in cutting field. We would like to solve every problem from you. Please feel free to contact us, its our pleasure to serve for you. BW product including: cutting toolaerospace tool .HSS DIN Cutting toolCarbide end millsCarbide cutting toolNAS Cutting toolNAS986 NAS965 NAS897 NAS937orNAS907 Cutting Tools,Carbide end milldisc milling cutter,Aerospace cutting toolhss drillФрезерыCarbide drillHigh speed steelMilling cutterCVDD(Chemical Vapor Deposition Diamond )PCBN (Polycrystalline Cubic Boron Nitride) Core drillTapered end millsCVD Diamond Tools InsertsPCD Edge-Beveling Cutter(Golden FingerPCD V-CutterPCD Wood toolsPCD Cutting toolsPCD Circular Saw BladePVDD End Millsdiamond tool Single Crystal Diamond Metric end millsMiniature end millsСпециальные режущие инструменты Пустотелое сверло Pilot reamerFraisesFresas con mango PCD (Polycrystalline diamond) FreseElectronics cutterStep drillMetal cutting sawDouble margin drillGun barrelAngle milling cutterCarbide burrsCarbide tipped cutterChamfering toolIC card engraving cutterSide cutterNAS toolDIN or JIS toolSpecial toolMetal slitting sawsShell end millsSide and face milling cuttersSide chip clearance sawsLong end millsStub roughing end millsDovetail milling cuttersCarbide slot drillsCarbide torus cuttersAngel carbide end millsCarbide torus cuttersCarbide ball-nosed slot drillsMould cutterTool manufacturer.

Bewise Inc. www.tool-tool.com

ようこそBewise Inc.の世界へお越し下さいませ、先ず御目出度たいのは新たな

情報を受け取って頂き、もっと各産業に競争力プラス展開。

弊社は専門なエンド・ミルの製造メーカーで、客先に色んな分野のニーズ、

豊富なパリエーションを満足させ、特にハイテク品質要求にサポート致します。

弊社は各領域に供給できる内容は:

(1)精密HSSエンド・ミルのR&D

(2)Carbide Cutting tools設計

(3)鎢鋼エンド・ミル設計

(4)航空エンド・ミル設計

(5)超高硬度エンド・ミル

(6)ダイヤモンド・エンド・ミル

(7)医療用品エンド・ミル設計

(8)自動車部品&材料加工向けエンド・ミル設計

弊社の製品の供給調達機能は:

(1)生活産業~ハイテク工業までのエンド・ミル設計

(2)ミクロ・エンド・ミル~大型エンド・ミル供給

(3)小Lot生産~大量発注対応供給

(4)オートメーション整備調達

(5)スポット対応~流れ生産対応

弊社の全般供給体制及び技術自慢の総合専門製造メーカーに貴方のご体験を御待ちしております。

BW специализируется в научных исследованиях и разработках, и снабжаем самым высокотехнологичным карбидовым материалом для поставки режущих / фрезеровочных инструментов для почвы, воздушного пространства и электронной индустрии. В нашу основную продукцию входит твердый карбид / быстрорежущая сталь, а также двигатели, микроэлектрические дрели, IC картонорезальные машины, фрезы для гравирования, режущие пилы, фрезеры-расширители, фрезеры-расширители с резцом, дрели, резаки форм для шлицевого вала / звездочки роликовой цепи, и специальные нано инструменты. Пожалуйста, посетите сайт www.tool-tool.com для получения большей информации.

BW is specialized in R&D and sourcing the most advanced carbide material with high-tech coating to supply cutting / milling tool for mould & die, aero space and electronic industry. Our main products include solid carbide / HSS end mills, micro electronic drill, IC card cutter, engraving cutter, shell end mills, cutting saw, reamer, thread reamer, leading drill, involute gear cutter for spur wheel, rack and worm milling cutter, thread milling cutter, form cutters for spline shaft/roller chain sprocket, and special tool, with nano grade. Please visit our web www.tool-tool.com for more info.

beeway 發表在 痞客邦 留言(0) 人氣()

Bewise Inc. www.tool-tool.com Reference source from the internet.

