Bewise Inc. www.tool-tool.com Reference source from the internet.
数控机床程序编制(又称数控编程)是指编程者(程序员或数控机床操作者)根据零件图样和工艺文件的要求,编制出可在数控机床上运行以完成规定加工任务的一系列指令的过程。具体来说,数控编程是由分析零件图样和工艺要求开始到程序检验合格为止的全部过程。
1.分析零件图样和工艺要求
分析零件图样和工艺要求的目的,是为了确定加工方法、制定加工计划,以及确认与生产组织有关的问题,此步骤的内容包括:
1)确定该零件应安排在哪类或哪台机床上进行加工。
2)采用何种装夹具或何种装卡位方法。
3)确定采用何种刀具或采用多少把刀进行加工。
4)确定加工路线,即选择对刀点、程序起点(又称加工起点,加工起点常与对刀点重合)、走刀路线、程序终点(程序终点常与程序起点重合)。
5)确定切削深度和宽度、进给速度、主轴转速等切削参数。
6)确定加工过程中是否需要提供冷却液、是否需要换刀、何时换刀等。
2.数值计算
根据零件图样几何尺寸,计算零件轮廓数据,或根据零件图样和走刀路线,计算刀具中心(或刀尖)运行轨迹数据。数值计算的最终目的是为了获得编程所需要的所有相关位置坐标数据。
3.编写加工程序单
在完成上述两个步骤之后,即可根据已确定的加工方案(或计划)及数值计算获得的数据,按照数控系统要求的程序格式和代码格式编写加工程序等。编程者除应 了解所用数控机床及系统的功能、熟悉程序指令外,还应具备与机械加工有关的工艺知识,才能编制出正确、实用的加工程序。
4.制作控制介质,输入程序信息
程序单完成后,编程者或机床操作者可以通过CNC机床的操作面板,在EDIT方式下直接将程序信息键入CNC系统程序存储器中;也可以根据 CNC系统输入、输出装置的不同,先将程序单的程序制作成或转移至某种控制介质上。控制介质大多采用穿孔带,也可以是磁带、磁盘等信息载体,利用穿孔带阅 读机或磁带机、磁盘驱动器等输入(输出)装置,可将控制介质上的程序信息输入到CNC系统程序存储器中。
5.程序检验
编制好的程序,在正式用于生产加工前,必须进行程序运行检查。在某些情况下,还需做零件试加工检查。根据检查结果,对程序进行修改和调整,检查修改再检查再修改……这往往要经过多次反复,直到获得完全满足加工要求的程序为止。
上述编程步骤中的各项工作,主要由人工完成,这样的编程方式称为“手式编程”。在各机械制造行业中,均有大量仅由直线、圆弧等几何元素构成的形状并不复 杂的零件需要加工。这些零件的数值计算较为简单,程序段数不多,程序检验也容易实现,因而可采用手工编程方式完成编程工作。由于手工编程不需要特别配置专 门的编程设备,不同文化程度的人均可掌握和运用,因此在国内外,手工编程仍然是一种运用十分普遍的编程方法。
自动编程
在航空、船舶、兵器、汽车、模具等制造业中,经常会有一些具有复杂形面的零件需要加工,有的零件形状虽不复杂,但加工程序很长。这些零件的数值计算、程 序编写、程序校验相当复杂繁琐,工作量很大,采用手工编程是难以完成的。此时,应采用装有编程系统软件的计算机或专用编程机珲完成这些零件的编程工作。数 控机床的程序编制由计算机完成的过程,称为自动编程。
在进行自动编程时,程序员所要做的工作是根据图样和工艺要求,使用规定的编程语 言,编写零件加工源程序,并将其输入编程机,编程机自动对输入的信息进行处理,即可以自动计算刀具中心运动轨迹、自动编辑零件加工程序并自动制作穿孔带 等。由于编程机多带有显示器,可自动绘出零件图形和刀具运动轨迹,程序员可检查程序是否正确,必要时可及时修改。采用自动编程方式可极大地减少编程者的工 作量,大大提高编程效率,而且可以解决用手工编程无法解决的复杂零件的编程难题。
数控机床程序编制(又称数控编程)是指编程者(程序员或数控机床操作者)根据零件图样和工艺文件的要求,编制出可在数控机床上运行以完成规定加工任务的一系列指令的过程。具体来说,数控编程是由分析零件图样和工艺要求开始到程序检验合格为止的全部过程。
1.分析零件图样和工艺要求
分析零件图样和工艺要求的目的,是为了确定加工方法、制定加工计划,以及确认与生产组织有关的问题,此步骤的内容包括:
1)确定该零件应安排在哪类或哪台机床上进行加工。
2)采用何种装夹具或何种装卡位方法。
3)确定采用何种刀具或采用多少把刀进行加工。
4)确定加工路线,即选择对刀点、程序起点(又称加工起点,加工起点常与对刀点重合)、走刀路线、程序终点(程序终点常与程序起点重合)。
5)确定切削深度和宽度、进给速度、主轴转速等切削参数。
6)确定加工过程中是否需要提供冷却液、是否需要换刀、何时换刀等。
2.数值计算
根据零件图样几何尺寸,计算零件轮廓数据,或根据零件图样和走刀路线,计算刀具中心(或刀尖)运行轨迹数据。数值计算的最终目的是为了获得编程所需要的所有相关位置坐标数据。
3.编写加工程序单
在完成上述两个步骤之后,即可根据已确定的加工方案(或计划)及数值计算获得的数据,按照数控系统要求的程序格式和代码格式编写加工程序等。编程者除应 了解所用数控机床及系统的功能、熟悉程序指令外,还应具备与机械加工有关的工艺知识,才能编制出正确、实用的加工程序。
4.制作控制介质,输入程序信息
程序单完成后,编程者或机床操作者可以通过CNC机床的操作面板,在EDIT方式下直接将程序信息键入CNC系统程序存储器中;也可以根据 CNC系统输入、输出装置的不同,先将程序单的程序制作成或转移至某种控制介质上。控制介质大多采用穿孔带,也可以是磁带、磁盘等信息载体,利用穿孔带阅 读机或磁带机、磁盘驱动器等输入(输出)装置,可将控制介质上的程序信息输入到CNC系统程序存储器中。
5.程序检验
编制好的程序,在正式用于生产加工前,必须进行程序运行检查。在某些情况下,还需做零件试加工检查。根据检查结果,对程序进行修改和调整,检查修改再检查再修改……这往往要经过多次反复,直到获得完全满足加工要求的程序为止。
上述编程步骤中的各项工作,主要由人工完成,这样的编程方式称为“手式编程”。在各机械制造行业中,均有大量仅由直线、圆弧等几何元素构成的形状并不复 杂的零件需要加工。这些零件的数值计算较为简单,程序段数不多,程序检验也容易实现,因而可采用手工编程方式完成编程工作。由于手工编程不需要特别配置专 门的编程设备,不同文化程度的人均可掌握和运用,因此在国内外,手工编程仍然是一种运用十分普遍的编程方法。
自动编程
在航空、船舶、兵器、汽车、模具等制造业中,经常会有一些具有复杂形面的零件需要加工,有的零件形状虽不复杂,但加工程序很长。这些零件的数值计算、程 序编写、程序校验相当复杂繁琐,工作量很大,采用手工编程是难以完成的。此时,应采用装有编程系统软件的计算机或专用编程机珲完成这些零件的编程工作。数 控机床的程序编制由计算机完成的过程,称为自动编程。
在进行自动编程时,程序员所要做的工作是根据图样和工艺要求,使用规定的编程语 言,编写零件加工源程序,并将其输入编程机,编程机自动对输入的信息进行处理,即可以自动计算刀具中心运动轨迹、自动编辑零件加工程序并自动制作穿孔带 等。由于编程机多带有显示器,可自动绘出零件图形和刀具运动轨迹,程序员可检查程序是否正确,必要时可及时修改。采用自动编程方式可极大地减少编程者的工 作量,大大提高编程效率,而且可以解决用手工编程无法解决的复杂零件的编程难题。
数控机床程序编制(又称数控编程)是指编程者(程序员或数控机床操作者)根据零件图样和工艺文件的要求,编制出可在数控机床上运行以完成规定加工任务的一系列指令的过程。具体来说,数控编程是由分析零件图样和工艺要求开始到程序检验合格为止的全部过程。
1.分析零件图样和工艺要求
分析零件图样和工艺要求的目的,是为了确定加工方法、制定加工计划,以及确认与生产组织有关的问题,此步骤的内容包括:
1)确定该零件应安排在哪类或哪台机床上进行加工。
2)采用何种装夹具或何种装卡位方法。
3)确定采用何种刀具或采用多少把刀进行加工。
4)确定加工路线,即选择对刀点、程序起点(又称加工起点,加工起点常与对刀点重合)、走刀路线、程序终点(程序终点常与程序起点重合)。
5)确定切削深度和宽度、进给速度、主轴转速等切削参数。
6)确定加工过程中是否需要提供冷却液、是否需要换刀、何时换刀等。
2.数值计算
根据零件图样几何尺寸,计算零件轮廓数据,或根据零件图样和走刀路线,计算刀具中心(或刀尖)运行轨迹数据。数值计算的最终目的是为了获得编程所需要的所有相关位置坐标数据。
3.编写加工程序单
在完成上述两个步骤之后,即可根据已确定的加工方案(或计划)及数值计算获得的数据,按照数控系统要求的程序格式和代码格式编写加工程序等。编程者除应 了解所用数控机床及系统的功能、熟悉程序指令外,还应具备与机械加工有关的工艺知识,才能编制出正确、实用的加工程序。
4.制作控制介质,输入程序信息
程序单完成后,编程者或机床操作者可以通过CNC机床的操作面板,在EDIT方式下直接将程序信息键入CNC系统程序存储器中;也可以根据 CNC系统输入、输出装置的不同,先将程序单的程序制作成或转移至某种控制介质上。控制介质大多采用穿孔带,也可以是磁带、磁盘等信息载体,利用穿孔带阅 读机或磁带机、磁盘驱动器等输入(输出)装置,可将控制介质上的程序信息输入到CNC系统程序存储器中。
5.程序检验
编制好的程序,在正式用于生产加工前,必须进行程序运行检查。在某些情况下,还需做零件试加工检查。根据检查结果,对程序进行修改和调整,检查修改再检查再修改……这往往要经过多次反复,直到获得完全满足加工要求的程序为止。
上述编程步骤中的各项工作,主要由人工完成,这样的编程方式称为“手式编程”。在各机械制造行业中,均有大量仅由直线、圆弧等几何元素构成的形状并不复 杂的零件需要加工。这些零件的数值计算较为简单,程序段数不多,程序检验也容易实现,因而可采用手工编程方式完成编程工作。由于手工编程不需要特别配置专 门的编程设备,不同文化程度的人均可掌握和运用,因此在国内外,手工编程仍然是一种运用十分普遍的编程方法。
自动编程
在航空、船舶、兵器、汽车、模具等制造业中,经常会有一些具有复杂形面的零件需要加工,有的零件形状虽不复杂,但加工程序很长。这些零件的数值计算、程 序编写、程序校验相当复杂繁琐,工作量很大,采用手工编程是难以完成的。此时,应采用装有编程系统软件的计算机或专用编程机珲完成这些零件的编程工作。数 控机床的程序编制由计算机完成的过程,称为自动编程。
