公告版位
Bewise Inc. www.tool-tool.com
Reference source from the internet.
1.什么叫电池?

电池Batteries是一种能量转化与储存的装置它通过反应将化学能或物理能转化为电能根据电池即一种化学电源,它由两种不同成分的电化学活性电极分别组成正负极,两电极浸泡在能提供媒体传导作用的电解质中,当连接在某一外部载体上时,通过转换其内部的化学能来提供能。

2.一次电池与二次电池的有哪些异同点?

一次电池只能放电一次,二次电池可反复充放电循环使用,可充电电池在放电时电极体积和结
构之间发生可逆变化,因此设计时必须调节这些变化,而一次电池内部则简单得多,因为它不需要调节这些可逆性变化,一次电池的质量比容量和体积比容量均大于一般充电电池,但内阻远比二次电池大,因此负载能力较低,另外,一次电池的自放电远小于二次电池。

3.什么是IEC标准?电池常用标准有哪些?

IEC 标准即国际电工委员会(International Electrical Commission),是由各国电工委员会组成的世界性标准化组织,其目的是为了促进世界电工电子领域的标准化。其中关于镍镉电池的标准为 IEC285,关于镍氢电池的标准是IEC61436,锂离子电池目前IEC标准,一般电池行业依据的是SANYO或Panasonic的标准。
电池常用IEC标准有镍镉电池的标准为IEC602851999; 镍氢电池的标准为IEC614361998.1; 锂电池的标准为IEC619602000.11。
电 池常用国家标准有镍镉电池的标准为GB/T11013_1996GB/T18289_2000;镍氢电池的标准为GB/T15100_1994GB /T18288_2000; 锂电池的标准为GB/T10077_1998YD/T998_1999,GB/T18287_2000。
另外电池常用标准也有日本工业标准JIS C 关于电池的标准及SANYOPANASONIC公司制定的关于电池企业标准。

4.锂离子电池的电化学原理是什么?

锂离子电池正极主要成分为LiCoO2负极主要为C充电时
正极反应:LiCoO2 Li1-xCoO2 + xLi+ + xe-
负极反应:C + xLi+ + xe- CLix
电池总反应:LiCoO2 + C Li1-xCoO2 + CLix
放电时发生上述反应的逆反应。

5.电池的主要结构组成是什么?

电池的主要组成部分为:正极片、负极片、隔膜纸、盖帽、外壳、绝缘层。

6.电池的包装材料有哪些?

1. 不干介子纸如纤维纸双面胶
2. PVC膜商标管
3. 连接片不锈钢片纯镍片镀镍钢片
4. 引出片不锈钢片易于焊锡纯镍片点焊牢
5. 插头类
6. 保护元器件类如温控开关过流保护器限流电阻
7. 纸箱纸盒
8. 塑料壳类

7.电池包装组合及设计的目的的是什么?

1. 美观品牌印字商标的设计
2. 电池电压的限制要获得较高电压需串联多只电池
3. 保护电池防止短路延长电池使用寿命
4. 尺寸的限制
5. 便于运输如纸箱纸盒的设计等
6. 特殊功能的设计如防水特殊外型设计等Welcome to BW tool world! We are an experienced tool maker specialized in cutting tools. We focus on what you need and endeavor to research the best cutter to satisfy users’ demand. Our customers involve wide range of industries, like mold & die, aerospace, electronic, machinery, ,,,etc. We are professional expert in cutting field. We would like to solve every problem from you. Please feel free to contact us, it’s our pleasure to serve for you. BW product including: utting tool、aerospace tool .HSS Cutting tool、Carbide end mills、Carbide cutting tool、NAS Cutting tool、Carbide end mill、Aerospace cutting tool、Carbide drill、High speed steel、Milling cutter、Core drill、Taperd end mills、Metric end mills、Miniature end mills、Pilot reamer、Electronics cutter、Step drill、Metal cutting saw、Double margin drill、Gun barrel、Angle milling cutter、Carbide burrs、Carbide tipped cutter、Chamfering tool、IC card engraving cutter、Side cutter、NAS tool、DIN tool、Special tool、Metal slitting saws、Shell end mills、Side and face milling cutters、Side chip clearance saws、Long end mills、Stub roughing end mills、Dovetail milling cutters、Carbide slot drills、Carbide torus cutters、Angeled carbide end mills、Carbide torus cutters、Carbide ball-noseed slot drills、Mould cutter、Tool manufacturer.
Bewise Inc. www.tool-tool.com

beeway 發表在 痞客邦 留言(0) 人氣()

Bewise Inc. www.tool-tool.com
Reference source from the internet.
引言

质 量流量计现在受到用户的青睐,是由于它能直接测量管道内流体的质量流量,而不必像过去那样,分别测量被测流体的体积流量和密度,然后计算求得。此外,它的 精度和稳定度较高,量程比也比较大,但是其性能价格比太高。对制造厂商而言,这是个利润颇丰的产品,所以对此产品的开发、试制和推销,一直是积极的。

原理

柯氏质量流量计的原理,实质是利用一个弹性体的共振特
性: 队友流体流动和无流体流动的振动(在共振区附近)的金属管元件,测定其动态响应特性,求出此谐振系统的相位差(时间差)与质量流量之间的关系。而有流体流 动的金属管元件谐振的动态响应特性,与无流体流动的金属管的动态响应特性之间的差别,是由于Coriolis效应引起的。所谓柯氏效应,是指当质点在一个 转动参考系内作相对运动时,会产生一种不同于通常离心力的惯性力作用在此质点上。其大小与方向可用2mvXw(公式)来表示。这是法国科学家 Coriolis首先发现的。利用上述原理的弹性元件构成的流量计又称为柯氏质量流量计。所以要在理论上分析、发展质量流量计,其难点实质上是来计算弹性 金属管的动态谐振特性。这主要是靠固体力学理论对弹性体作振动分析来确定。现有的文献报道,一种是对挠性管进行动态响应分析。

1. 挠性管的动态响应分析

(i) 挠性曲管的分析
Hemp and Sultan (Cranfield Institute of Technology, England) 用Euler梁理论,对挠性曲管的谐振的动态响应进行过分析,并结合U-型管作了具体计算。

a. 方程(Oscillating tube of cruved part)

对于不同的几何形状,上述的一般性公式和边界条件还可以在进一步简化。譬如,对弹性金属管的直管部分,可以令a趋于无穷即可。

b. 边界条件

在端点上,有在不同形状的管段的连接点上,有

c. 数值求解和计算结果

作者计算出了U-型元件的基频和其谐振的振动模态(位移模态和弯曲模态),以及其相位和流量之间的关系式,理论计算值与实验值吻合得很好。

(ii) 挠性直管的分析

Raszillier and Durst(University of Erlangen,Germany)用Euler梁理论,考虑流体是运动弦,对一维挠性直管的谐振的动态响应进行了分析

a. 方程(Oscillating tube of staight part )

b. 边界条件

c. 数值求解和计算结果

作者用了颇为复杂的求解过程,计算出了有流体流动和无流体流动的直管的基频和其谐振的位移振动模式,并由此计算出相位差和流量之间的关系。

2. 刚性直管的动态响应分析

Cascetla假定直观是刚性的,可以避免计算上述弹性管的基频和其谐振的位移振动模态,从而可进一步简化计算,最后也可得到根简单的结果:振动位移和流量之间的关系。

实用设计问题

上述谐振的动态响应分析,虽很细致但是学院式的。工程师最关心的是指导弹性管的共振频率及气管壁的应力分布和抵抗疲劳的强度是否足够。最简单的办法是用结构分析软件包SAP,或ANSYS进行分析计算。