仅仅20年前,切削液是便宜的,且多数占加工成本的比重少于3%。所以很少有机械加工厂对它们过多关注。在那时以后,随着时间的推移,发生了戏剧性的变 化:如今的切削液费用估计达每年几十亿美圆,且占生产成本比重高达15%。现在,机加工行业无时不刻都在为他们的切削液担忧。

切 削液,尤其是那些含油的切削液,已成为巨大的负担。不管某种切削液有多么安全和环保,政府法令仍将要求你从倾倒到池里的那一刻起进行特殊处理。即使当地政 府允许你将清洁的不含油的合成液从桶中倾倒到排水沟,一旦它同机床里夹杂的油和金属碎屑混合,它就变成一种受控的工业废料。不仅美国环境保护局管理这种混 合物的处理,而且许多州和地方政府也已把它们作为有害废物进行分类,如果它们含油和某些合金,则要严加控制。

因为很多高速加工和 切削液喷嘴产生细颗粒油雾或工人能呼吸到的气溶胶,政府机构还限制空气里切削油雾的允许含量,提高了机加工企业计划成本和责任,环境保护局已经计划更严格 的针对控制这些空气里的微粒的标准。职业安全和健康管理局也正在考虑一个咨询委员会推荐通过一个最大值到0.5mg/m3和作用水平到0.25mg/m3 的法令来限制较低的切削液气雾的允许暴露量。

维护、记录存档和遵循现行和计划的规定所产生的成本正迫使切削液的价格迅速上涨。大 型工厂支付从几万到几十万的资金来维护切削液系统,只要有可能就安装和使用合适的附件和油雾收集器以及切屑、碎屑和用过的切削液的处理来推迟它们的处理。 其结果是很多机加工企业正在就通过干切削来避免费用和伴随切削液产生的副作用展开讨论。

虽然大多数工厂可能承认有消灭切削液的愿 望,但他们不能确定能做得到。他们相信要获得更高的速度和切削更硬的材料,他们必须使用切削液来维持竞争力。很多从湿式加工转变到干加工的可见成本也是高 的,如今都不成为问题。实际上,在很多加工中常规操作应该是干加工。再者,干车硬材料和高速干铣削不仅是可行的而且是有利可图的。其技巧是正确集成刀具、 机床和切削技术。

切削液有损害而没有帮助

更多采用干切削最大的障碍 之一是切削液对于取得较好光洁度和更长刀具寿命是必要的传统认识。虽然现实中对于许多应用仍然是必要的,但是研究表明有了现代切削刀具材料和当今更高的切 削速度就不是这样的。先进的硬质合金材质等级,尤其是有涂层保护的,在高速高温下不使用切削液实际上切得更有效率。实际上在断续切削时切削区温度越高,切 削液越变得不合适。

这种似乎是跟直觉相反的趋势的原因在于切削区变得非常热,通常超过摄氏1000度,尤其是在高速切削和硬材料切削时。举例来说,假定切削液能克服铣刀高速旋转产生的离心力,切削液在到达切削区之前早已汽化并对那里几乎没有冷却作用。

结果是有一个在当刀片切入切出时产生先天的温度波动更明显的区别。随着刀具的旋转当刀片切出时冷却,然后在切入时再一次被加热。虽然在干加工时也发生加热和冷却循环,但是当有切削液时温度波动更大。跟着发生的热冲击会在刀片上产生应力并会过早地破裂。

相似的结果也在车削时发生。譬如当在切削速度高于130m/min时切削碳钢,暴露在冷却液里不涂层硬质合金刀片能承受显著的热冲击少于40秒。这种冲 击通过轻微增加前刀面磨损和剧烈的后刀面磨损戏剧性地缩短刀具寿命。因为大多数生产车削少于40秒,对于刀具寿命来说干车通常是更可取的。
另 一方面,在钻削时为了提供润滑和把切屑从孔里冲出 来切削液通常是必须的。没有切削液,切屑会堵在孔里,而且平均表面粗糙度Ra是湿式加工的两倍。切削液通过润滑边缘碰到孔壁的钻尖也能降低必要的马达扭 矩。虽然涂层钻头在某种程度上会加倍切削液的润滑效果,但是降低切削力的涂层最可能的趋势是把摩擦降到最低。

