公告版位
Bewise Inc. www.tool-tool.com Reference source from the internet.
【彭子豪】

記 得有一句知名手機廠的廣告詞-「科技始終來自人性」,但科技日新月異,常發現真的要人性化,還頗困難。尤其科技製品都來自少數人的實驗室中,這也是為何 「科技新品」在追求市場量能時,常常反而無法將產品應用普及進而大賣。但如是以幸福傳達出全新科技觀,似乎值得人類期待,全新通訊應用WiMAX就是有這 種能耐及魅力。

為何WiMAX可和幸福畫上等號,主因在此全新的無線通訊技術,可針對國內無線通訊技術如2G、3G及WiFi等,提供全 面性的提升,將目前各項行動應用擴散到全台灣的每一個角落,打破過去通訊應用只能在都會區或是高人口密集度區域中發揮外,還可將現有應用達到高速應用化。 簡單來說,WiMAX可將資訊流通及應用達到扁平化、全民化,相關應用不再只是由電信等相關業者提出需求及應用,而是全民當家,提出自己的需求,創造無線 通訊應用的新幸福指標。

無線高速傳輸 克服山區網路建設難題

以台南縣後壁鄉為例,這一個名風淳樸的山地鄉鎮,但對於當地 下一代的台灣主人翁,要和都市區域的小孩一樣,能利用網路來看世界似乎相當困難,更別說鄉內學校利用網路進行遠距教學,主因網路建設無法完全深入山區,不 只建設成本過高外,如遇颱風還可能造成通訊中斷,因此WiMAX所提供的無線高速傳輸效能及最高30公里的涵蓋區域,就成為後壁鄉能和全台乃至全世界接軌 的重要推手。

因此當地在學生不只在學校內,可利用WiMAX上網外,還可和國內其他學校進行遠距教學,提高中部地區的教學品質,真正縮短城鄉間的資訊差距。另一角度來看,在都會區的學校,也因WiMAX的應用,了解中部偏遠區域的人文風情,讓來自台灣之美散佈到全國。

同 樣的例子也出現在南投縣仁愛鄉春陽國小中。在教育部的全力支援下,國立暨南大學的網路應用服務中心為當地提供一對多的網路教學服務。每周四下午,春陽國小 的中、高年級學生,可在電腦教室中,利用網路和暨南大學的大哥哥們討論電腦入門課程。上述過去較難鋪設網路主幹的區域,全因WiMAX的應用,都可體會到 網路世界的多元。

路況管理 動態資料即時傳遞

WiMAX的應用不只這點,只要能發揮天馬行空的相像空間,都可創造 WiMAX的全新應用。以路況管理為例,在一般都會區都有監視器做存證攝影,但受限於無線頻寬的因素,只能在發生事情後再給予調閱。有了WiMAX就不 同,未來如發生交通肇事事故,在交管中心找到資料的同時,就可將動態資料立即傳輸到附近管區員警手上,縮短偵查所需的時間。由於WiMAX可供高速移動傳 輸,就算車速達到100公里在高速公路上奔馳,還是能輕鬆接收。

對於非都會中心,路況管理較不容易,但多數危險路況都出現在此相關區域 中,只要有WiMAX技術這些都得以解決。以大同公司為例,日前就以 WiMAX技術針對砂石車,研發出全新服務應用,若有非法的砂石車進入監控區域,監控人員能立刻透過WiMAX監看,並進行後續處理,避免交通事故的發 生。

由上述可知,WiMAX和過去無線傳輸應用不同,比WiFi的應用廣,載具不只是手機,也可是筆記型電腦、桌上型電腦、PDA等,速 度及頻寬更比3G高,但價格將會更低。由於屬於列為M-Taiwan新十大建設中,基本基地台在國家通訊委員會(NCC)的規定下,可和現有2G、3G基 地台共構,因此對於民眾來說,在家與戶外都可以單一帳號無線上網,在享受便利性同時,全新的應用服務所需負擔的費用也將比現在更低 (只需500元以下)。

全台民眾生活 跨越界線大串聯

目前在政府積極推動下,我國在WiMAX的推廣及應用走的比其他國 家還快,專業度更不輸其他國家。且台灣地型特殊,更利於WiMAX發展,因此不少國際大廠都將台灣設定為WiMAX重點推廣地區,這也是為何國內每項成功 案例都可吸引國際間矚目的主因。目前台灣是WiMAX Forum(由Intel、Alvarion、Fujitsu、BT Group等組成)宣布的全球第四個WiMAX認證測試中心實驗室,並且是全球首座移動與固定式兼具的認證測試實驗室,這足以代表WiMAX Fo-rum對我國WiMAX產業的重視。

目前國際間對於WiMAX網路布建三大趨勢:一、技術趨勢:全球WiMAX網路佈建,技術 16e (行動式)佈建比重將超過16d (固定式)。二、頻譜趨勢:全球WiMAX網路佈建使用頻譜將往2.5GHz移動。三、業者趨勢:全球WiMAX網路佈建,固網型業者加入戰局的比率大幅 成長,顯示固網反攻行動之趨勢。上述趨勢剛好和我國發展WiMAX的方向相近,再加上政府積極投入,因此台灣民眾更可比全球其他地區,提早享受到幸福指數 最高的行動無線傳輸應用服務外,更能因WiMAX將台灣民眾的生活不受地區串聯起來。

WiMAX小檔案(Worldwide interoperability for Microwave Access)

優 點:高速傳輸達75Mbps,3G最高2Mbps涵蓋面郊區30公里,都會區2至7公里,WiFi只有100公尺在家與戶外都可以單一帳號無線上網,且上 網費用比現在低 (500元以下) 基地台可和2G、3G共構,避免基地台在區會都過多之疑慮電磁波相對較低,民眾健康更有保障。

幸福指 標:提供政府在治安、交通、醫療走入行動化。針對教育方面,偏遠地區拉寬頻主幹更具經濟效益,故WiMAX可提供遠距教學方案、各大校園內提供行動圖書 館、互動教學及校園安全等。個人方面視訊電話不再出現馬賽克、玩線上遊戲不怕斷線,針對商務人士可打造出最佳「無線」辦公環境。

【2007/05/03 經濟日報】
Welcome to BW tool world! We are an experienced tool maker specialized in cutting tools. We focus on what you need and endeavor to research the best cutter to satisfy users’ demand. Our customers involve wide range of industries, like mold & die, aerospace, electronic, machinery, ,,,etc. We are professional expert in cutting field. We would like to solve every problem from you. Please feel free to contact us, it’s our pleasure to serve for you. BW product including: utting tool、aerospace tool .HSS Cutting tool、Carbide end mills、Carbide cutting tool、NAS Cutting tool、Carbide end mill、Aerospace cutting tool、Carbide drill、High speed steel、Milling cutter、Core drill、Taperd end mills、Metric end mills、Miniature end mills、Pilot reamer、Electronics cutter、Step drill、Metal cutting saw、Double margin drill、Gun barrel、Angle milling cutter、Carbide burrs、Carbide tipped cutter、Chamfering tool、IC card engraving cutter、Side cutter、NAS tool、DIN tool、Special tool、Metal slitting saws、Shell end mills、Side and face milling cutters、Side chip clearance saws、Long end mills、Stub roughing end mills、Dovetail milling cutters、Carbide slot drills、Carbide torus cutters、Angeled carbide end mills、Carbide torus cutters、Carbide ball-noseed slot drills、Mould cutter、Tool manufacturer.
Bewise Inc. www.tool-tool.com

beeway 發表在 痞客邦 留言(0) 人氣()

Bewise Inc. www.tool-tool.com Reference source from the internet.
There's Plenty of Room at the Bottom

An Invitation to Enter a New Field of Physics

ref: http://elearning.stut.edu.tw/m_facture/Nanotech/Web/ch11.htm



by Richard P. Feynman

This transcript of the classic talk that Richard Feynman gave on December 29th 1959 at the annual meeting of the American Physical Society at the California Institute of Technology (Caltech) was first published in the February 1960 issue of Caltech's Engineering and Science, which owns the copyright. It has been made available on the web at http://www.zyvex.com/nanotech/feynman.html with their kind permission.

Information on the Feynman Prizes

Links to pages on Feynman

For an account of the talk and how people reacted to it, see chapter 4 of Nano! by Ed Regis, Little/Brown 1995. An excellent technical introduction to nanotechnology is Nanosystems: molecular machinery, manufacturing, and computation by K. Eric Drexler, Wiley 1992.

I imagine experimental physicists must often look with envy at men like Kamerlingh Onnes, who discovered a field like low temperature, which seems to be bottomless and in which one can go down and down. Such a man is then a leader and has some temporary monopoly in a scientific adventure. Percy Bridgman, in designing a way to obtain higher pressures, opened up another new field and was able to move into it and to lead us all along. The development of ever higher vacuum was a continuing development of the same kind.

I would like to describe a field, in which little has been done, but in which an enormous amount can be done in principle. This field is not quite the same as the others in that it will not tell us much of fundamental physics (in the sense of, ``What are the strange particles?'') but it is more like solid-state physics in the sense that it might tell us much of great interest about the strange phenomena that occur in complex situations. Furthermore, a point that is most important is that it would have an enormous number of technical applications.

What I want to talk about is the problem of manipulating and controlling things on a small scale.

As soon as I mention this, people tell me about miniaturization, and how far it has progressed today. They tell me about electric motors that are the size of the nail on your small finger. And there is a device on the market, they tell me, by which you can write the Lord's Prayer on the head of a pin. But that's nothing; that's the most primitive, halting step in the direction I intend to discuss. It is a staggeringly small world that is below. In the year 2000, when they look back at this age, they will wonder why it was not until the year 1960 that anybody began seriously to move in this direction.

Why cannot we write the entire 24 volumes of the Encyclopedia Brittanica on the head of a pin?

Let's see what would be involved. The head of a pin is a sixteenth of an inch across. If you magnify it by 25,000 diameters, the area of the head of the pin is then equal to the area of all the pages of the Encyclopaedia Brittanica. Therefore, all it is necessary to do is to reduce in size all the writing in the Encyclopaedia by 25,000 times. Is that possible? The resolving power of the eye is about 1/120 of an inch---that is roughly the diameter of one of the little dots on the fine half-tone reproductions in the Encyclopaedia. This, when you demagnify it by 25,000 times, is still 80 angstroms in diameter---32 atoms across, in an ordinary metal. In other words, one of those dots still would contain in its area 1,000 atoms. So, each dot can easily be adjusted in size as required by the photoengraving, and there is no question that there is enough room on the head of a pin to put all of the Encyclopaedia Brittanica.

Furthermore, it can be read if it is so written. Let's imagine that it is written in raised letters of metal; that is, where the black is in the Encyclopedia, we have raised letters of metal that are actually 1/25,000 of their ordinary size. How would we read it?

If we had something written in such a way, we could read it using techniques in common use today. (They will undoubtedly find a better way when we do actually have it written, but to make my point conservatively I shall just take techniques we know today.) We would press the metal into a plastic material and make a mold of it, then peel the plastic off very carefully, evaporate silica into the plastic to get a very thin film, then shadow it by evaporating gold at an angle against the silica so that all the little letters will appear clearly, dissolve the plastic away from the silica film, and then look through it with an electron microscope!

There is no question that if the thing were reduced by 25,000 times in the form of raised letters on the pin, it would be easy for us to read it today. Furthermore; there is no question that we would find it easy to make copies of the master; we would just need to press the same metal plate again into plastic and we would have another copy.
How do we write small?

The next question is: How do we write it? We have no standard technique to do this now. But let me argue that it is not as difficult as it first appears to be. We can reverse the lenses of the electron microscope in order to demagnify as well as magnify. A source of ions, sent through the microscope lenses in reverse, could be focused to a very small spot. We could write with that spot like we write in a TV cathode ray oscilloscope, by going across in lines, and having an adjustment which determines the amount of material which is going to be deposited as we scan in lines.

This method might be very slow because of space charge limitations. There will be more rapid methods. We could first make, perhaps by some photo process, a screen which has holes in it in the form of the letters. Then we would strike an arc behind the holes and draw metallic ions through the holes; then we could again use our system of lenses and make a small image in the form of ions, which would deposit the metal on the pin.

