Bewise Inc. www.tool-tool.com Reference source from the internet.

The following discussion and examples illustrate the phenomenon of thermal aging and detail the variables and conditions that effect a change in core loss characteristics. All iron powder cores, regardless of the manufacturer, are susceptible to permanent increases in core loss when exposed to elevated temperatures for extended periods of time. It is important for the design engineer to understand the conditions under which thermal aging can occur and incorporate this knowledge into their standard design process.

Thermal aging is an irreversible increase in core loss as a result of prolonged exposure to elevated temperatures. The extent of these changes and realized effect on the wound core are a function of the following variables; time, ambient temperature and air flow, core volume and shape, operating frequency, peak ac flux density, material type and core manufacturer. Eddy current loss will be the dominant loss at higher frequencies while hysteresis loss will be the dominate loss at lower frequencies. The contribution of each form of loss to the total is also affected by the operating flux density. It is the eddy current portion of the core loss which is affected by high temperature thermal aging.

The first example will illustrate what happens in a design that is dominated by core loss and uses an undersized core. This design utilizes a core that can not safely dissipate the high level of core loss even with the benefit of forced air.

The first design example is for a buck inductor operating at 80 kHz. The parameters are as follows:

L = 11.5 μH
Idc = 18 A
E pk = 45 V
E dc = 12.3 V

The maximum ambient temperature is 60°C with forced air cooling supplied by a variable speed fan that provides less air flow at lower power levels.

The core selected is part number T106-52 wound with 14 turns of AWG-14 resulting in 1.72 W of copper loss. The peak AC flux density is 670 G at 80 kHz produces a core loss of 4.9 W. The combined loss is 6.62 W which calculates to a temperature rise of approximately 83C°in free standing air. Since the maximum ambient temperature specified for this part is 60°C the inductor can easily reach 140°C without the benefit of forced air. It should be noted that the core loss tolerances for Micrometals cores are +/-15%. Under worst case core loss conditions, the 4.9 W nominal can be 5.64 W resulting in a total loss of 7.36 W for a temperature rise of 95C°in free standing air. These temperatures are much too hot for a core operating under these conditions where eddy current losses are a significant portion of the total loss. The T106 size core can safely dissipate a total of 2.59 W for a 40C°temperature rise.

Caution, a warning flag should go up on a design that is core loss dominated and depends on the use of air flow to reduce the temperature particularly if it uses a variable speed fan. While the copper loss will decrease at lower power levels, this is generally not the case with core loss. Variable speed fans should not be used with core loss dominated designs. It is much easier to remove heat from a copper loss dominated design than a core loss dominated design. The copper winding radiates the heat while the core material has a thermal impedance barrier that must first be overcome. Additionally, the inductor can be several degrees hotter on the inside of the core and in the “shadow of the air flow".

Core Loss Increase, Fig. 1

The upper curve in Figure 1 illustrates how quickly the projected core loss increases due to the excessive operating temperature. It should be obvious the surface area of this design is much too small to safely dissipate the excessive core loss in spite air flow. The Single Layer Winding Table and "Full Winding" Table show the “Total Power Dissipation (W) Vs Temperature Rise” for various sized Micrometals cores. These tables are useful to quickly determine if the design is capable of meeting a 40C°or less temperature rise.

The middle curve in Figure 1 illustrates the smallest physical core size that meets the design requirements and has a temperature rise of less than 40C°. This core is part number T130-8/90 wound with 19 turns of AWG-10 for a copper loss of about 1.0 W. The peak AC flux density has been reduced to 465 G at 80 kHz decreasing the core loss to 2.5 W. The graph predicts this design will safely operate at 100°C total temperature well past 100,000 hours.

The lower curve of Figure 1 shows part number T106-52 used under similar conditions to the first design except now the dc output voltage is 5 V instead of 12.3 V. With 14 turns of AWG-12 wire, the peak AC flux density has decreased to 305 G and core loss to 1.0 W. The combined core and copper losses are 2.04 W for a temperature rise of 33C°. This design will safely operate at 100°C total temperature for more than 100,000 hours.

