公告版位
Bewise Inc. www.tool-tool.com Reference source from the internet.

Is iad na scairdinnill is simplí agus is sine iad na hinnill turba-scairde. D'fhorbair an bheirt innealtóir éagsúil, Frank Whittle i Sasana agus Hans von Ohain san Ghearmáin an coincheap, neamhspleách óna chéile, sna tríochaidí.

Tá na turba-scairde comhdhéanta de ionraon aeir, comhbhrúiteoir aeir, cuasán dó, gástuirbín (a thiománann aer chuig an chomhbhrúitera) agus soc.

Comhbhrúitear an t-aer isteach sa chuasán, bíonn an teas dócháin freagrach as an aer a fhorleathnú agus a téamh, agus ar aghaidh ansin leis an gás sceite, tríd an tuirbín agus amach as an soc, i gcúrsa luathaithe, a thugann cumhacht tiomána don fheithicil.

Tá na turba-scairde neamhéifeachtach ( ag luas níos lú ná Mach2) agus íontach challánach. Bíonn innill turbai-fean in úsáid ag mórchuid aerárthaí na linne seo.

Léaráid ag taispeáint feidhmiú innill turbai-scairde le sreabhadh lártheifeach. Tá an comhbhrúiteoir á thoimaint tríd an chéim thuirbíneach agus caitear an t-aer amach, a cheanglaíonn dó bheith ath-stiúraithe comhthreomhardh le hais an sá.

Léaráid ag taispeáint feidhmiú innill turbai-scairde le sreabhadh lártheifeach. Tá an comhbhrúiteoir á thoimaint tríd an chéim thuirbíneach agus caitear an t-aer amach, a cheanglaíonn dó bheith ath-stiúraithe comhthreomhardh le hais an sá.

[athraigh] Stair

Ba é an Heinkel He 178 an chéad scairdeitleán a d'úsáid cumhacht innill turba-fean le haghaidh eitilte, ar an 27 Mí Lúnasa na bliana 1939.

Ba é an Messerschmitt Me 262 agus an Gloster Meteor na chéad innill turba-scairde oibríochta a bhí rannpháirteach sa Dara Cogadh Domhanda i 1944.

Úsaidtear an t-inneall turba-scairde go príomha le haghaidh eitleáin a thiomáint.Tarraingítear aer isteach sa chomhbhrúiteoir rothlach, tríd an ionraon aeir, agus i ndiaidh an t-aer a bheith chomhbhrúite go dtí brú níos airde, ligtear é isteach sa chuasán dó. Measctar an breosla leis an aer comhbhrúite agus téann an meascán seo ag bladhmadh i sruth guairneáin an choinneálaí lasrach. Ardaíonn an próiseas dó seo teocht an gháis go suntasach. Forbraíonn na táirgí dó iontach te seo agus iad ag dul tríd an turibín, áit a mbaintear cumhacht as le haghaidh an chomhbhrúiteora. Cé go laghdaíonn an próiseas forbartha brú agus teocht an gháis a imíonn amach ón tuirbín, de gnáth, bíonn na paraiméadair araon fós níos airde ná na coinníollacha comhthimpeallacha.

Forbraíonn an sruth gáis go dtí brú chomhthimpeallach agus é ar a shlí amach ón tuirbín, tríd an soc tiomána, agus táirgítear scaird gháis ardluais sa chleitín sceite. Má tá móiminteam an tsrutha sceite níos mó ná móiminteam an gháis iontógála, bíonn an ríog dearfach, agus de réir sin bíonn sá glan chun tosaigh ar an aerinneall.

Bhí scairdinnill den chéad ghlúin ina ghlan innill turba-scairde le chomhbhrúiteoir lártheifeach nó aiseach. Is innill turbai-fean iad den chuid is mó na scairdinnill nua-aimseartha, ina dtéann céatadán d'aer-iontógála ar seach-chonair ón dóire: agus an céatadán seo ag brath ar coibhneas seach-chonair an innill. Cé go bhfuil dearadh innill na rop-scairdinneall níos simplí, mar nach bhfuil chóir a bheith páirteanna gluaisteacha acu, níl siad in ann feidhmiú ag íseal-luas eitilte.

[athraigh] Aer-iontógáil

Beochan de chomhbhrúiteoir aiseach. Is iad na státair na lanna dorcha.

Beochan de chomhbhrúiteoir aiseach. Is iad na státair na lanna dorcha.
Léaráid ag taispeáint feidhmiú innill turbai-scairde le sreabhadh aiseach.Sa chás seo,tá an comhbhrúiteoir á thoimaint tríd an chéim thuirbíneach, ach fanann an t-aer comhthreomhar le hais an sá.

Léaráid ag taispeáint feidhmiú innill turbai-scairde le sreabhadh aiseach.Sa chás seo,tá an comhbhrúiteoir á thoimaint tríd an chéim thuirbíneach, ach fanann an t-aer comhthreomhar le hais an sá.

Tá an t-ionraon aeir suite os comhair an chomhbhrúiteora, agus é ceaptha chun rop-bhrú an tsruthfheadáin, a thagann ón aer-iontógáil, a shábháil ar an mbealach is éifeachtúla. Ag leanúint ón ionraon aeir, téann an t-aer isteach san chomhbhrúiteoir.

[athraigh] Comhbhrúiteoir

Tarraingítear aer isteach sa chomhbhrúiteoir rothlach, tríd an ionraon aeir, agus i ndiaidh an t-aer a bheith chomhbhrúite go dtí brú níos airde, ligtear é isteach sa chuasán dó. Measctar an breosla leis an aer comhbhrúite. Rothlaíonn an comhbhrúiteoir faoi an-ard luais,agus cuireann seo le fuinneamh na haershreibhe. Go comhuaineach, comhbhrúitear an t-aer isteach i ndlúthspás, dá bharr sin, ardaítear a bhrú agus a teocht. Sa chuid is mó de na heitleáin scairdchumhachta, baintear amach aer-sceite ón chomhbhrúiteoir go comhleanúnach i dtreo is gur féidir jabanna éagsúla a dhéanamh, aerchóiriú/brúchóiriú, ionraon an innill a neamh-oighriú agus fuarú an tuirbín san áireamh.

Go ginearálta bíonn na hilchineálacha comhbhrúiteoirí in úsáid sna hinnill turba-scairde agus gástuirbíní: aiseach, lártheifeach, aiseach-lártheifeach, dé-lártheifeach, srl.

I dtosach, bhí brúchóimheas foriomlán sách íseal de 5:1 ag comhbhrúiteoir an innill turba-scairde ( mar atá ag méid mór de na haonaid-chúnta chúmhtacha agus na hinneall turba-scairde cumhacht- tiomána an lae inniu.)

Do bhí ar chumas na hinnill turba-scairde níos déanaí,de réir feabhsú aeraidinimiciúl, maille leis an córas comhbhrúite a scaradh i dhá aonaid ar leith agus/nó ina bhfuil comhbhrúiteoir le céimseata athraitheach insuite, brúchóimheas foriomlán sách ard de 15:1 nó níos mó a bhaint amach.

I gcomórtas leo siúd. bíonn brúchóimheas foriomlán comh hard le 44:1 nó níos mó ag na hinnill turbai- fean sibhialta, na linne seo.

[athraigh] Cuasán Dó

Tá an próiseas dócháin sa chuasán dó i bhfad níos difriúla ná a leithéid in inneall loiní. Dónn an t-inneall loiní gáis i gcuasánd le toirt bheag agus teoranta, agus i rith loiscneach an bhreosla, ardaíonn an brú go suntasach. San inneall turba-scairde, téann an meascán d'aer agus de bhreosla, neamhghaibhnithe, tríd an cuasán dó. De réir agus a dhónn an meascán, ardaíonn an teocht go suntasach, agus ní thagann mórán athrú ar an mbrú (bíonn beagán titim air).