弹性元件的选择

从 力学角度来看,对质量流量计进行设计,首先要选择合适的一次感受元件,以便尽可能提高一次元件的Coriolis效应。这包括感受元件最佳形状的选择, 以及弹性金属管的最佳材料和壁厚的选择。元件的形状,大体上可以归纳为四类,即:弯管形和直管形;单管形和多管形(双管形)。在选形时,其原则主要是要平 衡所选的一次元件的性能,最佳使用范围和成本这三个因素。一般地讲,所选的形状愈复杂,其Coriolis效应就愈高,但生产工艺和技术就愈复杂,因而其 成本就愈高。通常一次元件总是归属于上述的四类中的两类形式的结合:如弯管形和双管形的结合。
目前,以Coriolis力为原理而设计的质量流量计,其一次元件有各式各样的几何形状,如:

双U型或三角型
双S型
双w型
双K型
双螺旋型
单管多环型
单J型
单直管型
双直管型

当前急需解决的某些力学问题

1.从理论上讲,柯氏质量流量计的精度是不受被测流体的工况条件影响的,但实际情况的确是受流体的各种工况条件影响的(虽然这种影响较小),原因还一时查不清楚。作者估计,是由一次元件的管道内的二次涡流引起的附加柯氏效应造成的。
因 为北侧的流体总是由粘性的,所以管道内截面上的速度剖面是近似抛物型(大粘性情况)和幂次型(小粘性情况),而不是均匀速度剖面。在管道壁上的 流速为零,而中心线上的流速最大,这样一来,在截面不同半径位置上的柯氏加速度就不一样。于是,非均匀的柯氏效应就会产生二次涡流,其方向与振动管旋转向 量的方向是相互垂直的。对不同工况条件下的流体,流量计的感受管内的流态是不尽相似的,由此而产生附加柯氏效应,其大小也不同。这样就使流量计的精度发生 变化,以至超出厂家给出的范围值。

2.质量流量计原则上可以测量两相流体,但实际上测量误差也较大,使工业界无法接受在此领域的应用,目前也正在进一步研究这一问题。作者估计造成上述问题的原因,同上。

3. 另外,由于一次元件时振动型的,所以它受外界的振动的干扰影响较大,这个问题已引起厂家的重视,正在进行研究。作者认为这个问题应从设计的抗振动的元件以及电路着手,但首先应分析清楚频移和锁频等现象,然后才能找到合适的抗振措施。

材料问题

由 于一次传感器时振动金属管,所以要考虑管材能在各种环境下经受疲劳的冲击以及承受腐蚀的能力。大家知道,增加的抗疲劳损伤的能力,一是减少金属 管的振动幅值,二是增加振动管的壁厚,三是选择恰当的金属材料。目前多数用316L不锈钢材,更理想的金属材料是哈氏合金(Hastelloy alloy),即NiCrMo合金,它的抗疲劳损伤的能力比316L要强一些,尤其是实用氯化物腐蚀的情况。?钛合金最佳,但后者价钱太贵。
应用
Coriolis质量流量计特别适合应用于大粘度的非牛顿流体的流量测量,即特别合适测量粘稠甚至难于流动的介质如:
各种事物浆 乳胶混合浆
油漆涂料 维生素浆
纸浆 重油
高分子聚合物的浆液等。。。。
所以,西方已把Coriolis质量流量计推广应用到各个不同工业领域内:如化学和制药业,食品饮料业,制冷,能源业,石油化工业等。在上述工业中,多数用在配料混合的加工过程的控制。此外,也用在车载和穿在装卸的脊梁上。

精度问题
目前西方制造厂家都宣称Coriolis质量流量计的精度可达到0.5%,甚至为0.2%或0.1%。但实际使用时要特别小心,在低流量范围上的精度一般是达不到上述精度值。此外,二次仪表的零点漂移,特别在使用一段时间后,达不到厂家给出的值。

远景
估计,目前全世界大约已有十五万台质量流量计在各种土同工业部门运转.现在质量流量计约占西方每年生产和销售的各种流量计的总台数3%-5%左右,但由于质量流量计含有的高技术附加值很大,其利润可以高达70%以上,所以西方公司从中获利颇丰。
从 目前全世界的流量计量的发展来看,毫无疑问,Coriolis质量流量计看来会很快占领原来以容量计量为主的计量领域的一块较大的市场。这是一 个利润颇丰的产品,随着市场的剧烈竞争,其价格/性能比,也会适当降低一些。但是也只有其价格/性能比大大降低后,才能真正在工业界得到广泛的应用。

国内推广应用问题
作 者认为,近年来国内对Coriolis质量流量计的期望过高,认为它可以用到任何地方上。这是误解。大家知道,在工业生产过程中,对各种参数的 测量,如温度,压力等,以流量测量最复杂,业较难测得很准确。但是流量的测量方法和原理也最多,各式各样,五花八门。迄今,各种流量仪表不下几十种,甚至 上百种。目前,无论哪一种流量仪表也无法把另一种仪表挤出市场,而独霸天下,而是各有各的适用领域。在流量仪表选型时,在能满足用途的条件下,凡是能选用 简单、可靠的,就不选用结构复杂的。此外,在平衡选择的仪表的一次性投资和常年维持费用的条件下,选用投资最佳的情况。就采用Coriolis质量流量计 而言,凡是能用其它型式的流量仪表进行测量,就选用其它仪表,而不用Coriolis质量流量计,因为一般情况下,前者总比后者便宜。

国内生产问题

在 我国国内生产柯氏质量流量计,由于我国即将成为GATT的成员国,首先要注意知识产权问题,以避免引起法律纠纷。目前质量流量计的弹性元件之所 以有各式各样的形状,主要是前一种几何形状出现后,后来发展的一次元件的形状,必须避开已申请专利的这一形状。在二次仪表的电路设计思想上,也要注意其中 某些关键部分,有关生产厂家是否已申请专利备案,在二次仪表的外形设计和电路布置上也一定要赶在我国加入GATT前,尽快摆脱照抄或仿制阶段,否则会引起 知识产权的法律纠纷。此外,产品只有在形成一定的批量后,才能降低成本,具有竞争力,所以在我国国内独立生产柯氏质量流量计问题,是任重而道远的。

参考文献
1.G.Sultan and J.Hemp, J. of Sound & Vibration (1989)123(3),473.
2.H.Raszillier and F. Durst, Arch. Of Applied Mechanics (1991)61(3),192.
3.F.Cascetla, et.al, Measurement (1991)no.3&4.