在进行自动编程时,程序员所要做的工作是根据图样和工艺要求,使用规定的编程语 言,编写零件加工源程序,并将其输入编程机,编程机自动对输入的信息进行处理,即可以自动计算刀具中心运动轨迹、自动编辑零件加工程序并自动制作穿孔带 等。由于编程机多带有显示器,可自动绘出零件图形和刀具运动轨迹,程序员可检查程序是否正确,必要时可及时修改。采用自动编程方式可极大地减少编程者的工 作量,大大提高编程效率,而且可以解决用手工编程无法解决的复杂零件的编程难题。
Welcome to BW tool world! We are an experienced tool maker specialized in cutting tools. We focus on what you need and endeavor to research the best cutter to satisfy users’ demand. Our customers involve wide range of industries, like mold & die, aerospace, electronic, machinery, ,,,etc. We are professional expert in cutting field. We would like to solve every problem from you. Please feel free to contact us, it’s our pleasure to serve for you. BW product including: utting tool、aerospace tool .HSS Cutting tool、Carbide end mills、Carbide cutting tool、NAS Cutting tool、Carbide end mill、Aerospace cutting tool、Carbide drill、High speed steel、Milling cutter、Core drill、Taperd end mills、Metric end mills、Miniature end mills、Pilot reamer、Electronics cutter、Step drill、Metal cutting saw、Double margin drill、Gun barrel、Angle milling cutter、Carbide burrs、Carbide tipped cutter、Chamfering tool、IC card engraving cutter、Side cutter、NAS tool、DIN tool、Special tool、Metal slitting saws、Shell end mills、Side and face milling cutters、Side chip clearance saws、Long end mills、Stub roughing end mills、Dovetail milling cutters、Carbide slot drills、Carbide torus cutters、Angeled carbide end mills、Carbide torus cutters、Carbide ball-noseed slot drills、Mould cutter、Tool manufacturer.
Bewise Inc. www.tool-tool.com
公告版位
- May 19 Sat 2007 15:27
数控机床程序编制介绍www.tool-tool.com
- May 19 Sat 2007 15:21
中国标准代号www.tool-tool.com
Bewise Inc. www.tool-tool.com Reference source from the internet.
国家标准代号
序号 代号 含 义 管 理 部 门
1 GB 中华人民共和国强制性国家标准 国家标准化管理委员会
2 GB/T 中华人民共和国推荐性国家标准 国家标准化管理委员会
3 GB/A 中华人民共和国国家标准化指导性技术文件 国家标准化管理委员会
行业标准代号
序号 代 号 含 义 管 理 部 门
1 BB 包装 中国包装工业总公司
2 CB 船舶 国防科工委(船舶)
3 CH 测绘 国家测绘局
4 CJ 城镇建设 建设部(城镇建设)
5 CY 新闻出版 国家新闻出版总署
6 DA 档案 国家档案局
7 DB 地震 国家地震局
8 DL 电力 中国电力企业联合会
9 DZ 地质矿产 国土资源部(地质)
10 EJ 核工业 国防科工委(核工业)
11 FZ 纺织 中国纺织工业协会
12 GA 公共安全 公安部
13 GY 广播电影电视 国家广播电影电视总局
14 HB 航空 国防科工委(航空)
15 HG 化工 中国石油和化学工业协会
16 HJ 环境保护 国家环境保护总局
17 HS 海关 海关总署
18 HY 海洋 国家海洋局
19 JB 机械 中国机械工业联合会
20 JC 建材 中国建筑材料工业协会
21 JG 建筑工业 建设部(建筑工业)
22 JR 金融 中国人民银行
23 JT 交通 交通部
24 JY 教育 教育部(教育)
25 LB 旅游 国家旅游局
26 LD 劳动和劳动安全 劳动和社会保障部(工资定额)
27 LY 林业 国家林业局
28 MH 民用航空 中国民航管理局
29 MT 煤炭 中国煤炭工业协会
30 MZ 民政 民政部
31 NY 农业 农业部(农业)
32 QB 轻工 中国轻工业联合会
33 QC 汽车 中国汽车工业协会
34 QJ 航天 国防科工委(航天)
35 QX 气象 中国气象局
36 SB 商业 中国商业联合会
37 SC 水产 农业部(水产)
38 SH 石油化工 中国石油和化学工业协会
39 SJ 电子 信息产业部(电子)
40 SL 水利 水利部
41 SN 商检 国家质量监督检验检疫总局
42 SY 石油天然气 中国石油和化学工业协会
43 (10000号以后) 海洋石油天然气 中国海洋石油总公司
44 TB 铁路运输 铁道部
45 TD 土地管理 国土资源部(土地)
46 TY 体育 国家体育总局
47 WB 物资管理 中国物资流通协会
48 WH 文化 文化部
49 WJ 兵工民品 国防科工委(兵器)
50 WM 外经贸 对外经济贸易合作部
51 WS 卫生 卫生部
52 XB 稀土 国家计委稀土办公室
53 YB 黑色冶金 中国钢铁工业协会
54 YC 烟草 国家烟草专卖局
55 YD 通信 信息产业部(邮电)
56 YS 有色冶金 中国有色金属工业协会
57 YY 医药 国家药品监督管理局
58 YZ 邮政 国家邮政局
注:行业标准分为强制性和推荐性标准。表中给出的是强制性行业标准代号,推荐性行业标准的代号是在强制性行业标准代号后面加 “/T”。
地方标准代号
序号 代 号 含 义 管 理 部 门
1 DB + 省级行政区
划代码前两位 中华人民共和国
强制性地方标准代号 省级质量技术监督局
1 DB + 省级行政区
划代码前两位/T 中华人民共和国
推荐性地方标准代号 省级质量技术监督局
企业标准代号
序号 代 号 含 义 管 理 部 门
1 Q + 企业代号 中华人民共和国企业产品标准 企 业
Welcome to BW tool world! We are an experienced tool maker specialized in cutting tools. We focus on what you need and endeavor to research the best cutter to satisfy users’ demand. Our customers involve wide range of industries, like mold & die, aerospace, electronic, machinery, ,,,etc. We are professional expert in cutting field. We would like to solve every problem from you. Please feel free to contact us, it’s our pleasure to serve for you. BW product including: utting tool、aerospace tool .HSS Cutting tool、Carbide end mills、Carbide cutting tool、NAS Cutting tool、Carbide end mill、Aerospace cutting tool、Carbide drill、High speed steel、Milling cutter、Core drill、Taperd end mills、Metric end mills、Miniature end mills、Pilot reamer、Electronics cutter、Step drill、Metal cutting saw、Double margin drill、Gun barrel、Angle milling cutter、Carbide burrs、Carbide tipped cutter、Chamfering tool、IC card engraving cutter、Side cutter、NAS tool、DIN tool、Special tool、Metal slitting saws、Shell end mills、Side and face milling cutters、Side chip clearance saws、Long end mills、Stub roughing end mills、Dovetail milling cutters、Carbide slot drills、Carbide torus cutters、Angeled carbide end mills、Carbide torus cutters、Carbide ball-noseed slot drills、Mould cutter、Tool manufacturer.