[athraigh] Tuirbín

[athraigh] Foinsí


BW Bewise Inc. Willy Chen willy@tool-tool.com bw@tool-tool.com www.tool-tool.com skype:willy_chen_bw mobile:0937-618-190 Head &Administration Office No.13,Shiang Shang 2nd St., West Chiu Taichung,Taiwan 40356 TEL:+886 4 24710048 / FAX:+886 4 2471 4839 N.Branch 5F,No.460,Fu Shin North Rd.,Taipei,Taiwan S.Branch No.24,Sec.1,Chia Pu East Rd.,Taipao City,Chiayi Hsien,Taiwan

Welcome to BW tool world! We are an experienced tool maker specialized in cutting tools. We focus on what you need and endeavor to research the best cutter to satisfy users demand. Our customers involve wide range of industries, like mold & die, aerospace, electronic, machinery, etc. We are professional expert in cutting field. We would like to solve every problem from you. Please feel free to contact us, its our pleasure to serve for you. BW product including: cutting toolaerospace tool .HSS Cutting toolCarbide end millsCarbide cutting toolNAS Cutting toolCarbide end millAerospace cutting toolФрезерыCarbide drillHigh speed steelMilling cutterCVDD(Chemical Vapor Deposition Diamond )PCBN (Polycrystalline Cubic Boron Nitride) Core drillTapered end millsCVD Diamond Tools Inserts’PCD Edge-Beveling Cutter(Golden Finger’PCD V-Cutter’PCD Wood tools’PCD Cutting tools’PCD Circular Saw Blade’PVDD End Mills’diamond tool Single Crystal Diamond Metric end millsMiniature end millsСпециальные режущие инструменты Пустотелое сверло Pilot reamerFraisesFresas con mango PCD (Polycrystalline diamond) FreseElectronics cutterStep drillMetal cutting sawDouble margin drillGun barrelAngle milling cutterCarbide burrsCarbide tipped cutterChamfering toolIC card engraving cutterSide cutterNAS toolDIN toolSpecial toolMetal slitting sawsShell end millsSide and face milling cuttersSide chip clearance sawsLong end millsStub roughing end millsDovetail milling cuttersCarbide slot drillsCarbide torus cuttersAngel carbide end millsCarbide torus cuttersCarbide ball-nosed slot drillsMould cutterTool manufacturer.

Bewise Inc. www.tool-tool.com

BW специализируется в научных исследованиях и разработках, и снабжаем самым высокотехнологичным карбидовым материалом для поставки режущих / фрезеровочных инструментов для почвы, воздушного пространства и электронной индустрии. В нашу основную продукцию входит твердый карбид / быстрорежущая сталь, а также двигатели, микроэлектрические дрели, IC картонорезальные машины, фрезы для гравирования, режущие пилы, фрезеры-расширители, фрезеры-расширители с резцом, дрели, резаки форм для шлицевого вала / звездочки роликовой цепи, и специальные нано инструменты. Пожалуйста, посетите сайт www.tool-tool.com для получения большей информации.

BW is specialized in R&D and sourcing the most advanced carbide material with high-tech coating to supply cutting / milling tool for mould & die, aero space and electronic industry. Our main products include solid carbide / HSS end mills, micro electronic drill, IC card cutter, engraving cutter, shell end mills, cutting saw, reamer, thread reamer, leading drill, involute gear cutter for spur wheel, rack and worm milling cutter, thread milling cutter, form cutters for spline shaft/roller chain sprocket, and special tool, with nano grade. Please visit our web www.tool-tool.com for more info.

beeway 發表在 痞客邦 留言(0) 人氣()

Bewise Inc. www.tool-tool.com Reference source from the internet.

Turboreaktoro esas mashino pulsinta da gaz-jeto.

[redaktar] Historio

L'unesma esis konstruktita da Frank Whittle en Britania ye 1935, ma Hans von Ohain en Germania ye 1939 facas volar en Heinkel He 178.

[redaktar] Principio

Turboreaktoro produktas pulso da expanso di varma ed alta presesa gazo en lia ejekt-tubo.

  • Ta gazi esas kreita en kombust-chambro kun maxim ofte kerozeno ed kompres-aero.
  • L'externa aero es aspirita da turbino maxim ofte agas per ejekt-gazi. Kande granda parto di kolda aero ne pasas tra kombust-chambro es nominita duopla fluo. Per transporta ed entraina aviono es helico.


BW Bewise Inc. Willy Chen willy@tool-tool.com bw@tool-tool.com www.tool-tool.com skype:willy_chen_bw mobile:0937-618-190 Head &Administration Office No.13,Shiang Shang 2nd St., West Chiu Taichung,Taiwan 40356 TEL:+886 4 24710048 / FAX:+886 4 2471 4839 N.Branch 5F,No.460,Fu Shin North Rd.,Taipei,Taiwan S.Branch No.24,Sec.1,Chia Pu East Rd.,Taipao City,Chiayi Hsien,Taiwan

Welcome to BW tool world! We are an experienced tool maker specialized in cutting tools. We focus on what you need and endeavor to research the best cutter to satisfy users demand. Our customers involve wide range of industries, like mold & die, aerospace, electronic, machinery, etc. We are professional expert in cutting field. We would like to solve every problem from you. Please feel free to contact us, its our pleasure to serve for you. BW product including: cutting toolaerospace tool .HSS Cutting toolCarbide end millsCarbide cutting toolNAS Cutting toolCarbide end millAerospace cutting toolФрезерыCarbide drillHigh speed steelMilling cutterCVDD(Chemical Vapor Deposition Diamond )PCBN (Polycrystalline Cubic Boron Nitride) Core drillTapered end millsCVD Diamond Tools Inserts’PCD Edge-Beveling Cutter(Golden Finger’PCD V-Cutter’PCD Wood tools’PCD Cutting tools’PCD Circular Saw Blade’PVDD End Mills’diamond tool Single Crystal Diamond Metric end millsMiniature end millsСпециальные режущие инструменты Пустотелое сверло Pilot reamerFraisesFresas con mango PCD (Polycrystalline diamond) FreseElectronics cutterStep drillMetal cutting sawDouble margin drillGun barrelAngle milling cutterCarbide burrsCarbide tipped cutterChamfering toolIC card engraving cutterSide cutterNAS toolDIN toolSpecial toolMetal slitting sawsShell end millsSide and face milling cuttersSide chip clearance sawsLong end millsStub roughing end millsDovetail milling cuttersCarbide slot drillsCarbide torus cuttersAngel carbide end millsCarbide torus cuttersCarbide ball-nosed slot drillsMould cutterTool manufacturer.

Bewise Inc. www.tool-tool.com

BW специализируется в научных исследованиях и разработках, и снабжаем самым высокотехнологичным карбидовым материалом для поставки режущих / фрезеровочных инструментов для почвы, воздушного пространства и электронной индустрии. В нашу основную продукцию входит твердый карбид / быстрорежущая сталь, а также двигатели, микроэлектрические дрели, IC картонорезальные машины, фрезы для гравирования, режущие пилы, фрезеры-расширители, фрезеры-расширители с резцом, дрели, резаки форм для шлицевого вала / звездочки роликовой цепи, и специальные нано инструменты. Пожалуйста, посетите сайт www.tool-tool.com для получения большей информации.

BW is specialized in R&D and sourcing the most advanced carbide material with high-tech coating to supply cutting / milling tool for mould & die, aero space and electronic industry. Our main products include solid carbide / HSS end mills, micro electronic drill, IC card cutter, engraving cutter, shell end mills, cutting saw, reamer, thread reamer, leading drill, involute gear cutter for spur wheel, rack and worm milling cutter, thread milling cutter, form cutters for spline shaft/roller chain sprocket, and special tool, with nano grade. Please visit our web www.tool-tool.com for more info.

beeway 發表在 痞客邦 留言(0) 人氣()

Bewise Inc. www.tool-tool.com Reference source from the internet.
Schema di un turboreattore

Schema di un turboreattore

Il turbogetto è il più semplice ed il più vecchio (oggi totalmente in disuso) dei motori a getto. Si tratta di un motore a ciclo continuo che sfrutta il "ciclo turbogas", detto anche di Brayton-Joule, per produrre la spinta necessaria a far muovere un aereo.