因为还没有用于预测切削液效果和性能的科学模型,是否采用干切削你必定取决于具体的案例。润滑液通常针对低速加工、难加工材料、难加工和表面光洁度有要 求,而一个有高冷却能力的切削液会提高高速加工、易切材料、简单加工、积屑瘤问题和紧尺寸公差加工的表现。然而很多时候切削液提供的额外性能并不值得额外 的开销。在越来越多的应用中,切削液简直是不必要的或彻头彻尾有害的因为现代切削刀具适合更高的温度而且压缩空气能从切削区域带走热切屑。

涂层处理热量

涂层是当今使切削液通常不需要的另一个原因。它们通过抑制从切削区到刀片或刀具的热传递来控制温度波动。涂层的作用像热障,因为它有比刀具基体和工件 材料低很多的热导性。因此涂层刀片和刀具吸收较少的热量并能承受更高的切削温度,这意味着在车削和铣削不牺牲刀具寿命的前提下更高速的切削。

厚度范围在2到18微米的涂层在刀具性能里扮演一个重要的角色。因为薄涂层比厚涂层在快速冷却和加热过程中引起更低的应力并且不易破裂,对于断续切削 这个厚度带宽较薄的一端承受温度波动更佳。厚涂层经受相同的应力,当你加热或冷却太快时容易破裂。因此,用薄涂层刀片干加工通常延伸刀具寿命达40%。

这是为什么圆刀片和铣刀片代表性地用物理气相沉积(PVD)的一个重要原因。和相对应的化学气相沉积(CVD)相比PVD涂层更薄,粘着力更佳。除了更薄,它们的沉积温度要低很多。所以在车削和铣削刀具发现更多使用锋利切削刃和大的正前角。

虽然氮化钛(TiN)占所有涂层刀具的80%,氮铝化钛(TiAlN)作为针对高速精加工的最佳PVD涂层出现了。象高速车削那样的连续高温切削时它超过TiN性能的3倍。在象干铣和小直径深孔钻削由于切削液很难渗透等高热应力工况下它也胜出很多。

在切削温度下TiAlN比TiN更硬,它是目前最热稳定和抗化学磨损的PVD涂层。其硬度高达维氏硬度3500,而且它的工作温度高达华氏1470度。虽 然没有人知道为什么会如此,但是科学家猜想这些特性来自一种当某些高温下涂层表面氧化时在切屑-刀具接触面形成的非晶质的氧化铝膜。

应用更薄的多层PVD涂层使其更适合于干加工的研究正在进行。这种沉积工艺建立一种由数百层仅几纳米厚的涂层构成。相反,传统PVD工艺由几层微米级的涂层沉积而成。

尽管对PVD涂层有强烈的兴趣,与之相对应的CVD对于大多数黑色金属工件材料来说一直是受欢迎的。CVD工艺很高的沉积温度有助于粘着并且允许基体生成 强化刃口和帮助基体抵抗变形的富钴区。由于它们比PVD涂层更厚,因此需要对切削刃更重的珩磨来防止像墙角厚层涂料的剥落那样的开裂。这个设计抗磨性也好 且能在进给量超过每转0.076毫米到每转0.89毫米下工作。
CVD也是唯一使用已知最佳抗热和氧化磨损的氧化铝涂层沉积工艺。氧化铝导热差,因此隔离切屑形成过程中产生的热量并迫使热量流入切屑。使得它成为硬质合金里最适合干加工的优异的CVD涂层。在高速下它保护基体,是抗磨料磨损和月牙洼磨损的最佳涂层。

先进材料喜欢干加工

虽然涂层材质等级有更好的刀具寿命且在干铣加工时比湿式加工更可靠,但是对于高速加工的要求使切削温度超越硬质合金刀具的经济极限。譬如在每分钟 14000转和线速度每分钟400米下干加工灰铸铁,刀具前面的切削区能加热到600到700摄氏度之间。金属切除率同那些用更传统技术铣削铝接近,但是 对于传统切削刀具来说加工灰铸铁产生的温度太高。

