Bewise Inc. www.tool-tool.com Reference source from the internet.

14 hliníkkremíkfosfor
C

Si

Ge

Všeobecne
Názov, Značka, Číslo kremík, Si, 14
Séria polokovy
Skupina, Perióda, Blok 14, 3, p
Vzhľad ako prášok, tmavosivý
s modrastým nádychom
Atómová hmotnosť 28,0855(14)  g·mol−1
Elektrónová konfigurácia [Ne] 3s2 3p2
Elektrónov na hladinu 2, 8, 4
Fyzikálne vlastnosti
Skupenstvo pevné
Hustota (pri i.t.) 2,33  g·cm−3
Hustota tekutiny v b.t. 2,57  g·cm−3
Teplota topenia (tavenia) 1687 K
(1414 °C, 2577 °F)
Teplota varu 3538 K
(3265 °C, 5909 °F)
Teplo vyparovania 50,21  kJ·mol−1
Teplo tavenia 359  kJ·mol−1
Tepelná kapacita (25 °C) 19,789  J·mol−1·K−1
Tlak pary
P(Pa) 1 10 100 1 k 10 k 100 k
pri T(K) 1908 2102 2339 2636 3021 3537
Atómové vlastnosti
Kryštálová štruktúra kocková stenovo centrovaná
Oxidačné stupne 4 (amfoterický oxid)
Elektronegativita 1,90 (Paulingova stupnica)
Ionizačné energie
(viac)
1.:  786,5  kJ·mol−1
2.:  1577,1  kJ·mol−1
3.:  3231,6  kJ·mol−1
Atómový polomer 110pm
Atómový polomer (vyp.) 111  pm
Kovalentný polomer 111  pm
Van der Waalsov polomer 210 pm
Rôzne
Magnetické vlastnosti nemagnetický
Tepelná vodivosť (300 K) 149  W·m−1·K−1
Tepelná roztiažnosť (25 °C) 2,6  µm·m−1·K−1
Rýchlosť zvuku (úzka tyč) (20 °C) 8433 m/s
Youngov modul 150  GPa
Objemová pružnosť 100  GPa
Mohsova tvrdosť 6,5
Registračné číslo CAS 7440-21-3
Vybrané izotopy
Hlavný článok: Izotopy kremíka
izotop NA t1/2 ZM ER (MeV) PR
28Si 92,23% Si je stabilný s 14 neutrónmi
29Si 4,67% Si je stabilný s 15 neutrónmi
30Si 3,1% Si je stabilný s 16 neutrónmi
32Si syn 132 y β- 13,020 32P
Referencie

Kremík (lat. silicium zo slov silex alebo silicis, synonymá pre kremeň) je chemický prvok v Periodickej tabuľke prvkov, ktorý má značku Si a protónové číslo 14. Je to pomerne tvrdý polokov s vysokou afinitou ku kyslíku. Elementárny kremík je na vzduchu neobmedzene stály, v okolitej prírode sa s ním však stretávame prakticky iba vo forme zlúčenín v ktorých sa vyskytuje iba s mocnosťou Si+4, s výnimkou obmedzených nálezov mikrokryštálov čistého kremíka prevažne v sopečných oblastiach (typová lokalita Nuevo Potosí na Kube).

Je odolný voči väčšine minerálnych anorganických kyselín (s výnimkou zmesi kyseliny fluorovodíkovej HF a kyseliny dusičnej HNO3), veľmi ľahko sa však rozpúšťa v alkalických roztokoch za vzniku kremičitanového aniónu [SiO3]-2.

História [úprava]

Kremík (po lat. silex, silicis) prvýkrát identifikoval Antoine Lavoisier v roku 1787, a neskôr ho Humphry Davy (1800) omylom považoval za zlúčeninu. V roku 1811 Gay Lussac a Thénard pravdepodobne pripravili amorfný a nečistý kremík redukciou fluoridu kremičitého draslíkom. V roku 1824 Berzelius pripravil amorfný kremík pomocou približne rovnakej metódy ako Lussac. Berzelius tiež kremík vyčistil opakovaným premývaním .