Il motore è sostanzialmente costituito da una presa d'aria, da un compressore centrifugo o assiale, dalla camera di combustione, dove si trovano gli iniettori del combustibile (kerosene), da una turbina, da un eventuale postcombustore ed infine da un ugello di scarico che fornisce la spinta. Questi organi, assieme ai numerosi organi accessori, quali motorino d'avviamento, pompe per i lubrificanti e i liquidi di raffreddamento, sistemi di spillamento dal compressore, per evitarne lo stallo o per pressurizzare cabina e circuito idraulico, sono contenuti in un involucro metallico di forma aerodinamica posto nell'ala, di fianco alla fusoliera, entro la fusoliera, oppure sopra la coda del velivolo.

I primi studi in merito al turbogetto iniziarono in Gran Bretagna ed in Germania negli anni 30', anche se i primi aeroplani a getto nel senso più ampio del termine furono i motoreattori del rumeno Henri Coandă nel 1910 ed il Campini-Caproni C.C.2 del 1940.

I primi veri motori turbogetto vennero collaudati al banco di prova nel 1937, sia in Gran Bretagna che in Germania. Il 28 agosto del 1941 volò il primo aeromobile con motore turbogetto, l'Heinkel He 178, propulso dal motore Heinkel-Hirth HeS 3B. I due ingegneri dietro al progetto erano Hans von Ohain, Germania, e Frank Whittle, Gran Bretagna. I primi aeroplani operativi entrarono in servizio verso la fine della seconda guerra mondiale con i caccia tedeschi Messerschmitt Me 262. Anche gli inglesi avevano approntato il Gloster Meteor, ma non fu mai impiegato in azioni belliche. Le potenzialità di queste macchine spinsero al perfezionamento ed alla ricerca nel campo della propulsione a getto.

In un turbogetto l'aria viene convogliata dalla presa d'aria, o presa dinamica o diffusore, che inizia una prima compressione, ed inviata al compressore (o dai compressori nelle soluzioni a compressore di bassa e di alta pressione) il quale continua la compressione. Da qui viene inviata alla camera di combustione, dove si miscela con il combustibile nebulizzato dagli iniettori ed incendiata da una candela. Una volta iniziato il processo di combustione rimane spontaneo se non mutano le condizioni di pressione e flusso di combustibile.

La combustione continua provoca un notevole innalzamento della temperatura dell'aria che, non potendo espandersi, viene indirizzata verso la turbina dove si espande cedendo a questa la propria energia. Il turbogetto risponde, dal punto di vista termodinamico, al ciclo di Brayton e pertanto, come macchina termica, raggiunge rendimenti tanto più elevati quanto più elevati sono il suo rapporto di compressione e la temperatura massima del ciclo, a pari temperatura minima. La realizzazione dei turbogetto è quindi basata sull'ottenimento dei più elevati rendimenti possibili dei compressori, delle turbine a gas e delle camere di combustione.

I compressori attualmente usati sui motori più potenti sono del tipo assiale i quali, tuttavia, quando raggiungono determinate dimensioni presentano una serie di problemi di funzionamento e di regolazione, che in diversi casi portano a livelli inaccettabili alcune loro deficienze, come quella di una risposta alquanto pigra alla manetta. La causa fondamentale di ciò è l'estrema difficoltà di assicurare condizioni regolari di funzionamento in un'ampia gamma di regimi ai diversi stadi del compressore, ciascuno stadio del quale influenza il comportamento tanto di quelli che lo precedono quanto, soprattutto, di quelli che lo seguono. Tra le tecniche elaborate per superare questi inconvenienti, si possono citare quella dell'adozione di palettature a calettamento variabile, per i primi stadi del compressore: in questo modo se l'aria entrante ha una velocità più bassa di quella di progetto si potranno inclinare di meno le palette o viceversa. Dello spillamento (sottrazione) di parte della portata d'aria elaborata dal compressore stesso, in questo modo, specialmente all'avvio quando il compressore iniza a funzionare, i primi stadi non riusciranno a comprimere l'aria che inviano agli stadi successivi, i quali si troverebbero quindi un volume d'aria eccessivo. E della suddivisione del compressore in due o più tronchi indipendenti mossi, mediante due alberi coassiali, ciascuno da una propria turbina (schema noto come turbogetto bialbero o trialbero).

I compressori assiali hanno generalmente il rotore costituito da una struttura cilindrica o tronco-conica cui sono applicate le palette, oppure da una serie di dischi, ciascuno dei quali porta le palette, e che, serrati gli uni contro gli altri, vengono collegati all'albero della turbina. Le palette possono essere realizzate in [[lega leggera]], in acciaio ed in titanio, soprattutto quelle dei primi stadi, più soggette al pericolo di danni per l'ingestione di oggetti estranei, e quelle degli ultimi, dove l'aria compressa raggiunge temperature anche di qualche centinaio di gradi centigradi.

Tra i materiali impiegati nella costruzione dei compressori stanno facendosi largo la fibra di carbonio e il kevlar. Tali materiali permettono di costruire ed utilizzare pale a corda larga per le grandi ventole dei motori turboventola. Le ventole così realizzate si sono rivelate estremamente resistenti agli urti contro volatili e corpi esterni. Risultano anche migliorate le doti di sopravvivenza del motore al distacco di una di queste pale, che ha come conseguenza una delle avarie in assoluto più pericolose per un turboreattore. La tenuta tra le palette e la carcassa del compressore è realizzata mediante anelli di materiale abradibile (in genere teflon) nei quali le palette scavano la propria traccia.

Il compressore ha la funzione di alimentare con aria sotto pressione, captata dalla presa anteriore, le camere di combustione, in cui viene bruciata il cherosene nebulizzato mediante speciali iniettori. La maggior parte dell'aria proveniente dal compressore (il 75%) viene impiegata per diluire i prodotti della combustione stessa e per raffreddare le pareti esterne delle camere. Queste sono costituite da più involucri anulari, contenuti l'uno dentro l'altro, e collegano l'uscita del compressore con l'ingresso in turbina, convogliando verso di questa i gas che si formano durante la combustione. Data l'elevata temperatura di combustione, le camere sono realizzate in leghe ad alto tenore di nichel, capaci di resistere a temperature anche abbondantemente superiori ai 1200 ºC.

Poco diffusa è l'architettura a flusso invertito, in cui le camere di combustione hanno una sezione a S, permettendo così di ridurre considerevolmente la lunghezza dell'albero che collega il compressore alla turbina. La turbina a gas, di norma assiale e frequentemente a più stadi, è la parte del turbogetto in cui vengono sfruttate le tecnologie più avanzate, date le elevate sollecitazioni meccaniche e termiche cui sono sottoposte soprattutto le sue palettature, le cui estremità possono ruotare a velocità dell'ordine dei 400 m/s, venendo investite da gas incandescenti a temperature anche superiori ai 1300 ºC e a velocità sui 600 m/s. Per tale motivo, le palette sono realizzate in speciali leghe ad alto tenore di nichel, con aggiunte di cobalto, e sono in diversi casi protette da un sottile strato di materiale ceramico, oppure sono munite di un sistema di raffreddamento alimentato da aria compressa prelevata al compressore, convogliata nell'interno delle palette (che sono cave) e quindi espulsa attraverso piccoli fori disposti sul loro bordo d'attacco, per cui forma un sottile straterello d'aria che assicura la refrigerazione.

Verso la metà degli anni 80' si è affermata la tecnica del monocristallo, che permette una maggiore resistenza alle sollecitazioni termiche e centrifughe cui è sottoposta la paletta. La ricerca è ancora molto attiva nel campo, dato che da essa dipende, per la gran parte, il miglioramento delle prestazioni dei motori a turbina. Problemi tecnici derivano anche dalla necessità di evitare fenomeni di corrosione e di ossidazione delle palette e di prevedere la possibilità di ragguardevoli dilatazioni termiche, che impongono l'adozione di speciali sistemi di fissaggio delle palette ai dischi delle turbine, tali da permettere apprezzabili giochi a freddo, e, viceversa, il bloccaggio alle normali temperature d'esercizio. Comunemente adottato è il sistema di bloccaggio detto ad "albero di Natale".

