Bewise Inc. www.tool-tool.com Reference source from the internet.

Fra Wikipedia, den frie encyklopædi

Gå til: navigation, søg
26 ManganJernKobolt


Fe

Ru

Det periodiske system
Udseende

Metallisk, gråt
Generelt
Kemisk symbol: Fe
Atomnummer: 26
Atommasse: 55,845(2) g/mol
Grundstofserie: Overgangsmetal
Gruppe: 8
Periode: 4
Blok: d
Elektronkonfiguration: [Ar] 4s2 3d6
Elektroner i hver skal: 2, 8, 14, 2
Atomradius: 140 pm
Kovalent radius: 125 pm
Kemiske egenskaber
Oxidationstrin: 2, 3, 4, 6
Elektronegativitet: 1,83 (Paulings skala)
Fysiske egenskaber
Tilstandsform: Fast stof
Krystalstruktur: kubisk rumcentreret
Massefylde: 7,86 g/cm3
Smeltepunkt: 1538 °C
Kogepunkt: 2861 °C
Smeltevarme: 13,81 kJ/mol
Fordampningsvarme: 340 kJ/mol
Varmefylde: 25,10 J·mol–1K–1
Varmeledningsevne: 80,4 W·m–1K–1
Varmeudvidelseskoeff.: 11,8
Elektrisk resistivitet: 96,1 n
Mekaniske egenskaber
Youngs modul: 211 GPa
Forskydningsmodul: 82 GPa
Kompressibilitetsmodul: 170 GPa
Poissons forhold: 0,29
Hårdhed (Mohs' skala): 4
Hårdhed (Vickers): 608 MPa
Hårdhed (Brinell): 490 MPa

Jern (oldnordisk: iarn, germansk: isarn) er navnet på et tungmetal, et grundstof i det periodiske system med betegnelsen Fe (lat. Ferrum, Jern) og grundstof nummer 26. Det er et metal fra 4. periode i den 8. gruppe i det periodiske system.


Indholdsfortegnelse

[skjul]

[redigér] Vigtigste egenskaber

Det gennemsnitlige jernatom har en masse på omtrent 56 gange et brintatom. Jern er det 10. mest almindelige grundstof i universet.

Teknisk set udvinder man metallet af jernmalm, der ikke er rent jern, men som indeholder jernoxid. Jernmalm bliver reduceret til råjern gennem flere forskellige rensningsprocesser; derved bliver urenheder også fjernet i form af slagger.

Teknisk er jern betydningsfuldt for fremstillingen af stål. De forskellige ståltyper er legeringer, der foruden jern indeholder andre metaller og ikke-metaller (særligt kulstof).

Atomkernen i jernisotopen 56Fe har den højeste bindingsenergi per kernepartikel af alle atomkerner. Det vil sige at man hverken kan få fusionenergi (atomkernesammensmeltning) eller fissionsenergi (atomkernespaltning).

Fusionen af grundstoffer (primært brint og helium) i stjernerne slutter med jern. Tungere grundstoffer opstår i supernovaeksplosioner, som også er grunden til spredningen af det materiale, der er dannet ved fusion inde i stjernen.

Ved rumtemperatur er den mest almindelige variant af rent jern ferrit eller α-jern. Denne variant danner et kubisk rumcentreret krystalgitter, der eksisterer under 911°C. Under Curiepunktet ved 760°C er ferrit magnetisk. Varianten mellem 760°C og 911°C hedder β-jern. Ud over de magnetiske egenskaber adskiller den sig ikke fra ferritisk α-jern, og derfor bliver den sædvanligvis betegnet som α-jern. Indtil 1392°C findes jernet i den kubisk fladecentrerede γ-variant (austenit). Ved stadigt stigende temperatur omlejres jernet til δ-ferrit, der atter viser et kubisk rumcentreret gitter. Smeltepunktet er 1539°C.

[redigér] Jern som mineral

Det er meget sjældent, at jern optræder i helt ren form. Mineralet krystalliserer så i et terningeformet krystalsystem. Det har en hårdhed på 4,5 og en stålgrå til sort farve. Også stregfarven er grå. På grund af reaktion med vand og ilt er rent jern ikke stabilt. Det optræder derfor, legeret med nikkel, kun i jernmeteoritter eller i basaltiske bjergarter, hvor der ofte sker en reduktion af jernholdige mineraler.

