Bewise Inc. www.tool-tool.com Reference source from the internet.

The automatic gear selector in a Ford Five Hundred vehicle

The automatic gear selector in a Ford Five Hundred vehicle

An automatic transmission (commonly abbreviated as "AT") is an automobile gearbox that can change gear ratios automatically as the vehicle moves, thus freeing the driver from having to shift gears manually (similar but larger devices are also used for railroad locomotives).

Most automatic transmissions have a set selection of possible gear ranges, often with a parking pawl feature that will lock the output shaft of the transmission.

However, some simple machines with limited speed ranges and/or fixed engine speeds only use a torque converter to provide a variable gearing of the engine to the wheels. Typical examples include forklift trucks and some modern lawn mowers.

Recently manufacturers have begun to make continuously variable transmissions commonly available (earlier models such as the Subaru Justy did not popularize CVT). These designs can change the ratios over a range rather than between set gear ratios. Even though CVTs have been used for decades in two-wheeled scooters and in a few cars (e.g. DAF saloons and the Volvo 340 series that succeeded them, and later the Subaru Justy), the technology has recently gained greater acceptance among manufacturers and customers.

A cut-away model of a torque converter

A cut-away model of a torque converter


[edit] Comparison with manual transmission

Main article: Comparison of manual and automatic transmissions

Most cars sold in the United States since the 1950s have been equipped with an automatic transmission. This has, however, not been the case in Europe. In most Asian markets, automatic transmission became very popular from the 1990s. Automatic transmission provides lower fuel efficiency and power than manual transmission. Automatic transmission is easier for drivers, especially beginners. In some jurisdictions, drivers passing their driving test in an automatic-transmission vehicle will not be licensed to drive a manual-transmission vehicle. An example of this is in the United Kingdom. However, a driver holding a manual license is permitted to drive an automatic.

[edit] Automatic transmission modes

Transmission types
Manual

Non-synchronous
Automatic

Semi-automatic

Continuously variable
Bicycle gearing
v d e

Conventionally, in order to select the mode, the driver would have to move a gear shift lever located on the steering column or on the floor next to him/her. In order to select gears/modes the driver must push a button in (called the shift lock button) or pull the handle (only on column mounted shifters) out. Some vehicles (like the Aston Martin DB9) position selector buttons for each mode on the cockpit instead, freeing up space on the central console. Vehicles conforming to US Government standards must have the modes ordered P-R-N-D-L (left to right, top to bottom, or clockwise). Prior to this, quadrant-selected automatic transmissions often utilized a P-N-D-L-R layout, or similar. Such a pattern led to a number of deaths and injuries owing to unintentional gear mis-selection, as well the danger of having a selector (when worn) jump into Reverse from Low gear during engine braking maneuvers.

Automatic Transmissions have various modes depending on the model and make of the transmission. Some of the common modes are:

Park (P) – This selection mechanically locks the transmission, restricting the car from moving in any direction. A parking pawl prevents the transmission, and therefore the vehicle, from moving (although the front or rear wheels, if the vehicle is rear- or front-wheel-drive respectively, can still spin freely). For this reason, it is recommended to use the hand brake (or parking brake) because this actually locks the (in most cases, rear) wheels and prevents them from moving. This also increases the life of the transmission and the park pin mechanism, because when parking on an incline with the transmission in park without the parking brake engaged will cause undue stress on the parking pin. An efficiently-adjusted hand brake should also prevent the car from moving if a worn selector accidentally drops into Reverse gear during early morning fast-idle engine warmups.

A car should be allowed to come to a complete stop before setting the transmission into park to prevent damage. Usually, PARK is one of only two selections in which the car's engine can be started. In some cars (notably those sold in the US), the driver must have the footbrake depressed before the transmission can be taken out of park. The Park position is omitted on buses/coaches with automatic transmission, which must be placed in neutral with the parking brakes set.