A simpler way might be this (though I am not sure it would work): We take light and, through an optical microscope running backwards, we focus it onto a very small photoelectric screen. Then electrons come away from the screen where the light is shining. These electrons are focused down in size by the electron microscope lenses to impinge directly upon the surface of the metal. Will such a beam etch away the metal if it is run long enough? I don't know. If it doesn't work for a metal surface, it must be possible to find some surface with which to coat the original pin so that, where the electrons bombard, a change is made which we could recognize later.

There is no intensity problem in these devices---not what you are used to in magnification, where you have to take a few electrons and spread them over a bigger and bigger screen; it is just the opposite. The light which we get from a page is concentrated onto a very small area so it is very intense. The few electrons which come from the photoelectric screen are demagnified down to a very tiny area so that, again, they are very intense. I don't know why this hasn't been done yet!

That's the Encyclopaedia Brittanica on the head of a pin, but let's consider all the books in the world. The Library of Congress has approximately 9 million volumes; the British Museum Library has 5 million volumes; there are also 5 million volumes in the National Library in France. Undoubtedly there are duplications, so let us say that there are some 24 million volumes of interest in the world.

What would happen if I print all this down at the scale we have been discussing? How much space would it take? It would take, of course, the area of about a million pinheads because, instead of there being just the 24 volumes of the Encyclopaedia, there are 24 million volumes. The million pinheads can be put in a square of a thousand pins on a side, or an area of about 3 square yards. That is to say, the silica replica with the paper-thin backing of plastic, with which we have made the copies, with all this information, is on an area of approximately the size of 35 pages of the Encyclopaedia. That is about half as many pages as there are in this magazine. All of the information which all of mankind has every recorded in books can be carried around in a pamphlet in your hand---and not written in code, but a simple reproduction of the original pictures, engravings, and everything else on a small scale without loss of resolution.

What would our librarian at Caltech say, as she runs all over from one building to another, if I tell her that, ten years from now, all of the information that she is struggling to keep track of--- 120,000 volumes, stacked from the floor to the ceiling, drawers full of cards, storage rooms full of the older books---can be kept on just one library card! When the University of Brazil, for example, finds that their library is burned, we can send them a copy of every book in our library by striking off a copy from the master plate in a few hours and mailing it in an envelope no bigger or heavier than any other ordinary air mail letter.

Now, the name of this talk is ``There is Plenty of Room at the Bottom''---not just ``There is Room at the Bottom.'' What I have demonstrated is that there is room---that you can decrease the size of things in a practical way. I now want to show that there is plenty of room. I will not now discuss how we are going to do it, but only what is possible in principle---in other words, what is possible according to the laws of physics. I am not inventing anti-gravity, which is possible someday only if the laws are not what we think. I am telling you what could be done if the laws are what we think; we are not doing it simply because we haven't yet gotten around to it.
Information on a small scale

Suppose that, instead of trying to reproduce the pictures and all the information directly in its present form, we write only the information content in a code of dots and dashes, or something like that, to represent the various letters. Each letter represents six or seven ``bits'' of information; that is, you need only about six or seven dots or dashes for each letter. Now, instead of writing everything, as I did before, on the surface of the head of a pin, I am going to use the interior of the material as well.

Let us represent a dot by a small spot of one metal, the next dash, by an adjacent spot of another metal, and so on. Suppose, to be conservative, that a bit of information is going to require a little cube of atoms 5 times 5 times 5---that is 125 atoms. Perhaps we need a hundred and some odd atoms to make sure that the information is not lost through diffusion, or through some other process.

I have estimated how many letters there are in the Encyclopaedia, and I have assumed that each of my 24 million books is as big as an Encyclopaedia volume, and have calculated, then, how many bits of information there are (10^15). For each bit I allow 100 atoms. And it turns out that all of the information that man has carefully accumulated in all the books in the world can be written in this form in a cube of material one two-hundredth of an inch wide--- which is the barest piece of dust that can be made out by the human eye. So there is plenty of room at the bottom! Don't tell me about microfilm!

This fact---that enormous amounts of information can be carried in an exceedingly small space---is, of course, well known to the biologists, and resolves the mystery which existed before we understood all this clearly, of how it could be that, in the tiniest cell, all of the information for the organization of a complex creature such as ourselves can be stored. All this information---whether we have brown eyes, or whether we think at all, or that in the embryo the jawbone should first develop with a little hole in the side so that later a nerve can grow through it---all this information is contained in a very tiny fraction of the cell in the form of long-chain DNA molecules in which approximately 50 atoms are used for one bit of information about the cell.
Better electron microscopes

If I have written in a code, with 5 times 5 times 5 atoms to a bit, the question is: How could I read it today? The electron microscope is not quite good enough, with the greatest care and effort, it can only resolve about 10 angstroms. I would like to try and impress upon you while I am talking about all of these things on a small scale, the importance of improving the electron microscope by a hundred times. It is not impossible; it is not against the laws of diffraction of the electron. The wave length of the electron in such a microscope is only 1/20 of an angstrom. So it should be possible to see the individual atoms. What good would it be to see individual atoms distinctly?

We have friends in other fields---in biology, for instance. We physicists often look at them and say, ``You know the reason you fellows are making so little progress?'' (Actually I don't know any field where they are making more rapid progress than they are in biology today.) ``You should use more mathematics, like we do.'' They could answer us---but they're polite, so I'll answer for them: ``What you should do in order for us to make more rapid progress is to make the electron microscope 100 times better.''

What are the most central and fundamental problems of biology today? They are questions like: What is the sequence of bases in the DNA? What happens when you have a mutation? How is the base order in the DNA connected to the order of amino acids in the protein? What is the structure of the RNA; is it single-chain or double-chain, and how is it related in its order of bases to the DNA? What is the organization of the microsomes? How are proteins synthesized? Where does the RNA go? How does it sit? Where do the proteins sit? Where do the amino acids go in? In photosynthesis, where is the chlorophyll; how is it arranged; where are the carotenoids involved in this thing? What is the system of the conversion of light into chemical energy?

It is very easy to answer many of these fundamental biological questions; you just look at the thing! You will see the order of bases in the chain; you will see the structure of the microsome. Unfortunately, the present microscope sees at a scale which is just a bit too crude. Make the microscope one hundred times more powerful, and many problems of biology would be made very much easier. I exaggerate, of course, but the biologists would surely be very thankful to you---and they would prefer that to the criticism that they should use more mathematics.

The theory of chemical processes today is based on theoretical physics. In this sense, physics supplies the foundation of chemistry. But chemistry also has analysis. If you have a strange substance and you want to know what it is, you go through a long and complicated process of chemical analysis. You can analyze almost anything today, so I am a little late with my idea. But if the physicists wanted to, they could also dig under the chemists in the problem of chemical analysis. It would be very easy to make an analysis of any complicated chemical substance; all one would have to do would be to look at it and see where the atoms are. The only trouble is that the electron microscope is one hundred times too poor. (Later, I would like to ask the question: Can the physicists do something about the third problem of chemistry---namely, synthesis? Is there a physical way to synthesize any chemical substance?

The reason the electron microscope is so poor is that the f- value of the lenses is only 1 part to 1,000; you don't have a big enough numerical aperture. And I know that there are theorems which prove that it is impossible, with axially symmetrical stationary field lenses, to produce an f-value any bigger than so and so; and therefore the resolving power at the present time is at its theoretical maximum. But in every theorem there are assumptions. Why must the field be symmetrical? I put this out as a challenge: Is there no way to make the electron microscope more powerful?
The marvelous biological system

The biological example of writing information on a small scale has inspired me to think of something that should be possible. Biology is not simply writing information; it is doing something about it. A biological system can be exceedingly small. Many of the cells are very tiny, but they are very active; they manufacture various substances; they walk around; they wiggle; and they do all kinds of marvelous things---all on a very small scale. Also, they store information. Consider the possibility that we too can make a thing very small which does what we want---that we can manufacture an object that maneuvers at that level!

There may even be an economic point to this business of making things very small. Let me remind you of some of the problems of computing machines. In computers we have to store an enormous amount of information. The kind of writing that I was mentioning before, in which I had everything down as a distribution of metal, is permanent. Much more interesting to a computer is a way of writing, erasing, and writing something else. (This is usually because we don't want to waste the material on which we have just written. Yet if we could write it in a very small space, it wouldn't make any difference; it could just be thrown away after it was read. It doesn't cost very much for the material).
Miniaturizing the computer

I don't know how to do this on a small scale in a practical way, but I do know that computing machines are very large; they fill rooms. Why can't we make them very small, make them of little wires, little elements---and by little, I mean little. For instance, the wires should be 10 or 100 atoms in diameter, and the circuits should be a few thousand angstroms across. Everybody who has analyzed the logical theory of computers has come to the conclusion that the possibilities of computers are very interesting---if they could be made to be more complicated by several orders of magnitude. If they had millions of times as many elements, they could make judgments. They would have time to calculate what is the best way to make the calculation that they are about to make. They could select the method of analysis which, from their experience, is better than the one that we would give to them. And in many other ways, they would have new qualitative features.

If I look at your face I immediately recognize that I have seen it before. (Actually, my friends will say I have chosen an unfortunate example here for the subject of this illustration. At least I recognize that it is a man and not an apple.) Yet there is no machine which, with that speed, can take a picture of a face and say even that it is a man; and much less that it is the same man that you showed it before---unless it is exactly the same picture. If the face is changed; if I am closer to the face; if I am further from the face; if the light changes---I recognize it anyway. Now, this little computer I carry in my head is easily able to do that. The computers that we build are not able to do that. The number of elements in this bone box of mine are enormously greater than the number of elements in our ``wonderful'' computers. But our mechanical computers are too big; the elements in this box are microscopic. I want to make some that are submicroscopic.

If we wanted to make a computer that had all these marvelous extra qualitative abilities, we would have to make it, perhaps, the size of the Pentagon. This has several disadvantages. First, it requires too much material; there may not be enough germanium in the world for all the transistors which would have to be put into this enormous thing. There is also the problem of heat generation and power consumption; TVA would be needed to run the computer. But an even more practical difficulty is that the computer would be limited to a certain speed. Because of its large size, there is finite time required to get the information from one place to another. The information cannot go any faster than the speed of light---so, ultimately, when our computers get faster and faster and more and more elaborate, we will have to make them smaller and smaller.

But there is plenty of room to make them smaller. There is nothing that I can see in the physical laws that says the computer elements cannot be made enormously smaller than they are now. In fact, there may be certain advantages.
Miniaturization by evaporation

How can we make such a device? What kind of manufacturing processes would we use? One possibility we might consider, since we have talked about writing by putting atoms down in a certain arrangement, would be to evaporate the material, then evaporate the insulator next to it. Then, for the next layer, evaporate another position of a wire, another insulator, and so on. So, you simply evaporate until you have a block of stuff which has the elements--- coils and condensers, transistors and so on---of exceedingly fine dimensions.

But I would like to discuss, just for amusement, that there are other possibilities. Why can't we manufacture these small computers somewhat like we manufacture the big ones? Why can't we drill holes, cut things, solder things, stamp things out, mold different shapes all at an infinitesimal level? What are the limitations as to how small a thing has to be before you can no longer mold it? How many times when you are working on something frustratingly tiny like your wife's wrist watch, have you said to yourself, ``If I could only train an ant to do this!'' What I would like to suggest is the possibility of training an ant to train a mite to do this. What are the possibilities of small but movable machines? They may or may not be useful, but they surely would be fun to make.

Consider any machine---for example, an automobile---and ask about the problems of making an infinitesimal machine like it. Suppose, in the particular design of the automobile, we need a certain precision of the parts; we need an accuracy, let's suppose, of 4/10,000 of an inch. If things are more inaccurate than that in the shape of the cylinder and so on, it isn't going to work very well. If I make the thing too small, I have to worry about the size of the atoms; I can't make a circle of ``balls'' so to speak, if the circle is too small. So, if I make the error, corresponding to 4/10,000 of an inch, correspond to an error of 10 atoms, it turns out that I can reduce the dimensions of an automobile 4,000 times, approximately---so that it is 1 mm. across. Obviously, if you redesign the car so that it would work with a much larger tolerance, which is not at all impossible, then you could make a much smaller device.