Pretože kremík (ang. silicon) je dôležitý prvok pre polovodiče a elektronické zariadenia, je región v Kalifornii, kde sú sústredené spoločnosti zaoberajúce sa vývojom takýchto zariadení, Silicon Valley (Kremíkové údolie), pomenovaný podľa tohto prvku.

Výskyt v prírode [úprava]

V prírode sa stretávame iba zo zlúčeninami kremíka. Kremík je po kyslíku druhým najviac zastúpeným prvkom v zemskej kôre. Podľa posledných dostupných údajov tvorí kremík 26 – 28 % zemskej kôry . V morskej vode je jeho koncentrácia pomerne nízka, iba 3 mg Si/l, vo vesmíre pripadá na jeden atóm kremíka približne 30 000 atómov vodíka.

Kremík je podstatnou zložkou veľkej väčšiny hornín tvoriacich zemskú kôru - príkladom môžu byť pieskovce, íly, žuly. Významné zastúpenie v horninách majú hlinitokremičitany, z nich uvedieme živce: ortoklas (KAlSi3O8) a plagioklas ((Na, Ca)Al1-2Si2-3O8).

Mineralogicky je bezpochyby najvýznamnejším zástupcom kremeň (lat. lapis cremans), chemicky oxid kremičitý SiO2. Minerály s týmto zložením sa farebne líšia podľa prítomnosti malého množstva cudzích prvkov, ktoré spôsobujú charakteristické sfarbenie kryštalického oxidu kremičitého. Takmer čistý oxid kremičitý je označovaný ako krištáľ, do fialova je sfarbený ametyst, žltý je citrín, ružový ruženín, hnedý záhneda a napr. jaspis, sa vyskytuje v niekoľkých farebných odtieňoch.

ametyst

ametyst

Zvláštny prípad minerálu na báze oxidu kremičitého je amorfná forma tejto zlúčeniny – opál. Tento módny polodrahokam sa vyskytuje v niekoľkých farebných odtieňoch. V súčasnosti sa najväčšie množstvo opálov doluje v Austrálii a strednej Amerike vrátane Mexika. Na Slovensku sú známe opálové bane v blízkosti Prešova (Dubník).

Biologicky patrí kremík medzi biogénne prvky, aj keď jeho obsah v tkanivách živých organizmov nie je veľmi vysoký. Uvádza sa, že v tele dospelého človeka sa nachádza približne 1 g kremíka, a to predovšetkým v kostiach, chrupavkách a zubnej sklovine, je nevyhnutný pre ich zdravý rast a vývoj. Kremík hrá kľúčovú úlohu pri tvorbe kolagénu, podieľa sa na elastickosti všetkých tkanív. Zvýšený obsah kremíka v rastlinných bunkách môžeme nájsť napr. v prasličkách alebo páliacich chĺpkoch žihľavy.

Kremík je mimoriadne dôležitý ako stavebný kameň jednobunkových rias rozsievok. Hlavným stavebným materiálom frustuly (bunkovej steny rozsievky) je vodnatý polymér oxidu kremičitého, príbuzný opálu. Rozsievky sú jedinou skupinou organizmov, ktorých rozvoj je úplne závislý na prítomnosti rozpustných foriem oxidu kremičitého v prostredí. Po vyčerpaní zdrojov kremíka sa zastaví replikácia DNA. Rozsievky sú významný primárny zdroj biomasy, ich biomasa tvorí až 25 % z celkového množstva biomasy vyprodukovanej rastlinami.

Výroba a využitie [úprava]

Výroba kremíka v priemyselnom meradle je založená na redukcii taveniny vysoko čistého oxidu kremičitého v oblúkovej elektrickej peci. Na uhlíkovej elektróde pritom dochádza k reakcii:

SiO_2 + C \rightarrow Si + CO_2

za vzniku kremíka o čistote 97 – 99 %.