[redigér] Anvendelser

Jern er med 95% af tonnagen det metal, der bruges mest i Verden. Grunden til det ligger i, at det er til rådighed de fleste steder, hvad der gør det billigt, men også i jernlegeringernes fasthed og sejhed, der gør dem nyttige på mange områder. Meget jern bliver anvendt ved fremstillingen af biler, skibe og i højhusbyggerier (Jernbeton).

Jern er det ene af de fire magnetiske metaller (kobolt, nikkel og gadolinium er de andre), og det muliggør dermed den storindustrielle brug af elektromagnetisme i generatorer, transformatorer og elektromotorer.

Rent jernpulver bruges kun i kemien. Derimod er de forskellige stålarter meget udbredt i industrien. Jern bruges i følgende former:

- Råjern indeholder 4-5% kulstof sammen med forskellige andele af svovl, fosfor og silicium. Det er et mellemprodukt i fremstillingen af støbejern og stål.

- Smedejern har et kulstofindhold på under 0,3% og er sejere og blødere end stål.

- støbejern 2-4,5% kulstof og flere andre legeringsstoffer som f.eks. silicium og mangan. Afhængigt af afkølingstempoet findes kulstoffet i støbejern enten som karbid eller i ren form som grafit. Med henvisning til brudfladernes udseende taler man i det første tilfælde om hvidt og i det andet tilfælde om gråt støbejern. Støbejern er meget hårdt og skørt. Det lader sig almindeligvis ikke omforme plastisk.

- stål indeholder 0-2,5% kulstof. I modsætning til støbejern er det plastisk formbart. Ved legering og ved en egnet kombination af varmebehandling og plastisk omformning kan man variere de mekaniske egenskaber hos stål i bred forstand.

- Hæmoglobin: Jern indgår i blodets røde farvestof og medvirker til oxygentransport

- plantenæringsstof: Jern er et uundværligt stof for alle organismer (f.eks. planter og dyr). Hos planter giver jernmangel sig til kende ved, at bladkødet bliver lysegrønt, mens bladribberne og det nærmeste bladkød bliver ved med at være normalt grønt. Bladene vil vise et billede af en mørkegrøn fjer på en lysegrøn bund. Jernmangel hos planter afhjælpes enten ved at øge jordens surhedsgrad (hvad der frigør mere jern i en form, der kan optages) eller ved at strø jernvitriol (jernsulfat) på jorden under planten. 10 g/m2 er passende.

[redigér] Teknologisk karakter

[redigér] Forekomster

Jern er sammen med nikkel formodentlig hovedbestanddelen af Jordens kerne. Omskiftelserne mellem fast jern i den indre og flydende jern i den ydre kerne skaber formentlig Jordens magnetfelt.

Med en andel på 5% er jern dog også et af de mest udbredte grundstoffer i jordskorpen. De første kilder, der blev udnyttet, var myremalm og frit tilgængelige malme. I dag udnytter man først og fremmest magnetjern med et indhold på 40%.

Det vigtigste mineral til jernudvinding er hæmatit, der mest består af Fe2O3. Jernet bliver udvundet gennem en kemisk reduktion med kulstof; derved opstår der temperaturer på ca. 2000°C. Først tilfører man højovnen koks, som reagerer med luftens ilt og danner kulmonooxid:

2 C + O2 → 2 CO

Kulstofmonoxidet reagerer med jernoxidet:

3 CO + Fe2O3 → 2Fe + 3CO2

På grund af den høje reaktionstemperatur er det opståede jern flydende. Ganske vist indeholder det endnu forureninger i form af siliciumdioxid. Ved tilførsel af kalk bliver siliciumdioxidet udskilt som slagger. Et første reaktionsskridt forvandler kalken til kalciummonoxid:

CaCO3 → CaO + CO2

Derpå reagerer kalciummonoxidet med siliciumdioxidet:

CaCo + SiO2 → CaSiO3

De dannede slagger bliver brugt i vejbyggeri m.m. og tidligere også som gødning.