It is interesting to consider what the problems are in such small machines. Firstly, with parts stressed to the same degree, the forces go as the area you are reducing, so that things like weight and inertia are of relatively no importance. The strength of material, in other words, is very much greater in proportion. The stresses and expansion of the flywheel from centrifugal force, for example, would be the same proportion only if the rotational speed is increased in the same proportion as we decrease the size. On the other hand, the metals that we use have a grain structure, and this would be very annoying at small scale because the material is not homogeneous. Plastics and glass and things of this amorphous nature are very much more homogeneous, and so we would have to make our machines out of such materials.

There are problems associated with the electrical part of the system---with the copper wires and the magnetic parts. The magnetic properties on a very small scale are not the same as on a large scale; there is the ``domain'' problem involved. A big magnet made of millions of domains can only be made on a small scale with one domain. The electrical equipment won't simply be scaled down; it has to be redesigned. But I can see no reason why it can't be redesigned to work again.
Problems of lubrication

Lubrication involves some interesting points. The effective viscosity of oil would be higher and higher in proportion as we went down (and if we increase the speed as much as we can). If we don't increase the speed so much, and change from oil to kerosene or some other fluid, the problem is not so bad. But actually we may not have to lubricate at all! We have a lot of extra force. Let the bearings run dry; they won't run hot because the heat escapes away from such a small device very, very rapidly.

This rapid heat loss would prevent the gasoline from exploding, so an internal combustion engine is impossible. Other chemical reactions, liberating energy when cold, can be used. Probably an external supply of electrical power would be most convenient for such small machines.

What would be the utility of such machines? Who knows? Of course, a small automobile would only be useful for the mites to drive around in, and I suppose our Christian interests don't go that far. However, we did note the possibility of the manufacture of small elements for computers in completely automatic factories, containing lathes and other machine tools at the very small level. The small lathe would not have to be exactly like our big lathe. I leave to your imagination the improvement of the design to take full advantage of the properties of things on a small scale, and in such a way that the fully automatic aspect would be easiest to manage.

A friend of mine (Albert R. Hibbs) suggests a very interesting possibility for relatively small machines. He says that, although it is a very wild idea, it would be interesting in surgery if you could swallow the surgeon. You put the mechanical surgeon inside the blood vessel and it goes into the heart and ``looks'' around. (Of course the information has to be fed out.) It finds out which valve is the faulty one and takes a little knife and slices it out. Other small machines might be permanently incorporated in the body to assist some inadequately-functioning organ.

Now comes the interesting question: How do we make such a tiny mechanism? I leave that to you. However, let me suggest one weird possibility. You know, in the atomic energy plants they have materials and machines that they can't handle directly because they have become radioactive. To unscrew nuts and put on bolts and so on, they have a set of master and slave hands, so that by operating a set of levers here, you control the ``hands'' there, and can turn them this way and that so you can handle things quite nicely.

Most of these devices are actually made rather simply, in that there is a particular cable, like a marionette string, that goes directly from the controls to the ``hands.'' But, of course, things also have been made using servo motors, so that the connection between the one thing and the other is electrical rather than mechanical. When you turn the levers, they turn a servo motor, and it changes the electrical currents in the wires, which repositions a motor at the other end.

Now, I want to build much the same device---a master-slave system which operates electrically. But I want the slaves to be made especially carefully by modern large-scale machinists so that they are one-fourth the scale of the ``hands'' that you ordinarily maneuver. So you have a scheme by which you can do things at one- quarter scale anyway---the little servo motors with little hands play with little nuts and bolts; they drill little holes; they are four times smaller. Aha! So I manufacture a quarter-size lathe; I manufacture quarter-size tools; and I make, at the one-quarter scale, still another set of hands again relatively one-quarter size! This is one-sixteenth size, from my point of view. And after I finish doing this I wire directly from my large-scale system, through transformers perhaps, to the one-sixteenth-size servo motors. Thus I can now manipulate the one-sixteenth size hands.

Well, you get the principle from there on. It is rather a difficult program, but it is a possibility. You might say that one can go much farther in one step than from one to four. Of course, this has all to be designed very carefully and it is not necessary simply to make it like hands. If you thought of it very carefully, you could probably arrive at a much better system for doing such things.

If you work through a pantograph, even today, you can get much more than a factor of four in even one step. But you can't work directly through a pantograph which makes a smaller pantograph which then makes a smaller pantograph---because of the looseness of the holes and the irregularities of construction. The end of the pantograph wiggles with a relatively greater irregularity than the irregularity with which you move your hands. In going down this scale, I would find the end of the pantograph on the end of the pantograph on the end of the pantograph shaking so badly that it wasn't doing anything sensible at all.

At each stage, it is necessary to improve the precision of the apparatus. If, for instance, having made a small lathe with a pantograph, we find its lead screw irregular---more irregular than the large-scale one---we could lap the lead screw against breakable nuts that you can reverse in the usual way back and forth until this lead screw is, at its scale, as accurate as our original lead screws, at our scale.

We can make flats by rubbing unflat surfaces in triplicates together---in three pairs---and the flats then become flatter than the thing you started with. Thus, it is not impossible to improve precision on a small scale by the correct operations. So, when we build this stuff, it is necessary at each step to improve the accuracy of the equipment by working for awhile down there, making accurate lead screws, Johansen blocks, and all the other materials which we use in accurate machine work at the higher level. We have to stop at each level and manufacture all the stuff to go to the next level---a very long and very difficult program. Perhaps you can figure a better way than that to get down to small scale more rapidly.

Yet, after all this, you have just got one little baby lathe four thousand times smaller than usual. But we were thinking of making an enormous computer, which we were going to build by drilling holes on this lathe to make little washers for the computer. How many washers can you manufacture on this one lathe?
A hundred tiny hands

When I make my first set of slave ``hands'' at one-fourth scale, I am going to make ten sets. I make ten sets of ``hands,'' and I wire them to my original levers so they each do exactly the same thing at the same time in parallel. Now, when I am making my new devices one-quarter again as small, I let each one manufacture ten copies, so that I would have a hundred ``hands'' at the 1/16th size.

Where am I going to put the million lathes that I am going to have? Why, there is nothing to it; the volume is much less than that of even one full-scale lathe. For instance, if I made a billion little lathes, each 1/4000 of the scale of a regular lathe, there are plenty of materials and space available because in the billion little ones there is less than 2 percent of the materials in one big lathe.

It doesn't cost anything for materials, you see. So I want to build a billion tiny factories, models of each other, which are manufacturing simultaneously, drilling holes, stamping parts, and so on.

As we go down in size, there are a number of interesting problems that arise. All things do not simply scale down in proportion. There is the problem that materials stick together by the molecular (Van der Waals) attractions. It would be like this: After you have made a part and you unscrew the nut from a bolt, it isn't going to fall down because the gravity isn't appreciable; it would even be hard to get it off the bolt. It would be like those old movies of a man with his hands full of molasses, trying to get rid of a glass of water. There will be several problems of this nature that we will have to be ready to design for.
Rearranging the atoms

But I am not afraid to consider the final question as to whether, ultimately---in the great future---we can arrange the atoms the way we want; the very atoms, all the way down! What would happen if we could arrange the atoms one by one the way we want them (within reason, of course; you can't put them so that they are chemically unstable, for example).

Up to now, we have been content to dig in the ground to find minerals. We heat them and we do things on a large scale with them, and we hope to get a pure substance with just so much impurity, and so on. But we must always accept some atomic arrangement that nature gives us. We haven't got anything, say, with a ``checkerboard'' arrangement, with the impurity atoms exactly arranged 1,000 angstroms apart, or in some other particular pattern.

What could we do with layered structures with just the right layers? What would the properties of materials be if we could really arrange the atoms the way we want them? They would be very interesting to investigate theoretically. I can't see exactly what would happen, but I can hardly doubt that when we have some control of the arrangement of things on a small scale we will get an enormously greater range of possible properties that substances can have, and of different things that we can do.

Consider, for example, a piece of material in which we make little coils and condensers (or their solid state analogs) 1,000 or 10,000 angstroms in a circuit, one right next to the other, over a large area, with little antennas sticking out at the other end---a whole series of circuits. Is it possible, for example, to emit light from a whole set of antennas, like we emit radio waves from an organized set of antennas to beam the radio programs to Europe? The same thing would be to beam the light out in a definite direction with very high intensity. (Perhaps such a beam is not very useful technically or economically.)

I have thought about some of the problems of building electric circuits on a small scale, and the problem of resistance is serious. If you build a corresponding circuit on a small scale, its natural frequency goes up, since the wave length goes down as the scale; but the skin depth only decreases with the square root of the scale ratio, and so resistive problems are of increasing difficulty. Possibly we can beat resistance through the use of superconductivity if the frequency is not too high, or by other tricks.
Atoms in a small world

When we get to the very, very small world---say circuits of seven atoms---we have a lot of new things that would happen that represent completely new opportunities for design. Atoms on a small scale behave like nothing on a large scale, for they satisfy the laws of quantum mechanics. So, as we go down and fiddle around with the atoms down there, we are working with different laws, and we can expect to do different things. We can manufacture in different ways. We can use, not just circuits, but some system involving the quantized energy levels, or the interactions of quantized spins, etc.

Another thing we will notice is that, if we go down far enough, all of our devices can be mass produced so that they are absolutely perfect copies of one another. We cannot build two large machines so that the dimensions are exactly the same. But if your machine is only 100 atoms high, you only have to get it correct to one-half of one percent to make sure the other machine is exactly the same size---namely, 100 atoms high!

At the atomic level, we have new kinds of forces and new kinds of possibilities, new kinds of effects. The problems of manufacture and reproduction of materials will be quite different. I am, as I said, inspired by the biological phenomena in which chemical forces are used in repetitious fashion to produce all kinds of weird effects (one of which is the author).

The principles of physics, as far as I can see, do not speak against the possibility of maneuvering things atom by atom. It is not an attempt to violate any laws; it is something, in principle, that can be done; but in practice, it has not been done because we are too big.

Ultimately, we can do chemical synthesis. A chemist comes to us and says, ``Look, I want a molecule that has the atoms arranged thus and so; make me that molecule.'' The chemist does a mysterious thing when he wants to make a molecule. He sees that it has got that ring, so he mixes this and that, and he shakes it, and he fiddles around. And, at the end of a difficult process, he usually does succeed in synthesizing what he wants. By the time I get my devices working, so that we can do it by physics, he will have figured out how to synthesize absolutely anything, so that this will really be useless.

But it is interesting that it would be, in principle, possible (I think) for a physicist to synthesize any chemical substance that the chemist writes down. Give the orders and the physicist synthesizes it. How? Put the atoms down where the chemist says, and so you make the substance. The problems of chemistry and biology can be greatly helped if our ability to see what we are doing, and to do things on an atomic level, is ultimately developed---a development which I think cannot be avoided.

Now, you might say, ``Who should do this and why should they do it?'' Well, I pointed out a few of the economic applications, but I know that the reason that you would do it might be just for fun. But have some fun! Let's have a competition between laboratories. Let one laboratory make a tiny motor which it sends to another lab which sends it back with a thing that fits inside the shaft of the first motor.
High school competition

Just for the fun of it, and in order to get kids interested in this field, I would propose that someone who has some contact with the high schools think of making some kind of high school competition. After all, we haven't even started in this field, and even the kids can write smaller than has ever been written before. They could have competition in high schools. The Los Angeles high school could send a pin to the Venice high school on which it says, ``How's this?'' They get the pin back, and in the dot of the ``i'' it says, ``Not so hot.''

Perhaps this doesn't excite you to do it, and only economics will do so. Then I want to do something; but I can't do it at the present moment, because I haven't prepared the ground. It is my intention to offer a prize of $1,000 to the first guy who can take the information on the page of a book and put it on an area 1/25,000 smaller in linear scale in such manner that it can be read by an electron microscope.

And I want to offer another prize---if I can figure out how to phrase it so that I don't get into a mess of arguments about definitions---of another $1,000 to the first guy who makes an operating electric motor---a rotating electric motor which can be controlled from the outside and, not counting the lead-in wires, is only 1/64 inch cube.