Bewise Inc. www.tool-tool.com
- May 19 Sat 2007 15:16
斜孔钻削工艺及麻花钻结构的改进www.tool-tool.com
Bewise Inc. www.tool-tool.com Reference source from the internet.
图1 钻尖几何角度的刃磨
1 问题的提出
我们在加工某军工产品的主要零件——定板(材料45钢,外形尺寸1005×7000×20mm)时,共需钻削1071个f24mm的30°斜孔,且要求孔 壁表面粗糙度达到Ra6.3µm。钻孔加工时工件厚度大于名义尺寸3mm(留作精刨余量)。当在Z3550万向摇臂钻床上用标准麻花钻对定板进行常规钻削 加工时,产生了以下工艺问题:
1. 用标准麻花钻头钻削30°斜孔时,由于钻头与工件之间的夹角较小,为保证加工长度,需要加长钻杆和钻头,从而使钻头刚性降低。此外,钻削斜孔时钻头在相当 长一段时间处于断续切削状态且径向抗力很大,为避免崩刃,保证加工正常进行,就必须减小切削用量,这就直接影响了加工效率和生产进度。
2. 钻削直孔时,采用钻!扩工艺即可稳定达到Ra6.3µm的表面粗糙度要求。但钻削30°斜孔时,由于受断续切削和径向抗力的影响,钻头在钻削过程中始终存 在振动,虽然采用钻套导向可部分减小径向抗力,但振动仍会加速钻头磨损,导致钻头外刃崩刃,严重影响钻削加工的正常进行和钻孔质量。
为解决上述问题,我们对斜孔钻削工艺和用于加工的标准麻花钻结构进行了改进。
2 钻削工艺的改进
1. 将斜孔钻削工艺由直接钻孔改为钻后扩孔,即在f24mm钻套内再增加一个f21mm钻套,先采用f21mm钻头钻孔,然后再用f24mm钻头扩孔。
2. 为保证定板孔距的尺寸精度和提高钻头钻削开始阶段的稳定性,设计了专用斜孔钻模。
3. 为消除钻头侧尖在刚钻透工件的瞬间所产生的径向抗力,钻削时在工件下面设置一层A3材料的工艺板。
3 钻头结构的改进
1. 钻型的选择:为提高钻头的刚性和钻孔精度,选用钻芯加厚、抛物线型切削刃槽的长刃麻花钻头,并对钻头钻尖进行机磨,以保证两锋刃角度对称,切削刃受力均匀。
2. 钻头角度的刃磨:钻孔用f21mm钻头的钻尖形式如图1a所示。在钻削斜孔的开始阶段钻头处于断续切削状态,切削面积由小到大直至进入连续切削状态,该阶 段加工长度为48mm。在断续切削阶段,钻头在径向抗力作用下,其棱边与钻套内壁的摩擦力较大,为减小摩擦力,将f21mm钻头钻尖的几何角度刃磨为群钻 型。由于钻头锋角(主偏角)的改变将使径向切削力Py与轴向切削力(走刀力)Px的大小比例发生变化,即径向切削力Py将随锋角的增大而减小,因此刃磨钻 头时需增大两锋角。同时,将钻尖横刃磨窄以减小轴向切削力;将圆弧刃磨低,弧底靠近钻头侧刃,使外直刃宽度变窄,降低A、 B间的轴向高度(见图1b),从而加高环形筋,增强钻头侧尖的定心作用,以达到提高切削稳定性的目的。这样,当钻削长度超过A、B后,钻尖附近的径向切削 力与外直刃的径向分力方向相反且小于外直刃径向分力(见图1c)。
4 改进后的加工效果
1.平台 2.压板 3.百分表
4.找正芯轴 5.钻模板 6.挡板
图2 工件找正示意图
在钻头几何角度确定后,通过切削试验选取合理的切削用量(转速n=160r/min,进给量f=0.08~0.10mm/r)。定板上的斜孔钻削完毕后, 需用砂轮进行手工修磨(修磨后的孔径为f24~24.5mm),然后用砂布打光,使各孔的表面粗糙度基本达到Ra6.3µm。加工后,发现有个别孔的钻口 处孔壁母线不直,经分析,这是因为机床导轨、机床主轴角度与钻模板相互之间找正不准引起钻头进给方向与钻模板上的钻套内孔轴线不一致所致。为解决这一问 题,在每台加工机床上配备了一个找正芯轴(见图2),每钻完一个孔后,移动床头位置,将安装在机床主轴孔内的找正芯轴插入钻模板的钻套内,通过调整机床主 轴位置,使芯轴可在钻套内自由转动,然后取出芯轴、装上钻头即可进行钻削加工。
经生产验证,用改进后的钻削工艺及麻花钻加工定板零件的30°斜孔时,加工效果良好,钻孔质量和加工效率显著提高,每班可钻孔30~35个。
Welcome to BW tool world! We are an experienced tool maker specialized in cutting tools. We focus on what you need and endeavor to research the best cutter to satisfy users’ demand. Our customers involve wide range of industries, like mold & die, aerospace, electronic, machinery, ,,,etc. We are professional expert in cutting field. We would like to solve every problem from you. Please feel free to contact us, it’s our pleasure to serve for you. BW product including: utting tool、aerospace tool .HSS Cutting tool、Carbide end mills、Carbide cutting tool、NAS Cutting tool、Carbide end mill、Aerospace cutting tool、Carbide drill、High speed steel、Milling cutter、Core drill、Taperd end mills、Metric end mills、Miniature end mills、Pilot reamer、Electronics cutter、Step drill、Metal cutting saw、Double margin drill、Gun barrel、Angle milling cutter、Carbide burrs、Carbide tipped cutter、Chamfering tool、IC card engraving cutter、Side cutter、NAS tool、DIN tool、Special tool、Metal slitting saws、Shell end mills、Side and face milling cutters、Side chip clearance saws、Long end mills、Stub roughing end mills、Dovetail milling cutters、Carbide slot drills、Carbide torus cutters、Angeled carbide end mills、Carbide torus cutters、Carbide ball-noseed slot drills、Mould cutter、Tool manufacturer.
Bewise Inc. www.tool-tool.com
- May 18 Fri 2007 20:27
高速工具钢低倍组织检验www.tool-tool.com
Bewise Inc. www.tool-tool.com Reference source from the internet.