Reverse (R) – This puts the car into the reverse gear, giving the ability for the car to drive backwards. In order for the driver to select reverse they must come to a complete stop, push the shift lock button in (or pull the shift lever forward in the case of a column shifter) and select reverse. Not coming to a complete stop can cause severe damage to the transmission. Many modern automatic gearboxes have a safety mechanism in place, which does to some extent prevent (but doesn't completely avoid) inadvertently putting the car in reverse when the vehicle is moving. This mechanism usually consists of a solenoid- controlled physical barrier on either side of the Reverse position, which is electronically engaged by a switch on the brake pedal. Therefore, the brake pedal needs to be depressed in order to allow the selection of reverse. Some electronic transmissions prevent or delay engagement of reverse gear altogether while the car is moving.

Neutral/No gear (N)– This disconnects the transmission from the wheels so the car can move freely under its own weight. This is the only other selection in which the car can be started.

Drive (D)– This allows the car to move forward and accelerate through its range of gears. The number of gears a transmission has depends on the model, but they can commonly range from 3, 4 (the most common), 5, 6 (found in VW/Audi Direct Shift Gearbox), 7 (found in Mercedes 7G gearbox and in BMW M5) and 8 in the newer models of Lexus cars. Some cars when put into D will automatically lock the doors or turn on the Daytime Running Lamps.

OverDrive ([D], OD, or a boxed D) - This mode is used in some transmissions, to allow early Computer Controlled Transmissions to engage the Automatic Overdrive. In these transmissions, Drive (D) locks the Automatic Overdrive off, but is identical otherwise. OD (Overdrive) in these cars is engaged under steady speeds or low acceleration at approximately 35-45 mph (approx. 72 km/h). Under hard acceleration or below 35-45 mph, the transmission will automatically downshift. Vehicles with this option should be driven in this mode unless circumstances require a lower gear.

Second (2 or S) – This mode limits the transmission to the first two gears, or more commonly locks the transmission in second gear. This can be used to drive in adverse conditions such as snow and ice, as well as climbing or going down hills in the winter time. Some vehicles will automatically upshift out of 2nd gear in this mode if a certain rpm range is reached, to prevent engine damage.

First (1 or L) – This mode locks the transmission in first gear only. It will not accelerate through any gear range. This, like second, can be used during the winter season, or towing.

As well as the above modes there are also other modes, dependent on the manufacturer and model. Some examples include;

  • D5 – In Hondas and Acuras equipped with 5-speed automatic transmissions, this mode is used commonly for highway use (as stated in the manual), and uses all 5 forward gears.
  • D4 – This mode is also found in Honda and Acura 4 or 5-speed automatics and only uses the first 4 gears. According to the manual, it is used for stop & go traffic, such as city driving.
  • D3 – This mode is found in Honda and Acura 4-speed automatics and only uses the first 3 gears. According to the manual, it is used for stop & go traffic, such as city driving. This mode is also found in Honda and Acura 5-speed automatics.
  • + − and M – This is the manual selection of gears for automatics, such as Porsche's Tiptronic. This feature can also be found in Chrysler and General Motors products such as the Dodge Magnum and Pontiac G6. The driver can shift up and down at will, like a semi-automatic transmission. This mode may be engaged either through a selector/position or by actually changing gear (e.g. tipping the gear-down paddle).

[edit] Hydraulic automatic transmissions

The predominant form of automatic transmission is hydraulically operated, using a fluid coupling or torque converter and a set of planetary gearsets to provide a range of torque multiplication.

[edit] Parts and operation

A hydraulic automatic transmission consists of the following parts:

  • Fluid coupling or torque converter: A hydraulic device connecting the engine and the transmission. It takes the place of a mechanical clutch, allowing the engine to remain running at rest without stalling. A torque converter is a fluid coupling that also provides a variable amount of torque multiplication at low engine speeds, increasing "breakaway" acceleration.
  • Planetary gearset: A compound planetary set whose bands and clutches are actuated by hydraulic servos controlled by the valve body, providing two or more gear ratios.
  • Clutches;bands: to effect gear changes, one of two types of clutches, or bands are used to hold a particular member of the planetary gearset motionless, while allowing another member to rotate..transmitting torque and producing gear reductions or overdrive ratios. These clutches are actuated by the valve body (see below), and their sequence controlled by the transmission's internal programming. Principally, a type of device known as a a sprag or roller clutch is used for routine upshifts/downshifts. Operating much as a ratchet, it transmits torque only in one direction, freewheeling or "overrunning" in the other. The advantage of this type of clutch is that it eliminates the sensitivity of timing a simultaneous clutch release/apply on two planetaries, simply "taking up" the drivetrain load when actuated ,and releasing automatically when the next gear's sprag clutch assumes the torque transfer.