The next design examples will illustrate differences using a much larger core size, operating at two differing frequencies and peak AC flux densities. The first design is operating at 60Hz, 10 kG on Micrometals part number T300-26D. The calculated core loss is about 7.35 W and assuming a copper loss of 7.35 W, the combined loss of 14.7 W results in a 33C° temperature rise. The lower curve in Figure 2 predicts that the core loss does not change even after 100,000 hours at 125°C. Almost all of the core loss at this frequency is hysteresis loss and is unaffected at this temperature.

The upper curve in Figure 2 shows how quickly the core loss increases in a design operating at 40 kHz with a peak AC flux density of 283 G. While the total core loss of 7.35 W is the same as the 60 Hz example, the eddy current losses are now dominant and increase with constant exposure to 125°C.

Assuming the copper loss is 7.35 W, the total loss of this design is 14.7 W resulting in a temperature rise of 33C°at time zero. After 20,000 hours the core loss has increased to 9.5 W and the temperature rise now reaches 37C°. After 100,000 hours at 125°C, the core loss has increased to 12.5 W, pushing the temperature rise to 42C°. This design example is not an extreme case but illustrates how the temperature rise of the inductor continues to increase as a function of time and temperature.

Core Loss Increase, Fig. 2

Another popular application for iron powder cores is power factor correction boost chokes. This can be a very demanding application where core loss calculation is more complex and often misunderstood. This can lead to poor designs that will have reliability problems. For a detailed discussion of proper core loss analysis for PFC boost chokes refer to Power Factor Boost Preregulator Core Loss Calculations. Also, the latest version of Micrometals design software includes a PFC core loss application.

TABLE 1

Solution #1
Solution #2
Solution #3

Part Number
E168-52
E168-52
E168-2

AL (nH/N2)
179
179
44

Turns
45
90
76

AWG#
14
17
16

Bpk @ 100 kHz (G)
389
195
230

Core Loss (mW/cm3)
489.0
120.0
61.5

Core Volume (cm3)
18.5
18.5
18.5

Core Loss (mW)
9,063
2,220
1,137

Copper Loss (mW)
866
3,480
2,324

Total Loss (mW)
9,929
5,700
3,461

Wound Surface Area (cm2)
66.7
66.7
66.7

Maximum Size (in)
1.7 x 1.7
1.7 x 1.7
1.7 x 1.7

T (C°)
65
41
27

Approx. Core Cost (per piece)
$0.23
$0.23
$0.55

Thermal Life (Hours)
<12,000
~1,000,000
>10,000,000

The third design example is a PFC boost choke operating at 100 kHz with the following requirements: Lmin = 250 μH
Idc = 7 A
Epk In = 120V
Edc Out = 400V

Referring to Table 1, you can see that design Solution #1 is a design that is dominated by 9.06 watts of core loss with only 0.87 watts of copper loss. This results in a temperature rise of 65C°. Figure 3 indicates that with an ambient of 55°C, this part will have thermal runaway in less than 2 years.

Solution #2 demonstrates that with the same core, by simply increasing the number of turns with the required smaller wire size, the core and copper losses will become more balanced. This results in improved efficiency (saving 4.3 watts), a lower operating temperature (DT=41C°), and a dramatic improvement in thermal life (almost 2 orders of magnitude). While it may seem obvious that solution #1 is a poor design, this is a fairly common mistake.

If the higher inductance produced by adding turns in solution #2 is unacceptable in the circuit, the core and copper losses can also be better balance by selecting a lower permeability material. Solution #3 illustrates how the Micrometals 10μo (-2 Material) performs. This choke will be the most efficient and reliable, but this material type is more expensive than the –52 Material option.