I do not expect that such prizes will have to wait very long for claimants.
Welcome to BW tool world! We are an experienced tool maker specialized in cutting tools. We focus on what you need and endeavor to research the best cutter to satisfy users’ demand. Our customers involve wide range of industries, like mold & die, aerospace, electronic, machinery, ,,,etc. We are professional expert in cutting field. We would like to solve every problem from you. Please feel free to contact us, it’s our pleasure to serve for you. BW product including: utting tool、aerospace tool .HSS Cutting tool、Carbide end mills、Carbide cutting tool、NAS Cutting tool、Carbide end mill、Aerospace cutting tool、Carbide drill、High speed steel、Milling cutter、Core drill、Taperd end mills、Metric end mills、Miniature end mills、Pilot reamer、Electronics cutter、Step drill、Metal cutting saw、Double margin drill、Gun barrel、Angle milling cutter、Carbide burrs、Carbide tipped cutter、Chamfering tool、IC card engraving cutter、Side cutter、NAS tool、DIN tool、Special tool、Metal slitting saws、Shell end mills、Side and face milling cutters、Side chip clearance saws、Long end mills、Stub roughing end mills、Dovetail milling cutters、Carbide slot drills、Carbide torus cutters、Angeled carbide end mills、Carbide torus cutters、Carbide ball-noseed slot drills、Mould cutter、Tool manufacturer.
Bewise Inc. www.tool-tool.com

beeway 發表在 痞客邦 留言(0) 人氣()

Bewise Inc. www.tool-tool.com Reference source from the internet.
1.1职业名称

数控铣工。

1.2职业定义

从事编制数控加工程序并操作数控铣床进行零件铣削加工的人员。

1.3职业等级

本职业共设四个等级,分别为:中级(国家职业资格四级)、高级(国家职业资格三级)、技师(国家职业资格二级)、高级技师(国家职业资格一级)。

1.4职业环境

室内、常温。

1. 5职业能力特征

具有较强的计算能力和空间感,形体知觉及色觉正常,手指、手臂灵活,动作协调。

1. 6基本文化程度

高中毕业(或同等学历)。

1.7培训要求

1.7.1培训期限

全日制职业学校教育,根据其培养目标和教学计划确定。晋级培训期限:中级不少于400 标准学时;高级不少于300 标准学时;技师不少于300 标准学时;高级技师不少于300 标准学时。

1.7.2培训教师

培 训中、高级人员的教师应取得本职业技师及以上职业资格证书或相关专业中级及以上专业技术职称任职资格;培训技师的教师应取得本职业高级技师职业资格证书或 相关专业高级专业技术职称任职资格;培训高级技师的教师应取得本职业高级技师职业资格证书2年以上或取得相关专业高级专业技术职称任职资格2年以上。

1.7.3培训场地设备

满足教学要求的标准教室、计算机机房及配套的软件、数控铣床及必要的刀具、夹具、量具和辅助设备等。

1.8鉴定要求

1.8.1适用对象

从事或准备从事本职业的人员。

1.8.2申报条件

——中级:(具备以下条件之一者)

(1)经本职业中级正规培训达规定标准学时数,并取得结业证书。

(2)连续从事本职业工作5年以上。

(3)取得经劳动保障行政部门审核认定的,以中级技能为培养目标的中等以上职业学校本职业(或相关专业)毕业证书。

(4)取得相关职业中级《职业资格证书》后,连续从事本职业2年以上。

——高级:(具备以下条件之一者)

(1)取得本职业中级职业资格证书后,连续从事本职业工作2年以上,经本职业高级正规培训,达到规定标准学时数,并取得结业证书。

(2)取得本职业中级职业资格证书后,连续从事本职业工作4年以上。

(3)取得劳动保障行政部门审核认定的,以高级技能为培养目标的职业学校本职业(或相关专业)毕业证书。

(4)大专以上本专业或相关专业毕业生,经本职业高级正规培训,达到规定标准学时数,并取得结业证书。

——技师:(具备以下条件之一者)

(1)取得本职业高级职业资格证书后,连续从事本职业工作4年以上,经本职业技师正规培训达规定标准学时数,并取得结业证书。

(2)取得本职业高级职业资格证书的职业学校本职业(专业)毕业生,连续从事本职业工作2年以上,经本职业技师正规培训达规定标准学时数,并取得结业证书。

(3)取得本职业高级职业资格证书的本科(含本科)以上本专业或相关专业的毕业生,连续从事本职业工作2年以上,经本职业技师正规培训达规定标准学时数,并取得结业证书。

——高级技师:

(1)取得本职业技师职业资格证书后,连续从事本职业工作4年以上,经本职业高级技师正规培训达规定标准学时数,并取得结业证书。



1.8.3鉴定方式

分为理论知识考试和技能操作考核。理论知识考试采用闭卷方式,技能操作(含软件应用)考核采用现场实际操作和计算机软件操作方式。理论知识考试和技能操作(含软件应用)考核均实行百分制,成绩皆达60分及以上者为合格。技师和高级技师还需进行综合评审。



1.8.4考评人员与考生配比

理论知识考试考评人员与考生配比为1:15,每个标准教室不少于2名相应级别的考评员;技能操作(含软件应用)考核考评员与考生配比为1:2,且不少于3名相应级别的考评员;综合评审委员不少于5人。



1.8.5鉴定时间

理论知识考试为120分钟,技能操作考核中实操时间为:中级、高级不少于240分钟,技师和高级技师不少于300分钟,技能操作考核中软件应用考试时间为不超过120分钟,技师和高级技师的综合评审时间不少于45分钟。



1.8.6鉴定场所设备

理论知识考试在标准教室里进行,软件应用考试在计算机机房进行,技能操作考核在配备必要的数控铣床及必要的刀具、夹具、量具和辅助设备的场所进行。




2.基本要求



2.1职业道德

2.1.1职业道德基本知识

2.1.2职业守则

(1)遵守国家法律、法规和有关规定;

(2)具有高度的责任心、爱岗敬业、团结合作;
(3) 严格执行相关标准、工作程序与规范、工艺文件和安全操作规程;
(4) 学习新知识新技能、勇于开拓和创新;
(5) 爱护设备、系统及工具、夹具、量具;

(6)着装整洁,符合规定;保持工作环境清洁有序,文明生产。

2.2基础知识

2.2.1基础理论知识

(1)机械制图

(2)工程材料及金属热处理知识

(3)机电控制知识

(4)计算机基础知识

(5)专业英语基础

2.2.2机械加工基础知识

(1)机械原理

(2)常用设备知识(分类、用途、基本结构及维护保养方法)

(3)常用金属切削刀具知识

(4)典型零件加工工艺

(5)设备润滑和冷却液的使用方法

(6)工具、夹具、量具的使用与维护知识

(7)铣工、镗工基本操作知识

2.2.3安全文明生产与环境保护知识

(1)安全操作与劳动保护知识

(2)文明生产知识

(3)环境保护知识

2.2.4质量管理知识

(1)企业的质量方针

(2)岗位质量要求

(3)岗位质量保证措施与责任

2.2.5相关法律、法规知识

(1)劳动法的相关知识

(2)环境保护法的相关知识

(3)知识产权保护法的相关知识






3.工作要求



本标准对中级、高级、技师和高级技师的技能要求依次递进,高级别涵盖低级别的要求。

3.1 中级



职业功能


工作内容


技能要求


相关知识

一、加工准备


(一)读图与绘图


1. 能读懂中等复杂程度(如:凸轮、壳体、板状、支架)的零件图

2. 能绘制有沟槽、台阶、斜面、曲面的简单零件图

3. 能读懂分度头尾架、弹簧夹头套筒、可转位铣刀结构等简单机构装配图


1. 复杂零件的表达方法

2. 简单零件图的画法

3. 零件三视图、局部视图和剖视图的画法

(二)制定加工工艺


1. 能读懂复杂零件的铣削加工工艺文件

2. 能编制由直线、圆弧等构成的二维轮廓零件的铣削加工工艺文件


1. 数控加工工艺知识

2. 数控加工工艺文件的制定方法

(三)零件定位与装夹


1. 能使用铣削加工常用夹具(如压板、虎钳、平口钳等)装夹零件

2. 能够选择定位基准,并找正零件


1. 常用夹具的使用方法

2. 定位与夹紧的原理和方法

3. 零件找正的方法

(四)刀具准备


1. 能够根据数控加工工艺文件选择、安装和调整数控铣床常用刀具

2. 能根据数控铣床特性、零件材料、加工精度、工作效率等选择刀具和刀具几何参数,并确定数控加工需要的切削参数和切削用量

3. 能够利用数控铣床的功能,借助通用量具或对刀仪测量刀具的半径及长度

4. 能选择、安装和使用刀柄

5. 能够刃磨常用刀具


1. 金属切削与刀具磨损知识

2. 数控铣床常用刀具的种类、结构、材料和特点

3. 数控铣床、零件材料、加工精度和工作效率对刀具的要求

4. 刀具长度补偿、半径补偿等刀具参数的设置知识

5. 刀柄的分类和使用方法

6. 刀具刃磨的方法

二、数控编程


(一)手工编程


1. 能编制由直线、圆弧组成的二维轮廓数控加工程序

2. 能够运用固定循环、子程序进行零件的加工程序编制


1. 数控编程知识

2. 直线插补和圆弧插补的原理

3. 节点的计算方法

(二)计算机辅助编程


1. 能够使用CAD/CAM软件绘制简单零件图

2. 能够利用CAD/CAM软件完成简单平面轮廓的铣削程序


1. CAD/CAM软件的使用方法

2. 平面轮廓的绘图与加工代码生成方法

三、数控铣床操作


(一)操作面板


1. 能够按照操作规程启动及停止机床

2. 能使用操作面板上的常用功能键(如回零、手动、MDI、修调等)


1. 数控铣床操作说明书

2. 数控铣床操作面板的使用方法

(二)程序输入与编辑


1. 能够通过各种途径(如DNC、网络)输入加工程序

2. 能够通过操作面板输入和编辑加工程序


1. 数控加工程序的输入方法

2. 数控加工程序的编辑方法

(三)对刀


1. 能进行对刀并确定相关坐标系

2. 能设置刀具参数


1. 对刀的方法

2. 坐标系的知识

3. 建立刀具参数表或文件的方法

(四)程序调试与运行


能够进行程序检验、单步执行、空运行并完成零件试切


程序调试的方法

(五)参数设置


能够通过操作面板输入有关参数


数控系统中相关参数的输入方法



四、零件加工


(一)平面加工


能够运用数控加工程序进行平面、垂直面、斜面、阶梯面等的铣削加工,并达到如下要求:

(1)尺寸公差等级达IT7级

(2)形位公差等级达IT8级

(3)表面粗糙度达Ra3.2μm


1. 平面铣削的基本知识

2. 刀具端刃的切削特点

(二)轮廓加工


能够运用数控加工程序进行由直线、圆弧组成的平面轮廓铣削加工,并达到如下要求:

(1)尺寸公差等级达IT8

(2)形位公差等级达IT8级

(3)表面粗糙度达Ra3.2μm


1. 平面轮廓铣削的基本知识

2. 刀具侧刃的切削特点



(三)曲面加工


能够运用数控加工程序进行圆锥面、圆柱面等简单曲面的铣削加工,并达到如下要求:

(1)尺寸公差等级达IT8

(2)形位公差等级达IT8级

(3)表面粗糙度达Ra3.2μm


1.曲面铣削的基本知识

2.球头刀具的切削特点



(四)孔类加工


能够运用数控加工程序进行孔加工,并达到如下要求:

(1)尺寸公差等级达IT7

(2)形位公差等级达IT8级

(3)表面粗糙度达Ra3.2μm


麻花钻、扩孔钻、丝锥、镗刀及铰刀的加工方法



(五)槽类加工


能够运用数控加工程序进行槽、键槽的加工,并达到如下要求:

(1)尺寸公差等级达IT8

(2)形位公差等级达IT8级

(3)表面粗糙度达Ra3.2μm


槽、键槽的加工方法



(六)精度检验


能够使用常用量具进行零件的精度检验


1. 常用量具的使用方法

2. 零件精度检验及测量方法



五、维护与故障诊断


(一)机床日常维护


能够根据说明书完成数控铣床的定期及不定期维护保养,包括:机械、电、气、液压、数控系统检查和日常保养等


1. 数控铣床说明书

2. 数控铣床日常保养方法

3. 数控铣床操作规程

4. 数控系统(进口、国产数控系统)说明书

(二)机床故障诊断


1. 能读懂数控系统的报警信息

2. 能发现数控铣床的一般故障


1. 数控系统的报警信息

2. 机床的故障诊断方法

(三)机床精度检查


能进行机床水平的检查


1. 水平仪的使用方法

2. 机床垫铁的调整方法








3.2 高级

职业功能


工作内容


技能要求


相关知识

一、加工准备


(一)读图与绘图


1. 能读懂装配图并拆画零件图

2. 能够测绘零件

3. 能够读懂数控铣床主轴系统、进给系统的机构装配图


1. 根据装配图拆画零件图的方法

2. 零件的测绘方法

3. 数控铣床主轴与进给系统基本构造知识。

(二)制定加工工艺


能编制二维、简单三维曲面零件的铣削加工工艺文件


复杂零件数控加工工艺的制定

(三)零件定位与装夹


1. 能选择和使用组合夹具和专用夹具

2. 能选择和使用专用夹具装夹异型零件

3. 能分析并计算夹具的定位误差

4. 能够设计与自制装夹辅具(如轴套、定位件等)


1. 数控铣床组合夹具和专用夹具的使用、调整方法

2. 专用夹具的使用方法

3. 夹具定位误差的分析与计算方法

4. 装夹辅具的设计与制造方法

(四)刀具准备


1. 能够选用专用工具(刀具和其他)

2. 能够根据难加工材料的特点,选择刀具的材料、结构和几何参数


1. 专用刀具的种类、用途、特点和刃磨方法

2. 切削难加工材料时的刀具材料和几何参数的确定方法

二、数控编程


(一)手工编程


1. 能够编制较复杂的二维轮廓铣削程序

2. 能够根据加工要求编制二次曲面的铣削程序

3. 能够运用固定循环、子程序进行零件的加工程序编制

4. 能够进行变量编程


1. 较复杂二维节点的计算方法

2. 二次曲面几何体外轮廓节点计算

3. 固定循环和子程序的编程方法

4. 变量编程的规则和方法

(二)计算机辅助编程


1. 能够利用CAD/CAM软件进行中等复杂程度的实体造型(含曲面造型)

2. 能够生成平面轮廓、平面区域、三维曲面、曲面轮廓、曲面区域、曲线的刀具轨迹

3. 能进行刀具参数的设定

4. 能进行加工参数的设置

5. 能确定刀具的切入切出位置与轨迹

6. 能够编辑刀具轨迹

7. 能够根据不同的数控系统生成G代码


1.实体造型的方法

2.曲面造型的方法

3.刀具参数的设置方法

4.刀具轨迹生成的方法

5.各种材料切削用量的数据

6.有关刀具切入切出的方法对加工质量影响的知识

7.轨迹编辑的方法

8.后置处理程序的设置和使用方法



(三)数控加工仿真


能利用数控加工仿真软件实施加工过程仿真、加工代码检查与干涉检查


数控加工仿真软件的使用方法

三、数控铣床操作


(一)程序调试与运行


能够在机床中断加工后正确恢复加工


程序的中断与恢复加工的方法

(二)参数设置


能够依据零件特点设置相关参数进行加工


数控系统参数设置方法

四、零件加工


(一)平面铣削


能够编制数控加工程序铣削平面、垂直面、斜面、阶梯面等,并达到如下要求:

(1)尺寸公差等级达IT7

(2)形位公差等级达IT8级

(3)表面粗糙度达Ra3.2μm


1.平面铣削精度控制方法

2.刀具端刃几何形状的选择方法



(二)轮廓加工


能够编制数控加工程序铣削较复杂的(如凸轮等)平面轮廓,并达到如下要求:

(1)尺寸公差等级达IT8

(2)形位公差等级达IT8级

(3)表面粗糙度达Ra3.2μm


1.平面轮廓铣削的精度控制方法

2.刀具侧刃几何形状的选择方法



(三)曲面加工


能够编制数控加工程序铣削二次曲面,并达到如下要求:

(1)尺寸公差等级达IT8

(2)形位公差等级达IT8级

(3)表面粗糙度达Ra3.2μm


1.二次曲面的计算方法

2.刀具影响曲面加工精度的因素以及控制方法



(四)孔系加工


能够编制数控加工程序对孔系进行切削加工,并达到如下要求:

(1)尺寸公差等级达IT7

(2)形位公差等级达IT8级

(3)表面粗糙度达Ra3.2μm


麻花钻、扩孔钻、丝锥、镗刀及铰刀的加工方法



(五)深槽加工


能够编制数控加工程序进行深槽、三维槽的加工,并达到如下要求:

(1)尺寸公差等级达IT8

(2)形位公差等级达IT8级

(3)表面粗糙度达Ra3.2μm


深槽、三维槽的加工方法

(六)配合件加工


能够编制数控加工程序进行配合件加工,尺寸配合公差等级达IT8


1. 配合件的加工方法

2. 尺寸链换算的方法

(七)精度检验


1. 能够利用数控系统的功能使用百(千)分表测量零件的精度

2. 能对复杂、异形零件进行精度检验

3. 能够根据测量结果分析产生误差的原因

4. 能够通过修正刀具补偿值和修正程序来减少加工误差


1. 复杂、异形零件的精度检验方法

2. 产生加工误差的主要原因及其消除方法

五、维护与故障诊断


(一)日常维护


能完成数控铣床的定期维护


数控铣床定期维护手册

(二)故障诊断


能排除数控铣床的常见机械故障


机床的常见机械故障诊断方法

(三)机床精度检验


能协助检验机床的各种出厂精度


机床精度的基本知识






3.3 技师



职业功能


工作内容


技能要求


相关知识

一、加工准备


(一)读图与绘图


1. 能绘制工装装配图

2. 能读懂常用数控铣床的机械原理图及装配图


1. 工装装配图的画法

2. 常用数控铣床的机械原理图及装配图的画法

(二)制定加工工艺


1. 能编制高难度、精密、薄壁零件的数控加工工艺规程

2. 能对零件的多工种数控加工工艺进行合理性分析,并提出改进建议

3. 能够确定高速加工的工艺文件


1. 精密零件的工艺分析方法

2. 数控加工多工种工艺方案合理性的分析方法及改进措施

3. 高速加工的原理

(三)零件定位与装夹


1. 能设计与制作高精度箱体类,叶片、螺旋桨等复杂零件的专用夹具

2. 能对现有的数控铣床夹具进行误差分析并提出改进建议


1. 专用夹具的设计与制造方法

2. 数控铣床夹具的误差分析及消减方法

(四)刀具准备


1. 能够依据切削条件和刀具条件估算刀具的使用寿命,并设置相关参数

2. 能根据难加工材料合理选择刀具材料和切削参数

3. 能推广使用新知识、新技术、新工艺、新材料、新型刀具

4. 能进行刀具刀柄的优化使用,提高生产效率,降低成本

5. 能选择和使用适合高速切削的工具系统


1. 切削刀具的选用原则

2. 延长刀具寿命的方法

3. 刀具新材料、新技术知识

4. 刀具使用寿命的参数设定方法

5. 难切削材料的加工方法

6. 高速加工的工具系统知识

二、数控编程


(一)手工编程


能够根据零件与加工要求编制具有指导性的变量编程程序


变量编程的概念及其编制方法

(二)计算机辅助编程


1. 能够利用计算机高级语言编制特殊曲线轮廓的铣削程序

2. 能够利用计算机CAD/CAM软件对复杂零件进行实体或曲线曲面造型

3. 能够编制复杂零件的三轴联动铣削程序


1. 计算机高级语言知识

2. CAD/CAM软件的使用方法

3. 三轴联动的加工方法

(三)数控加工仿真


能够利用数控加工仿真软件分析和优化数控加工工艺


数控加工工艺的优化方法

三、数控铣床操作


(一)程序调试与运行


能够操作立式、卧式以及高速铣床


立式、卧式以及高速铣床的操作方法

(二)参数设置


能够针对机床现状调整数控系统相关参数


数控系统参数的调整方法

四、零件加工


(一)特殊材料加工


能够进行特殊材料零件的铣削加工,并达到如下要求:

(1)尺寸公差等级达IT8

(2)形位公差等级达IT8级

(3)表面粗糙度达Ra3.2μm


特殊材料的材料学知识

特殊材料零件的铣削加工方法

(二)薄壁加工


能够进行带有薄壁的零件加工,并达到如下要求:

(1)尺寸公差等级达IT8

(2)形位公差等级达IT8级

(3)表面粗糙度达Ra3.2μm


薄壁零件的铣削方法

(三)曲面加工


1. 能进行三轴联动曲面的加工,并达到如下要求:

(1)尺寸公差等级达IT8

(2)形位公差等级达IT8级

(3)表面粗糙度达Ra3.2μm

2. 能够使用四轴以上铣床与加工中心进行对叶片、螺旋桨等复杂零件进行多轴铣削加工,并达到如下要求:

(1)尺寸公差等级达IT8

(2)形位公差等级达IT8级

(3)表面粗糙度达Ra3.2μm


三轴联动曲面的加工方法

四轴以上铣床/加工中心的使用方法

(四)易变形件加工


能进行易变形零件的加工,并达到如下要求:

(1)尺寸公差等级达IT8

(2)形位公差等级达IT8级

(3)表面粗糙度达Ra3.2μm


易变形零件的加工方法

(五)精度检验


能够进行大型、精密零件的精度检验


精密量具的使用方法

精密零件的精度检验方法

五、维护与故障诊断


(一)机床日常维护


能借助字典阅读数控设备的主要外文信息


数控铣床专业外文知识

(二)机床故障诊断


能够分析和排除液压和机械故障


数控铣床常见故障诊断及排除方法

(三)机床精度检验


能够进行机床定位精度、重复定位精度的检验


机床定位精度检验、重复定位精度检验的内容及方法

六、培训与管理


(一)操作指导


能指导本职业中级、高级进行实际操作


操作指导书的编制方法

(二)理论培训


能对本职业中级、高级进行理论培训


培训教材的编写方法

(三)质量管理


能在本职工作中认真贯彻各项质量标准


相关质量标准

(四)生产管理


能协助部门领导进行生产计划、调度及人员的管理


生产管理基本知识

(五)技术改造与创新


能够进行加工工艺、夹具、刀具的改进


数控加工工艺综合知识






3.4 高级技师



职业功能


工作内容


技能要求


相关知识

一、工艺分析与设计


(一)读图与绘图


1. 能绘制复杂工装装配图

2. 能读懂常用数控铣床的电气、液压原理图

3. 能够组织中级、高级、技师进行工装协同设计


1. 复杂工装设计方法

2. 常用数控铣床电气、液压原理图的画法

3. 协同设计知识

(二)制定加工工艺


1. 能对高难度、高精密零件的数控加工工艺方案进行合理性分析,提出改进意见并参与实施

2. 能够确定高速加工的工艺方案。

3. 能够确定细微加工的工艺方案


1. 复杂、精密零件机械加工工艺的系统知识

2. 高速加工机床的知识

3. 高速加工的工艺知识

4. 细微加工的工艺知识

(三)工艺装备


1. 能独立设计复杂夹具

2. 能在四轴和五轴数控加工中对由夹具精度引起的零件加工误差进行分析,提出改进方案,并组织实施


1. 复杂夹具的设计及使用知识

2. 复杂夹具的误差分析及消减方法

3. 多轴数控加工的方法

(四)刀具准备


1. 能根据零件要求设计专用刀具,并提出制造方法

2. 能系统地讲授各种切削刀具的特点和使用方法


1. 专用刀具的设计与制造知识

2. 切削刀具的特点和使用方法

二、零件加工


(一)异形零件加工


能解决高难度、异形零件加工的技术问题,并制定工艺措施


高难度零件的加工方法

(二)精度检验


能够设计专用检具,检验高难度、异形零件


检具设计知识

三、机床维护与精度检验


(一)数控铣床维护


1. 能借助字典看懂数控设备的主要外文技术资料

2. 能够针对机床运行现状合理调整数控系统相关参数


数控铣床专业外文知识

(二)机床精度检验


能够进行机床定位精度、重复定位精度的检验


机床定位精度、重复定位精度的检验和补偿方法

(三)数控设备网络化


能够借助网络设备和软件系统实现数控设备的网络化管理


数控设备网络接口及相关技术

四、培训与管理


(一)操作指导


能指导本职业中级、高级和技师进行实际操作


操作理论教学指导书的编写方法

(二)理论培训


1. 能对本职业中级、高级和技师进行理论培训

2. 能系统地讲授各种切削刀具的特点和使用方法


1. 教学计划与大纲的编制方法

2. 切削刀具的特点和使用方法

(三)质量管理


能应用全面质量管理知识,实现操作过程的质量分析与控制


质量分析与控制方法

(四)技术改造与创新


能够组织实施技术改造和创新,并撰写相应的论文。


科技论文的撰写方法







4.比重表

4.1理论知识

项 目


中级(%)