因此,更高的切削速度将要求有更高红硬性更耐磨的切削刀具材料。金属陶瓷、立方 氮化硼(CBN)和两种陶瓷(氧化铝和氮化硅)很适合这种要求。(今天,术语“陶瓷”包括氧化铝和氮化硅两种,而不是过去仅指的氧化铝。)虽然不是针对黑 色金属材料,聚晶金刚石(PCD)也是一种适合干加工刀具材料。然而,在所有材料里权衡更大的红硬性和抗磨料磨损性能的后果是易碎性。

金属陶瓷是一种先进的硬质合金。举例讲,金属陶瓷同传统硬质合金相比能在更高的温度下工作,但不如硬质合金耐冲击、中等到重载下的韧性和低进给和高进给时 的强度。然而,金属陶瓷在同传统硬质合金一样的轻载下具有大致相等的刃口强度并在更高的切削速度下承受温度和磨损更好,持续时间更长且表面光洁度更佳。对 于延展性好的和粘性高的材料,在抗积屑瘤形成和生成表面良好光洁度方面金属陶瓷也表现更好。

更好的红硬性来自组成刀具材料的钛化 物。金属陶瓷,一个陶瓷和金属的首字母缩略字,是一种包含硬的钛基化合物(碳化钛、碳氮化钛和氮化钛)的烧结碳化物,它是以镍或镍钼做粘接剂而不象制造传 统硬质合金那样用钴做粘接剂。由于金属粘接剂的温度限制,典型的金属陶瓷材质等级的红硬性不能用于加工硬度超过洛氏40的材料。

金属陶瓷也对破坏和进给引起的应力要比涂层和不涂层硬质合金敏感得多。因此,它在需要高精度和良好光洁度并工作在高切削速度、低进给、小切深的加工时表现 最佳。理想的加工操作是那些切削时没有严重断续的情况。对于车削碳钢进给的上限通常是每转0.63毫米,并且也能处理主轴高速且合适进给下的普通铣削。

如果保持在这些操作限制内,大量生产情况下金属陶瓷能在很长时间里保持锋利的切削刃。虽然金属陶瓷能在传统速度和进给下仅通过提高硬质合金的刀具寿命和光 洁度而值得使用,但它能通过在加工合金钢提高20%速度和加工碳钢、不锈钢和球墨铸铁提高50%速度而提高生产率。

陶瓷,是刀具 材料的一个分支。陶瓷切削刀具同它们相对应的金属陶瓷相似,对工件材料化学稳定性好,刀具寿命长而且能在高速下切削。纯氧化铝有极高的热阻抗但强度和韧性 低,如果工况不佳的话较低的强度和韧性的组合会似得它容易破坏。为了使它对破裂敏感性降低,刀具制造商要么添加少量氧化锆来提高韧性,要么混入20%到 40%的碳化钛和氮化钛来提高抗冲击性和热导性。但是,韧性仍然要比硬质合金低很多。

另外一种提高氧化铝韧性的方法是植入碳化硅加强物的晶隙或晶须。虽然这些晶须典型的平均直径只有一微米长度是20微米,但它们很牢固并明显地增加韧性和抗热冲击性。晶须最多能占到总量的30%。
和 氧化铝相像,氮化硅在比硬质合金能承受的温度更高 的条件下维持良好的红硬性,并且它能承受的热冲击和机械冲击更好。同氧化铝相比,它的主要缺点是加工钢件时化学稳定性没有氧化铝好。尽管如此,氮化硅能以 线速度每分钟435米干式加工灰铸铁,氮化硅通常被用于加工这样的工件。

虽然使用陶瓷刀具金属切除率能很高,但应用必须是正确 的。举例讲,陶瓷刀具加工铝并不好,但加工灰铸铁、球墨铸铁、淬硬钢和某些未淬硬钢以及耐热合金等效果很好。但是即使是在这些材料里,用得是否成功取决于 刃口修磨、刀具对工件的表现、机床和夹具的稳定性、使用正确的操作和优化的加工参数。