Per superare tale problema, dall'inizio degli anni 90' si è diffusa la tecnologia blisk (dall'inglese blade + disk, pala + disco). Tale tecnica prevede la realizzazione delle ruote turbina partendo da un disco pieno forgiato che viene scolpito da macchine a controllo numerico, che provvedono a realizzare integralmente anche le palette. Partendo da un forgiato con le fibre opportunamente orientate si possono realizzare notevoli incrementi di resistenza e diminuzioni di peso, riuscendo inoltre ad eliminare il supporto a metà apertura, che permetteva ad ogni paletta di appoggiarsi alla precedente. La tecnica blisk appare come uno dei metodi più promettenti per l'incremento di prestazioni dei moderni turboreattori.

La turbina ha la funzione di elaborare la portata gassosa trasformandola in parte in energia meccanica, necessaria per il trascinamento del compressore; la portata gassosa finisce di espandersi nel condotto di scarico, la cui forma contribuisce ad accelerare la velocità di espansione dei gas; la variazione della quantità di moto della massa gassosa in espansione fornisce la spinta.

La spinta di un turbogetto, quando esso è montato su di un aeroplano, varia in misura abbastanza limitata al variare della velocità di volo ed è massima per velocità d'avanzamento nulla del velivolo, diminuisce leggermente quando vi è la minor differenza tra velocità di volo (e quindi di captazione dell'aria) e velocità di scarico del getto, mentre risale a velocità più elevate, dato l'incremento del rapporto di compressione ottenuto per effetto del recupero d'energia nella presa d'aria. Diminuzioni anche limitate del numero di giri del turbogetto (che dai 30.000 ~ 40.000 dei turbogetti più piccoli si riducono a 8.000 ~ 10.000 al minuto per quelli più grandi) determinano invece cospicue riduzioni della spinta. Per questa ragione la strumentazione di bordo per il controllo del numero dei giri è tarata in percentuale, con un arco di lavoro che varia dal 70% al 105% del regime di giri di progetto.

All'aumentare della quota, a parità di giri e di velocità di volo, la spinta del turbogetto si riduce, anche se in misura meno marcata rispetto alla potenza dei motori alternativi non sovralimentati (le prestazioni dei motori a pistoni si misurano con la potenza, mentre quelle dei getti con la spinta). La riduzione della spinta al crescere della quota è notevole oltre gli 11.000 m dato che la densità dell'aria cala assai più vistosamente. Il consumo specifico (flusso di combustibile in peso diviso la spinta) del turbogetto aumenta apprezzabilmente al crescere della velocità di volo, mentre si riduce all'aumentare della quota (sino agli 11.000 m zona di separazione tra troposfera e stratosfera). Il consumo spacifico aumenta considerevolmente al ridursi del numero dei giri. L'uso del postcombustore raddoppia o triplica i consumi e perciò viene adottato di regola solo sugli aeroplani militari.

La necessità di adattare correttamente la sezione del condotto di scarico a variazioni della pressione esterna comporta di norma che i turbogetto abbiano ugelli a geometria variabile: quest'esigenza è generalmente soddisfatta da ugelli a petali, in cui una corona di martinetti idraulici agisce su flabelli che possono aprire o chiudere la gola dell'ugello (sezione interna più stretta dello stesso) a seconda delle condizioni di funzionamento del turboreattore. L'adozione di un ugello regolabile facilita inoltre l'avviamento del turbogetto (diminuendo la sezione di gola diminuisce la richiesta d'aria della presa).

La spinta e rendimento [modifica]

La spinta è approssimativamente calcolata dalla seguente formula matematica:

S = \dot m (V_s - V_a)

dove \dot m è il flusso di massa che attraversa la presa d'aria nell'unità di tempo (massa diviso tempo), V_s\! è la velocità della massa d'aria mischiata ai gas di scarico in uscita e V_a\! è la velocità dell'aria in entrata nella presa d'aria che corrisponde alla velocità del velivolo ( TAS )se posto in movimento.

Da come si capisce dalla formula, a differenza di un endoreattore, un razzo insomma, un air breathing engine ovvero un motore alimentato ad aria, ha una limitazione dovuta ai gas di scarico, in altre parole l'aeroplano non potrà mai volare a velocità superiori della velocità del getto, perché altrimenti la spinta diverrebbe negativa.

Oggi il tipo di turboreattore più diffuso in campo commerciale è il turboventola (o turbofan) in quanto è più vantaggioso ottenere la stessa spinta con una piccola accelerazione di un'elevata portata d'aria anziché conferire una maggiore accelerazione ad una piccola portata d'aria. Infatti il rendimento propulsivo è definito come:

\eta _P = \frac {P_p} {P_j} \,\!

dove

P_p = T V_0 \,\!

è la potenza propulsiva è il prodotto della spinta per la velocità di volo, mentre

P_j = \frac {1} {2} \dot m ({V_s}^2 - {V_a}^2) \,\!

è la potenza del getto. Quindi:

\eta _P = \frac {2} {2 + \frac {T} {\dot m V_a}} \,\!

per questo motivo, assegnata la spinta S \,\! e la velocità di volo, il rendimento risulta tanto più alto quanto più sarà grande \dot m \,\!.

Il rapporto di compressione dei moderni turboventola può arrivare a 40:1.

Componenti principali [modifica]

I componenti principali di un motore a getto sono generalmente sempre gli stessi per i diversi tipi di motore appena visti. Tra questi si possono elencare:

Per aeroplani in regime subsonico la progettazione della presa d'aria non presenta particolare difficoltà, consistendo essenzialmente di un'apertura capace di minimizzare la resistenza. Nel caso di aerei in regime supersonico l'aria che raggiunge il compressore a valle della presa deve anche essere rallentata sotto la velocità del suono.

Il compressore è costituito da una serie di ventole accostate (stadi), ognuna delle quali comprime l'aria di una piccola quantità. L'energia è ottenuta dalla turbina di scarico attraverso l'albero.

Trasporta la potenza dalla turbina al compressore o anche, eventualmente, al propulsore. Possono esserci anche più alberi coassiali, ruotanti a diverse velocità e che collegano diversi stadi della turbina e del compressore.

É la camera in cui avviene la combustione "stazionaria" tra il combustibile nebulizzato iniettato dal bruciatore e l'aria compressa in arrivo dal compressore.

É l'organo che permette di estrarre energia dalla miscela di aria e gas combusti in uscita dal combustore così da poter "muovere" il compressore o, eventualmente, un fan di by-pass o un propulsore (turboelica o turboalbero).

Un bruciatore aggiuntivo, posto a valle del primo, che permette di ottenere una spinta aggiuntiva bruciando la parte di gas ancora incombusti, nella fase di scarico.

L'aria, dopo aver ceduto parte della pressione e temperatura in turbina, viene espulsa nella parte posteriore del motore attraverso un ugello dove l'energia potenziale residua del fluido può essere trasformata in energia cinetica al fine di produrre una spinta netta.