Pre potreby elektronického priemyslu je táto čistota absolútne nedostačujúca. Výroba elektronických súčiastok vyžaduje kremík s čistotou minimálne 99,9999 %, pretože aj nepatrné množstvo prímesí výrazne ovplyvňuje kvalitu vyrobených tranzistorov a ďalších elektronických súčiastok.

Výroba vysoko čistého kremíka [úprava]

Jeden z najstarších spôsobov prípravy vysoko čistého kremíka je zonálne tavenie. Čistený materiál sa najskôr upraví do tvaru dlhej tenkej tyče. Tá sa potom v špeciálnej piecke postupne pretavuje tak, aby sa tavená zóna posúvala od jedného konca k druhému. Pritom sa nečistoty prítomné v materiáli sústreďujú v roztavenej zóne a postupne sa dostávajú ku koncu tyče, ktorý sa nakoniec odreže (časť nečistôt sa naopak koncentruje v tuhnúcej tavenine a na konci viacerých cyklov sa nachádza na druhom konci tyče; kvôli ekonomike sa však tento druh nečistôt obvykle odstraňuje už pri príprave suroviny chemicky). Niekoľkonásobným opakovaním tohto postupu vznikne veľmi čistý materiál.

vysoko čistý kremík

vysoko čistý kremík

V súčasnosti sa na prípravu extrémne čistého kremíka používajú chemické metódy. V tzv. Siemensovom postupe je z kremíka najskôr pripravená nejaká plynná zlúčenina, zvyčajne trichlorsilan HSiCl3 alebo chlorid kremičitý SiCl4. Tieto zlúčeniny sa potom preženú cez vrstvu vysoko čistého kremíka s teplotou viac ako 1 100 °C. Pritom dochádza k ich rozkladu a vzniknutý vysoko čistý kremík sa ukladá v kryštalickej podobe na pôvodnú kremíkovú podložku. Reakciu trichlorsilanu opisuje rovnica:

2 HSiCl3 → Si + 2 HCl + SiCl4

Uvedeným postupom vzniká tzv. polykryštalický kremík, ktorý zvyčajne obsahuje nečistoty v pomere 1 : 1 000 000 a úplne vyhovuje požiadavkám pre výrobu elektronických polovodičových súčiastok.

Určitý čas bol alternatívou k Siemensovej metóde DuPontov postup, ktorý vychádzal z chloridu kremičitého a jeho rozkladu pri teplote 50 °C na vysoko čistom zinku podľa rovnice:

SiCl4 + 2 Zn → Si + 2 ZnCl2

Technické problémy s prchavosťou vznikajúceho chloridu zinočnatého, ktorý následne znečisťoval vyrobený čistý kremík, viedli nakoniec k tomu, že bol tento proces prakticky zavrhnutý.

Ďalším krokom spracovania extrémne čistého kremíka je príprava monokryštálu riadenou kryštalizáciou z taveniny, nazývaná Czochralského proces. Pri tomto postupe je do kremíkovej taveniny vložený zárodočný kryštál vysoko čistého kremíka. Tento kryštál sa pritom otáča a vyťahuje podľa vopred presne definovaného programu; teplota taveniny je tiež veľmi pozorne sledovaná a riadená. Celý proces sa uskutočňuje v nádobách z veľmi čistého kremeňa v inertnej atmosfére argónu. Na zárodočnom kryštáli sa potom vylučujú ďalšie vrstvy mimoriadne čistého kremíka, takže výsledný produkt môže mať až 400 mm v priemere a dĺžku do 2 m.

V niektorých prípadoch je potrebné predísť možnej kontaminácii kremíka materiálom kelímka, ktorý obsahuje taveninu. Pre prípravu monokryštálu je preto používaná aj metóda letmej zóny, podobná zonálnemu taveniu, pričom ingot je umiestnený zvisle a pomerne tenká roztavená zóna nie je v styku so žiadnym kelímkom ani podložkou a roztavený kremík je udržiavaný v ingote len povrchovým napätím.