The bands which were mentioned come into play for manually selected gears, such as low range or reverse, and operate on the planetary drum's circumference. Bands are not applied when drive/overdrive range is selected, the torque being transmitted by the sprag clutches instead.

  • Valve body: hydraulic control center that receives pressurized fluid from a main pump operated by the fluid coupling/torque converter. The pressure coming from this pump is regulated and used to run a network of spring-loaded valves, check balls and servo pistons. The valves use the pump pressure and the pressure from a centrifugal governor on the output side (as well as hydraulic signals from the range selector valves and the throttle valve or modulator) to control which ratio is selected on the gearset; as the car and engine change speed, the difference between the pressures changes, causing different sets of valves to open and close. The hydraulic pressure controlled by these valves drives the various clutch and brake band actuators, thereby controlling the operation of the planetary gearset to select the optimum gear ratio for the current operating conditions. However, in many modern automatic transmissions, the valves are controlled by electro-mechanical servos which are controlled by the Engine Management System or a separate transmission controller. (See History and improvements below.)
  • Hydraulic & Lubricating Oil: called automatic transmission fluid (ATF), this component of the transmission provides lubrication, corrosion prevention, and a hydraulic medium to convey mechanical power. Primarily made from refined petroleum and processed to provide properties that promote smooth power transmission and increase service life, the ATF is one of the few parts of the automatic transmission that needs routine service as the vehicle ages.

The multitude of parts, along with the complex design of the valve body, originally made hydraulic automatic transmissions much more complicated (and expensive) to build and repair than manual transmissions. In most cars (except US family, luxury, sport-utility vehicle, and minivan models) they have usually been extra-cost options for this reason. Mass manufacturing and decades of improvement have reduced this cost gap.

[edit] History and improvements

Oldsmobile's 1940 models featured Hydra-Matic drive, the first mass-production fully automatic transmissions. Initially an Olds exclusive, Hydra-Matic had a fluid coupling (not a torque converter) and three planetary gearsets providing four speeds plus reverse. Hydra-Matic was subsequently adopted by Cadillac and Pontiac, and was sold to various other automakers, including Bentley, Hudson, Kaiser, Nash, and Rolls-Royce. From 1950 to 1954 Lincoln cars were also available with GM Hydra-Matic. Mercedes-Benz subsequently devised a four-speed fluid coupling transmission that was similar in principle to Hydra-Matic, but did not share the same design.

The first torque converter automatic, Buick's Dynaflow, was introduced for the 1948 model year. It was followed by Packard's Ultramatic in mid-1949 and Chevrolet's Powerglide for the 1950 model year. Each of these transmissions had only two forward speeds, relying on the torque converter for additional gear reduction. In the early 1950s Borg-Warner developed a series of three-speed torque converter automatics for American Motors Corporation, Ford Motor Company, Studebaker, and several other manufacturers in the US and other countries. Chrysler was late in developing its own true automatic, introducing the two-speed torque converter PowerFlite in 1953 and the three-speed TorqueFlite in 1956.

By the late 1960s most of the fluid-coupling four-speeds and two-speed transmissions had disappeared in favor of three-speed units with torque converters. Also around this time, whale oil was removed from automatic transmission fluid.[1] By the early 1980s these were being supplemented and eventually replaced by overdrive-equipped transmissions providing four or more forward speeds. Many transmissions also adopted the lock-up torque converter (a mechanical clutch locking the torque converter impeller and turbine together to eliminate slip at cruising speed) to improve fuel economy.