Core Loss Increase, Fig. 3

Another important thermal aging consideration is the source of the iron powder cores, in other words, beware of “equivalent” iron powder cores. As demonstrated above, different materials will thermally age at different rates. This is also true with different manufacturers of core materials. In many cases, the term “equivalent core” is solely based on dimensional and permeability characteristics.

Figure 4 illustrates the thermal aging characteristic of Micrometals T90-26 at 75kHz with 633G as well as the same winding on an “equivalent” competitor. The Micrometals core will safely operate for 300,000 hours whereas the competitor will runaway in less than 30,000 hours. Clearly, both cores are thermally aging at different rates. temperature rise of 65C°.

Core Loss Increase, Fig. 4

Less obvious is the variation of initial core operating temperatures between the Micrometals and competitor cores. The competitors increased initial core temperature is a result of higher core losses. In another example, the ambient temperature for the Micrometals winding was increased to 60 °C to match the initial core operating temperature of the competitor. Again, the predicted difference in thermal life is dramatic.

As the example above demonstrate, evaluating one manufacturers core and substituting another at a later time can be a critical error. It is also very important to regulate the supply chain and monitor that sub-suppliers are not making any unknown core substitutions.

The design software is an extremely useful tool for selecting Micrometals iron powder cores for DC applications and compliments the energy storage curves provided here.

DC energy storage inductors are an ideal application for Micrometals iron powder cores. In this application the core must support a significant DC current while maintaining an inductance adequate to filter high frequency signals. The amount of energy stored is a function of inductance and current. Specifically, energy storage for an inductor is described:

Energy Storage for Inductor described

Energy storage is proportional to the flux density squared divided by the effective premeability of the structure.

Proportional Flux Density Squared, divided by effective permeability of structure

The introduction of a discreet air gap significantly lowers the effective permeability of core structures made from ferrites and iron alloys. This increases the energy storage capabilities of the core by allowing additional energy to be stored in the gap.

  1. Those specifically designed to maintain a relatively constant inductance from zero to full-rated load.
  2. Those specifically designed to have greater inductance, under minimum load conditions (swing).
  3. Those simply requiring a minimum inductance.

Micrometals Energy Storage Curves are presented for a number of core sizes in each material (except -2 Material due to its low permeability) to assist in the design of such inductors. These curves are shown a both in terms of ampere-turns (NI) on each materials page, and percent saturation (100% -% initial permeability) on each materials page.

The curves shown for each material are based on a peak AC flux density of 10 gauss (1 mT). This will typically represent a ripple current of less than 1%. Under this condition, the only heat generated results from the resistive winding (copper) losses. The energy storage limits for 10 C°, 25 C°, and 40 C° temperature rise (in free-standing air) resulting from winding losses are shown on each graph. When significantly greater AC or ripple flux density is present, the cores will produce higher inductance due to the AC magnetization characteristics shown Peak AC Flux Density on percent initial permeability. Under this condition, the high frequency core losses must also be taken into account as described Core Loss. Refer to Power Factor Boost Preregulator Core Loss Calculations for additional information.

The -8 , -18 and -52 Materials should be considered for DC chokes operating above 100kHz due to their lower core loss characteristics at high frequency.

The importance of the swing of the inductor must be determined before the appropriate core material can be selected.

  1. The -8, -18, -30, -34 and -35 Materials ( or a gapped E Core, see Gapping Iron Powder E Cores) should be considered if the inductor must maintain a relatively constant inductance from minimum to full-rated current. These materials are able to store high energy with a minimum of staturation.
  2. The -26, -40, -45 and -52 materials should be considered if the inductor should “swing” (increase in inductance as current decreases) a moderate amount. These materials have higher permeability and can produce a 2:1 swing (50% saturation point).
  3. The -26, -40 and -52 Materials are generally recommended for designs concerned with minimum inductance because they are the most cost effective.

The temperature rise of the wound unit, aside from saturation, is the primary limiting factor in inductor design. In the case of DC inductors with very low level AC ripple, this temperature rise is a result of copper loss in the winding. (DC flux does not have a noticeable effect on core loss.)