På verdensplan blev der i året 2000 udnyttet ca. 1000 megaton jernmalm til en værdi af ca. 25 mia. €. De mest betydningsfulde leverandører af jernmalm er Kina, Brasilien, Australien, Rusland og Indien. Tilsammen leverer de ca. 70% af Verdens behov. Af de 1000 megaton malm blev der udvundet ca. 572 megaton jern. Dertil kommer det nye jern, der udvindes af skrot.

[redigér] Brydning

Jernmalm bliver udvundet i åbne brud og i egentlige miner. De steder, hvor malmen er lødig nok, og hvor den træder frem på overfladen, kan man udnytte malmen i de mindre bekostelige, åbne brud. I dag bryder man hovedsageligt jernmalm på denne måde i Sydamerika, særligt Brasilien, i det vestlige Australien, i Kina, i Østeuropa (f.eks. Ukraine) og Canada.

I de seneste år har disse lande fortrængt de lande, der oprindeligt var de mest betydningsfulde leverandører af jernmalm som f.eks. Frankrig, Sverige eller Tyskland, hvis sidste jernmine i Oberpfalz blev lukket i 1987.

Jernskrot - et vigtigt tilskud i fremstillingen af stål.
Jernskrot - et vigtigt tilskud i fremstillingen af stål.

Ganske vist skaber den relativt lette brydning også et stort problem: Eksporten af råstoffer er nu som før hovedindstægtskilden for mange af de fattige stater. Som følge deraf kaster mange af de højtforgældede tropelande sig over disse ressourcer, men for det meste på bekostning af mennesker og miljø. Kæmpemæssige malmlejer som Ok Tedi-minen i Papua Ny Guinea ødelægger ikke bare regnskoven på deres egentlige område, men også hele landskabet i vid omkreds. For de yderst giftige mængder af spildevand og slam tipper mineejerne simpelt hen af i nærheden, og derfra fordeler giften sig via floderne - på en måde så det er blevet til en sundhedsrisiko for den lokale befolkning at spise fisk nedstrøms i forhold til Ok Tedi.

Jernmalmen når sjældent direkte fra bjergværket til højovnenes lagerpladser. For det meste skal man først klare lange transportveje over land og hav med flere omladninger undervejs.

Før den videre forarbejdning bliver malmen til sidst slået i stykker og knust. Så bliver malmkornene sorteret efter størrelse og sintret sammen. Det vil sige, at små korn bliver sammenklæbet, for kun på den måde kan de bruges i højovnene.

[redigér] Forbindelser

Jern danner 2- og 3-valente oxider. Da de ikke danner noget fast, beskyttende lag, oxideres (dvs. ruster) et stykke jern fuldstændigt, når det er i kontakt med atmosfæren.

Almindelige jernoxideringstrin og -forbindelser:

    • Fe+2, ferro-
    • Fe+3, ferri-
    • Fe+4, forekommer i nogle enzymer (f.eks. Peroxidase).
    • Fe+6, er sjælden (f.eks. K2FeO4)
    • Fe3C

[redigér] Isotoper

Isotoper
De mest stabile isotoper
Isotop Naturlig hyppighed Halverings-
tid
(t1/2)
Nedbryd-
nings-
modus
Nedbryd-
nings-
energi
(MeV)
ZP
54Fe 5.8% Fe er en Stabil isotop med 28 Neutroner
55Fe Syntetisk radioisotop 2.73 y ε Einfang 0.231 55Mn
56Fe 91.72% Fe er en Stabil isotop med 30 Neutroner
57Fe 2.2% Fe er en Stabil isotop med 31 Neutroner
58Fe 0.28% Fe er en Stabil isotop med 32 Neutroner

59Fe Syntetisk radioisotop 44.503 d β 1.565 Kobolt 59Co
60Fe Syntetisk radioisotop 1.5E6 y β- 3.978 Kobolt 60Co
SI-enheder og standardbetingelser bliver brugt, hvis ikke andet er nævnt.