高级(%)


技师(%)


高级技师(%)

基本

要求


职业道德


5


5


5


5

基础知识


20


20


15


15










加工准备


15


15


25




数控编程


20


20


10




数控铣床操作


5


5


5




零件加工


30


30


20


15

数控铣床维护与精度检验


5


5


10


10

培训与管理








10


15

工艺分析与设计











40

合 计


100


100


100


100



4.2技能操作

项 目


中级(%)


高级(%)


技师(%)


高级技师(%)












加工准备


10


10


10




数控编程


30


30


30




数控铣床操作


5


5


5




零件加工


50


50


45


45

数控铣床维护与精度检验


5


5


5


10

培训与管理








5


10

工艺分析与设计











35

合 计


100


100


100


100
Welcome to BW tool world! We are an experienced tool maker specialized in cutting tools. We focus on what you need and endeavor to research the best cutter to satisfy users’ demand. Our customers involve wide range of industries, like mold & die, aerospace, electronic, machinery, ,,,etc. We are professional expert in cutting field. We would like to solve every problem from you. Please feel free to contact us, it’s our pleasure to serve for you. BW product including: utting tool、aerospace tool .HSS Cutting tool、Carbide end mills、Carbide cutting tool、NAS Cutting tool、Carbide end mill、Aerospace cutting tool、Carbide drill、High speed steel、Milling cutter、Core drill、Taperd end mills、Metric end mills、Miniature end mills、Pilot reamer、Electronics cutter、Step drill、Metal cutting saw、Double margin drill、Gun barrel、Angle milling cutter、Carbide burrs、Carbide tipped cutter、Chamfering tool、IC card engraving cutter、Side cutter、NAS tool、DIN tool、Special tool、Metal slitting saws、Shell end mills、Side and face milling cutters、Side chip clearance saws、Long end mills、Stub roughing end mills、Dovetail milling cutters、Carbide slot drills、Carbide torus cutters、Angeled carbide end mills、Carbide torus cutters、Carbide ball-noseed slot drills、Mould cutter、Tool manufacturer.
Bewise Inc. www.tool-tool.com

beeway 發表在 痞客邦 留言(0) 人氣()

Bewise Inc. www.tool-tool.com Reference source from the internet.
绪言

21世纪的社会、产业结构将向着循环经济型、节省能源型、高度信息型迅速变化发展。这就将会对机械加工提出更高的要求。
也就意味着加工机器、加工工具也将迅速走向高精度化、高效率化,实现高度信息化、智能化,从而适应社会的保护环境、节省能源的要求。

作 为加工主体的加工机器,随着机械要素及NC技术的发展高速、高精度化得到迅速地普及。这是因为高速加工不但可以提高加工效率、降低成本,而且可以提高加工 精度,适应以前作为难题的淬火钢等难削材料的加工。在刃具方面,硬质合金刃具越来越普及,并且适合高速加工的CBN、金刚石刃具,DLC涂层等也不断被开 发使用。而刀具装在加工机器与刃具之间,起着保持刃具的作用。所以高速加工不但要求刃具自身具有良好的刚性、柔性、动平衡性及操作性,同时对在与机器主轴 连接时的刚性和连接精度、在保持刃具时的把持力和把持精度及其它各方面都提出了严格的要求。以下本文就高速、高精度加工时刀具应该具备的条件作一些具体的 分析。

两面定位系统

首先是刀具与主轴间的连接问题,也就是主轴系统。现在市场上最多的仍是7/24的主轴系统。包括ISO、DIN、BT等都属于此类。但如前所述,随着机械加工的高速化的发展,这种系统出现了许多的问题:

刚性不足-刀柄的法兰面与主轴端面间有间隙
ATC的重复精度不稳定-每次自动换刀后,刀具的径向尺寸都可能发生变化。
轴向尺寸不稳定-主轴转动时因受离心力的作用而内孔增大,刀具的轴向尺寸发生变化
刀柄锥部较长-不利于快速换刀及机器的小型化

针对这些问题,一些刀具厂家及研究机构开发了两面定位的主轴系统。也就是使刀柄与主轴内孔锥面、端面同时贴紧的一种新的连接方式。其中有代表性的是日本大昭和精机(BIG)的BIG-PLUS系统(图1)和德国标准的HSK系统(图2)。


BIG-PLUS系统(图1)和德国标准的HSK系统(图2)
BIG-PLUS系统的锥度仍是7/24,其设计原理是

将刀柄装入主轴时(锁紧前)端面间的间隙减小(#40: 0.2mm±0.005)。
锁紧后利用主轴内孔的弹性膨胀补偿此间隙,使刀柄与主轴端面贴紧。

这样产生的效果是:

与主轴的接触面积增大-刚性增强、振动衰减效果提高。
ATC的重复精度提高-端面的矫正作用。
轴向尺寸稳定-显示端面的定位作用。

因为BIG-PLUS系统的锥度仍是7/24,锁紧机构也一样,所以它和一般的系统(非两面定位)之间有互换性。这也是BIG-PLUS系统能得到迅速普及的一个原因。

HSK 系统的锥度是1/10,刀柄中空、短柄。它的原理也是利用锁紧力及用主轴内孔的弹性膨胀补偿初期端面的间隙。只是因为它是中空刀柄,自身有较大的弹性变 形,可能因为主轴内孔的膨胀而刀柄本身也膨胀,所以它对制造时的公差精度的要求相对较松。另外由于它的质量小、柄部短,所以有利于高速ATC及机器的小型 化。但也正因为它是中空短柄,所以刚性、强度要受到一定程度的影响。

无论如何,两面定位系统弥补了普通系统的许多不足,必将成为刀具系统的主流。

刀具自身的刚性与动平衡性

刀 具的刚性一直是机械加工中被重视的主要问题之一。刚性不足会引起刀具的振动或发生刀具倾斜,影响加工精度、加工效率。并且因为刀具的振动会加快刃具的磨 损,甚至影响刀具及机器的寿命。如果将刀柄杆部近似成一实心圆柱刚体,那它的刚性与截面直径的4次方成正比,与柱长的3次方成反比。也就是说,一把刀柄在 它的质量限定后,当然越粗越短刚性便越强。

除此以外,还可以通过改变其自身结构来增强刚性。比如一般的铣刀夹头虽然其锁紧螺母很粗,但螺 母底部与刀柄本体之间总有间隙,使刚性损失很多。高速加工对刀具的动平衡性也提出很高的要求。这是因为动平衡性不好的刀具在高速转动时受很大的离心力的作 用(与不平衡力矩及转速的平方成正比),刀杆发生弯曲并容易引起振动。弹簧夹头、铣刀刀柄可以通过平衡修正来解决这个问题。但是如一般带微调机构的精镗 头,在调节加工直径时镗头的重心也在改变,所以就无法通过平衡修正来取得动平衡。

最近,日本大昭和精机推出了一种可以进行自动平衡补偿的镗头。其原理如图3所示,在镗头内部安装了一个小齿轮和一个平衡块,在调节直径、使套管轴向外移动时,平衡块将通过小齿轮的作用向相反方向移动,从而保持重心位置不变。


图3 EWB自动平衡补偿镗头(日本BIG大昭和精机)
把持力和把持精度

特 别是在立铣刀的加工时把持力尤为重要。因为立铣刀的刀刃都带有螺旋角,所以加工时切削力在轴向的分力就很大。把持力不足就可能会使刃具(立铣刀)被拉出, 影响加工精度,甚至损坏刃具及工件。增强刀柄把持力的方法主要是通过严格控制内孔的公差、保证足够的把持长度并合理地选材、设计尽量有效地将锁紧力转换成 径向的把持力。

高速加工的深入将意味着硬质合金的刃具将取代高速钢刃具。这样刀具的把持精度便成为一个重要的课题。想象一下用三爪钻夹头夹持硬质合金的钻头进行20,000r/min加工的情景: 钻头折断、工件报废、生产中断……

刀具的把持精度的重要性还体现在铰刀的加工中。象一些小、深孔的精加工时,铰刀用得较多,但如果刀具的把持精度不好,铰刀前端的跳动很大的话,加工的孔径肯定会超出公差范围,得不到理想的效果。

要 提高刀具的把持精度,就意味着必须“完全均匀”地把持刃具。如果是弹簧夹头,由于它的固定原理是旋紧螺母→压入套筒→套筒内径缩小→夹紧刃具,那影响它的 把持精度的要素除本体的内孔精度、螺纹精度、套筒的外锥面的精度,把持孔的精度、以及螺母的螺纹精度以外,螺母与套筒的接触面的精度、套筒的压入方式都很 重要。

信息化、智能化

由于产品结构的变化周期日益缩短,机械加工同样面临着“多品种、少批量”的问题。这使得刀具的数量 增加,工件、刀具的准备时间也增加,影响加工效率。解决这个问题的方法就是利用IC系统,自动识别刀具,掌握刃具信息、加工状况,并通过计算机对这些信息 进行一元化管理。图4是日本大昭和精机设计生产的IC系统的示意简图。


图4 IC系统(BIG大昭和精机)
除此以外,还有象刃具破损自动报警、自动测量孔径并自动补偿刀尖直径等技术都体现了机械加工的信息化、智能化的发展。

今后,为了提高高速、高效率加工时的信赖性,越来越多的智能型的刀具、刃具会被开发使用。

结束语

以 上主要介绍了高速、高精度加工时刀具应该具备的条件。实际上高速加工不单纯是指主轴的转速快,而是指整体的加工时间的短缩。这也关系到复合加工机的刀具配 置问题。环境保护也是机械加工的一个重要课题,对于刀具来说必须考虑如何适应干式加工或准干式加工。针对节约能源的问题,又要求刀具有高效率化(增速刀 具、电动、气动刀具等)和充分的柔性。
Welcome to BW tool world! We are an experienced tool maker specialized in cutting tools. We focus on what you need and endeavor to research the best cutter to satisfy users’ demand. Our customers involve wide range of industries, like mold & die, aerospace, electronic, machinery, ,,,etc. We are professional expert in cutting field. We would like to solve every problem from you. Please feel free to contact us, it’s our pleasure to serve for you. BW product including: utting tool、aerospace tool .HSS Cutting tool、Carbide end mills、Carbide cutting tool、NAS Cutting tool、Carbide end mill、Aerospace cutting tool、Carbide drill、High speed steel、Milling cutter、Core drill、Taperd end mills、Metric end mills、Miniature end mills、Pilot reamer、Electronics cutter、Step drill、Metal cutting saw、Double margin drill、Gun barrel、Angle milling cutter、Carbide burrs、Carbide tipped cutter、Chamfering tool、IC card engraving cutter、Side cutter、NAS tool、DIN tool、Special tool、Metal slitting saws、Shell end mills、Side and face milling cutters、Side chip clearance saws、Long end mills、Stub roughing end mills、Dovetail milling cutters、Carbide slot drills、Carbide torus cutters、Angeled carbide end mills、Carbide torus cutters、Carbide ball-noseed slot drills、Mould cutter、Tool manufacturer.
Bewise Inc. www.tool-tool.com

beeway 發表在 痞客邦 留言(0) 人氣()