Welcome to BW tool world! We are an experienced tool maker specialized in cutting tools. We focus on what you need and endeavor to research the best cutter to satisfy users’ demand. Our customers involve wide range of industries, like mold & die, aerospace, electronic, machinery, ,,,etc. We are professional expert in cutting field. We would like to solve every problem from you. Please feel free to contact us, it’s our pleasure to serve for you. BW product including: utting toolaerospace tool .HSS Cutting toolCarbide end millsCarbide cutting toolNAS Cutting toolCarbide end millAerospace cutting toolCarbide drillHigh speed steelMilling cutterCore drillTaperd end millsMetric end millsMiniature end millsPilot reamerElectronics cutterStep drillMetal cutting sawDouble margin drillGun barrelAngle milling cutterCarbide burrsCarbide tipped cutterChamfering toolIC card engraving cutterSide cutterNAS toolDIN toolSpecial toolMetal slitting sawsShell end millsSide and face milling cuttersSide chip clearance sawsLong end millsStub roughing end millsDovetail milling cuttersCarbide slot drillsCarbide torus cuttersAngeled carbide end millsCarbide torus cuttersCarbide ball-noseed slot drillsMould cutterTool manufacturer.

Bewise Inc. www.tool-tool.com

beeway 發表在 痞客邦 留言(0) 人氣()

Bewise Inc. www.tool-tool.com
Reference source from the internet.
一、概述

螺 纹中径的测量,一般采用三针或在工具显微镜上测量。但是,用三针测量的是螺纹的单一中径而不是螺纹的中径;用工具显微镜测量螺纹中径的方法,也不符合 GB/T14791-1993《螺纹术语》的中径定义。本文采用投影放大和几何作图相结合测量螺纹中径的方法,就是螺纹加工中中径测量的一种尝试。

二、测量与作图

测量与作图方法步骤如下:


1. 在投影仪(或工具显微镜)上安装顶针座,调整两顶针连线与工作台移动方向一致后,将被测螺纹制件装在两顶针之间并锁紧。

2. 选择适当放大倍数,调整光圈、焦距等,使螺纹一侧的牙型放大影像清晰地显示在投影屏上。

3. 将投影屏描图纸上的螺纹牙型影像,用透明三角尺、铅笔准确地描出牙侧直线部分(铅笔线越细越好,以能看清为准)。

4. 过放大牙型的中径线附近(目估),作一平行于螺纹轴线的基线,基线与牙侧交于A、B、C三点,这就是螺纹中径测量时的标准放大图。这时记下纵向(径向)仪器读数y1(参见图1a)。

5. 使另一侧牙型放大影像显示在投影屏上,并通过仪器纵、横向的调整使影像与放大图同一螺旋槽相应点(A)、(B)、(C)与A、B、C重合(当不能同时重合 时,应保证(B)与B重合,(A)与A和(C)与C两点处有相同的对称性间隙),这时记下纵向仪器读数y2(图1b)。

6. 取下投影屏上描绘出的牙型牙侧直线放大图(图2a),将其放在制图板上进行几何作图,确定AB和BC的中点E和F,再作EF的垂直平分线(中径定义直线)与牙侧直线交于点D,然后量出基线至D点的距离H(图2b)。

7. 被测螺纹的中径(参见图3)按下式求出

式中:M为放大倍数
*当中径定义直线位于BC之间时取正号;位于AB之间时取负号。

8. 投影作图方法的准确性,除测量仪器的误差外,尚取决于螺纹制件牙型本身的加工精度,放大牙型影像和牙型侧边描绘质量,以及几何作图的技巧和准确度。放大图 基线至D点的尺寸H,推荐用0.02mm的游标卡尺测量。误差分析表明,螺纹的螺距偏差、牙型半角偏差对螺纹中径测量没有影响。该方法可以满足普通螺纹中 径测量的精度要求。

Welcome to BW tool world! We are an experienced tool maker specialized in cutting tools. We focus on what you need and endeavor to research the best cutter to satisfy users’ demand. Our customers involve wide range of industries, like mold & die, aerospace, electronic, machinery, ,,,etc. We are professional expert in cutting field. We would like to solve every problem from you. Please feel free to contact us, it’s our pleasure to serve for you. BW product including: utting toolaerospace tool .HSS Cutting toolCarbide end millsCarbide cutting toolNAS Cutting toolCarbide end millAerospace cutting toolCarbide drillHigh speed steelMilling cutterCore drillTaperd end millsMetric end millsMiniature end millsPilot reamerElectronics cutterStep drillMetal cutting sawDouble margin drillGun barrelAngle milling cutterCarbide burrsCarbide tipped cutterChamfering toolIC card engraving cutterSide cutterNAS toolDIN toolSpecial toolMetal slitting sawsShell end millsSide and face milling cuttersSide chip clearance sawsLong end millsStub roughing end millsDovetail milling cuttersCarbide slot drillsCarbide torus cuttersAngeled carbide end millsCarbide torus cuttersCarbide ball-noseed slot drillsMould cutterTool manufacturer.

Bewise Inc. www.tool-tool.com

beeway 發表在 痞客邦 留言(0) 人氣()

Bewise Inc. www.tool-tool.com
Reference source from the internet.
关键词:放电等离子烧结;发展;应用
摘要:放电等离子烧结 (SPS)是一种快速、低温、节能、环保的材料制备新技术。本文综述了SPS在国内外的发展和应用,介绍了SPS的原理、特点及在新材料制备加工中的应用。

1 前言

随着高新技术产业的发展,新型材料特别是新型功能材料的种类和需求量不断增加,材料新的功能呼唤新的制备技术。放
电 等离子烧结(Spark Plasma Sintering,简称SPS)是制备功能材料的一种全新技术,它具有升温速度快、烧结时间短、组织结构可控、节能环保等鲜明特点,可用来制备金属材 料、陶瓷材料、复合材料,也可用来制备纳米块体材料、非晶块体材料、梯度材料等。

2 国内外SPS的发展与应用状况

SPS 技术是在粉末颗粒间直接通入脉冲电流进行加热烧结,因此在有的文献上也被称为等离子活化烧结或等离子辅助烧结(plasma activated sintering-PAS或plasma-assisted sintering-PAS)。早在1930年,美国科学家就提出了脉冲电流烧结原理,但是直到1965年,脉冲电流烧结技术才在美、日等国得到应用。日 本获得了SPS技术的专利,但当时未能解决该技术存在的生产效率低等问题,因此SPS技术没有得到推广应用。

1988年日本研制出第一台 工业型SPS装置,并在新材料研究领域内推广应用。1990年以后,日本推出了可用于工业生产的SPS第三代产品,具有10~100t的烧结压力和脉冲电 流5000~8000A。最近又研制出压力达500t,脉冲电流为25000A的大型SPS装置。由于SPS技术具有快速、低温、高效率等优点,近几年国 外许多大学和科研机构都相继配备了SPS烧结系统,并利用SPS进行新材料的研究和开发[3]。1998年瑞典购进 SPS烧结系统,对碳化物、氧化物、生物陶瓷等材料进行了较多的研究工作[4]。