Strumentazione del turbogetto [modifica]


  • Pressurimetro (engine pressure ratio, rapporto di pressione del motore) che misura il rapporto tra pressione totale allo scarico della turbina e pressione totale dell'aria all'ingresso del compressore.Questo quindi è un indicatore prestazionale;
  • Contagiri indica il numero di giri della turbina;
  • ITT (Intermediate Turbine Temperature) misura la temperatura alla turbina;
  • EGT (Exhaut Gas Temperature) misura la temperatura allo scarico;
  • TOT (Turbine Outlet Temperature) misura la temperatura alla turbina;

skype:willy_chen_bw mobile:0937-618-190 Head &Administration Office No.13,Shiang Shang 2nd St., West Chiu Taichung,Taiwan 40356 TEL:+886 4 24710048 / FAX:+886 4 2471 4839 N.Branch 5F,No.460,Fu Shin North Rd.,Taipei,Taiwan S.Branch No.24,Sec.1,Chia Pu East Rd.,Taipao City,Chiayi Hsien,Taiwan

Welcome to BW tool world! We are an experienced tool maker specialized in cutting tools. We focus on what you need and endeavor to research the best cutter to satisfy users demand. Our customers involve wide range of industries, like mold & die, aerospace, electronic, machinery, etc. We are professional expert in cutting field. We would like to solve every problem from you. Please feel free to contact us, its our pleasure to serve for you. BW product including: cutting toolaerospace tool .HSS Cutting toolCarbide end millsCarbide cutting toolNAS Cutting toolCarbide end millAerospace cutting toolФрезерыCarbide drillHigh speed steelMilling cutterCVDD(Chemical Vapor Deposition Diamond )PCBN (Polycrystalline Cubic Boron Nitride) Core drillTapered end millsCVD Diamond Tools Inserts’PCD Edge-Beveling Cutter(Golden Finger’PCD V-Cutter’PCD Wood tools’PCD Cutting tools’PCD Circular Saw Blade’PVDD End Mills’diamond tool Single Crystal Diamond Metric end millsMiniature end millsСпециальные режущие инструменты Пустотелое сверло Pilot reamerFraisesFresas con mango PCD (Polycrystalline diamond) FreseElectronics cutterStep drillMetal cutting sawDouble margin drillGun barrelAngle milling cutterCarbide burrsCarbide tipped cutterChamfering toolIC card engraving cutterSide cutterNAS toolDIN toolSpecial toolMetal slitting sawsShell end millsSide and face milling cuttersSide chip clearance sawsLong end millsStub roughing end millsDovetail milling cuttersCarbide slot drillsCarbide torus cuttersAngel carbide end millsCarbide torus cuttersCarbide ball-nosed slot drillsMould cutterTool manufacturer.

Bewise Inc. www.tool-tool.com

BW специализируется в научных исследованиях и разработках, и снабжаем самым высокотехнологичным карбидовым материалом для поставки режущих / фрезеровочных инструментов для почвы, воздушного пространства и электронной индустрии. В нашу основную продукцию входит твердый карбид / быстрорежущая сталь, а также двигатели, микроэлектрические дрели, IC картонорезальные машины, фрезы для гравирования, режущие пилы, фрезеры-расширители, фрезеры-расширители с резцом, дрели, резаки форм для шлицевого вала / звездочки роликовой цепи, и специальные нано инструменты. Пожалуйста, посетите сайт www.tool-tool.com для получения большей информации.

BW is specialized in R&D and sourcing the most advanced carbide material with high-tech coating to supply cutting / milling tool for mould & die, aero space and electronic industry. Our main products include solid carbide / HSS end mills, micro electronic drill, IC card cutter, engraving cutter, shell end mills, cutting saw, reamer, thread reamer, leading drill, involute gear cutter for spur wheel, rack and worm milling cutter, thread milling cutter, form cutters for spline shaft/roller chain sprocket, and special tool, with nano grade. Please visit our web www.tool-tool.com for more info.

beeway 發表在 痞客邦 留言(0) 人氣()

Bewise Inc. www.tool-tool.com Reference source from the internet.

터보제트는 항공기에 추력을 공급하는 기관의 한 종류로서, 가스터빈엔진의 일종으로 분류된다.

[편집] 구성

터보젯의 기계적 구성은 크게 공기 흡입구, 압축기, 연소기, 터빈 및 추력 노즐로 나눌 수 있다. 각 구성품의 역할에 관해서는 제트 엔진에 관한 문서를 참고할 수 있다.

[편집] 원리

터보젯 엔진의 일반적인 작동 원리에 관해서는 가스 터빈에 관한 문서의 원리 부분을 참고할 수 있다. 항공용 기관으로서는, 추력 노즐을 통해 분출되는 공기의 반작용에 의해 항공기에 추력을 전달하게 된다.

[편집] 용도

1930년대 후반, 가스터빈엔진을 이를 항공기용 추력 공급원으로써 사용하고자 하는 아이디어로부터 터보젯 엔진이 탄생하였다.

터 보젯 엔진은 왕복동 엔진에 비해 에너지 밀도가 크기 때문에, 터보젯 엔진을 장착한 항공기는 왕복동 엔진을 이용한 프로펠러형 항공기에 비해 빠른 비행 속도를 낼 수 있었다. 이 때문에 각국이 군용 항공기의 추력원으로서 터보젯 엔진의 연구 개발에 박차를 가하였다.

그러나 이후 터보젯 엔진의 개량형 격으로 동일한 추력에 대하여 소모되는 연료량을 줄일 수 있는 터보팬 엔진이 등장하였으며, 현대의 대부분의 전투기, 수송기, 폭격기 등 군용 항공기는 터보팬 엔진을 장착하고 있다. 또한 터보젯 엔진은 터보샤프트 엔진(헬리콥터용), 터보프롭 엔진(프로펠러기용) 등으로도 분화하였다.


BW Bewise Inc. Willy Chen willy@tool-tool.com bw@tool-tool.com www.tool-tool.com skype:willy_chen_bw mobile:0937-618-190 Head &Administration Office No.13,Shiang Shang 2nd St., West Chiu Taichung,Taiwan 40356 TEL:+886 4 24710048 / FAX:+886 4 2471 4839 N.Branch 5F,No.460,Fu Shin North Rd.,Taipei,Taiwan S.Branch No.24,Sec.1,Chia Pu East Rd.,Taipao City,Chiayi Hsien,Taiwan

Welcome to BW tool world! We are an experienced tool maker specialized in cutting tools. We focus on what you need and endeavor to research the best cutter to satisfy users demand. Our customers involve wide range of industries, like mold & die, aerospace, electronic, machinery, etc. We are professional expert in cutting field. We would like to solve every problem from you. Please feel free to contact us, its our pleasure to serve for you. BW product including: cutting toolaerospace tool .HSS Cutting toolCarbide end millsCarbide cutting toolNAS Cutting toolCarbide end millAerospace cutting toolФрезерыCarbide drillHigh speed steelMilling cutterCVDD(Chemical Vapor Deposition Diamond )PCBN (Polycrystalline Cubic Boron Nitride) Core drillTapered end millsCVD Diamond Tools Inserts’PCD Edge-Beveling Cutter(Golden Finger’PCD V-Cutter’PCD Wood tools’PCD Cutting tools’PCD Circular Saw Blade’PVDD End Mills’diamond tool Single Crystal Diamond Metric end millsMiniature end millsСпециальные режущие инструменты Пустотелое сверло Pilot reamerFraisesFresas con mango PCD (Polycrystalline diamond) FreseElectronics cutterStep drillMetal cutting sawDouble margin drillGun barrelAngle milling cutterCarbide burrsCarbide tipped cutterChamfering toolIC card engraving cutterSide cutterNAS toolDIN toolSpecial toolMetal slitting sawsShell end millsSide and face milling cuttersSide chip clearance sawsLong end millsStub roughing end millsDovetail milling cuttersCarbide slot drillsCarbide torus cuttersAngel carbide end millsCarbide torus cuttersCarbide ball-nosed slot drillsMould cutterTool manufacturer.

Bewise Inc. www.tool-tool.com

BW специализируется в научных исследованиях и разработках, и снабжаем самым высокотехнологичным карбидовым материалом для поставки режущих / фрезеровочных инструментов для почвы, воздушного пространства и электронной индустрии. В нашу основную продукцию входит твердый карбид / быстрорежущая сталь, а также двигатели, микроэлектрические дрели, IC картонорезальные машины, фрезы для гравирования, режущие пилы, фрезеры-расширители, фрезеры-расширители с резцом, дрели, резаки форм для шлицевого вала / звездочки роликовой цепи, и специальные нано инструменты. Пожалуйста, посетите сайт www.tool-tool.com для получения большей информации.