Bewise Inc. www.tool-tool.com Reference source from the internet.
以往对飞机、涡轮机、水轮机和各类模具中具有高附加价值的复杂形状零部个,都采用多道工序和多台机床进行加工。这样有仅加工周期长,还由于多次装夹而难以 达到高精度。不过,技术不断在进步。牌价推出加工中心之后,在一次装夹中可以对坯料的五个面进行平面、曲面、钻孔和铰孔等多种加工,从而缩短了加工周期和 提高了加工精度。现在则要进一步扩展加工中心的加工能力和加工效率,为此推动了加工中心向多轴控制和超高速加工方向发展,令机加工又向前跨进一大步。
多轴控制的基本概念
通常所说的多轴控制是指4轴以上的控制,其中具有代表性的是5轴控制加工中心。这种加工中心可以加工用3轴控制机床无法加工的复杂形状工件。如果用它来加工3轴控制机床能加工的工件,那可以提高加工精度和效率。
对刀具和工件的相对位置来说,现在的多轴控制加工中心可以设置6根轴,即沿直线作前后、左右或上下移动的X、Y、Z的3根轴,还有控制工作台倾斜角度的B 轴和控制主轴回转角度的C轴。使用回转刀具时,则由Z轴控制回转的主轴作上下或前后移动,就成为5轴控制。只有使用非回转刀具时可作6轴控制。
通常为了提高加工效率而使用回转刀具,但因而也受到回转刀具的限制,存在不可能加工的部位和形状。现在不仅可以使用回转刀具,还可以使用非回转刀具和控制 其回转角度,所以对任何形状都能加工,一般用非回转刀具的加工有刨削和在XY平面上作平滑加工等方式。现在已经开发了一种可使用改进后的刀具并形成一体化 的6轴控制复合式新型加工中心。
5轴控制加工中心的加工特点
由于5轴加工中心的刀具可以对工件呈任意的姿势进行加工,所以可避免切削速度为零的现象,还可以选择最适宜的刀具及相对于工件的姿态有效地进行加工,以及对凹入的形状用刀具倾斜的姿态进行加工,这些都是有利于加工的条件。
特别是用5轴控制加工时,为了避免具有两根回转轴的刀具与工件发生干涉,必须生成刀具路径。但再生成NC数据是一件很麻烦的事。现在开发了具有通用性的5 轴控制软件,即可以生成防止发生刀具与工件干涉的刀具路径。这时以软件实体模型为中心,使用防止发生干涉的算法即可版生成刀具路径(即CL数据)。所生成 的刀具路径与5轴控制加工中心的结构无关,是一种中性数据。此处理软件称为主处理程序。
除此以外,还需设置能按照规定使用加工中心的结构和组成,从已生成已生成的刀具路径自动生成NC数据的后处理器。如果按照原样使用已生成的刀具路径,就不 可能使不同机械结构和构造的5轴控制加工中心运转。为此必须采取各种措施将CL数据变换成适合于各种不同结构加工中心的NC数据。
5轴加工中心的主要结构形式可按照工作台上两根回转轴与一根主轴的各种设置方式分成3大类。。由于各轴的相对位置有多种多样的结构型式,因此也必须设置能适应多种结构型式的通用化后处理器。
设置后处理器不仅是为了将防止发生干涉的刀具路径变换成适合于不同结构加工中心使用的NC数据,还为了能稳定地改变进给速度和使移动路径偏差最小的线性化功能。
6轴控制加工中心的加工特点
有一点要注意的,是在使用回转刀具进不可能用6轴控制加工。但由于切削速度与进给速度相等而具有加工效率高的特点,所以用5轴控制对一次装夹的坯料也可以 作多种加工。也正是由于切削速度与刀具进给速度相当,所以必须使用高刚性结构的加工中心。精加工的切入量很小,只有几个um,还要求机床具有很高的定位精 度。
6轴控制特点如下:
1、对平面和曲面作平滑加工:由于是用线接触加工,所以在加工表面不残留进给痕。
2、在平面和曲面上加工异形断面的槽:即可以加工与刀具前进方向成直角的槽,可以是非对称的任何形状。用回转刀具则无法加工这种异形断面槽。
3、加工两曲面交界处的特征线:这是用固定刀具与沿交线的面相接触。条件下移动刀具进行刨削。用回转刀具也无法加工这种特征线。
4、隅角加工:由于回转刀具是圆形的,所以无法形成隅角处的直角。用6轴控制可加工隅角。
5、凹坑加工:可对由平面和曲面构成凹坑的棱线进行清晰地加工。这是特征线加工的扩展。
6轴控制与5轴控制一样需要设置主处理器和后处理器。但由于这时刀具与工件之间的关系使6个自由度。为此更要设法防止发生干涉,一旦发生干涉就无法继续加工。其后同样要在已生成的CL数据基础上由后处理器按不同类型的6轴控制加工中心生成NC数据。
发展趋向
用5轴控制加工的NURBS插补
由于对自由曲面进行精加工的NC数据是以连续的微小线段组合来表达,所以复杂开头的NC数据量非常庞大。现在则因存储器的价格便宜,所以可作大容量储存, 还可以与FA-LAN的DNC运转相结合高速传送数据进行加工。但在对于以高速加工为主的今天,NC数据的传送速度总是跟不上刀具的进给速度,从而使加工 品质下降。为此使用大量数据的5轴控制必须进一步提高速度。
现在已经有用自由曲线对3维点群座进行插补的表示形状方法。用NURBS表示自由曲线则可为NC数据提供相当多的信息,从而使数据量大幅度减少。另一方 面,现在已经开始将3轴控制的NURBS表达方式扩展到5轴控制中,从而减少了5轴控制中,从而减少了NC数据的位置。
利用二次曲面头立铣刀作5轴控制加工
使用球头立铣刀对自由曲面进行精加工时,因用一把刀具加工面不需要调换刀具,所以也不会发生刀具啮合问题,但必须选择与加工面最大曲率半径相适应的小直径 球头立铣刀。如果欲获得由加工所形成的凹形高度很低的良好的加工面,就必须减少设定的进给间距,从而啬了切削距离和加工时间。解决这个问题的方式之一是使 用称为二次曲面头立铣刀的特殊形状刀具进行5轴控制切削加工。
所谓二次曲面头立铣刀是一种以圆锥曲线围绕中心轴回转形成头部形状的铣刀。头部形状有回转抛物面、回转双曲面和回转椭圆面三种类型。在回转面上带有许多切刃,但它的切刃与球头立铣刀不同,是带有连续变化的各种曲率。它们的曲率可从各圆锥曲线公式求得。
用这种铣刀切削时不像球头立铣刀那样只有一个曲率,而是可以选择其中与加工面相吻合的曲率。命名如对加工面上曲率大的部分用铣刀头部附近的切刃加工,曲率小的部分则可用铣刀侧面的切刃进行加工,这样就有加大进给间距,缩短加工时间的优点。
可以自动生成使用二次曲面头立铣刀的5轴控制高效率加工自由曲面的CAM软件,现已开发出来。伴有超声波振动的6轴控制加工。
在用常规条件对铝等软性金属进行6轴控制加工时,有表面粗糙度很有效期的缺点。现在有一种在刀具夹持器上安装超声波工具的方法进行6轴控制加工,这样不仅可使视在切削速度加快,还可以明显地改善加工面的粗糙度,是可取的方法。
Welcome to BW tool world! We are an experienced tool maker specialized in cutting tools. We focus on what you need and endeavor to research the best cutter to satisfy users’ demand. Our customers involve wide range of industries, like mold & die, aerospace, electronic, machinery, ,,,etc. We are professional expert in cutting field. We would like to solve every problem from you. Please feel free to contact us, it’s our pleasure to serve for you. BW product including: utting tool、aerospace tool .HSS Cutting tool、Carbide end mills、Carbide cutting tool、NAS Cutting tool、Carbide end mill、Aerospace cutting tool、Carbide drill、High speed steel、Milling cutter、Core drill、Taperd end mills、Metric end mills、Miniature end mills、Pilot reamer、Electronics cutter、Step drill、Metal cutting saw、Double margin drill、Gun barrel、Angle milling cutter、Carbide burrs、Carbide tipped cutter、Chamfering tool、IC card engraving cutter、Side cutter、NAS tool、DIN tool、Special tool、Metal slitting saws、Shell end mills、Side and face milling cutters、Side chip clearance saws、Long end mills、Stub roughing end mills、Dovetail milling cutters、Carbide slot drills、Carbide torus cutters、Angeled carbide end mills、Carbide torus cutters、Carbide ball-noseed slot drills、Mould cutter、Tool manufacturer.
Bewise Inc. www.tool-tool.com

beeway 發表在 痞客邦 留言(0) 人氣()

Bewise Inc. www.tool-tool.com Reference source from the internet.

CAD/CAM技术经过近40年的发展,在产品的设计与制造领域发挥了不可估量的作用。它广泛应用于机械、电子、化工、航天、建筑等各个行业,改变了传统的设计制造方式,企业取得了显著的经济效益。

近年来,Internet、PDM、网络数据库、电子商务等新技术的飞速发展为CAD\CAM技术赋予了新的设计理念与技术内容,将彻底改变现有辅助设计 与制造的模式与方式。基于网络的CAD/CAM集成系统的研究,就是在这个背景下提出来的。网络化的CAD/CAM集成系统就是充分利用网络技术、数据库 技术、面向产品设计制造全生命周期,支持动态建模与产品性能设计的设计技术。在此基础上研究出新一代的设计制造软件工具,以适应网络时代对产品设计制造的 要求[1]。计算机在设计制造领域的应用,摆脱了手工设计制造的原始方式。随着网络时代的到来,计算机辅助设计的方法将会被网络辅助设计方法所代替。网络 化的CAD/CAM系统将改变现有的传统设计制造的方式,而进入一个网络辅助设计制造的新时期。

1基于网络的CAD/CAM集成的必要性

网络技术是计算机技术和通信技术相互渗透而又密切结合的产物,在计算机应用和信息的传输中起到了越来越重要的作用。作为计算机应用的一个重要方面,CAD 和CAM技术与网络是密不可分的。单台计算机的处理能力限制了它的应用范围,只有通过网络互连起来,才能资源共享和协调合作,发挥更大的效能。一个复杂的 CAD系统本身就可能由一个计算机网络构成。CAM系统涉及加工设备、可编程控制器、传输设备、机器人等,更需要网络将它们和计算机及各种专用的外部设备 互连在一起。

CAD/CAM技术集成化、可视化、智能化的发展,产品高性能、高质量、低成本和短周期的要求,都对CAD/CAM技术提出了网络化的需要。 CAD/CAM系统涉及不同结构、品牌及型号的各计算机和外围设备,因而将它们互连的网络应是开放式的和标准化的。开放式和标准化也是计算机网络的发展方 向。制造自动化协议MAP(ManufacturingAutomationProtocol),是用于制造业的计算机网络体系结构中的工业标准。

2基于网络的CAD/CAM集成的主要内容

CAD/CAM系统集成就是将企业各部门的应用CAD/CAM在总体设计的指导下以数据库为核心,网络技术为支撑,用现代的计算机接口方法,把各有关的单 项CAD/CAM应用软件系统,连接成一个有机整体,相互支持,相互调用,共享资源和数据信息,发挥单项应用所起不到的整体效益。

CAD/CAM的系统集成是计算机技术发展到一定阶段的必然产物。实现集成的必要条件是要有一定数量、专业的CAD/CAM软件应用的积累,在机械工程领 域,CAD/CAM集成的软件也较多,比较有名的国外的软件是UnigraphicsSolu tions公司开发的UG、美国参数技术公司(ParametricTechnologyCorporation)的Pro/Engineer等,而国内 的则属北京北航海尔软件有限公司的CAXA-ME制造工程师、广州红地技术有限公司开发的基于STEP标准的CAD/CAM系统的金银花 (Lonicera)系统、华中理工大学机械学院开发的开目CAD等。对于对这些CAD/CAM应用软件有效的集成并不是将现有的这些软件简单的堆积,而 是可根据本单位的CAD/CAM总体设计技术规范的指导下,按照系统工程的原理和软件工程的方法来进行,对原有的单项CAD/CAM应用系统进行改造,使 之符合集成化的需要。制定单位总体设计,也就是通过分析单位的CAD/CAM应用的远期目标和近期目标,确定系统的总体结构并划分相应子系统,选择适当的 物理设备和支撑软件,制定统一的信息代码和公共数据库,规定各个单项CAD/CAM应用软件开发的应用接口,提出系统运行的保障体系和措施,编制整体的实 施步骤和投资估算,为系统分阶段实施提供依据和指导。