Vyrobený monokryštál kremíka vo forme valcového ingotu sa po vychladnutí a určení presnej kryštalografickej orientácie (označenej zbrúsením niektorej strany/strán ingotu) reže na tenké pláty (vafery), leští a použije sa ako surovina na výrobu polovodičových súčiastok.

Slnečné (Solárne) články [úprava]

  • monokryštalické slnečné články: Sú vyrábané z monokryštalického kremíka. Ich účinnosť je asi 14%.
  • polykryštalické slnečné články: Pri výrobe sa používa polykryštalický kremík, ktorý je oveľa lacnejší. Táto prednosť je však vykúpená menšou účinnosťou, ktorá je asi 8%.
  • amorfné slnečné články: Na amorfnom kremíku je naviazaný vodík, ktorý nasycuje voľné valencie kremíka a tak prispieva k jeho stabilite. Mení pri tom výhodne jeho niektoré elektrické vlastnosti. Účinnosť je však iba 4%.

Zliatiny [úprava]

Metalurgický význam kremíka je iba vo výrobe niektorých špeciálnych zliatin, v ktorých sa ho aj tak vyskytuje iba niekoľko percent. Najznámejšia je ferosilícium, zliatina kremíka so železom, ktorá sa vyznačuje vysokou tvrdosťou a chemickou odolnosťou. Na zvýšenie tvrdosti sa kremík v malom množstve pridáva aj do špeciálnych ocelí a hliníkových zliatin.

Zlúčeniny kremíka a ich význam [úprava]

Oxid kremičitý [úprava]

Asi najvýznamnejšia anorganická zlúčenina kremíka je oxid kremičitý, SiO2. Táto látka sa vyskytuje v mnohých modifikáciách s celkom odlišnými fyzikálno-chemickými vlastnosťami.

  • Minerály na báze SiO2 sa vo forme polodrahokamov vyskytujú v najrôznejších farebných odtieňoch po celom svete. Ich základný prehľad bol spomenutý v predchádzajúcej kapitole.
  • Vo veľkom množstve okolitých hornín je prítomný kremeň vo forme žíl a vrastlíc. Pri erózii hornín dochádza k narušeniu ich štruktúry a kremeň ako jedna z najtvrdších a najodolnejších súčastí je z horniny vyplavovaný vo forme kremenných pieskov a kamienkov. Tento materiál slúži ako cenná surovina pre sklársky a stavebný priemysel.
  • V ílovitých horninách je kremík prítomný vo forme mikroskopických častíc. Tieto horniny sú základnou surovinou v keramickom priemysle a uplatnili sa aj pri výrobe stavebných materiálov (pálené tehly a škridle).

Výroba skla [úprava]



ozdobná sklenená váza

Z technického hľadiska je sklo podchladená tekutina - nemá kryštalickú štruktúru. Sklo skutočne tečie aj keď veľmi pomaly. Môžeme to pozorovať napr. na veľmi starých okenných tabuliach, ktoré sú v dolnej časti merateľne hrubšie, ako hore. Veľké problémy spôsobuje tečenie skla v šošovkách a zrkadlách obrých optických teleskopov, kde aj zmeny rozmerov v stotinách milimetrov môžu zhoršiť optické vlastnosti prístroja.

V súčasnosti sa vyrábajú stovky druhov skla pre najrôznejšie praktické aplikácie, ktoré sa líšia fyzikálnymi vlastnosťami aj vzhľadom. Základnou surovinou pre výrobu skloviny je zmes, nazývaná sklársky kmeň s približným zložením : 50% piesok (kremeň alebo oxid kremičitý), 16% sóda (uhličitan sodný), 12% vápenec (uhličitan vápenatý), 18% recyklované sklo (rozdrvené črepy). Táto zmes sa taví pri teplote okolo 1 500 °C a ďalej sa spracováva predovšetkým na výrobu fliaš liatím alebo fúkaním.