随着机械工业的发展,现代金属的切削加工广泛采用较高的切削速度和大进刀量的快速切削方法,这就要求刃具材料必须具有较高的红硬性及耐磨性。另外,随着切 削速度和进刀量的增大,刃具负荷增加,对于刃具材料的强度和韧性也提出越来越高的要求。碳素工具钢及低合金工具钢已经不能适应对刃具的高要求,而必须使用 高碳高合金工具钢及特殊合金来制造刃具。高速工具钢是含有W、Bo、Cr、V等合金元素的高碳高合金工具钢,因其具有较高的硬度、较高的耐磨性和红硬性, 被广泛用于制造各种中、高速的切削刀具,成为目前应用最广泛的钢种之一。
而高速工具钢的锻造,对于刃具制造来说,又是十分重要的一道工序,因为其锻造性能的好坏,不但直接影响到刃具的质量,而且还影响到生产成本。高速工具钢低 倍组织的优劣,对其锻造性能又将产生较大的影响。因此,对于高速工具钢低倍组织的检验结果的准确与否,就显得尤为重要。
常规试验
高速工具钢低倍组织检验是根据国标GB226-77《钢的低倍组织及缺陷酸蚀试验法》规定,采用热酸浸蚀法。
酸蚀检验的腐蚀属于电化学腐蚀。钢的化学成分不均匀性和缺陷之所以能用浸蚀来显示,是因为它们以不同的速度与浸蚀剂起反应。表面缺陷、夹杂物、偏析区等被浸蚀剂有选择性的浸蚀,表现出可见的浸蚀特征。
对于高速工具钢而言,最常用的浸蚀剂成分是1:1(溶剂比)的盐酸(相对密度1.19)水溶液,酸蚀温度为(75±5)℃,酸蚀时间为15~40min。
试样经酸蚀实验后,规定不得有肉眼可见的缩孔、气泡、翻皮、内裂及夹杂物等缺陷存在,并且按照国标GB1979-80《结构钢低倍组织缺陷评级图》对照进行评定中心疏松、一般疏松和偏析的级别。
采用这种常规的试验方法对高速工具钢的低倍组织进行检验,操作起来比较容易,设备也比较简单,但是作者认为在实际操作中可能会出现一些问题。
常规试验可能出现的问题
酸蚀试验主要受到以下几个因素的影响^浸蚀剂成分、酸蚀时间、酸蚀温度及试样浸蚀面的光洁度。
1. 酸蚀温度的影响
对于高速工具钢低倍组织检验来说,实验时所采用的加热设备一般都是普通电炉,通常无控温装置,只能依靠试验操作者的经验来控制酸蚀温度,因此,很难控制在(75±5)℃之间,极易造成酸蚀温度不准确。
若酸蚀温度偏高,浸蚀过于激烈,对试样的腐蚀较深,缺陷组织被扩大_若酸蚀温度偏低,则反应迟缓,使缺陷组织不容易暴露出来。无论是酸蚀温度偏低或偏高,都会使暴露出的缺陷组织失真,造成试验结果不准确。
2. 酸蚀时间的影响
在试验的过程中,若酸蚀时间过长,试样存在的缺陷组织被扩大_若酸蚀时间过短,又使试样中存在的缺陷组织不容易显露出来。无论是酸蚀时间过长或过短,都会使显露出的缺陷组织失真,同样会造成试验结果不准确。
3. 浸蚀剂成分的影响
对于高速工具钢低倍组织检验时所使用的酸液而言,应有时间的限定。
对于新配制的酸液,在正常的酸蚀温度、酸蚀时间下,可以显露出试样存在的正常的缺陷组织;而在实际试验中,一般都习惯先将酸液配制好一些,保存起来以备随 时使用。若配制好酸液放置的时间较长,或酸液成分不纯、过脏等,都会在试验过程中,使试样存在的缺陷组织不容易显露出来,造成判断失误,导致试验结果不准 确。
4. 试样酸蚀面光洁度的影响
对于试样而言,较粗糙的浸蚀面浸蚀时间应稍长些,否则易使试样存在的缺陷显露不充分;若浸蚀面的光洁度较高,浸蚀的时间应较短,否则可能使试样存在的缺陷 被扩大,使试验结果不准确。最好在试验接近终了时,经常将试样取出冲洗,观察其是否达到要求的程度。
具体操作方法是:将制好的试样先清除油污、擦洗干净,放入装有浸蚀剂的容器内加热,经检查能清晰地显示出宏观组织后,取出试样并迅速地浸没在热碱水中,同 时用毛刷将试样检验面上的腐蚀产物全部刷掉,但要注意不要划伤和沾污浸蚀面,接着将试样放在热水中冲洗干净,最后用热风迅速吹干。
5. 缺陷组织评级困难
按照国标GB1979-80标准图片评定中心疏松、一般疏松和偏析等缺陷组织的级别时,由于低倍组织的标准图片较为模糊,真实感、立体感觉差,暗点和孔隙 的大小、几何形状几乎都无法显示出来。同时标准图片的级数只有4级,而高速工具钢低倍组织的合格级别规定为不大于1级,因此级差较小,造成对照标准图片进 行对比、评级较困难。
为了保证试验结果的准确性,可以对这种常规的试验方法加以改进,可尝试使用以下的试验方法。
改进后的试验方法
1. 标准试样对比法
可以事先制作两个高速工具钢的低倍组织不合格的“标准试样”,该试样是经过锻造后,证明会导致裂纹产生的高速工具钢的钢棒上截取的。
其中的一个“标准试样”用来作为标准评级用,可长期放置在盛有干燥剂(硅胶)的干燥瓶中保存,应注意其表面不得有锈斑、污迹等缺陷。每次试验后,都将待测试样与这个“标准试样”进行对比,若超出或相当它的评级结果,可视为不合格。
另一个“标准试样”用来检验每次试验结果的准确性,它同时与待测试样一起进行酸蚀试验,待测试样所暴露出来的缺陷应与“标准试样”是一致的。若不一致,待 测试样显露出的缺陷过深或过浅,则说明这次试验结果是不可靠的,需要调整试验的加热温度、加热时间,或重新更新酸液,冲洗进行试验。
2. 低倍组织检验与金相组织检验相结合
这里的金相组织检验是指在金相显微镜的放大倍数为100倍情况下进行。
实践证明,高速工具钢的低倍组织与其显微组织之间是有联系的。若高速工具钢的低倍组织中的点状偏析大于1级,在进行金相组织检验其共晶碳化不均匀度时,发 现其共晶碳化物级别大约是7级左右,而且带状的碳化物和网状的碳化物的网角上都有严重堆积的大颗粒的碳化物。
在高速工具钢的低倍组织中,其点状偏析主要呈不同形状和大小的暗色斑点。这主要是由于钢材的化学成分偏析,合金碳化物大量聚集在一起,经酸蚀试验的热酸浸 蚀后,合金碳化物会脱离其基体而在试样表面留下剥落的凹坑。在锻造时,在碳化物剥落的凹坑处,非常容易聚集扩展成为裂纹。而其点状偏析的严重程度,其实质 就是碳化物剥落的轻重程度。对于存在碳化物剥落的试样,其共晶碳化物的不均匀度也是不合格的,因此,我们可以利用低倍组织检验相结合的方法,来进一步保证 试验的准确性。
结语
对于高速工具钢的锻造而言,偏析不允许存在缺陷组织,相对而言,疏松对于高速工具钢锻造来说,要求的宽容度就要大一些。一般来说,若其心部疏松为5~2级 的高速工具钢,在其锻造时一般不会产生裂纹,而对于不是均匀的一般疏松,又不是中心疏松,不集中在钢材的中心,且呈不规则的偏析分布,则在锻造时非常容易 发生锻裂。
高速工具钢低倍组织的优劣,将严重影响其锻造性能。因此要严格把好其低倍组织的检验关,通过对高速工具钢低倍组织检验的常规试验法的改进,可以进一步保证试验结果的准确性。
Welcome to BW tool world! We are an experienced tool maker specialized in cutting tools. We focus on what you need and endeavor to research the best cutter to satisfy users’ demand. Our customers involve wide range of industries, like mold & die, aerospace, electronic, machinery, ,,,etc. We are professional expert in cutting field. We would like to solve every problem from you. Please feel free to contact us, it’s our pleasure to serve for you. BW product including: utting tool、aerospace tool .HSS Cutting tool、Carbide end mills、Carbide cutting tool、NAS Cutting tool、Carbide end mill、Aerospace cutting tool、Carbide drill、High speed steel、Milling cutter、Core drill、Taperd end mills、Metric end mills、Miniature end mills、Pilot reamer、Electronics cutter、Step drill、Metal cutting saw、Double margin drill、Gun barrel、Angle milling cutter、Carbide burrs、Carbide tipped cutter、Chamfering tool、IC card engraving cutter、Side cutter、NAS tool、DIN tool、Special tool、Metal slitting saws、Shell end mills、Side and face milling cutters、Side chip clearance saws、Long end mills、Stub roughing end mills、Dovetail milling cutters、Carbide slot drills、Carbide torus cutters、Angeled carbide end mills、Carbide torus cutters、Carbide ball-noseed slot drills、Mould cutter、Tool manufacturer.