国内近三年也开展了用SPS技术制备新材料的研究工作[1,3],引进了数台SPS烧结系统,主要用来烧结纳米材料和陶瓷材料[5~8]。SPS作为一种材料制备的全新技术,已引起了国内外的广泛重视。

3 SPS的烧结原理

3.1 等离子体和等离子加工技术

SPS是利用放电等离子体进行烧结的。等离子体是物质在高温或特定激励下的一种物质状态,是除固态、液态和气态以外,物质的第四种状态。等离子体是电离气体,由大量正负带电粒子和中性粒子组成,并表现出集体行为的一种准中性气体。

等离子体是解离的高温导电气体,可提供反应活性高的状态。等离子体温度4000~10999℃,其气态分子和原子处在高度活化状态,而且等离子气体内离子化程度很高,这些性质使得等离子体成为一种非常重要的材料制备和加工技术。

等离子体加工技术已得到较多的应用,例如等离子体CVD、低温等离子体PVD以及等离子体和离子束刻蚀等。目前等离子体多用于氧化物涂层、等离子刻蚀方面,在制备高纯碳化物和氮化物粉体上也有一定应用。而等离子体的另一个很有潜力的应用领域是在陶瓷材料的烧结方面。

产生等离子体的方法包括加热、放电和光激励等。放电产生的等离子体包括直流放电、射频放电和微波放电等离子体。SPS利用的是直流放电等离子体。

3.2 SPS装置和烧结基本原理

SPS装置主要包括以下几个部分:轴向压力装置;水冷冲头电极;真空腔体;气氛控制系统(真空、氩气);直流脉冲电源及冷却水、位移测量、温度测量和安全等控制单元。SPS的基本结构如图1所示。

SPS 与热压(HP)有相似之处,但加热方式完全不同,它是一种利用通-断直流脉冲电流直接通电烧结的加压烧结法。通-断式直流脉冲电流的主要作用是产生放电等 离子体、放电冲击压力、焦耳热和电场扩散作用[11]。SPS烧结时脉冲电流通过粉末颗粒如图2所示。在SPS烧结过程中,电极通入直流脉冲电流时瞬间产 生的放电等离子体,使烧结体内部各个颗粒均匀地自身产生焦耳热并使颗粒表面活化。与自身加热反应合成法(SHS)和微波烧结法类似,SPS 是有效利用粉末内部的自身发热作用而进行烧结的。这种放电直接加热法,热效率极高,放电点的弥散分布能够实现均匀加热,因而容易制备出均质、致密、高质量 的烧结体。SPS烧结过程可以看作是颗粒放电、导电加热和加压综合作用的结果。除加热和加压这两个促进烧结的因素外,在SPS技术中,颗粒间的有效放电可 产生局部高温,可以使表面局部熔化、表面物质剥落;高温等离子的溅射和放电冲击清除了粉末颗粒表面杂质(如去除表层氧化物等)和吸附的气体。电场的作用是 加快扩散过程。

4 SPS的工艺优势

SPS的工艺优势十分明显:加热均匀,升温速度快,烧结温度低,烧结时间短,生产效 率高,产品组织细小均匀,能保持原材料的自然状态,可以得到高致密度的材料,可以烧结梯度材料以及复杂工件等。与HP和HIP相比,SPS装置操作简单、 不需要专门的熟练技术。文献[11]报道,生产一块直径 100mm、厚17mm的ZrO2(3Y)/不锈钢梯度材料(FGM)用的总时间是58min,其中升温时间28min、保温时间5min和冷却时间 25min。与HP相比,SPS技术的烧结温度可降低100~200℃[13]。

5 SPS在材料制备中的应用

目前在国外,尤其在日本开展了较多用SPS制备新材料的研究,部分产品已投入生产。除了制备材料外,SPS还可进行材料连接,如连接MoSi2与石墨[14],ZrO2/Cermet/Ni等[15]。  

近 几年,国内外用SPS制备新材料的研究主要集中在:陶瓷、金属陶瓷、金属间化合物,复合材料纳米材料和功能材料等方面。其中研究最多的是功能材料,它包括 热电材料[16]、磁性材料[17],功能梯度材料[18],复合功能材料[19]和纳米功能材料[20]等。对SPS制备非晶合金、形状记忆合金 [21]、金刚石等也作了尝试,取得了较好的结果。

5.1 功能梯度材料

功能梯度材料(FGM)的成分是梯度变化的,各 层的烧结温度不同,利用传统的烧结方法难以一次烧成。利用CVD、PVD等方法制备梯度材料,成本很高,也很难实现工业化。采用阶梯状的石墨模具,由于模 具上、下两端的电流密度不同,因此可以产生温度梯度。利用SPS在石墨模具中产生的梯度温度场,只需要几分钟就可烧结好成分配比不同的梯度材料。目前 SPS成功制备的梯度材料有:不锈钢/ZrO2;Ni/ZrO2;Al/高聚物;Al/植物纤维; PSZ/Ti等梯度材料。

在自蔓延燃 烧合成(SHS)中,电场具有较大激活效应和作用,特别是场激活效应可以使以前不能合成的材料也能成功合成,扩大了成分范围,并能控制相的成分,不过得到 的是多孔材料,还需要进一步加工提高致密度。利用类似于SHS电场激活作用的SPS技术,对陶瓷、复合材料和梯度材料的合成和致密化同时进行,可得到 65nm的纳米晶,比SHS少了一道致密化工序[22]。

利用SPS可制备大尺寸的FGM,目前SPS制备的尺寸较大的FGM体系是ZrO2(3Y)/不锈钢圆盘,尺寸已达到100mm×17mm[23]。

用普通烧结和热压WC粉末时必须加入添加剂,而SPS使烧结纯WC成为可能。用SPS制备的WC/Mo梯度材料的维氏硬度(HV)和断裂韧度分别达到了24GPa和6MPa·m1/2,大大减轻由于WC和Mo的热膨胀不匹配而导致热应力引起的开裂[24]。

5.2 热电材料

由于热电转换的高可靠性、无污染等特点,最近热电转换器引起了人们极大的兴趣,并研究了许多热电转换材料。经文献检索发现,在SPS制备功能材料的研究中,对热电材料的研究较多。

(1) 热电材料的成分梯度化是目前提高热电效率的有效途径之一。例如,成分梯度的β FeSi2就是一种比较有前途的热电材料,可用于200~900℃之间进行热电转换。β FeSi2没有毒性,在空气中有很好的抗氧化性,并且有较高的电导率和热电功率。热电材料的品质因数越高(Z=α2/kρ,其中Z是品质因数,α为 SeeBeck系数,k为导热系数,ρ为材料的电阻率),其热电转换效率也越高。实验表明,采用SPS制备的成分梯度的β FeSix(Si含量可变),比β FeSi2的热电性能大为提高[25]。这方面的例子还有Cu/Al2O3/Cu[26],Mg FeSi2[27],β Zn4SB3[28],钨硅化物[29]等。