Druhy skla:

  • Pridaním potaše, čiže uhličitanu draselného, sa získava tabuľové sklo na výrobu okien, výkladných skríň apod. Sklovina pritom tuhne na vrstve roztaveného cínu a vzniknuté tabule majú obzvlášť hladký povrch – tzv. plavené sklo.
  • Sklo s vyšším obsahom olova sa vyznačuje vysokým indexom lomu a je obzvlášť ťažké. Olovnaté sklo sa používa na výrobu lustrov, bižutérie, ozdobných karáf a pohárov.
  • Borosilkátové sklá majú časť sklotvorného SiO2 nahradenú oxidom boritým. Prísada oxidu hlinitého zvyšuje ich pevnosť a zlepšuje spracovateľnosť skloviny. Borosilikátové sklá sú žiaruvzdorné a chemicky odolné. Používajú sa ako laboratórne a varné sklo pre domácnosť.
  • Chemicky najjednoduchšie je kremenné sklo, tavený čistý oxid kremičitý SiO2. Prepúšťa ultrafialové lúče, má výbornú chemickú a tepelnú odolnosť, znesie prudké ochladenie bez popraskania. Vysoká taviaca teplota okolo 1 800 °C a s tým spojená cena kremenného skla obmedzuje jeho praktické využitie na výrobu laboratórnych potrieb a špeciálnych žiaroviek.

Kremičitany [úprava]

Zeolit

Zeolit

Kremík vytvára celý rad kyslíkatých kyselín, z ktorých najjednoduchšia je kyselina tetrahydrogénkremičitá H4SiO4. Ďalšie kyseliny obsahujú viacero zreťazených skupín [SiO3]. Všetky sú pomerne slabé a nestále. Naopak, ich soli kremičitany, sú veľmi stabilné.

Kremičitany alkalických kovov a kovov alkalických zemín sú podstatnou súčasťou vyvretých hornín, ílov, tehlárskej hliny a ďalších.

Veľmi bežné sú horniny na báze hlinitokremičitanov (aluminosilikátov). Aluminosilikátové minerály sú napr. živce ortoklas KAlSi3O8 a plagioklas NaAlSi3O8.

Štrukturálne usporiadanie rôznych typov zeolitov, krúžok = kyslík, štvorec = kremík, alebo hliník.

Štrukturálne usporiadanie rôznych typov zeolitov, krúžok = kyslík, štvorec = kremík, alebo hliník.

Veľmi cenné sú aluminosilikáty nazývané zeolity, ktoré vytvárajú komplikované priestorové siete, zložené z tetraédrov SiO4 a AlO4, navzájom zviazaných zdieľanými vrcholovými atómmi kyslíka. Tvoria vzájomne prepojené kanály a dutiny, ktoré obsahujú slabo viazané, teda v podstate pohyblivé, molekuly vody a katióny alkalických kovov (Na, K, Li, Cs) a kovov alkalických zemín (Ca, Mg, Ba, Sr), ktoré vyrovnávajú nenasýtenú negatívnu valenciu AlO4. Zeolity sa správajú ako prírodné ionexy alebo molekulové sitá.


Keramika a stavebné materiály [úprava]

Porcelánové výrobky, vzniknuté vypálením kaolínu.

Porcelánové výrobky, vzniknuté vypálením kaolínu.

Keramika je všeobecný názov pre výrobky zhotovené vypaľovaním keramických zmesí, ktorých hlavnými zložkami sú kaolíny, íly a hliny. Keramické zmesi získajú po premiešaní s vodou plastické vlastnosti, v tom stave ich možno tvarovať a naopak po vypálení pri teplote 800 až 1500 °C plastické vlastnosti strácajú a menia sa v trvalo tvrdú látku nazývanú črep.

Najhodnotnejšou keramickou hmotou je porcelán, ktorého vstupné suroviny tvoria zmes, ktorá obsahuje priemerne 50 % najčistejšieho kaolínu, 25 % kremenného piesku a 25 % živcov. Veľmi známy a hodnotný je napríklad meissenský porcelán a karlovarský porcelán.