CBN是一种硬度仅次于金刚石的极硬的刀具 材料,通常材料硬度大于洛氏硬度48时工作最好(加工软材料时CBN磨损很快)。温度高到摄氏2000度是还有极佳的红硬性。虽然和硬质合金相比更脆且导 热性和化学稳定性低于陶瓷,但它有比陶瓷刀具更高的冲击强度和抗破裂性而且对于刚性较低的机床也能切削硬金属。更进一步,恰当的定制CBN刀具能承受大功 率粗加工的切削载荷、断续切削的击打和精加工所需的热和磨损性能。

对于指定工序恰当的定制包括机床和夹具的刚性、刃口修磨大到足 以防止显微剥落,而且刀具的基体是一种CBN含量高的材质等级。CBN含量高的材质等级对这些指定工序是必须的,因为它们具有刃口重载条件下高速加工要求 的高导热性和韧性以及用于严重断续切削。这些性能使得这种材质等级的刀具材料被用作粗加工淬硬钢和珠光体灰铸铁。

CBN含量低的 材质等级和CBN含量高的相比更脆,但它们用于淬硬黑色金属加工更好。它们的更低的热导性和相对更高的承受高速切削和负前角所产生热量的抗压强度。切削区 更高的温度软化工件材料和帮助断屑,而负前角强化刀具,使切削刃稳定,提高刀具寿命,并允许比0.25毫米小的切深。

因为CBN 刀具能获得优于0.4微米的表面光洁度并保持同轴度正负0.012毫米,干车淬硬工件通常是一种有吸引力的替代肮脏的强化冷却的磨削加工方案。虽然CBN 是一种硬车和高速铣特别喜欢的刀具材料,但陶瓷和CBN的应用范围有惊人的重叠,故而很必要用成本-效益分析来决定谁能得到最优结果。

PCD加工有色金属表现突出。作为目前最硬的切削刀具材料,合成聚晶金刚石承受磨料磨损最佳。其硬度和耐磨性来自晶体各向异性和金刚石颗粒之间牢固结合阻止破裂扩展。把PCD刀头焊到硬质合金刀片上增加强度和抗冲击性并能延长刀具寿命高达100倍。

然而,其它特性阻止它使用在多数加工操作上。其一是PCD和黑色金属里的铁有亲合性,由此而来的化学反应使得这种刀具材料限制在有色金属应用上。另外一个受限制的特性是它无法承受超过600摄氏度的切削区温度。结果是PCD不能切韧的抗拉强度高的工件材料。

尽管这样,PCD加工有色金属时表现很好,最突出的是在加工耐磨高硅铝合金时。锋利的切削刃和大正前角对高效地剪切这种材料和切削力最小化以及抑制积屑瘤来说是关键的。在加工耐磨有色金属材料所表现出化学稳定性高和耐磨性好,它能保持利于剪切所必须的锋利切削刃。

强化切削刃,减轻载荷
尽管自从推出后它们的物理性能提高以及应用领域的发展,由金属陶瓷、陶瓷、CBN、PCD做成的刀具仍然比硬质合金更脆并且不能承受同样大的应力。因此,由它们做成的刀具需设计成能增强支撑和释放应力。

一个设计这种刀具的重要部分是切削刃的磨削,它使得切削力偏离刀片刃口改变方向到它的基体。三个这样的刃口修磨是恰当的:负倒棱、珩磨、珩磨的负倒棱。负 倒棱象切削刃的一个倒角状的平面,它取代薄弱锋利的刀尖。这里刀具设计人员的目标是发现使保证切削刃足够的强度和寿命的最小带宽和角度,因为宽度和角度增 大后刀片得到强化但也增加了切削力。

珩磨用于钝化锋利的切削刃。虽然它们不提供像负倒棱相同的抗微崩保护作用,但珩磨对由先进材 料制作的小切深小进给以保持最小切削力的精加工刀片很有效。珩磨也能强化前、后刀面相交处负倒棱的作用。当用陶瓷粗车钢件发生微崩时,珩磨能释放该处的应 力、强化刀片而不要加宽负倒棱。