(2)用于热电致冷的传统半导体材料不仅强度和耐久性差,而且主要 采用单向生长法制备,生产周期长、成本高。近年来有些厂家为了解决这个问题,采用烧结法生产半导体致冷材料,虽改善了机械强度和提高了材料使用率,但是热 电性能远远达不到单晶半导体的性能。现在采用SPS生产半导体致冷材料,在几分钟内就可制备出完整的半导体材料,而晶体生长法却要十几个小时。SPS制备 半导体热电材料的优点是,可直接加工成圆片,不需要单向生长法那样的切割加工,节约了材料,提高了生产效率。

热压和冷压-烧结的半导体性能低于晶体生长法制备的性能。现用于热电致冷的半导体材料的主要成分是Bi,SB,Te和Se,目前最高的Z值为3.0×10-3/K,而用SPS制备的热电半导体的Z值已达到2 9~3.0×10-3/K,几乎等于单晶半导体的性能[30]。

5.3 铁电材料

用SPS烧结铁电陶瓷PBTiO3时,在900℃~1000℃下烧结1~3min,烧结后平均颗粒尺寸<1μm,相对密度超过98%。由于陶瓷中孔洞较少[31],因此在101~106Hz之间介电常数基本不随频率而变化。

用SPS制备铁电材料Bi4Ti3O12陶瓷时,在烧结体晶粒伸长和粗化的同时,陶瓷迅速致密化。用SPS容易得到晶粒取向度好的试样,可观察到晶粒择优取向的Bi4Ti3O12陶瓷的电性能有强烈的各向异性[32]。

用SPS在900℃烧结制备的BaTiO3陶瓷,其晶粒尺寸接近200nm[33]。

用SPS制备铁电Li置换II VI半导体ZnO陶瓷,使铁电相变温度Tc提高到470K,而以前冷压烧结陶瓷只有330K[34]。

5.4 磁性材料

用SPS烧结Nd Fe B磁性合金,若在较高温度下烧结,可以得到高的致密度,但烧结温度过高会导致出现α相和晶粒长大,磁性能恶化。若在较低温度下烧结,虽能保持良好的磁性能,但粉末却不能被完全压实,因此要详细研究密度与性能的关系[35]。

SPS 在烧结磁性材料时具有烧结温度低、保温时间短的工艺优点。Nd Fe Co V B在650℃下保温5min,即可烧结成接近完全密实的块状磁体,没有发现晶粒长大[36]。用SPS制备的86 5Fe 6Si 4Al 3.5Ni和MgFe2O4的复合材料(850℃,130MPa),具有高的饱和磁化强度Bs=1 2T和高的电阻率ρ=1×10-2Ω·m[37]。

以前用快速凝固法制备的软磁合金薄带,虽已达到几十纳米的细小晶粒组织,但是不能制备成合金块体,应用受到限制。而现在采用SPS制备的块体磁性合金的磁性能已达到非晶和纳米晶组织带材的软磁性能[3]。

5.5 纳米材料

致 密纳米材料的制备越来越受到重视。利用传统的热压烧结和热等静压烧结等方法来制备纳米材料时,很难保证能同时达到纳米尺寸的晶粒和完全致密的要求。利用 SPS技术,由于加热速度快,烧结时间短,可显著抑制晶粒粗化。例如:用平均粒度为5μm的TiN粉经SPS烧结(1963K,19 6~38 2MPa,烧结5min),可得到平均晶粒65nm的TiN密实体[3]。文献[3]中引用有关实例说明了SPS烧结中晶粒长大受到最大限度的抑制,所制 得烧结体无疏松和明显的晶粒长大。

在SPS烧结时,虽然所加压力较小,但是除了压力的作用会导致活化能Q降低外,由于存在放电的作用,也会使晶粒得到活化而使Q值进一步减小,从而会促进晶粒长大,因此从这方面来说,用SPS烧结制备纳米材料有一定的困难。

但 是实际上已有成功制备平均晶粒度为65nm的TiN密实体的实例。在文献[38]中,非晶粉末用SPS烧结制备出20~30nm的 Fe90Zr7B3纳米磁性材料。另外,还已发现晶粒随SPS烧结温度变化比较缓慢[7],因此SPS制备纳米材料的机理和对晶粒长大的影响还需要作进一 步的研究。

5.6 非晶合金的制备

在非晶合金的制备中,要选择合金成分以保证合金具有极低的非晶形成临界冷却速度,从而 获得极高的非晶形成能力。在制备工艺方面主要有金属模浇铸法和水淬法,其关键是快速冷却和控制非均匀形核。由于制备非晶合金粉末的技术相对成熟,因此多年 来,采用非晶粉末在低于其晶化温度下进行温挤压、温轧、冲击 (爆炸)固化和等静压烧结等方法来制备大块非晶合金,但存在不少技术难题,如非晶粉末的硬度总高于晶态粉末,因而压制性能欠佳,其综合性能与旋淬法制备的 非晶薄带相近,难以作为高强度结构材料使用[39]。可见用普通粉末冶金法制备大块非晶材料存在不少技术难题。

SPS作为新一代烧结技术 有望在这方面取得进展,文献[40]中利用SPS烧结由机械合金化制取的非晶Al基粉末得到了块状圆片试样(10mm ×2mm),此非晶合金是在375MPa下503K时保温20min制备的,含有非晶相和结晶相以及残余的Sn相。其非晶相的结晶温度是533K。文献 [41]中用脉冲电流在423K和500MPa下制备了Mg80Ni10Y5B5块状非晶合金,经分析其中主要是非晶相。非晶Mg合金比A291D合金和 纯镁有较高的腐蚀电位和较低的腐蚀电流密度,非晶化改善了镁合金的抗腐蚀抗力。从实践来看,可以采用SPS烧结法制备块状非晶合金。因此利用先进的SPS 技术进行大块非晶合金的制备研究很有必要。

6 总结与展望

放电等离子烧结(SPS)是一种低温、短时的快速烧结法,可用来制备金属、陶瓷、纳米材料、非晶材料、复合材料、梯度材料等。SPS的推广应用将在新材料的研究和生产领域中发挥重要作用。

SPS的基础理论目前尚不完全清楚,需要进行大量实践与理论研究来完善;SPS需要增加设备的多功能性和脉冲电流的容量,以便做尺寸更大的产品;特别需要发展全自动化的SPS生产系统,以满足复杂形状、高性能的产品和三维梯度功能材料的生产需要[42]。

对实际生产来说,需要发展适合SPS技术的粉末材料;也需要研制比目前使用的模具材料(石墨)强度更高、重复使用率更好的新型模具材料,以提高模具的承载能力和降低模具费用。