Tehlárske hliny ako menej hodnotné keramické suroviny slúžia na výrobu tehál, strešných škridľov a iných stavebných materiálov. Z ílov alebo menej hodnotného kaolínu, živca a kremeňa sa vypaľovaním pri teplote okolo 1300 °C vyrába buď obyčajná kamenina (potrubie, dlaždice) alebo jemná biela kamenina (taniere, umývadlá, kachličky, sošky).

Ďalšie uplatnenie v stavebníctve nachádza kremenný piesok ako zložka malty a spájacích materiálov a predovšetkým pri výrobe betónu.

Aerogél [úprava]

Hlavný článok: Aerogél

Vzorka aerogélu.

Vzorka aerogélu.

Zamrznutý dym - tak pomenovali vedci špeciálny materiál, ktorý svojím výzorom skutočne pripomína dym, no svojimi vlastnosťami drží 15 svetových fyzikálnych rekordov. Je to jeden z najlepších tepelných izolantov a taktiež je aj veľmi pevná látka s najmenšou známou hustotou. Blok aerogélu o veľkosti dospelého človeka váži necelý pol kilogram a unesie váhu malého osobného auta. Pritom 99,8 % objemu tvorí obyčajný vzduch, zvyšok, čiže 0,2 %, sú kremíkové.

Aerogél sa vyrába zo zmesi oxidu kremičitého (SiO2) a kvapalného oxidu uhličitého (CO2). Potom sa za obrovského tlaku z tohto gélu odstráni všetka kvapalná zložka (superkritické vysušenie). Jedine tak nedôjde k zrúteniu kremíkových buniek a následnej deformícii gélu. Vznikne tak teleso s niekoľkými miliardami buniek z kremíka, ktoré držia pokope silné molekulové väzby O-Si. Zatiaľ čo svetlo so svojou krátkou vlnovou dĺžkou prejde cez aerogél takmer bez zmeny, teplo a zvuk sa cez blok aerogélu takmer nedostane. V súčasnosti je jeho výroba veľmi nákladná a využíva sa najmä v kozmickom výskume. Je to však materiál s obrovským potenciálom využitia v budúcnosti [1].

Halogenidy kremíka [úprava]

Kremík vytvára zlúčeniny s fluórom SiF4, chlórom SiCl4 a brómom SiBr4, ktoré sa môžu ďalej zreťaziť za vzniku vyšších halogenidov. Všetky uvedené zlúčeniny sú veľmi nestále a pri styku s vodou okamžite hydrolyzujú za vzniku gelovitej kyseliny kremičitej.

Chlorid kremičitý je veľmi dôležitou zlúčeninou pri príprave čistého kremíka pre polovodičové súčiastky (pozri vyššie).

Prchavosť fluoridu kremičitého sa v analytickej chémii používa k odstráneniu fluóru z jeho stabilných fluoridov AlF3 a fluoridov lantanoidov. Vzorka sa pritom varí pri asi 150 °C v 50 % kyseline sírovej v sklenenej aparatúre a vzniknutý prchavý SiF4 je okamžite odvádzaný prúdom horúcej vodnej pary do roztoku alkalického lúhu, kde je potom možné ľahšie určiť jeho obsah.

Karbid kremíka [úprava]

Karbid kremičitý SiC tvorí analogickú kryštalickú štruktúru ako diamant a patrí preto medzi jedny z najtvrdších známych látok. V Mohsovej stupnici tvrdosti dosahuje stupeň 9 až 10 a nachádza preto praktické uplatnenie ako brusivo pod názvom karborundum.

Krem


arrow
arrow
    全站熱搜
    創作者介紹
    創作者 beeway 的頭像
    beeway

    BW Professional Cutter Expert www.tool-tool.com

    beeway 發表在 痞客邦 留言(0) 人氣()