As the engine computers became more and more capable, even more of the valve body's functionality was offloaded to them. These transmissions, introduced in the late 1980s and early 1990s, remove almost all of the control logic from the valve body, and place it in into the engine computer. (Some manufacturers use a separate computer dedicated to the transmission but sharing information with the engine management computer.) In this case, solenoids turned on and off by the computer control shift patterns and gear ratios, rather than the spring-loaded valves in the valve body. This allows for more precise control of shift points, shift quality, lower shift times, and (on some newer cars) semi-automatic control, where the driver tells the computer when to shift. The result is an impressive combination of efficiency and smoothness. Some computers even identify the driver's style and adapt to best suit it.

ZF Friedrichshafen AG and BMW were responsible for introducing the first six-speed (the ZF 6HP26 in the 2002 BMW E65 7-Series). Mercedes-Benz's 7G-Tronic was the first seven-speed in 2003, with Toyota Motor Company introducing an 8-speed in 2007 on the Lexus LS 460.

[edit] Automatic transmission models

Some of the best known automatic transmission families include:

Automatic transmission families are usually based on Ravigneaux, Lepelletier, or Simpson planetary gearsets. Each uses some arrangement of one or two central sun gears, and a ring gear, with differing arrangements of planet gears that surround the sun and mesh with the ring. An exception to this is the Hondamatic line from Honda, which uses sliding gears on parallel axes like a manual transmission without any planetary gearsets. Although the Honda is quite different from all other automatics, it is also quite different from an automated manual transmission.

[edit] Continuously variable transmissions

A different type of automatic transmission is the continuously variable transmission or CVT, which can smoothly alter its gear ratio by varying the diameter of a pair of belt or chain-linked pulleys, wheels or cones. Some continuously variable transmissions use a hydrostatic drive consisting of a variable displacement pump and a hydraulic motor to transmit power without gears. CVT designs are usually as fuel efficient as manual transmissions in city driving, but early designs lose efficiency as engine speed increases.

A slightly different approach to CVT is the concept of toroidal CVT or IVT (from infinitely variable transmission). These concepts provide zero and reverse gear ratios.

Some current hybrid vehicles, notably those of Toyota, Lexus and Ford Motor Company, have an "electronically-controlled CVT" (E-CVT). In this system, the transmission has fixed gears, but the ratio of wheel-speed to engine-speed can be continuously varied by controlling the speed of the third input to a differential using an electric motor-generator.

[edit] Manually controlled automatic transmissions

Most automatic transmissions offer the driver a certain amount of manual control over the transmission's shifts (beyond the obvious selection of forward, reverse, or neutral). Those controls take several forms:

  • Throttle kickdown: Most automatic transmissions include a switch on the throttle linkage that will force the transmission to downshift into the next lower ratio if the throttle is fully engaged. The switch generally only functions up to a certain road speed, so as to prevent a downshift that would overrev the engine. Some transmissions also have a part-throttle kickdown, eliminating the need to "floorboard" the throttle to downshift.
  • Mode Selection: Allows the driver to choose between preset shifting programs. For example, Economy mode saves fuel by upshifting at lower speeds, while Sport mode (aka Power or Performance) delays shifting for maximum acceleration. The modes also change how the computer responds to throttle input.
  • Low gear ranges: Many transmissions have switches or selector positions that allow the driver to limit the maximum ratio that the transmission may engage. On older transmissions, this was accomplished by a mechanical lockout in the transmission valve body preventing an upshift until the lockout was disengaged; on computer- controlled transmissions, the same effect is accomplished electronically. The transmission can still upshift and downshift automatically between the remaining ratios: for example, in the 3 range, a transmission could shift from first to second to third, but not into fourth or higher ratios. Some transmissions will still upshift automatically into the higher ratio if the engine reaches its maximum permissible speed in the selected range.
  • Manual controls: Some transmissions have a mode in which the driver has full control of ratio changes (either by moving the selector or through the use of buttons or paddles), completely overriding the hydraulic controller. Such control is particularly useful in cornering, to avoid unwanted upshifts or downshifts that could compromise the vehicle's balance or traction. "Manumatic" shifters, first popularized by Porsche in the 1990s under the trade name Tiptronic, have become a popular option on sports cars and other performance vehicles. With the near-universal prevalence of electronically controlled transmissions, they are comparatively simple and inexpensive, requiring only software changes and the provision of the actual manual controls for the driver. The amount of true manual control provided is highly variable: some systems will override the driver's selections under certain conditions, generally in the interest of preventing engine damage.
  • Second Gear Takeoff: Some automatics, particularly those fitted behind larger capacity engines, either when '2' is manually selected or by engaging a 'winter mode', will take off in second gear instead of first, and then not shift into a higher gear until returned to D. This is done to reduce torque multiplication when proceeding forward from a standstill in conditions where traction was limited - snow or ice covered roads for example.