除了指定针对某个加工的最佳刃口修磨,刀具设计人员也必须优化切削角度并能排屑。通过加大后角降 低切削力让刀具上的应力减少并降低切削区的温度。正前角的数值尽可能大,靠更好的剪切作用也减少切削力并加宽卷屑槽空间靠加大排出路径帮助切屑排出,特别 是在钻削和螺纹加工时。

保持低的切向切削力的另一种方法是高速切削。在很高主轴转速下的高进给率降低而不是增加对工件的冲击多达 75%到90%,这取决于刀具和加工参数。更进一步,干加工改善切削过程的热稳定性;铣刀比五年前至少有更准确的大小;而且现代铣削和车削机床变得刚性越 好足以消除过度的振动。所有这些发展都支持使用脆但更硬更耐磨的刀具材料。

使用一种能承受高温的刀具的好处之一是切屑形成十分有 效。举例来讲,加工铸铁时热量增加切削区材料的塑性并降低它的屈服强度。其结果是金属切除率比传统粗加工增加3倍。因为进给率高,刀具剪切切屑快以致大部 分热留在切屑里而没有时间流向工件并引起扭曲。尽管切削温度很高,但工件的热稳定性更好而且要比在传统金属切除率条件下更精确。

低冲击的精加工也使工件、夹具和机床以及在高线速度下以每转更低的进给使用安装小刀片低密度材料的刀盘的静态变形达到最小。因为支撑工件只需很低的夹紧 力,所以夹具能做得简单,不需要一个加强筋、工件支撑和夹紧元件的复杂系统。结果是机床对箱体零件的各个面进刀更多。

是不是机床喜欢干加工

指定和装备合适的机床也是这个战略的一个重要部分。由于速度通常很快、材料通常很硬、切削温度很高,所以机床一定要刚性好功率大。因此,对加工中心讲使用者应该努力缩短刀具悬伸并除了看速度和功率显示外还要判断主轴内在刚性。

在车床上切削接近成型的和淬硬的零件,解决了切削力问题后刀塔能靠机床刚性实现很长的切削行程。一台设计良好的机床将解决那些沿着短的直接通路的力并且包 含尽可能少的移动和支撑刀具的机床零件。在权衡精度和柔性后,你也许认为直接装在横刀架的刀具组能消除回转分度机构。这种设计使刀具悬伸短,平衡作用到导 轨上的切削力并使支撑面最小化。

对精度来说热稳定性也是关键的。所以一些机床制造商用软件补偿热膨胀的办法改进他们的加工中心的 机械部分性能。然而,控制温度变化将开始有效地外排热切屑来消除工作系统内部的重要热源。好的机床设计将没有积聚切屑的腔和托盘而是有不靠切削液帮助就能 排出干切屑螺旋推运器和切屑运送装置。如果流体的协助是必需的话,考虑使用空气替代流体。
为了保护滚珠丝杠、导轨和操作工吸入空气里的灰 尘,伸缩盖、罩、密封和吸尘器也是需要的。从湿式加工转变到干切削的机床设计是可行的,买一台干加工的机床总体来讲费用较低、问题更少。它的吸尘器和压缩 空气输送系统也比相对应湿式加工需要的油雾收集器和冷却泵便宜。运行成本也由于干加工消除冷却液管理和处理费用而垂直下降。更进一步,干加工使你从现在和 将来的切削液使用责任规章制度解放出来。


歡迎來到Bewise Inc.的世界,首先恭喜您來到這接受新的資訊讓產業更有競爭力,我們是提供專業刀具製造商,應對客戶高品質的刀具需求,我們可以協助客戶滿足您對產業的不同要求,我們有能力達到非常卓越的客戶需求品質,這是現有相關技術無法比擬的,我們成功的滿足了各行各業的要求,包括:精密HSS DIN切削刀具協助客戶設計刀具流程DIN or JIS 鎢鋼切削刀具設計NAS986 NAS965 NAS897 NAS937orNAS907 航太切削刀具,NAS航太刀具設計超高硬度的切削刀具醫療配件刀具設計汽車業刀具設計電子產業鑽石刀具木工產業鑽石刀具等等。我們的產品涵蓋了從民生刀具到工業級的刀具設計;從微細刀具到大型刀具;從小型生產到大型量產;全自動整合;我們的技術可提供您連續生產的效能,我們整體的服務及卓越的技術,恭迎您親自體驗!!