For single-layer windings on toroidal cores, the current handling capability of a wire size as a function of temperature rise is relatively independent of core size. Making use of this, a single-layer winding table has been developed giving current ratings for temperature rises of 0 C°, 25 C°, and 40 C° temperature rise in free-standing air. The Single Layer Winding Table

For full windings (45% toroid inside diameter remaining) a similar table has been developed, "Full Winding" Table.In the case of full windings, the current handling capability of a given wire size is no longer independent of core size. However, for any particular core size, an ampere-turn rating for a given temperature rise does become a constant. These ampere-turn constants are included in the "Full Winding" Table.

Refer to-26 Material for design examples using the Energy Storage Curves.

歡迎來到Bewise Inc.的世界,首先恭喜您來到這接受新的資訊讓產業更有競爭力,我們是提供專業刀具製造商,應對客戶高品質的刀具需求,我們可以協助客戶滿足您對產業的不同要求,我們有能力達到非常卓越的客戶需求品質,這是現有相關技術無法比擬的,我們成功的滿足了各行各業的要求,包括:精密HSS DIN切削刀具協助客戶設計刀具流程DIN or JIS 鎢鋼切削刀具設計NAS986 NAS965 NAS897 NAS937orNAS907 航太切削刀具,NAS航太刀具設計超高硬度的切削刀具醫療配件刀具設計複合式再研磨機PCD地板專用企口鑽石組合刀具粉末造粒成型機主機版專用頂級電桿PCD V-Cut捨棄式圓鋸片組粉末成型機主機版專用頂級電感汽車業刀具設計電子產業鑽石刀具木工產業鑽石刀具銑刀與切斷複合再研磨機銑刀與鑽頭複合再研磨機銑刀與螺絲攻複合再研磨機等等。我們的產品涵蓋了從民生刀具到工業級的刀具設計;從微細刀具到大型刀具;從小型生產到大型量產;全自動整合;我們的技術可提供您連續生產的效能,我們整體的服務及卓越的技術,恭迎您親自體驗!!

BW Bewise Inc. Willy Chen willy@tool-tool.com bw@tool-tool.com www.tool-tool.com skype:willy_chen_bw mobile:0937-618-190 Head &Administration Office No.13,Shiang Shang 2nd St., West Chiu Taichung,Taiwan 40356 http://www.tool-tool.com / FAX:+886 4 2471 4839 N.Branch 5F,No.460,Fu Shin North Rd.,Taipei,Taiwan S.Branch No.24,Sec.1,Chia Pu East Rd.,Taipao City,Chiayi Hsien,Taiwan

Welcome to BW tool world! We are an experienced tool maker specialized in cutting tools. We focus on what you need and endeavor to research the best cutter to satisfy users demand. Our customers involve wide range of industries, like mold & die, aerospace, electronic, machinery, etc. We are professional expert in cutting field. We would like to solve every problem from you. Please feel free to contact us, its our pleasure to serve for you. BW product including: cutting toolaerospace tool .HSS  DIN Cutting toolCarbide end millsCarbide cutting toolNAS Cutting toolNAS986 NAS965 NAS897 NAS937orNAS907 Cutting Tools,Carbide end milldisc milling cutter,Aerospace cutting toolhss drillФрезерыCarbide drillHigh speed steelCompound SharpenerMilling cutterINDUCTORS FOR PCDCVDD(Chemical Vapor Deposition Diamond )’PCBN (Polycrystalline Cubic Boron Nitride) Core drillTapered end millsCVD Diamond Tools Inserts’PCD Edge-Beveling Cutter(Golden FingerPCD V-CutterPCD Wood toolsPCD Cutting toolsPCD Circular Saw BladePVDD End Millsdiamond tool. INDUCTORS FOR PCD . POWDER FORMING MACHINE Single Crystal Diamond Metric end millsMiniature end millsСпециальные режущие инструментыПустотелое сверло Pilot reamerFraisesFresas con mango PCD (Polycrystalline diamond) ‘FresePOWDER FORMING MACHINEElectronics cutterStep drillMetal cutting sawDouble margin drillGun barrelAngle milling cutterCarbide burrsCarbide tipped cutterChamfering toolIC card engraving cutterSide cutterStaple CutterPCD diamond cutter specialized in grooving floorsV-Cut PCD Circular Diamond Tipped Saw Blade with Indexable Insert PCD Diamond Tool Saw Blade with Indexable InsertNAS toolDIN or JIS toolSpecial toolMetal slitting sawsShell end millsSide and face milling cuttersSide chip clearance sawsLong end millsend mill grinderdrill grindersharpenerStub roughing end millsDovetail milling cuttersCarbide slot drillsCarbide torus cuttersAngel carbide end millsCarbide torus cuttersCarbide ball-nosed slot drillsMould cutterTool manufacturer.