Jern har fire naturligt forekommende, stabile isotoper med følgende, relative forekomst: 54Fe (5.8%), 56Fe (91.7%), 57Fe (2.2%) and 58Fe (0.3%). Isotopen 60Fe har en halveringstid på 1,5 millioner år. Eksistensen af 60Fe ved begyndelsen af planetsystemets opståen er blevet opdaget ved en sammenhæng mellem forekomsten af 60Ni, henfaldsproduktet fra 60Fe, og forekomsterne af de stabile Fe-isotoper i visse dele af flere meteoritter (f.eks. i meteoritterne Semarkona og Chervony Kut). Muligvis spillede den frigjorte energi fra det radioaktive henfald af 60Fe, sammen med henfaldsenergien fra det ligeledes indlejrede, radioaktive 26Al, en rolle ved opsmeltningen og differentieringen af asteroiderne umiddelbart efter deres dannelse for ca. 4,6 milliarder år siden. Fordelingen af nikkel- og jernisotoper i meteoritterne gør det muligt at måle isotop- og grundstofhyppigheden under dannelsen af solsystemet, og at regne sig frem til de ydre vilkår før og under solsystemets skabelse.

Kun jernisotopen 57Fe har kernespin, og kan derfor bruges i kemi og biokemi.

[redigér] Biologi

Jern er et nødvendigt mikronæringsstof for mange dyr, som har brug for det som centralatom i hæmoglobinet. Desuden er jern en bestanddel af jern-svovl-komplekset (iron-sulphur-cluster) i mange enzymer.

Angribende bakterier udnytter ofte jern, og derfor er det en afværgemekanisme i kroppen at 'skjule' jern.

[redigér] Forsigtighedsregler

Selv om jern er et vigtigt mikronæringsstof for mennesker, kan overskud af jern i kroppen være giftig. Ved alt for store mængder af Fe2+-ioner reagerer stoffet med peroxider, hvorved der opstår frie radikaler. Under normale forhold bliver disse holdt i skak af kroppens egne processer.

Ca. 1 gram jern fremkalder alvorlige forgiftningssymptomer hos toårige børn, og 3 gram kan være dødeligt. Langvarigt overskud af jern fører til hæmokromatose (jernudskilningssyge). Jernet ophobes i leveren, og der fører det til siderose (aflejring af jernsalte) og organskader. Derfor kan jernpræparater kun anbefales i forbindelse med jernmangel.


BW Bewise Inc. Willy Chen willy@tool-tool.com bw@tool-tool.com www.tool-tool.com skype:willy_chen_bw mobile:0937-618-190 Head &Administration Office No.13,Shiang Shang 2nd St., West Chiu Taichung,Taiwan 40356 TEL:+886 4 24710048 / FAX:+886 4 2471 4839 N.Branch 5F,No.460,Fu Shin North Rd.,Taipei,Taiwan S.Branch No.24,Sec.1,Chia Pu East Rd.,Taipao City,Chiayi Hsien,Taiwan

Welcome to BW tool world! We are an experienced tool maker specialized in cutting tools. We focus on what you need and endeavor to research the best cutter to satisfy users’ demand. Our customers involve wide range of industries, like mold & die, aerospace, electronic, machinery, ,,,etc. We are professional expert in cutting field. We would like to solve every problem from you. Please feel free to contact us, its our pleasure to serve for you. BW product including: utting toolaerospace tool .HSS Cutting toolCarbide end millsCarbide cutting toolNAS Cutting toolCarbide end millAerospace cutting toolCarbide drillHigh speed steelMilling cutterCore drillTaperd end millsMetric end millsMiniature end millsPilot reamerElectronics cutterStep drillMetal cutting sawDouble margin drillGun barrelAngle milling cutterCarbide burrsCarbide tipped cutterChamfering toolIC card engraving cutterSide cutterNAS toolDIN toolSpecial toolMetal slitting sawsShell end millsSide and face milling cuttersSide chip clearance sawsLong end millsStub roughing end millsDovetail milling cuttersCarbide slot drillsCarbide torus cuttersAngeled carbide end millsCarbide torus cuttersCarbide ball-noseed slot drillsMould cutterTool manufacturer.

Bewise Inc. www.tool-tool.com
arrow
arrow
    全站熱搜
    創作者介紹
    創作者 beeway 的頭像
    beeway

    BW Professional Cutter Expert www.tool-tool.com

    beeway 發表在 痞客邦 留言(0) 人氣()