BW Bewise Inc. Willy Chen willy@tool-tool.com bw@tool-tool.com www.tool-tool.com skype:willy_chen_bw mobile:0937-618-190 Head &Administration Office No.13,Shiang Shang 2nd St., West Chiu Taichung,Taiwan 40356 http://www.tool-tool..com / FAX:+886 4 2471 4839 N.Branch 5F,No.460,Fu Shin North Rd.,Taipei,Taiwan S.Branch No.24,Sec.1,Chia Pu East Rd.,Taipao City,Chiayi Hsien,Taiwan

Welcome to BW tool world! We are an experienced tool maker specialized in cutting tools. We focus on what you need and endeavor to research the best cutter to satisfy users demand. Our customers involve wide range of industries, like mold & die, aerospace, electronic, machinery, etc. We are professional expert in cutting field. We would like to solve every problem from you. Please feel free to contact us, its our pleasure to serve for you. BW product including: cutting toolaerospace tool .HSS DIN Cutting toolCarbide end millsCarbide cutting toolNAS Cutting toolNAS986 NAS965 NAS897 NAS937orNAS907 Cutting Tools,Carbide end milldisc milling cutter,Aerospace cutting toolhss drillФрезерыCarbide drillHigh speed steelMilling cutterCVDD(Chemical Vapor Deposition Diamond )PCBN (Polycrystalline Cubic Boron Nitride) Core drillTapered end millsCVD Diamond Tools InsertsPCD Edge-Beveling Cutter(Golden FingerPCD V-CutterPCD Wood toolsPCD Cutting toolsPCD Circular Saw BladePVDD End Millsdiamond tool Single Crystal Diamond Metric end millsMiniature end millsСпециальные режущие инструменты Пустотелое сверло Pilot reamerFraisesFresas con mango PCD (Polycrystalline diamond) FreseElectronics cutterStep drillMetal cutting sawDouble margin drillGun barrelAngle milling cutterCarbide burrsCarbide tipped cutterChamfering toolIC card engraving cutterSide cutterNAS toolDIN or JIS toolSpecial toolMetal slitting sawsShell end millsSide and face milling cuttersSide chip clearance sawsLong end millsStub roughing end millsDovetail milling cuttersCarbide slot drillsCarbide torus cuttersAngel carbide end millsCarbide torus cuttersCarbide ball-nosed slot drillsMould cutterTool manufacturer.

Bewise Inc. www.tool-tool.com

ようこそBewise Inc.の世界へお越し下さいませ、先ず御目出度たいのは新たな

情報を受け取って頂き、もっと各産業に競争力プラス展開。

弊社は専門なエンド・ミルの製造メーカーで、客先に色んな分野のニーズ、

豊富なパリエーションを満足させ、特にハイテク品質要求にサポート致します。

弊社は各領域に供給できる内容は:

(1)精密HSSエンド・ミルのR&D

(2)Carbide Cutting tools設計

(3)鎢鋼エンド・ミル設計

(4)航空エンド・ミル設計

(5)超高硬度エンド・ミル

(6)ダイヤモンド・エンド・ミル

(7)医療用品エンド・ミル設計

(8)自動車部品&材料加工向けエンド・ミル設計

弊社の製品の供給調達機能は:

(1)生活産業~ハイテク工業までのエンド・ミル設計

(2)ミクロ・エンド・ミル~大型エンド・ミル供給

(3)小Lot生産~大量発注対応供給

(4)オートメーション整備調達

(5)スポット対応~流れ生産対応

弊社の全般供給体制及び技術自慢の総合専門製造メーカーに貴方のご体験を御待ちしております。

BW


beeway 發表在 痞客邦 留言(0) 人氣()