在工艺方面,需要建立模具温度和工件实际温度的温差关系,以便更好地控制产品质量。在SPS产品的性能测试方面,需要建立与之相适应的标准和方法。
Welcome to BW tool world! We are an experienced tool maker specialized in cutting tools. We focus on what you need and endeavor to research the best cutter to satisfy users’ demand. Our customers involve wide range of industries, like mold & die, aerospace, electronic, machinery, ,,,etc. We are professional expert in cutting field. We would like to solve every problem from you. Please feel free to contact us, it’s our pleasure to serve for you. BW product including: utting tool、aerospace tool .HSS Cutting tool、Carbide end mills、Carbide cutting tool、NAS Cutting tool、Carbide end mill、Aerospace cutting tool、Carbide drill、High speed steel、Milling cutter、Core drill、Taperd end mills、Metric end mills、Miniature end mills、Pilot reamer、Electronics cutter、Step drill、Metal cutting saw、Double margin drill、Gun barrel、Angle milling cutter、Carbide burrs、Carbide tipped cutter、Chamfering tool、IC card engraving cutter、Side cutter、NAS tool、DIN tool、Special tool、Metal slitting saws、Shell end mills、Side and face milling cutters、Side chip clearance saws、Long end mills、Stub roughing end mills、Dovetail milling cutters、Carbide slot drills、Carbide torus cutters、Angeled carbide end mills、Carbide torus cutters、Carbide ball-noseed slot drills、Mould cutter、Tool manufacturer.
Bewise Inc. www.tool-tool.com

beeway 發表在 痞客邦 留言(0) 人氣()

Bewise Inc. www.tool-tool.com
Reference source from the internet.
本文利用透射电镜,高分辨电镜和场发射电镜对球磨后的Cu、Co、Fc-Cu以及Ti-Ni-C等的微观结构和成分进行了系统的研究,并得出以下结论:

(1)在球磨后的纯Cu及FexCu(100-x)(X=16,60)中首次发现大量的室温形变不常见的机械孪晶,根据机械孪生的极源位错机制对球磨诱导Cu产生机械孪晶进行了合理的解释。其原因为:(a)球磨产生的压力超过了产生孪生所需要
的临界切应力;(b)晶粒尺寸低于某一临界值后,孪生而不是滑移将成为择优的形变模式;(c)球磨产生的高应变速率有利于机械孪晶的产生。

(2) 高分辨电镜观察表明,在球磨后的纯Cu和Fc60Cu40样品中,亚晶粒的产生可以通过两种途径:它们可以直接从剪切带中产生和在孪晶尖端或在较大晶粒的 边缘产生。通过这两种途径产生的亚晶粒其尺寸在纳米尺度(10-100nm),取向完全随机,晶粒内部含有大量位错。

(3)高分辨电镜观察表明球磨制备的纳米晶晶界可呈有序结构,存在明显应变,但局部区域内可存在无序、晶格畸变及纳米空洞。

(4) 球磨诱导Co的相变依赖于球磨强度。在不同的球磨条件下,可分别获得单一的面心立方(fcc)Co,单一的六角密堆与结构Co(hcp)以及二者共存的混 合物。Co的相转变是由于缺陷积累而产生,不同球磨强度可控制缺陷的产生率及产生量。同时发现fcc相在700℃的温度范围内为稳定相,但 hcp相在450℃退火后部分转变为fcc相,这是由于晶粒尺寸效应而产生,小的晶粒尺寸能使fcc相稳定。

(5)对合金化后的 Fe16Cu84样品的纳米成分分析表明晶粒内部及晶界的Fe含量都接近于原始的配比成分。从而证实了原子级混合固溶体的形成。同时发现较大和较小晶粒内 部Fe含量很不均匀;高分辨电镜观察表明在fcc固溶体中仍存在一些晶粒尺寸很小的Fe原子畴,由此我们提出还有一些Fe原子并未来真正溶于Cu的晶格 中,而是以超细晶粒的形式弥散在Cu基体中。

(6)通过Fe-Cu合金化过程的观察同时得出了以下结论,机械合金化过程可划分为两个不同 阶段:在第一阶段由于位错运动而导致晶粒尺寸迅速减小到一个平衡值,进一步的形变只能靠晶界滑移来协调。由于球磨产生的较大压力以及纳米晶的产生使得体扩 散及晶界扩散系数大大增加。纳米晶以及扩散系数的显著增大导致了具有正的混合热的非互溶体系中过饱和固溶体的形成。由于超细晶粒及大量的晶界、相界使得两 相混合体系的自由能增大到足以驱动固溶反应的发生,这是获得过饱和固溶体的热力学原因。

(7)fcc Fe60Cu40固溶体在加热到300℃至460℃时分解为α-Fe+γ-Fe+Cu,进一步加热到760℃时α-Fe转变为γ-Fe。在冷却过程中,相 应的逆转变发生在800℃-640℃。γ→α相转变发生在一个很宽的温度范围内;其转变温度比相应的铸造Fe-Cu样品中的马氏体相变温度要高,但比纯 Fe的同素异构转变温度要低。这些差别与机械合金化诱导的非平衡结构以及α-Fe的晶粒尺寸不均匀有关。高分辨电镜观察表明α-Fe与Cu之间(同时也代 表α-Fe与γ-Fe之间)存在N-W或K-S取向关系。α-Fe的晶粒尺寸不均匀,其范围为50一600nm。纳米能谱分析表明即使加热到400℃,α -Fe内Cu的含量仍高达9.5at.%,这个值超过1094℃时Cu在γ-Fe内的固溶度。其原因可能是由于α-Fe的晶粒尺寸过于细小从而导致固溶度 的增加。

(8) Ti50Ni20C30、Ti40Ni40C20和Ti30Ni50C20在球磨到3小时30分至3小时35分时发生爆炸式反应,并形成一些3-10mm 大小的块状聚结物,这意味着在球磨过程中有熔化和快冷现象发生。Ti50Ni20C30球磨后的最终产物为由球状TiC晶粒、条状马氏体及B2相组成。 Ti40Ni40C20的产物为TiC+M+B2(少量);Ti30Ni50C20的产物为Ni+TiC。块状聚结物的微观结构可显示熔化及快速凝固的特 征,但与球磨诱导的缓慢扩散反应产物有明显的差别。这充分证明球磨Ti50Ni20C30、Ti40Ni40C20和Ti30Ni50C20不是一个缓慢 的固态扩散反应过程,而是一个自蔓式反应过程。这一自蔓式反应是由于TiC的形成而引起并由机械碰撞所点燃。同时发现对同一球磨但未合金化的 Ti50Ni20C30粉可通过进一步球磨而诱导自蔓式反应的发生,却不能用加热的方法诱导这一反应的发生。证明了在缓慢加热过程中,自蔓式反应的动力学 条件得不到满足,但在球磨过程中,热力学和动力学条件同时得到满足。最后指出球磨是诱导大放热体系产生自蔓式反应的有效方法。