Bewise Inc. www.tool-tool.com
- May 18 Fri 2007 20:17
高速加工的优势www.tool-tool.com
Bewise Inc. www.tool-tool.com Reference source from the internet.
高 速切削代表着全新的加工方式和刀具性能,因为它采用了不同的工艺来实现加工目标。总之,它不能使你的旧工艺变得更快。(ROGER MARTI) 不是通过采用更快的主轴速度和进刀速度使现有的加工快一些,相反,刀具路径变为轻切削,这样就通过降低铣刀上的轴向和径向力从而形成更为有效的铣削方式。 例如:可将径向和轴向的切削深度减少到以前的切削深度的三分之一,并将主轴速度和进刀速度增加到控制系统和刀具所允许的高速度。这就是高速切削的处理方 式,可给您带来以下的直接的好处:
通过减少工序数量,缩短了总体的交付时间
衡量高速切削的效率不是通过减少了多少加工时间,而是通过减少了多少整体的工艺时间来衡量。事实上,如果采用轻切削、更多的走刀来取代重切削,那么即便在 更高的进刀速度下,加工时间可能会稍长一些。然而,少量增加的加工时间会在日后的工艺中带来大量的节约。这种节约可表现为减少了抛光的时间、降低了花费在 EDM上的时间或通过减少模芯的数量而减少了模具组装的时间。
可加工薄壁件或电极
因为轻切削在铣刀和工件之间施加非常小的压力,所以可在一个工件上加工达0.3mm的薄壁或肋。这就使你开辟了以前想象不到的新的应用领域。
通过加工小的细节降低了芯棒的需求
高速切削提供了使用非常小的精密刀具的有效方式。高的主轴速度使得即便在非常轻的切削负载时,也可以保证较高的切屑去除率。高速铣削加工中心可以加工可能 需要模芯的精细花纹。由于能够加工薄壁,从而可以加工带肋的整体电极。这就消除了多次装夹和在多次装夹之间可能产生和累积的位置误差。也就节省了时间并提 高了质量。
通过提高加工光洁度,降低了抛光的需要
小的、紧密排列的走刀会产生更为光滑的表面。比如使用相同的刀具,采用较浅的切深(一般为0.025mm)。通过该方法,较浅的切削深度会极大地提高加工表面光洁度,从而缩短手工抛光时间。
提 高了加工零件的精度与传统的切削相比,高速切削将大部分热量传送给切屑,仅有少量的热量传送到刀具和工件上。热量没有聚集在工作区,这样就使工件达到了更 好的精度,从而保持了理想的几何形状。例如:加工相同电极的一致性,意味着有利于多腔模或加工可互换的注塑件。如果可省去抛光工序,那么工件的精度就会提 高。因为人工抛光很难保证一致性。这就是为什么由相同程序生产的两个电极在抛光后会不一样的原因。如果通过高速切削取消抛光,那么复制的每个电极会非常相 似。这给有效地放电加工以及多控模带来了真正的好处,因为这意味着加工完全相似的零件。
高效的电极制作
对于石墨加工,已经由传统加工转变为高速加工,对石墨电极,一般降低了80%以上的抛光时间。甚至,电极抛光阶段经常被取消。节省的周期可使车间对最后一 刻的设计变理做出反应,而不会对本来紧张的制作时间表带来不利的影响。也可向车间提供在放电加工中使用石墨负极性的好处。即便负极性会提高金属切削速度, 但许多车间禁止使用负极性,只是因为电极磨损速度非常快。但是,较短的电极制作时间会改变这种平衡,在放电加工上节省的时间要远远大于加工一个新的电极所 需的时间。
更为有效的放电加工
放电加工工艺基本上需要两个电极来加工一个工件。若要更好地进行放电加工,您的车间需要可重复性的电极加工。通过所有表面统一区分粗加工和精加工的电极, 一致性好的电极会减少放电加工的时间。手工抛光加工的电极总是包含有缺陷的角半径,而它首先开始放电。这就会放慢金属切削的速度。相比之下,粗加工和精加 工电极之间的几近完美的一致性会优化放电加工的效率。
能够使用新的铣刀技术切削硬度超过60 HRC淬硬钢
高速加工开辟了对全硬化材料的加工。通过避开热处理步骤以及去应力操作(在热处理之后需要进行该操作以补偿热处理导致的几何形状的变化),不论粗加工和精 加工均可在相同的机床上作为一个连续的过程进行。这对于锻模或硬度超过52的任何材料尤为有用。使用高速切削机床轻松切除的切屑量不超过2把。对于这种切 削情况,最经济的作法是在传统铣床上进行粗加工后进行热处理,再在高速铣床上进行精加工。
确实,您会发现该技术给您带来的实惠。重组车间以利用该技术是一件完全可以驾御的事情。
Welcome to BW tool world! We are an experienced tool maker specialized in cutting tools. We focus on what you need and endeavor to research the best cutter to satisfy users’ demand. Our customers involve wide range of industries, like mold & die, aerospace, electronic, machinery, ,,,etc. We are professional expert in cutting field. We would like to solve every problem from you. Please feel free to contact us, it’s our pleasure to serve for you. BW product including: utting tool、aerospace tool .HSS Cutting tool、Carbide end mills、Carbide cutting tool、NAS Cutting tool、Carbide end mill、Aerospace cutting tool、Carbide drill、High speed steel、Milling cutter、Core drill、Taperd end mills、Metric end mills、Miniature end mills、Pilot reamer、Electronics cutter、Step drill、Metal cutting saw、Double margin drill、Gun barrel、Angle milling cutter、Carbide burrs、Carbide tipped cutter、Chamfering tool、IC card engraving cutter、Side cutter、NAS tool、DIN tool、Special tool、Metal slitting saws、Shell end mills、Side and face milling cutters、Side chip clearance saws、Long end mills、Stub roughing end mills、Dovetail milling cutters、Carbide slot drills、Carbide torus cutters、Angeled carbide end mills、Carbide torus cutters、Carbide ball-noseed slot drills、Mould cutter、Tool manufacturer.
Bewise Inc. www.tool-tool.com
- May 18 Fri 2007 19:39
浅析高速切削(HSC)技术www.tool-tool.com
Bewise Inc. www.tool-tool.com Reference source from the internet.