BW is specialized in R&D and sourcing the most advanced carbide material with high-tech coating to supply cutting / milling tool for mould & die, aero space and electronic industry. Our main products include solid carbide / HSS end mills, micro electronic drill, IC card cutter, engraving cutter, shell end mills, cutting saw, reamer, thread reamer, leading drill, involute gear cutter for spur wheel, rack and worm milling cutter, thread milling cutter, form cutters for spline shaft/roller chain sprocket, and special tool, with nano grade. Please visit our web www.tool-tool.com for more info.

beeway 發表在 痞客邦 留言(0) 人氣()

Bewise Inc. www.tool-tool.com Reference source from the internet.

Turbojet er den mest opprinnelige formen for en jetmotor. Motoren trekker luft gjennom inntaket. Trykket økes vesentlig gjennom kompressoren. Deretter tilsettes drivstoff. Ved forbrenning økes trykket dramatisk og gasstrømmen støtes ut bak og gir fremdrift. I eksostrømmen står en turbin som trekker energi fra eksosen og via en gjennomgående aksel driver inntakskompressoren.

Turbojet brukes også om fly med slike motorer.


BW Bewise Inc. Willy Chen willy@tool-tool.com bw@tool-tool.com www.tool-tool.com skype:willy_chen_bw mobile:0937-618-190 Head &Administration Office No.13,Shiang Shang 2nd St., West Chiu Taichung,Taiwan 40356 TEL:+886 4 24710048 / FAX:+886 4 2471 4839 N.Branch 5F,No.460,Fu Shin North Rd.,Taipei,Taiwan S.Branch No.24,Sec.1,Chia Pu East Rd.,Taipao City,Chiayi Hsien,Taiwan

Welcome to BW tool world! We are an experienced tool maker specialized in cutting tools. We focus on what you need and endeavor to research the best cutter to satisfy users demand. Our customers involve wide range of industries, like mold & die, aerospace, electronic, machinery, etc. We are professional expert in cutting field. We would like to solve every problem from you. Please feel free to contact us, its our pleasure to serve for you. BW product including: cutting toolaerospace tool .HSS Cutting toolCarbide end millsCarbide cutting toolNAS Cutting toolCarbide end millAerospace cutting toolФрезерыCarbide drillHigh speed steelMilling cutterCVDD(Chemical Vapor Deposition Diamond )PCBN (Polycrystalline Cubic Boron Nitride) Core drillTapered end millsCVD Diamond Tools Inserts’PCD Edge-Beveling Cutter(Golden Finger’PCD V-Cutter’PCD Wood tools’PCD Cutting tools’PCD Circular Saw Blade’PVDD End Mills’diamond tool Single Crystal Diamond Metric end millsMiniature end millsСпециальные режущие инструменты Пустотелое сверло Pilot reamerFraisesFresas con mango PCD (Polycrystalline diamond) FreseElectronics cutterStep drillMetal cutting sawDouble margin drillGun barrelAngle milling cutterCarbide burrsCarbide tipped cutterChamfering toolIC card engraving cutterSide cutterNAS toolDIN toolSpecial toolMetal slitting sawsShell end millsSide and face milling cuttersSide chip clearance sawsLong end millsStub roughing end millsDovetail milling cuttersCarbide slot drillsCarbide torus cuttersAngel carbide end millsCarbide torus cuttersCarbide ball-nosed slot drillsMould cutterTool manufacturer.

Bewise Inc. www.tool-tool.com

BW специализируется в научных исследованиях и разработках, и снабжаем самым высокотехнологичным карбидовым материалом для поставки режущих / фрезеровочных инструментов для почвы, воздушного пространства и электронной индустрии. В нашу основную продукцию входит твердый карбид / быстрорежущая сталь, а также двигатели, микроэлектрические дрели, IC картонорезальные машины, фрезы для гравирования, режущие пилы, фрезеры-расширители, фрезеры-расширители с резцом, дрели, резаки форм для шлицевого вала / звездочки роликовой цепи, и специальные нано инструменты. Пожалуйста, посетите сайт www.tool-tool.com для получения большей информации.

BW is specialized in R&D and sourcing the most advanced carbide material with high-tech coating to supply cutting / milling tool for mould & die, aero space and electronic industry. Our main products include solid carbide / HSS end mills, micro electronic drill, IC card cutter, engraving cutter, shell end mills, cutting saw, reamer, thread reamer, leading drill, involute gear cutter for spur wheel, rack and worm milling cutter, thread milling cutter, form cutters for spline shaft/roller chain sprocket, and special tool, with nano grade. Please visit our web www.tool-tool.com for more info.

beeway 發表在 痞客邦 留言(0) 人氣()

Bewise Inc. www.tool-tool.com Reference source from the internet.
Testy silnika turboodrzutowego

Testy silnika turboodrzutowego

Silnik turboodrzutowy - rodzaj silnika, który napędza pojazd poprzez wykorzystanie zjawiska odrzutu gazów (silnika odrzutowego). W przeciwieństwie do silnika rakietowego wykorzystuje otaczające powietrze jako masę wyrzutową a tlen zawarty w tym powietrzu jako utleniacz znajdującego się w zbiornikach pojazdu paliwa. Silnik ten montowany jest zazwyczaj w samolotach. Popularnie nazywany jest po prostu silnikiem odrzutowym.

Pierwszy silnik turboodrzutowy zbudowany został w latach 30. XX wieku przez angielskiego konstruktora Franka Whittle'a, natomiast silnik Heinkel HeS 3 zbudowany przez Hansa von Ohaina napędzał pierwszy samolot odrzutowy w historii, Heinkel He 178, który odbył pierwszy lot w sierpniu 1939 r.

Silnik turboodrzutowy jest najprostszym z silników turbinowych, jednak przy prędkościach poddźwiękowych wykazuje mniejszą wydajność i większe zużycie paliwa niż silnik turbowentylatorowy (nazywany też silnikiem turboodrzutowym dwuprzepływowym). Z kolei przy wysokich prędkościach naddźwiękowych duże ciśnienie powietrza i spowodowana tym wysoka temperatura strumienia powietrza może doprowadzić do przegrzania silnika i uszkodzenia sprężarki i turbiny.

Schematyczny przekrój silnika turboodrzutowego ze sprężarką odśrodkową.Opis do obu rysunków: Compressor - sprężarka, Combustion chamber - komora spalania, Shaft - wał turbiny, Turbine - turbina, Nozzle - dysza wylotowa.

Schematyczny przekrój silnika turboodrzutowego ze sprężarką odśrodkową.
Opis do obu rysunków: Compressor - sprężarka, Combustion chamber - komora spalania, Shaft - wał turbiny, Turbine - turbina, Nozzle - dysza wylotowa.
Schematyczny przekrój silnika turboodrzutowego ze sprężarką osiową.

Schematyczny przekrój silnika turboodrzutowego ze sprężarką osiową.

Budowa silnika [edytuj]

Części zasadnicze: wlot powietrza, sprężarka, komora spalania (z wtryskiwaczami paliwa), turbina, dysza wylotowa, wał. Części pomocnicze, współpracujące: układ paliwowy (z pompami), układ olejowy (z pompami i czasem chłodnicą oleju), czujniki, układy sterujące i monitorujące.

Zasada działania [edytuj]

Powietrze zasysane jest przez sprężarkę (osiową lub promieniową, jedno- lub wielostopniową) i sprężane przez nią. Następnie trafia do komory spalania (lub kilku komór rozmieszczonych obwodowo wokół osi silnika), tam wtryskiwacze podają paliwo (np. naftę lotniczą), które zapala się od rozgrzanych spalin (w momencie rozruchu paliwo zapalane jest świecą zapłonową). Spalanie paliwa zwiększa temperaturę gazów w komorze spalania. Gorące gazy spalinowe napędzają turbinę, która jest sprzęgnięta wałem z wymienioną wcześniej sprężarką. Turbina napędza sprężarkę, co powoduje podtrzymanie pracy silnika.