综上所述, 球磨是一个严重的机械形变过程,它可以划分为两个不同阶段:在球磨初期,形变主要通过滑移、孪生及剪切带的形成来协调;进一部的形变只能通过晶界滑移来协 调。球磨产生的超细晶粒及大量的晶界、相界会导致材料体系自由能的提高及扩散系数的增加,最终可导致纯金属如Co的同素异构相变,导致具有正混合热的非互 溶体系如Fe-Cu、Co-Cu等的固溶度的显著增加以及大放热体系如Ti-Ni-C、Ti-Ni-0等的爆炸式反应的发生。

高分辨透射 电镜及场发射电镜是研究材料细微结构及成分变化的强有力的手段。尤其是场发射电镜的问世使得在同一区域同时获得精确的原子级结构信息及纳米成分信息成为现 实。本文利用场发射电镜证实了一直处于争议之中的关于球磨诱导Fe-Cu过饱和固溶体的形成就是一例。这一直观的测试方法是其它间接的测试方法如X-射线 衍射、差热分析及磁性测量等无法替代的。但是球磨粉末的电镜样品制备仍是一个具有较大难度的问题,仍需科研工作者努力探索。

球磨是制备非 晶、纳米晶、金属间化合物及其它一些亚稳材料的有效方法。它简单、便宜且易于控制。它不但能制备出一些用快凝方法也能制备出的材料,而且能制备出一些用常 规方法得不到的新材料,如在非互溶体系制备出过饱和固溶体,在具有正的混合热体系制备出非晶等。但是球磨过程中Fe及空气的污染仍是一个未能解决的问题。 Welcome to BW tool world! We are an experienced tool maker specialized in cutting tools. We focus on what you need and endeavor to research the best cutter to satisfy users’ demand. Our customers involve wide range of industries, like mold & die, aerospace, electronic, machinery, ,,,etc. We are professional expert in cutting field. We would like to solve every problem from you. Please feel free to contact us, it’s our pleasure to serve for you. BW product including: utting tool、aerospace tool .HSS Cutting tool、Carbide end mills、Carbide cutting tool、NAS Cutting tool、Carbide end mill、Aerospace cutting tool、Carbide drill、High speed steel、Milling cutter、Core drill、Taperd end mills、Metric end mills、Miniature end mills、Pilot reamer、Electronics cutter、Step drill、Metal cutting saw、Double margin drill、Gun barrel、Angle milling cutter、Carbide burrs、Carbide tipped cutter、Chamfering tool、IC card engraving cutter、Side cutter、NAS tool、DIN tool、Special tool、Metal slitting saws、Shell end mills、Side and face milling cutters、Side chip clearance saws、Long end mills、Stub roughing end mills、Dovetail milling cutters、Carbide slot drills、Carbide torus cutters、Angeled carbide end mills、Carbide torus cutters、Carbide ball-noseed slot drills、Mould cutter、Tool manufacturer.
Bewise Inc. www.tool-tool.com

beeway 發表在 痞客邦 留言(0) 人氣()

Bewise Inc. www.tool-tool.com

Reference source from the internet.
新型SEBS是何物?

Kraton 聚合物公司推出了一种新型苯乙烯-乙烯-丁二烯-苯乙烯(SEBS)弹性体,流动性更高,翘曲变形更少,与其它热塑性塑料的粘附性更强。据说 Kraton A聚合物采用一种新的化学原理,经过特别控制,将苯乙烯分布到SEBS的中间段乙烯-丁二烯中,但不损害SEBS的主要弹性特征。与传统的SEBS相比, 新一代树脂的硬度高,加工性好,全向收缩更均匀(MD比TD),与其它多种工程塑料过度模塑时的粘着力更强。

最先推出的两种牌号RP6936(39%苯乙烯)和RP6935(58%苯乙烯)可用于混合、模塑和挤出。RP6936的硬度为65(邵氏A),混合后比同等硬度的PVC流动性好,透明度高。RP6935的硬度为85(邵氏A),分子量更大,耐热性更卓越。

Kraton聚合物公司的高级研究员Dale Handlin称,已经有几家公司正在试用 Kraton A,包括GLS公司,Kraiburg TPE,Multibase和Teknor Apex公司的TPE分部。
流动性更高,翘曲变形更少
据 报道,Kraton A比Kraton G等传统SEBS的初始刚性和韧性级别高。流动性好,表现为一定粘度下剪切率降低,模内应力减小。低剪切率和模内应力拓宽了配方的范围。例如使用 Kraton A进行模块浇注和零件加工的效果极佳,因此Kraton A适合制造复杂部件。
模内应力减小表明Kraton A比传统SEBS的收缩变化更均衡。据说全向收缩性能由塑料在机器中的拉伸强度与横向强度之比决定。比值为1表示各向的强度相等。RP6935的全向收缩 比接近1,而Kraton G是2.5(见附图)。Kraton A的全向收缩特性在生产翘曲明显的大型平面部件时尤显其价值。
最后,新的化学性质赋予Kraton A更高极性,因此Kraton A与其他塑料基质的粘附性更强,尤其是PS、HIPS、PPO/PS合金等苯乙烯类树脂。
Kraton A的目标之一是在玩具、包装、医疗用品、体育器械和建筑材料等领域代替PVC。Handlin说:“Kraton A的模塑性与PVC极其相似。”使用现有的PVC模塑和混合机器就可以加工Kraton A。Kraton A的硬度可以与许多PVC化合物相媲美。由于SEBS比PVC价格高,因此主要代替PVC在卫生要求高的领域使用,如医疗器械和软性玩具。
Kraton 聚合物公司的美洲区副总裁Garret Davies说,Kraton A也可能代替液体硅胶生产婴儿奶瓶盖、计算机键盘底部缓冲垫和医用管子。同时Kraton 还可能与TPU争夺相容剂和复合模塑软部件的市场。Welcome to BW tool world! We are an experienced tool maker specialized in cutting tools. We focus on what you need and endeavor to research the best cutter to satisfy users’ demand. Our customers involve wide range of industries, like mold & die, aerospace, electronic, machinery, ,,,etc. We are professional expert in cutting field. We would like to solve every problem from you. Please feel free to contact us, it’s our pleasure to serve for you. BW product including: utting tool、aerospace tool .HSS Cutting tool、Carbide end mills、Carbide cutting tool、NAS Cutting tool、Carbide end mill、Aerospace cutting tool、Carbide drill、High speed steel、Milling cutter、Core drill、Taperd end mills、Metric end mills、Miniature end mills、Pilot reamer、Electronics cutter、Step drill、Metal cutting saw、Double margin drill、Gun barrel、Angle milling cutter、Carbide burrs、Carbide tipped cutter、Chamfering tool、IC card engraving cutter、Side cutter、NAS tool、DIN tool、Special tool、Metal slitting saws、Shell end mills、Side and face milling cutters、Side chip clearance saws、Long end mills、Stub roughing end mills、Dovetail milling cutters、Carbide slot drills、Carbide torus cutters、Angeled carbide end mills、Carbide torus cutters、Carbide ball-noseed slot drills、Mould cutter、Tool manufacturer.
Bewise Inc. www.tool-tool.com

beeway 發表在 痞客邦 留言(0) 人氣()