一、高速切削的原始定义 1931年,德国切削物理学家萨洛蒙(Carl.J.Salomon)博士提出了一个假设,即同年申请了德国专利(Machine with high cutting speeds)的所罗门原理:被加工材料都有一个临界切削速度V0,在切削速度达到临界速度之前,切削温度和刀具磨损随着切削速度增大而增大,当切削速度 达到普通切削速度的5~6倍时,切削刃口的温度开始随切削速度增大而降低,刀具磨损随切削速度增大而减小。切削塑性材料时,传统的加工方式为“重切削”, 每一刀切削的排屑量都很大,即吃刀大,但进给速度低,切削力大。实践证明随着切削速度的提高,切屑形态从带状、片状到碎屑状演化,所需单位切削力在初期呈 上升趋势,而后急剧下降,这说明高速切削比常规切削轻快,两者的机理也不同。
二、现代高速切削技术的概念所罗门原理出发点是用传统刀具进行高速度切削,从而提高生产率。到目前为止,其原理仍未被现代科学研究所证实。但这一原理的成 功应该不只局限于此。高速切削技术是切削技术的重要发展方向之一,从现代科学技术的角度去确切定义高速切削,目前还没有取得一致,因为它是一个相对概念, 不同的加工方式,不同的切削材料有着不同的高速切削速度和加工参数。这里包含了高速软切削、高速硬切削、高速湿切削和高速干切削等等。事实上,高速切削技 术是一个非常庞大而复杂的系统工程,它涵盖了机床材料的研究及选用技术,机床结构设计和制造技术,高性能CNC控制系统、通讯系统,高速、高效冷却、高精 度和大功率主轴系统,高精度快速进给系统,高性能刀具夹持系统,高性能刀具材料、刀具结构设计和制造技术,高效高精度测试测量技术,高速切削机理,高速切 削工艺,适合高速加工的编程软件与编程策略等等诸多相关的硬件和软件技术。只有在这些技术充分发展的基础上,建立起来的高速切削技术才具有真正的意义。所 以要发挥出高速切削的优越性能,必须是CAD/CAM系统、CNC控制系统、数据通讯、机床、刀具和工艺等技术的完美组合。
三、高速切削技术的发展现状与优点自所罗门原理申请专利以来,高速切削技术的发展历经理论探索阶段,应用探索阶段,初步应用阶段和较成熟应用阶段。特别是 20世纪70年代后,各工业发达国家相继投入大量的人力、物力、财力研究开发高速切削技术及相关技术,发展日新月异,德国、美国、瑞典、瑞士、英国和日本 等制造强国走在了世界前列。近几年,随着科学技术的突飞猛进和经济发展的强大推动,高速切削机床、刀具技术和相关技术迅速进步,使高速切削(HSC- High Speed Cutting)技术以其高效率、高质量应用于航天、航空、汽车、模具和机床等行业中,各种切削方式、各种材料几乎无所不能,尤其是高速铣削和高速车削发 展神速。该技术为“轻切削”方式,每一刀切削排屑量小,切削深度小,即ap与ae很小,但切削线速度大,为传统的3~5倍,进给速度大,为传统的5~10 倍。其优点在于:
(1) 加工时间短,效率高。高速切削的材料去除率通常是常规的3~5倍。
(2) 刀具切削状况好,切削力小,主轴轴承、刀具和工件受力均小。由于切削速度高,吃刀量很小,剪切变形区窄,变形系数ξ减小,切削力降低大概30%~90%。同时,由于切削力小,让刀也小,提高了加工质量。
(3) 刀具和工件受热影响小。切削产生的热量大部分被高速流出的切屑所带走,故工件和刀具热变形小,有效地提高了加工精度。
(4) 刀具寿命长(这里指材质特殊,适合高速切削的刀具)。因刀具受力小,受热影响小,所以破损的机率很小,磨损也慢。
(5) 工件表面质量好。首先ap与ae小,工件粗糙度好,其次切削线速度高,机床激振频率远高于工艺系统的固有频率,因而工艺系统振动很小,十分容易获得好的表面质量。
(6) 高速切削刀具热硬性好,且切削热量大部分被高速流动的切屑所带走,可进行高速干切削,不用冷却液,减少了对环境的污染,能实现绿色加工。
(7) 可完成高硬度材料和硬度高达HRC40-62淬硬钢的加工。如采用带有特殊涂层(TiAlN)的硬质合金刀具,在高速、大进给和小切削量的条件下,完成高 硬度材料和淬硬钢的加工,不仅效率高出电加工(EDM)的3~6倍,而且获得十分高的表面质量(Ra0.4),基本上不用钳工抛光。
四、高速切削系统高速切削系统主要由高速切削CNC机床、高性能的刀具夹持系统、高速切削刀具、高速切削CAM系统软件等几部分组成。
1. 高速切削CNC机床
(1)高稳定性的机床支撑部件高速切削机床的床身等支撑部件应具有很好的动、静刚度,热刚度和最佳的阻尼特性。大部分机床都采用高质量、高刚性和高抗张性 的灰铸铁作为支撑部件材料,有的机床公司还在底座中添加高阻尼特性的聚合物混凝土,以增加其抗振性和热稳定性,不但保证机床精度稳定,也防止切削时刀具振 颤;采用封闭式床身设计,整体铸造床身,对称床身结构并配有密布的加强筋,如德国Deckel Maho公司的桥式结构或龙门结构的DMC系列高速立式加工中心,美国Bridgeport公司的VMC系列立式加工中心,日本日立精机VS系列高速加工 中心,使机床获得了在静态和动态方面更大限度的稳定性。一些机床公司的研发部门在设计过程中,还采用模态分析和有限元结构计算,优化了结构,使机床支撑部 件更加稳定可靠。
(2)高速主轴系统高速主轴是高速切削技术最重要的关键技术,也是高速切削机床最重要的部件。要求动平衡性很高,刚性好,回转精度高,有良好的热稳定性, 能传递足够的力矩和功率,能承受高的离心力,带有准确的测温装置和高效的冷却装置。高速切削一般要求主轴转速能力不小于40000r/min,主轴功率大 于 15kW。通常采用主轴电机一体化的电主轴部件,实现无中间环节的直接传动,电机大多采用感应式集成主轴电动机。而随着技术的进步,新近开发出一种使用稀 有材料铌的永磁电机,该电机能更高效,大功率地传递扭矩,且传递扭矩大。易于对使用中产生的温升进行在线控制,且冷却简单,不用安装昂贵的冷却器,加之电 动机体积小,结构紧凑,所以大有取代感应式集成主轴电动机之势。最高主轴转速受限于主轴轴承性能,提高主轴的dn值是提高主轴转速的关键。目前一般使用较 多的是热压氮化硅(Si3N4)陶瓷轴承和液体动、静压轴承以及空气轴承。润滑多采用油-气润滑、喷射润滑等技术。最近几年也有采用性能极佳的磁力轴承 的。主轴冷却一般采用主轴内部水冷或气冷。
(3)高精度快速进给系统高速切削是高切削速度、高进给率和小切削量的组合,进给速度为传统的5~10倍。这就要求机床进给系统很高的进给速度和良好的加 减速特性。一般要求快速进给率不小于60m/min,程序可编辑进给率小于40m/min,轴向正逆向加速大于10m/s2(1g)。机床制造商大多采用 全闭环位置伺服控制的小导程、大尺寸、高质量的滚珠丝杠或大导程多头丝杠。随着电机技术的发展,先进的直线电动机已经问世,并成功应用于CNC机床。先进 的直线电动机驱动使CNC 机床不再有质量惯性、超前、滞后和振动等问题,加快了伺服响应速度,提高了伺服控制精度和机床加工精度。不仅能使机床在f=60m/min以上进给速度下 进行高速加工,而且快速移动速度达f=120m/min,加速度达2g,提高了零件的加工精度。但直线电动机在使用中存在着承载力小、发热等问题,有待改 进。
(4)高效的冷却系统高速切削中机床的主轴、滚珠丝杠、导轨等产生大量的热,如不进行有效的冷却,将会严重影响机床的精度。大多采用强力高压、高效的冷却 系统,使用温控循环水或其他介质来冷却主轴电动机、主轴轴承、滚珠丝杠、直线电动机、液压油箱等。Yamazen公司将压力为6.8Mpa的冷却液通过主 轴中心孔,对机床主轴、刀具和工件进行冷却。日本日立精机公司研制开发出通过在中空的滚珠丝杠中传输冷却液,达到冷却丝杠稳定加工目的的滚珠丝杠冷却器。 为了避免导轨受温升的影响,日立公司和轴承商联合研制出Eeo-Eeo的导轨润滑脂,该润滑脂润滑和冷却效果好,无有害物质,能进行自动润滑及不需专用设 备等特点。日立精机机床公司VS系列CNC高速铣就采用此润滑脂,具有良好的使用及经济效果。
(5)高性能CNC控制系统高速切削加工要求CNC控制系统有快速处理数据的能力,来保证高速加工时的插补精度。一般要求程序段传送速率 1.6~20ms,RS232系列数据接口 19.2 Kbit/s(20ms),Ethernet数据传送 200Kbit/s(1.6ms)。新一代的高性能CNC控制系统采用32位或64位CPU,程序段处理时间短至1.6ms。近几年网络技术已成为CNC 机床加工中的主要通讯手段和控制工具,相信不久的将来,将形成一套先进的网络制造系统,通讯将更快和更方便。大量的加工信息可通过网络进行实时传输和交 换,包括设计数据、图形文件、工艺资料和加工状态等,极大提高了生产率。但目前用得最多的还是利用网络改善服务,给用户提供技术支持等等。美国 Cincinati Machine公司研制开发出了网络制造系统,用户只要购买所需的软件、调制解调器、网络摄像机和耳机等,即可上网,无需安装网络服务器,通过网上交换多 种信息,生产率得到了提高。日立精机机床公司开发的万能用户接口的开放式CNC系统,能将机床CNC操作系统软件和因特网连接,进行信息交换。
(6)高安全性机床安全门罩高速切削机床普遍采用全封闭式安全门罩,高强度透明材料制成的观察窗等更完备的安全保障措施,来保证机床操作者及机床周围现场 人员的安全,避免机床、刀具和工件等有关设施受到损伤。一些机床公司还在CNC系统中开发了机床智能识别功能,识别并避免可能引起重大事故的工况,保证产 品的产量和质量。
(7) 高精度、高速度的传感检测技术这包括位置检测、刀具状态检测、工件状态检测和机床工况监测等技术。