Ciąg silnika wynika z różnicy pędu gazów wpadających przez wlot i opuszczających silnik przez dyszę wylotową ze zwiększoną prędkością - a bezpośrednio jest rezultatem działania ciśnień na różne elementy silnika - od sprężarki poprzez komorę spalania, turbinę lub turbiny po dyszę wylotową.


Zobacz też [edytuj]



BW Bewise Inc. Willy Chen willy@tool-tool.com bw@tool-tool.com www.tool-tool.com skype:willy_chen_bw mobile:0937-618-190 Head &Administration Office No.13,Shiang Shang 2nd St., West Chiu Taichung,Taiwan 40356 TEL:+886 4 24710048 / FAX:+886 4 2471 4839 N.Branch 5F,No.460,Fu Shin North Rd.,Taipei,Taiwan S.Branch No.24,Sec.1,Chia Pu East Rd.,Taipao City,Chiayi Hsien,Taiwan

Welcome to BW tool world! We are an experienced tool maker specialized in cutting tools. We focus on what you need and endeavor to research the best cutter to satisfy users demand. Our customers involve wide range of industries, like mold & die, aerospace, electronic, machinery, etc. We are professional expert in cutting field. We would like to solve every problem from you. Please feel free to contact us, its our pleasure to serve for you. BW product including: cutting toolaerospace tool .HSS Cutting toolCarbide end millsCarbide cutting toolNAS Cutting toolCarbide end millAerospace cutting toolФрезерыCarbide drillHigh speed steelMilling cutterCVDD(Chemical Vapor Deposition Diamond )PCBN (Polycrystalline Cubic Boron Nitride) Core drillTapered end millsCVD Diamond Tools Inserts’PCD Edge-Beveling Cutter(Golden Finger’PCD V-Cutter’PCD Wood tools’PCD Cutting tools’PCD Circular Saw Blade’PVDD End Mills’diamond tool Single Crystal Diamond Metric end millsMiniature end millsСпециальные режущие инструменты Пустотелое сверло Pilot reamerFraisesFresas con mango PCD (Polycrystalline diamond) FreseElectronics cutterStep drillMetal cutting sawDouble margin drillGun barrelAngle milling cutterCarbide burrsCarbide tipped cutterChamfering toolIC card engraving cutterSide cutterNAS toolDIN toolSpecial toolMetal slitting sawsShell end millsSide and face milling cuttersSide chip clearance sawsLong end millsStub roughing end millsDovetail milling cuttersCarbide slot drillsCarbide torus cuttersAngel carbide end millsCarbide torus cuttersCarbide ball-nosed slot drillsMould cutterTool manufacturer.

Bewise Inc. www.tool-tool.com

BW специализируется в научных исследованиях и разработках, и снабжаем самым высокотехнологичным карбидовым материалом для поставки режущих / фрезеровочных инструментов для почвы, воздушного пространства и электронной индустрии. В нашу основную продукцию входит твердый карбид / быстрорежущая сталь, а также двигатели, микроэлектрические дрели, IC картонорезальные машины, фрезы для гравирования, режущие пилы, фрезеры-расширители, фрезеры-расширители с резцом, дрели, резаки форм для шлицевого вала / звездочки роликовой цепи, и специальные нано инструменты. Пожалуйста, посетите сайт www.tool-tool.com для получения большей информации.

BW is specialized in R&D and sourcing the most advanced carbide material with high-tech coating to supply cutting / milling tool for mould & die, aero space and electronic industry. Our main products include solid carbide / HSS end mills, micro electronic drill, IC card cutter, engraving cutter, shell end mills, cutting saw, reamer, thread reamer, leading drill, involute gear cutter for spur wheel, rack and worm milling cutter, thread milling cutter, form cutters for spline shaft/roller chain sprocket, and special tool, with nano grade. Please visit our web www.tool-tool.com for more info.

beeway 發表在 痞客邦 留言(0) 人氣()

Bewise Inc. www.tool-tool.com Reference source from the internet.

O Turbojato ou Turboreator (na grafia de Portugal respectivamente Turbojacto e Turboreactor) é o tipo mais simples e mais antigo de motor a jato para fins gerais. Dois engenheiros diferentes, Frank Whittle no Reino Unido e Hans von Ohain na Alemanha, desenvolveram independentemente o conceito durante o final da década de 1930.

Em 27 de Agosto de 1939 o Heinkel He 178 tornou-se o primeiro avião do mundo a voar sob a propulsão do turbojato, transformando-se assim no primeiro avião a jato funcional. Primeiro avião operacional a turbojato, o Messerschmitt Me 262 e o Gloster Meteor entraram em serviço no final da Segunda Guerra Mundial em 1944.

Um motor turbojato é usado essencialmente na propulsão de aeronaves. O ar é introduzido no compressor giratório através da entrada e comprimido a uma pressão superior antes de entrar na câmara de combustão. O combustível é misturado com o ar comprimido e inflamado por uma faísca. Este processo de combustão aumenta significativamente a temperatura do gás. Os produtos quentes da combustão que saem do combustor expandem-se através da turbina, onde a potência é extraída para dirigir o compressor. Embora este processo de expansão reduza a temperatura e a pressão do gás da saída da turbina, ambos os parâmetros estão geralmente ainda bem acima das condições ambiente. O fluxo de gás saído da turbina expande-se até à pressão ambiental através do bocal de propulsão, produzindo um jato de alta velocidade à saída do motor. Se o momentum do fluxo da saída exceder o momentum do fluxo de entrada, o impulso é positivo, assim, há uma impulsão líquida para avante sobre a fuselagem.

Os motores de jato de primeira geração eram turbojatos puros com um compressor axial ou um centrífugo. Os motores de jato modernos são principalmente turbofans, onde uma proporção do ar entrado no motor contorna o combustor. Esta proporção depende da relação de desvio do motor.


[editar] Tomada de Ar

Precedendo o compressor está a tomada de ar. Adiante, o ar entra no compressor.

Diagrama esquemático mostrando a operação de um turbojato de fluxo centrífugo. O compressor é dirigido através do estágio da turbina e expulsa o ar para fora, requerendo estar paralelo ao eixo do impulso.

Diagrama esquemático mostrando a operação de um turbojato de fluxo centrífugo. O compressor é dirigido através do estágio da turbina e expulsa o ar para fora, requerendo estar paralelo ao eixo do impulso.
Diagrama esquemático mostrando a operação de um turbojato de fluxo axial. Aqui, o compressor também é dirigido pela turbina, mas o fluxo de ar mantém-se paralelo ao eixo do impulso.

Diagrama esquemático mostrando a operação de um turbojato de fluxo axial. Aqui, o compressor também é dirigido pela turbina, mas o fluxo de ar mantém-se paralelo ao eixo do impulso.


[editar] Compressor

O compressor, que gira a muito alta velocidade, adiciona energia ao fluxo de ar, ao mesmo tempo comprimindo-o num espaço menor, aumentando, desse modo, as suas pressão e temperatura.

Na maioria dos aviões propulsados por turbojato, o ar é extraído da secção do compressor em vários estágios para executar uma variedade de funções incluindo o condicionamento/pressurização de ar, o descongelamento da entrada do motor e a refrigeração da turbina.

Diversos tipos de compressor são usados nos turbojatos e turbinas de gás em geral: axial, centrífugo, axial-centrífugo, duplo-centrífugo, etc..

Os compressores dos primeiros turbojatos tinham as relações totais da pressão tão baixas como 5:1 (como muitas simples unidades auxiliares e pequenos turbojatos da atualidade). As melhorias aerodinâmicas, mais a divisão do sistema de compressão em duas unidades separadas e/ou am incorporação de geometria variável do compressor, permitiram aos turbojatos mais modernos ter relações totais da pressão de 15:1 ou mais. Em comparação, os motores turbofan civis modernos têm as relações totais da pressão tão elevadas quanto 44:1 ou mais.

Após ter deixado a secção do compressor, o ar comprimido entra na câmara de combustão.