Some automatic transmissions modified or designed specifically for drag racing may also incorporate a transmission brake, or "trans-brake," as part of a manual valve body. Activated by electrical solenoid control, a trans-brake simultaneously engages the first and reverse gears, locking the transmission and preventing the input shaft from turning. This allows the driver of the car to raise the engine rpm against the resistance of the torque converter, then launch the car by simply releasing the trans-brake switch.

歡迎來到Bewise Inc.的世界,首先恭喜您來到這接受新的資訊讓產業更有競爭力,我們是提供專業刀具製造商,應對客戶高品質的刀具需求,我們可以協助客戶滿足您對產業的不同要求,我們有能力達到非常卓越的客戶需求品質,這是現有相關技術無法比擬的,我們成功的滿足了各行各業的要求,包括:精密HSS DIN切削刀具協助客戶設計刀具流程DIN or JIS 鎢鋼切削刀具設計NAS986 NAS965 NAS897 NAS937orNAS907 航太切削刀具,NAS航太刀具設計超高硬度的切削刀具醫療配件刀具設計汽車業刀具設計電子產業鑽石刀具木工產業鑽石刀具等等。我們的產品涵蓋了從民生刀具到工業級的刀具設計;從微細刀具到大型刀具;從小型生產到大型量產;全自動整合;我們的技術可提供您連續生產的效能,我們整體的服務及卓越的技術,恭迎您親自體驗!!

BW Bewise Inc. Willy Chen willy@tool-tool.com bw@tool-tool.com www.tool-tool.com skype:willy_chen_bw mobile:0937-618-190 Head &Administration Office No.13,Shiang Shang 2nd St., West Chiu Taichung,Taiwan 40356 http://www.tool-tool..com / FAX:+886 4 2471 4839 N.Branch 5F,No.460,Fu Shin North Rd.,Taipei,Taiwan S.Branch No.24,Sec.1,Chia Pu East Rd.,Taipao City,Chiayi Hsien,Taiwan

Welcome to BW tool world! We are an experienced tool maker specialized in cutting tools. We focus on what you need and endeavor to research the best cutter to satisfy users demand. Our customers involve wide range of industries, like mold & die, aerospace, electronic, machinery, etc. We are professional expert in cutting field. We would like to solve every problem from you. Please feel free to contact us, its our pleasure to serve for you. BW product including: cutting toolaerospace tool .HSS DIN Cutting toolCarbide end millsCarbide cutting toolNAS Cutting toolNAS986 NAS965 NAS897 NAS937orNAS907 Cutting Tools,Carbide end milldisc milling cutter,Aerospace cutting toolhss drillФрезерыCarbide drillHigh speed steelMilling cutterCVDD(Chemical Vapor Deposition Diamond )’PCBN (Polycrystalline Cubic Boron Nitride) Core drillTapered end millsCVD Diamond Tools Inserts’PCD Edge-Beveling Cutter(Golden FingerPCD V-CutterPCD Wood toolsPCD Cutting toolsPCD Circular Saw BladePVDD End Millsdiamond tool Single Crystal Diamond Metric end millsMiniature end millsСпециальные режущие инструментыПустотелое сверло Pilot reamerFraisesFresas con mango PCD (Polycrystalline diamond) ‘FreseElectronics cutterStep drillMetal cutting sawDouble margin drillGun barrelAngle milling cutterCarbide burrsCarbide tipped cutterChamfering toolIC card engraving cutter

arrow
arrow
    全站熱搜

    beeway 發表在 痞客邦 留言(0) 人氣()