3基于网络的CAD/CAM集成系统的模型与实现

(1)CAD/CAM系统的组成和集成

CAD/CAM系统基本上是由硬件系统和软件系统两部分组成。硬件系统包括计算机、外部设备和网络设备;软件系统包括系统软件、应用软件(基础软件)和专 业软件。系统软件主要包括:操作系统、程序设计语言处理系统、数据库管理系统和网络系统。应用软件主要包括数据库分析处理软件、几何造型系统软件、图形处 理软件和有限元分析计算软件等。专业软件则是指针对不同领域而开发的CAD/CAM软件产品。

CAD/CAM系统集成的核心是信息的集成,而信息集成需要有信息管理系统,解决各专业间复杂的技术信息交流和管理,并应用到信息流的后续环节,这才是最 经济最有效率的。那么,企业内部生产活动所需的各种分散信息、CAD/CAM相关的行政管理信息、技术数据、产品数据、软件等有机地集成起来,建立信息管 理系统,实现信息资源共享,才是CAD/CAM系统集成的信息基础。

建立CAD/CAM集成系统另一个重要环节是信息的标准化,企业内进行交换和处理的信息,要按CAD/CAM系统的要求,给予命名、描述、分类、编码标准 化等实施细则,以保障信息的统一性、可靠性和实用性,减少信息的重复采集、加工和存储版本冲突,最大程度地实现信息的科学管理,在这个良好的信息技术的基 础上,加上网络技术与工程数据库的应用,才能真正实现CAD/CAM的一体化和集成化。

(2)CAD/CAM集成系统的网络化实现

基于网络的CAD/CAM系统由因特网、局域网、计算机辅助设计与制造系统和数控(NC)机床等组成。CAD/CAM及NC机床与各自的局域网相连,然后 通过Internet把整个系统连接在一起。设计者利用CAD/CAM可完成设计工作。设计中,可通过网络与异地的设计者交换设计思想、讨论设计方案、实 现资源共享;还可与异地设计者进行合作设计。可把设计结果转换成数控代码,通过网络发送给远程的数控机床,实现异地加工。还可通过网络接收生产现场发来的 加工信息,对加工过程进行远程监控,及时解决加工中出现的问题。该系统的NC机床除了具有普通NC的功能外,还具有网络通信功能。既能接受网络送来的控制 指令,又能通过网络向异地的用户发送加工状态信息。

系统通信基于TCP/IP协议。TCP/IP是分层协议,包括应用层、传输层、网际层和网络接口等4层。TCP/IP协议没有包括国际标准化组织 (ISO)提出的开放系统互连(OSI)参考模型中的最低两层,即物理层和数据链路层。TCP/IP只定义了TCP/IP与物理层的接口。该接口负责转发 IP报文,并从网络上接受物理帧,提取IP报文送给网际层。网际层负责网上主机之间的通信。它接收传输层送来的TCP报文,加上IP报头,发往信宿机。网 际层的另一任务是检查网上的IP报文。如果其目的地不是本机,则按一定的路径转发出去;如果目的地是本主机,则去掉IP报头,上交给传输层。传输层负责端 到端(PorttoPort)的通信,它将应用层送来的数据流格式化成TCP报文,发给网际层。接受网际层转来的数据,并检验其正确性。如果不正确,则要 求信源机重发;如果正确,则通过指定的端口送给应用层的某应用程序。应用层协议提供应用程序与网络系统的接口规范,它以一定的格式显示收到的信息,或把客 户的输入信息发给低层协议。常用的应用层协议有Email协议(SMTP)、文件传输协议(FTP)、超文本协议(HTTP)和远程登录协议 (Telnet)等。

可直接利用上述应用层协议为基于网络的CAD/CAM系统服务。HTTP协议可用于向异地的NC机床发送NC代码、收集加工信息;利用SMPT协议,可与 异地的设计者交换设计思想,讨论共同关心的问题;FTP协议可用于发送较长的NC加工程序,或其他较长的文件;利用Telnet协议实现远程登录,实现资 源共享;GOPHER可用于传递字符型信息。

4结论

伴随计算机网络技术的不断发展,基于网络的CAD/CAM集成系统是技术发展的必然趋势。应用Web技术构建一个基于分布式操作、图形化用户接口及数据库 管理为一体的网络有利于充分利用企业已有的硬件,为各部门之间的数据及资源共享提供快速通道,并通过Internet实现与外界的信息交流。另外, CAD/CAM集成技术是国际上的研究热点之一,CAD/CAM集成系统的开发与应用已成为衡量一个国家的科技现代化和工业现代化的主要标志之一。加速 CAD/CAM集成化建设是传统制造业改革和发展的必由之路,因此,基于网络的CAD/CAM集成技术的研究具有深远的现实意义。
Welcome to BW tool world! We are an experienced tool maker specialized in cutting tools. We focus on what you need and endeavor to research the best cutter to satisfy users’ demand. Our customers involve wide range of industries, like mold & die, aerospace, electronic, machinery, ,,,etc. We are professional expert in cutting field. We would like to solve every problem from you. Please feel free to contact us, it’s our pleasure to serve for you. BW product including: utting tool、aerospace tool .HSS Cutting tool、Carbide end mills、Carbide cutting tool、NAS Cutting tool、Carbide end mill、Aerospace cutting tool、Carbide drill、High speed steel、Milling cutter、Core drill、Taperd end mills、Metric end mills、Miniature end mills、Pilot reamer、Electronics cutter、Step drill、Metal cutting saw、Double margin drill、Gun barrel、Angle milling cutter、Carbide burrs、Carbide tipped cutter、Chamfering tool、IC card engraving cutter、Side cutter、NAS tool、DIN tool、Special tool、Metal slitting saws、Shell end mills、Side and face milling cutters、Side chip clearance saws、Long end mills、Stub roughing end mills、Dovetail milling cutters、Carbide slot drills、Carbide torus cutters、Angeled carbide end mills、Carbide torus cutters、Carbide ball-noseed slot drills、Mould cutter、Tool manufacturer.
Bewise Inc. www.tool-tool.com

beeway 發表在 痞客邦 留言(0) 人氣()

Bewise Inc. www.tool-tool.com Reference source from the internet.

航 空制造业的竞争日趋激烈,人们要求飞机的承载能力更强,更高效,而交货周期却更短。为满足这些严格的要求,飞机设计师不得不寻求更先进的设计方法和工具, 以提高产品质量,缩短研制周期。有限元分析方法和智能设计系统加速了产品的优化设计,使零件、组合件的设计达到了前所未有的精度。这些先进的方法和工具为 型架设计方法的改进提供了技术基础。 传统型架设计方法存在的问题

飞机结构件尺寸大,刚度小,而制造精确度要求高。为保证产品制造精度和互换协调,飞机制造过程中采用了成套装配型架。为减小装配过程中结构的变形并保证准 确定位,现有装配型架采用刚性结构,而且一套型架只能用于一个装配对象,因此,飞机生产准备过程中需制造大量的装配型架。由于尺寸大,结构复杂,因此,装 配型架的制造周期长,成本高,而且占地面积大。传统的装配型架上要安装许多定位件,为保证定位精度,定位件的安装往往需要专用安装仪器,如电子经纬仪、激 光准直仪等,工作的分散性差,安装效率低,安装周期长。

一般飞机生产准备周期占飞机研制周期的1/2以上,而装配型架的设计制造是飞机生产准备的主要内容之一。减少型架的制造时间对缩短整个飞机研制周期有重要 意义。为缩短生产准备周期,人们希望飞机设计完成后,生产工装很快就能投入使用,而型架设计的依据是飞机结构数据,因而传统的型架设计往往在飞机设计完成 后才开始进行。实际生产过程中,装配对象的设计数据经常改动,导致装配型架的设计随之改动,这又延长了型架的设计制造周期。

确定装配设计方法

为缩短飞机研制周期,目前国外许多公司都采用了“确定装配”(Determinate Assembly)设计方法。确定装配是用来描述产品设计过程的一个术语,其基本思想是构成产品的不同零件在预定义的结合面配合装配,整个装配过程不需要 专门的测量仪器和复杂的测量及调整。确定装配设计方法属于面向制造和装配的设计方法的一部分,这种设计方法的潜在好处是减少工装和工具,提高装配效率,从 而减少生产准备周期和制造费用。从理论上讲,这种设计方法要求零件的准确度高,不同零件“吸附在一起(Snap together)”就可保证产品装配的准确度。因此,这种设计方法必须以三维CAD系统和智能设计系统为设计工具,以高精度CNC设备为加工手段。
在型架设计中确定装配设计方法的一个具体应用就是采用“销钉板”(Pegboard),比如在立柱上加工许多标准的坐标孔,有相应标准的销钉与坐标孔配 合。为了定位装配对象,专门加工了许多定位用刻度板(Index plate),这些刻度板上也有坐标孔,可以通过销钉及相应的坐标孔将刻度板定位在立柱的销钉板上。刻度板和立柱的装配不需要专门的光学仪器和其他安装工 具。刻度板是专门针对装配对象的特点加工的,用于桁条等结构的定位。

飞机结构和装配型架的并行设计

民用飞机的结构尺寸愈来愈大,如目前最大的超大型客机A380,双层客舱,高24m,长73m,翼展宽80m,标准机型载客550~650人。飞机结构的 大型化对设计人员提出了新的挑战。由于结构尺寸的增大,设计人员需要解决承载和空气动力外形方面所遇到的许多问题,从而导致设计周期更长,设计更改更多, 这必然影响工装的设计,制造周期,延长了产品的上市周期。

要缩短产品上市周期,在飞机结构设计的同时就应开始工装设计,即飞机产品和飞机工装的并行设计。由于工装的设计依据来源于飞机产品数据,要在最终产品数据 还未确定的情况下进行工装设计,工装的部分结构必须独立于产品数据。工装和产品并行设计的一个基本思路是改变传统的工装结构,将其划分为独立于产品数据或 只需要基本数据的标准结构和依赖于最终产品数据的专用结构件两部分。装配型架的标准结构部分主要有立柱、底座、辅助支撑等,专用部分主要有用于定位桁条的 刻度板、接头定位件等。专用件一般尺寸较小,设计、加工制造周期很短,并且不需专门的大型加工设备。标准结构尺寸大,结构复杂,往往需要专用大型加工设 备,其设计、制造周期长。标准结构的设计不需要最终产品数据或只需一些基本数据,因此在飞机产品设计的初期就可进行设计制造,当产品最终版本发放后只需较 短的时间就可完成专用结构的设计制造。标准件和专用件采用确定装配设计方法,装配非常方便,并且不需专用安装工具,装配周期短。这样,在产品设计完成后很 短时间内型架就可投入产品装配。

确定装配和并行设计方法在A380壁板装配型架的设计制造中取得了巨大的成功。
Welcome to BW tool world! We are an experienced tool maker specialized in cutting tools. We focus on what you need and endeavor to research the best cutter to satisfy users’ demand. Our customers involve wide range of industries, like mold & die, aerospace, electronic, machinery, ,,,etc. We are professional expert in cutting field. We would like to solve every problem from you. Please feel free to contact us, it’s our pleasure to serve for you. BW product including: utting tool、aerospace tool .HSS Cutting tool、Carbide end mills、Carbide cutting tool、NAS Cutting tool、Carbide end mill、Aerospace cutting tool、Carbide drill、High speed steel、Milling cutter、Core drill、Taperd end mills、Metric end mills、Miniature end mills、Pilot reamer、Electronics cutter、Step drill、Metal cutting saw、Double margin drill、Gun barrel、Angle milling cutter、Carbide burrs、Carbide tipped cutter、Chamfering tool、IC card engraving cutter、Side cutter、NAS tool、DIN tool、Special tool、Metal slitting saws、Shell end mills、Side and face milling cutters、Side chip clearance saws、Long end mills、Stub roughing end mills、Dovetail milling cutters、Carbide slot drills、Carbide torus cutters、Angeled carbide end mills、Carbide torus cutters、Carbide ball-noseed slot drills、Mould cutter、Tool manufacturer.
Bewise Inc. www.tool-tool.com

beeway 發表在 痞客邦 留言(0) 人氣()