2.高性能的刀具夹持系统高速铣床的刀具夹持系统要求其有很高的动平衡性,要求主轴具有30000r/min之上的动平衡能力,且具有绝对的定心性。主 轴、刀柄、刀具三者在旋转时应具有极高的同心度,这样才能保证高速、高精度加工。否则转速越高离心力越大,当其达到系统的临界状态将会使刀具系统发生激 振,其结果是加工质量下降,刀具寿命缩短,加速主轴轴承磨损,严重时会使刀具与主轴损坏。刀柄系统与主轴锥度穴孔应结合紧密,现在刀柄一般都采用锥部与主 轴端面同时接触的双定位锥柄。如日本的BBT刀柄,德国的HSK空心刀柄。刀具夹持装置一般用经动平衡处理的弹簧卡头,不过现在已有效果更好的液压真空装 刀,强力铣卡头装刀。
3.高速切削刀具刀具技术和机床制造,从一开始就相辅相成共同发展,可以毫不夸张的说,只有刀具技术和机床技术的不断发展,才推进了高速切削技术。高速切 削刀具应具有良好的机械性能和热稳定性,即具有良好的抗冲击、耐磨损和抗热疲劳的特性。其采用的刀具材料主要是硬质合金,并且普遍采用刀具涂层技术,涂层 材料为氮化钛(TiN)、氮化铝钛(TiALN)等等。涂层技术由单一涂层发展为多层、多种涂层材料的涂层。这一技术已成为提高高速切削能力的关键技术之 一。世界各大硬质合金刀具制造商一般都将销售收入的3~11%投入到研发中,其中相当一部分用于硬质合金和涂层材料的基础研究。高速切削钢材时,刀具材料 应选用热硬性和疲劳强度高的P类硬质合金、涂层硬质合金、立方氮化硼(CBN)与CBN复合刀具材料(WBN)等。切削铸铁,应选用细晶粒的K类硬质合金 进行粗加工,选用复合氮化硅陶瓷或聚晶立方氮化硼(PCNB)复合刀具进行精加工。精密加工有色金属或非金属材料时,应选用聚晶金刚石PCD或CVD金刚 石涂层刀具。选择切削参数时,针对圆刀片和球头铣刀,应注意有效直径的概念。高速铣削刀具应按动平衡设计制造。刀具的前角比常规刀具的前角要小,后角略 大。主副切削刃连接处应修圆或导角,来增大刀尖角,防止刀尖处热磨损。应加大刀尖附近的切削刃长度和刀具材料体积,提高刀具刚性。刀具材料与被切削材料应 具有较小的化学亲和力。高速铣削大多采用硬质合金刀具。在保证安全和满足加工要求的条件下,刀具悬伸尽可能短,刀体中央韧性要好。刀柄要比刀具直径粗壮, 连接柄呈倒锥状,以增加其刚性。尽量在刀具及刀具系统中央留有冷却液孔。球头立铣刀要考虑有效切削长度,刃口要尽量短,两螺旋槽球头立铣刀通常用于粗铣复 杂曲面,四螺旋槽球头立铣刀通常用于精铣复杂曲面。
4.高速切削机理对高速切削机理的研究,总的来说还处于一种边探索边应用之中。高速切削机理主要包括高速切削中切削力、切削热变化规律,刀具磨损的规律, 切屑的成型机理以及这些规律和机理对加工的影响。目前对铝合金的高速切削机理的研究与应用比较成功,但对黑金属和难加工材料的高速切削机理的研究与应用尚 处于不断探索之中,应用也是在不成熟的理论指导下进行。另外,高速切削机理的研究与应用已进入钻铰、攻丝等的切削方式中,但还处于探索阶段。随着科学技术 的发展,对高速切削的切削力、切削热、切屑成型、刀具磨损、刀具寿命、加工的精度和表面质量等的变化规律将做更加深入的分析与研究。
5.高速切削的CAM系统软件高速切削有着比传统切削特殊的工艺要求,除了要有高速切削机床和高速切削刀具,具有合适的CAM编程软件也是至关重要的。一 个优秀的高速加工CAM编程系统应具有很高的计算速度,较强的插补功能,全程自动过切检查及处理能力,自动刀柄与夹具干涉检查、绕避功能,进给率优化处理 功能,待加工轨迹监控功能,刀具轨迹编辑优化功能,加工残余分析功能等等。数控编程可分为几何设计(CAD)和工艺安排(CAM),在使用CAM系统进行 高速加工数控编程时,除刀具和加工参数根据具体情况选择外,加工方法的选择和采用的编程策略就成为了关键。一名出色的使用CAD/CAM工作站的编程工程 师应该同时也是一名合格的设计与工艺师,他应对零件的几何结构有一个正确的理解,具备对于理想工序安排以及合理刀具轨迹设计的知识和概念。首先要注意加工 方法的安全性和有效性;其次要尽一切可能保证刀具轨迹光滑平稳,这会直接影响加工质量和机床主轴等零件的寿命;最后要尽量使刀具载荷均匀,这会直接影响刀 具的寿命。
另外,在国内外众多的CAD/CAM软件中并不是都适用于高速切削数控编程。这其中比较成熟适用于高速加工编程的有:英国DelCAM公司的 PowerMill软件模块,日本Makino公司的FFCUT软件(其FF加工模块已集成到美国UGS公司的CAM软件中),以色列的Cimatron 软件,美国PTC公司的Pro/ENGINEER软件,国内北航海尔华正软件有限公司的CAXA-ME软件等。
五、高速切削加工技术的应用目前国际上高速切削加工技术主要应用于汽车工业和模具行业,尤其是在加工复杂曲面的领域,工件本身或刀具系统刚性要求较高的加 工领域,显示了强大的功能。其高效、高质量为人们所推崇。国内高速切削加工技术的研究与应用始于20世纪90年代,应用于模具、航空、航天和汽车工业。但 采用的高速切削CNC机床、高速切削刀具和CAD/CAM软件等以进口为主。随着我国社会主义市场经济的蓬勃发展,作为制造业的重要基础的模具行业迅速发 展,这为高速铣削技术的应用和发展提供了广阔的空间。高速铣削加工技术加工时间短,产品精度高,可以获得十分光滑的加工表面,能有效地加工高硬度材料和淬 硬钢,避免了电极的制造和费时的电加工(EDM)时间,大幅度减少了钳工的打磨与抛光量。同时,模具表面因电加工(EDM)产生白硬层消失了,扭变绝迹 了,这样就提高了模具的寿命,减少了返修。因为电极的制造工作不需要了,所以模具改型只需通过CAD/CAM,使改型加快。一些市场上越来越需要的薄壁模 具工件,高速铣削可又快又好完成。而且在高速铣削CNC加工中心上,模具一次装夹可完成多工步加工。这些优点在资金回转要求快、交货时间紧急、产品竞争激 烈的今天是非常适宜的。所以高速铣削得到了快速而广泛的推广。反过来,这又促进了高速铣削技术的发展。
六、结束语高速切削技术是切削加工技术的主要发展方向之一,它会随着CNC技术、微电子技术、新材料和新结构等基础技术的发展而迈上更高的台阶。但我们也 应清醒的看到,高速切削技术自身也存在着一些急待解决的问题,如高硬度材料的切削机理、刀具在载荷变化过程中的破损、建立高速切削数据库、开发适用于高速 切削加工状态的监控技术和绿色制造技术等等。同时高速切削所用的CNC机床,车、铣、钻等刀具,CAD/CAM软件等技术含量高,价格昂贵,使得高速切削 投资大,这在一定程度上制约了高速切削技术的推广应用。
Welcome to BW tool world! We are an experienced tool maker specialized in cutting tools. We focus on what you need and endeavor to research the best cutter to satisfy users’ demand. Our customers involve wide range of industries, like mold & die, aerospace, electronic, machinery, ,,,etc. We are professional expert in cutting field. We would like to solve every problem from you. Please feel free to contact us, it’s our pleasure to serve for you. BW product including: utting tool、aerospace tool .HSS Cutting tool、Carbide end mills、Carbide cutting tool、NAS Cutting tool、Carbide end mill、Aerospace cutting tool、Carbide drill、High speed steel、Milling cutter、Core drill、Taperd end mills、Metric end mills、Miniature end mills、Pilot reamer、Electronics cutter、Step drill、Metal cutting saw、Double margin drill、Gun barrel、Angle milling cutter、Carbide burrs、Carbide tipped cutter、Chamfering tool、IC card engraving cutter、Side cutter、NAS tool、DIN tool、Special tool、Metal slitting saws、Shell end mills、Side and face milling cutters、Side chip clearance saws、Long end mills、Stub roughing end mills、Dovetail milling cutters、Carbide slot drills、Carbide torus cutters、Angeled carbide end mills、Carbide torus cutters、Carbide ball-noseed slot drills、Mould cutter、Tool manufacturer.