Bewise Inc. www.tool-tool.com

ようこそBewise Inc.の世界へお越し下さいませ、先ず御目出度たいのは新たな

情報を受け取って頂き、もっと各産業に競争力プラス展開。

弊社は専門なエンドミルの製造メーカーで、客先に色んな分野のニーズ

豊富なパリエーションを満足させ、特にハイテク品質要求にサポート致します。

弊社は各領域に供給できる内容は:

(1)精密HSSエンドミルのR&D

(2)Carbide Cutting tools設計

(3)鎢鋼エンドミル設計

(4)航空エンドミル設計

(5)超高硬度エンドミル

(6)ダイヤモンドエンドミル

(7)医療用品エンドミル設計

(8)自動車部品&材料加工向けエンドミル設計

弊社の製品の供給調達機能は:

(1)生活産業~ハイテク工業までのエンドミル設計

(2)ミクロエンドミル~大型エンドミル供給

(3)小Lot生産~大量発注対応供給

(4)オートメーション整備調達

(5)スポット対応~流れ生産対応

弊社の全般供給体制及び技術自慢の総合専門製造メーカーに貴方のご体験を御待ちしております。

Bewise Inc. talaşlı imalat sanayinde en fazla kullanılan ve üç eksende (x,y,z) talaş kaldırabilen freze takımlarından olan Parmak Freze imalatçısıdır. Çok geniş ürün yelpazesine sahip olan firmanın başlıca ürünlerini Karbür Parmak Frezeler, Kalıpçı Frezeleri, Kaba Talaş Frezeleri, Konik Alın Frezeler, Köşe Radyüs Frezeler, İki Ağızlı Kısa ve Uzun Küresel Frezeler, İç Bükey Frezeler vb. şeklinde sıralayabiliriz.

BW специализируется в научных исследованиях и разработках, и снабжаем самым высокотехнологичным карбидовым материалом для поставки режущих / фрезеровочных инструментов для почвы, воздушного пространства и электронной индустрии. В нашу основную продукцию входит твердый карбид / быстрорежущая сталь, а также двигатели, микроэлектрические дрели, IC картонорезальные машины, фрезы для гравирования, режущие пилы, фрезеры-расширители, фрезеры-расширители с резцом, дрели, резаки форм для шлицевого вала / звездочки роликовой цепи, и специальные нано инструменты. Пожалуйста, посетите сайт  www.tool-tool.com  для получения большей информации.

BW is specialized in R&D and sourcing the most advanced carbide material with high-tech coating to supply cutting / milling tool for mould & die, aero space and electronic industry. Our main products include solid carbide / HSS end mills, micro electronic drill, IC card cutter, engraving cutter, shell end mills, cutting saw, reamer, thread reamer, leading drill, involute gear cutter for spur wheel, rack and worm milling cutter, thread milling cutter, form cutters for spline shaft/roller chain sprocket, and special tool, with nano grade. Please visit our web  www.tool-tool.com  for more info.

arrow
arrow
    全站熱搜

    beeway 發表在 痞客邦 留言(0) 人氣()