[editar] Câmara de Combustão

O processo de combustão no combustor é significativamente diferente daquele num motor de pistões. Num motor de pistões os gases ardentes são confinados num volume pequeno e, porque o combustível se queima, a pressão aumenta dramaticamente. Num turbojato a mistura do ar e do combustível, passa não confinada através da câmara de combustão. À medida que a mistura é consumida a sua temperatura aumenta dramaticamente e a pressão diminui realmente numa reduzida percentagem.

Em pormenor, a mistura combustível-ar deve ser quase parada de modo que uma chama estável possa ser mantida. Isto ocorre imediatamente depois do começo da câmara de combustão. A parte traseira desta frente da chama é permitida progredir para trás no motor. Isto assegura que o resto do combustível seja queimado enquanto a chama se torna mais quente quando se inclina para fora, e por causa da forma da câmara de combustão o fluxo é acelerado para trás. Alguma queda de pressão é inevitável, porque é a razão porque os gases de expansão viajam para fora da parte traseira do motor melhor do que para fora da parte dianteira. Menos de 25% do ar é envolvido na combustão. Em alguns motores os valores são tão baixos como os 12%, o resto agindo como um reservatório para absorver os efeitos do aquecimento provocado pela queima do combustível.

Uma outra diferença entre os motores de pistão e os motores de jato é que o pico da temperatura da chama num motor de pistão ocorre só momentaneamente, e numa pequena parcela do ciclo completo. O combustor num motor de jato é exposto à temperatura pico continuamente e opera numa pressão suficientemente alta para que a relação estequeométrica combustível-ar derretesse o invólucro e tudo o que fosse atingido pelo fluxo. Ao invés, os motores a jato funcionam com uma mistura muito magra, que normalmente não suportaria a combustão. Um núcleo central do fluxo (fluxo de ar primário) é misturado com bastante combustível para se queimar prontamente. Os invólucros têm uma forma especial para manter uma camada de ar fresco entre as superfícies do metal e o núcleo central. Misturas não queimadas deste ar (fluxo de ar secundário) mistura-se nos gases queimados para baixar a temperatura um valor tolerável pela turbina.


[editar] Turbina

Permite-se aos gases quentes que saem do combustor que se expandamr através da turbina. No primeiro estágio a turbina sobretudo uma turbina de impulso (semelhante uma roda de Pelton) e com o impacto do fluxo de gás quente. Os estágios posteriores são os dutos convergentes que aceleram o gás para trás e ganham a energia desse processo. A pressão cai e a energia é transferida para o eixo. A energia rotacional da turbina é usada primariamente para dirigir o compressor. Alguma potência do eixo é extraída para dirigir acessórios, tais como o combustível, o óleo, e as bombas hidráulicas. Por causa da sua significativamente mais alta temperatura de entrada, a relação da pressão da turbina é muito mais baixa do que aquela do compressor. Num turbojato quase dois em terços de toda a potência gerada ao queimar o combustível é usada pelo compressor para comprimir o ar para o motor.


[editar] Bocal

Após a turbina, os gases são permitidos expandir através do bocal de exaustão à pressão atmosférica, produzindo um jato de velocidade elevada no exaustor. Num bocal convergente, o ducto estreita-se progressivamente numa garganta. A relação da pressão do bocal num turbojato é geralmente alta o suficiente para que os gases de expansão alcancem Mach 1.0 e bloqueiem a garganta. Normalmente, o fluxo irá tornar-se supersónico no escape da exaustão fora do motor.

Se, entretanto, um bocal de Laval convergente-divergente é adaptado, a secção divergente (aumentando a área do fluxo) permite que os gases alcancem a velocidade supersónica dentro do próprio bocal. Isto é ligeiramente mais eficiente na pressão do que usando um bocal convergente. Existe, entretanto, um aumento de peso e complexidade, dado que o bocal convergente-divergente deve ser inteiramente variável para lidar basicamente com estrangular do motor.


[editar] Potência

Abaixo apresenta-se uma equação aproximada para calcular a potência líquida de um turbojato:

F_n = \dot{m} (V_{jfe} - V_a)

onde:

\dot{m} = \, taxa de fluxo de massa na entrada de ar

V_{jfe} =\, velocidade total do jato


Enquanto que o termo \dot{m} V_{jfe}\, representa a potência bruta no bocal, o termo \dot{m} V_a\, representa o arrastamento na entrada de ar.

A velocidade de jato excederá a velocidade de voo se existir uma potência líquida na direcção frontal da aeronave.


BW Bewise Inc. Willy Chen willy@tool-tool.com bw@tool-tool.com www.tool-tool.com skype:willy_chen_bw mobile:0937-618-190 Head &Administration Office No.13,Shiang Shang 2nd St., West Chiu Taichung,Taiwan 40356 TEL:+886 4 24710048 / FAX:+886 4 2471 4839 N.Branch 5F,No.460,Fu Shin North Rd.,Taipei,Taiwan S.Branch No.24,Sec.1,Chia Pu East Rd.,Taipao City,Chiayi Hsien,Taiwan

Welcome to BW tool world! We are an experienced tool maker specialized in cutting tools. We focus on what you need and endeavor to research the best cutter to satisfy users demand. Our customers involve wide range of industries, like mold & die, aerospace, electronic, machinery, etc. We are professional expert in cutting field. We would like to solve every problem from you. Please feel free to contact us, its our pleasure to serve for you. BW product including: cutting toolaerospace tool .HSS Cutting toolCarbide end millsCarbide cutting toolNAS Cutting toolCarbide end millAerospace cutting toolФрезерыCarbide drillHigh speed steelMilling cutterCVDD(Chemical Vapor Deposition Diamond )PCBN (Polycrystalline Cubic Boron Nitride) Core drillTapered end millsCVD Diamond Tools Inserts’PCD Edge-Beveling Cutter(Golden Finger’PCD V-Cutter’PCD Wood tools’PCD Cutting tools’PCD Circular Saw Blade’PVDD End Mills’diamond tool Single Crystal Diamond Metric end millsMiniature end millsСпециальные режущие инструменты Пустотелое сверло Pilot reamerFraisesFresas con mango PCD (Polycrystalline diamond) FreseElectronics cutterStep drillMetal cutting sawDouble margin drillGun barrelAngle milling cutterCarbide burrsCarbide tipped cutterChamfering toolIC card engraving cutterSide cutterNAS toolDIN toolSpecial toolMetal slitting sawsShell end millsSide and face milling cuttersSide chip clearance sawsLong end millsStub roughing end millsDovetail milling cuttersCarbide slot drillsCarbide torus cuttersAngel carbide end millsCarbide torus cuttersCarbide ball-nosed slot drillsMould cutterTool manufacturer.

Bewise Inc. www.tool-tool.com

BW специализируется в научных исследованиях и разработках, и снабжаем самым высокотехнологичным карбидовым материалом для поставки режущих / фрезеровочных инструментов для почвы, воздушного пространства и электронной индустрии. В нашу основную продукцию входит твердый карбид / быстрорежущая сталь, а также двигатели, микроэлектрические дрели, IC картонорезальные машины, фрезы для гравирования, режущие пилы, фрезеры-расширители, фрезеры-расширители с резцом, дрели, резаки форм для шлицевого вала / звездочки роликовой цепи, и специальные нано инструменты. Пожалуйста, посетите сайт www.tool-tool.com для получения большей информации.

BW is specialized in R&D and sourcing the most advanced carbide material with high-tech coating to supply cutting / milling tool for mould & die, aero space and electronic industry. Our main products include solid carbide / HSS end mills, micro electronic drill, IC card cutter, engraving cutter, shell end mills, cutting saw, reamer, thread reamer, leading drill, involute gear cutter for spur wheel, rack and worm milling cutter, thread milling cutter, form cutters for spline shaft/roller chain sprocket, and special tool, with nano grade. Please visit our web www.tool-tool.com for more info.

beeway 發表在 痞客邦 留言(0) 人氣()