Bewise Inc. www.tool-tool.com
- May 18 Fri 2007 19:20
加工刀具用数控机床的选择要点www.tool-tool.com
Bewise Inc. www.tool-tool.com Reference source from the internet.
[摘要] 本文通过对几种典型刀具加工特点的分析,总结出加工刀具用数控机床的选择要点,使用户能够合理经济地从众多数控机床中作出选择。
[关键词] 加工刀具,数控机床 金属切削刀具的种类繁多,加工方法也多种多样,本文不可能对每种刀具的CNC加工设备都进行讨论,仅从以下三个方面进行论述:1.需要几个数控轴;2.需要几个数控轴联动;3.需要什么数控系统。
一. 需要几个数控轴
刀具一般可根据其外形分为回转刀具(如铣刀,钻头)和方形轮廓刀具(如车刀,镗刀),因而一般都需要X,Y,Z三个数控直线轴对其进行加工以保证其外形尺寸,有所区别的是对数控回转轴的要求。加工复杂的可转位刀具体现得较为明显。
以加工可转位立铣刀工序中的数控铣削为例(参见图1):
绝大多数可转位立铣刀都有数个(条)均布的切削齿,在每个齿加工完毕后都应对其进行分度旋转(如图1所示B轴)进行下一个(条)齿的加工。如果CNC铣床 没有数控分度头或数控回转工作台,则应在程序中加入无条件停止指令,机床运动停止后通过人工旋转精密手动分度头实现分度旋转(应注意机床外罩锁的影响), 然后继续执行NC程序。精度一般能够满足要求。但这样会增加工人劳动强度,同时影响工作效率。如果CNC铣床有数控分度头或数控回转工作台,则分度旋转运 动可通过程序中的数控指令实现,精度和效率都较高,但增加一个CNC回转轴也会使CNC铣床的结构复杂化,CNC系统功能增加,大为增加CNC铣床的价 格。
需要指出的是,精密手动分度头的分度能力是有限的,特别是对于非整数的角度往往无法满足要求(可转位成形铣刀此类情况较多),此时只能用CNC回转轴实 现。此类CNC回转轴一般用交流伺服电机驱动精密蜗杆副,液压或气动夹紧,高精度编码器作为角度检测元件,因而具备在行程范围内任意角度的旋转功能。而采 用端面齿盘定位的CNC回转轴却只能进行等分转度,不适用于此类情况。
某些可转位立铣刀有刃倾角λs,在铣削刀片槽或容屑槽时都应将槽底面转刃倾角λs,使其与CNC铣刀轴线垂直,此时需要一个回转轴(如图1所示A轴)旋转刃倾角λs。
受精密手动分度头的装夹结构和刚性的限制,将其作为A轴效果不佳。因此应选择具有较高刚性的CNC回转轴作为A轴。
可见如果某CNC铣床加工的可转位刀具品种单一且无刃倾角,可以选择3轴CNC(X,Y,Z)铣床加精密手动分度头,可降低加工成本。否则应选择5轴CNC铣床(X,Y,Z,A,B)。
二. 需要几个数控轴联动
CNC系统的若干轴联动插补功能最能体现CNC系统的性能和其档次高低,也往往决定着CNC系统的价格,因此应根据加工刀具产品的具体情况来仔细选择。对 于加工一般可转位刀具的CNC铣床而言,具有2个直线轴的直线和圆弧插补功能就可以加工几乎所有的ISO标准刀片槽形式,其它运动都可单轴插补完成。如果 也选择多达5-6轴联动的CNC系统则没有必要。要求比较高的是一些螺旋类精加工刀具。以下以加工"等螺旋角等前角锥度立铣刀"为例(参见图2):
从图2中可以看出,若要加工(含铣削及磨削)这种立铣刀,CNC机床应具备:X轴和A轴联动插补切削螺旋槽;Z轴:X-A插补时也参加插补保证每个截面螺 旋角相等;Y轴:由于前角γ0>0且轴向每个截面半径都不相等从而使偏移量e也处处不相等,为保证每个截面前角都相等,X-A-Z联动时Y轴也要参 加插补运动。因此CNC机床应具备"X-Y-Z-A" 4轴联动的插补功能。
同理可知:"X-Y-Z-A-B" 5轴联动插补可完成同上的球头立铣刀的加工。
三. 需要什么数控系统
加工一般精度的可转位刀具,选择具有间隙补偿和螺距误差补偿的半闭环CNC系统的数控机床就可以满足要求,而对较高精度刀具(如整体材质的精加工刀具)的 精加工可以选择闭环CNC系统。需要注意的是:为编程方便,CNC编程软件系统都应具有工件坐标系的平移和旋转功能,并支持几何线性的多种表达方式。
现代CNC系统的编程方法较多,相对而言,以ISO标准G,M代码编程的CNC系统具有较大的灵活性,能满足多品种中小批量的生产要求,但初期编程速度较 慢,机床准备工作时间较长。而具有针对某类刀具产品开发的专业化软件包的CNC系统则可以满足某些复杂刀具的大批量加工,生产效率高,对人员素质要求较 低,但价格昂贵且需要不断升级软件包以满足出现的新产品。
选择CNC系统时还应注意:现代CNC系统的功能较多,可以根据实际情况去掉一些基本不用或近期很少用到的功能(例如某些用于FMS的接口和软件)以降低购买成本。
以上通过几个例子讨论了针对加工刀具产品的CNC机床选择方法和大概原则,实际情况远不止这些。总之应根据产品具体情况灵活地作出选择,以满足市场对精度和成本的双重要求。
Welcome to BW tool world! We are an experienced tool maker specialized in cutting tools. We focus on what you need and endeavor to research the best cutter to satisfy users’ demand. Our customers involve wide range of industries, like mold & die, aerospace, electronic, machinery, ,,,etc. We are professional expert in cutting field. We would like to solve every problem from you. Please feel free to contact us, it’s our pleasure to serve for you. BW product including: utting tool、aerospace tool .HSS Cutting tool、Carbide end mills、Carbide cutting tool、NAS Cutting tool、Carbide end mill、Aerospace cutting tool、Carbide drill、High speed steel、Milling cutter、Core drill、Taperd end mills、Metric end mills、Miniature end mills、Pilot reamer、Electronics cutter、Step drill、Metal cutting saw、Double margin drill、Gun barrel、Angle milling cutter、Carbide burrs、Carbide tipped cutter、Chamfering tool、IC card engraving cutter、Side cutter、NAS tool、DIN tool、Special tool、Metal slitting saws、Shell end mills、Side and face milling cutters、Side chip clearance saws、Long end mills、Stub roughing end mills、Dovetail milling cutters、Carbide slot drills、Carbide torus cutters、Angeled carbide end mills、Carbide torus cutters、Carbide ball-noseed slot drills、Mould cutter、Tool manufacturer.
Bewise Inc. www.tool-tool.com