Bewise Inc. www.tool-tool.com
Reference source from the internet.
[摘要]结合卡环注射模设计制造案例,阐述运用CAD/CAE/CAM技术完成1副注射模的全过程,详细介绍Pro/E、UG等软件在注射模设计制造中的实际应用,为注射模具设计制造提供一个有效的途径。
关键词 注射模 Pro/E 卡环

1 概述

模具行业是制造业中的一项基础产业,是技术成果转化的基础,同时本身又是高新技术产业的重要领域。模具技
术水平的高低,决定若产品的质量、效益和新产品开发能力,它已成为衡量一个国家制造业水平高低的重要标志。我国模具工业的技术水平已取得了很大的进步,但总体上与工业发达的国家相比仍有较大的差距.许多先进的技术如CAD/CAE/CAM技术的普及率还不高。

企 业之间的竞争日益加剧,而作为模具企业生存和发展的根本--模具开发速度的快慢及质量的好坏则是决定该企业是否能在激烈的市场竞争中获胜的关键。塑料产品 从设计到生产是一个十分复杂的过程,它包括塑料制品设计、模具结构设计,模具制造和塑件生产等几个主要方面,计算机技术的运用,正在取代传统的手工设计制 造方式,井取得了显著的经济效益。

2 采用计算机技术进行注射模设计制造流程

以图1卡环零件为例,卡环是某车型燃油系统配套的一个塑料制品,该零件结构小巧,装配精度要求较高。

塑料注射模计算机辅助设计制造流程:塑件三维建模--模流分析--塑料产品装配--模具结构设计--生成模具工程图--模具关键零件数控加工--关键零件数控电加工--模具装配调试。

2.1 塑件三维建模

Pro/E 的PRT模块应用。当接到1副塑料注射模定单时,首先根据客户提供的塑件二维图纸、样品或产品电子数据,利用Pro/E的PRT模块中实体造型 模块(solid)和曲而造型模块(surface)将要开模的产品转化成三维造型,如图2所示。Pro/E有极强的参数化、基于特征的建模功能,可构肆 任意型面。

造型完成后对塑件进行拔模检查draft check。拔模检查是定义零件与拔模垂直面的拔模角度,根据卡环零件脱模方向做出拔模分析,如图3所示。

2.2 模流分析

Pro/E 塑料顾问模块应用。模具设计人员需要了解塑料专业知识,Pro/E塑料顾问模块为模具设计人员提供了可靠、易理解的加工反馈和建议。塑料顾问用 于评估注塑工艺性,是节省成本和时间的理想工具。设计人员可以方便地选择材料类型和设置浇口位置,塑料注射模设计顾问则在屏幕上提供了充模动画、描述设计 “可模塑性”的图形以及熔合线和气泡等可能出现问题的位置,运用CAE软件模拟塑料熔体在模具型腔中的流动、保压、冷却过程,对制品可能发生的翘曲进行预 测等,其结果对优化模具结构和注塑工艺参数有着重要的指导意义,可提高一次试模的成功率。根据选择的浇口位置和聚内烯卡环材料,实际模拟出卡环充模情况, 能够顺利充型,如图4所示。

2.3塑料产品装配

Pro/E 的装配模块。assembly可实现产品零件装配.运用装配模块所提供的匹配。对齐、插入等功能将产品装配起来(见图5)。再利用 analysis功能选择分析中帅模型分析,在mold analysis中选择Global lterference来检查零件相互之间是否干涉,如果存在干涉,应及时与客户协调达成一致意见,这样减少了模具的二次更改,减少了试模后才发现因装配 尺寸不协调造成的大量时间、人力和物力的浪费。

2.4 模具结构设计

Pro/E 的mold模块应用。首先将要开模的零件通过mold model下的asscmbly调进,在菜单中利用Shrinkage给塑件加上收缩率,根据不同的材料加上不同的收缩率。再用mold model下的crcat workpiece来做毛坏。其次做分型面(见图6),将零件中的曲直接通过copy即可完成parhng surf的制作,根据实际分校需要一般还需增加部分曲面其做法与surface中一致。接着利用已经做好的分型面用mold volume下的split将毛坏分成两个或几个volume(见图7)。volume生成后选择moldeomp,extract这样就将volume 转化为实体型芯、型腔部分,在此基础上调用标准模架库完成模具(包括流道、冷却、顶出、导向、复位部分等)结构设计,完成后再进行干涉检查。采用EMX模 具专家系统能史简便地完成后续模架设置工作。

2.5 生成模具工程图下发

使 用Pro/E的工程图功能(Drawing),可以将Pro/E制作的模型枪出成图纸的形式(见图8)。在图纸中,所有的模型视图都是相关的,即当修改 了某视图的个尺寸后,系统会自动更新其它相关的视图,Pro/E的 图纸和它所依赖的模型相关,在图纸中修改的任何尺寸都会在模型中自动更新。同样,在模型中修改的尺也会相关到图纸。这些相关性,不仅仅是尺寸的修改也包括 添加或删除某些特征。

2.6 模具关键零件数控加工

将 型芯程序传输到加工中心进行加工。UG型芯铣削ZELVEL_FOLLOW_CORE可完成沿任意类似型芯的形状进行粗加工大余量去除、对非常复杂的形 状产生刀具运动轨迹,确定走刀方式(见图9)。UG定轴铣削FIX_CONTOUR模块功能可实现:产生3轴联动加工刀具路径主要用于曲面加工,它有加工 区域、多种驱动方法和走刀方式可供选择,如沿边界切削、放射状切削、螺旋切削及用户定义方式切削,在沿边界驱动方式中又可选择同心圆、平行线和沿成品轮廓 走刀等多种走刀方式、提供逆铣,顺铣控制以从螺旋进刀方式、自动识别前道工序未能切除的未加工区域和陡峭区域,以便用户进一步清理这些地方。 UC/Veticut切削仿真模块采用人机交互方式模拟、检验和显示NC加工程序,是一种方便的验证数榨程序的方法。由于省去了试切样件,可节省机床调试 时间。UG/Postproceasing通 用后置处理器来开发专用的后处理程序,生成适用某个机床的机床数据文件。巾于该型心零件较小,粗铣采用φ4mm球刀,精铣采用φ2mm球刀。

2.7 关键零件数控电加工

CAXA-WEDM是一个专业化的线切编程软件,经过读取DXF或DWG文件可简洁快速生成程序,免去了重新绘制图形的过程。型芯、型腔通过线切割、电火花加工完成清角部位型腔制作。

2.8 装配调试

经过精密加工的零件进入装配调试的工作(见图10),卡环注射模的装配主要解决型芯型腔密封面的研配问题,这也是本副模具的关键。打红丹粉检测分型面的贴合情况进行仔细研配,只有这样才能达到配合要求,保证产品飞边。

3 结束语

CAD/CAE/CAM 的实施使设计人员从以前繁重重复的手工绘图中解放出来,能将更多的精力用于其他创造性的设计工作,设计制造效率大大提高。复杂注射 模采用3D标准化设计,设计制造周期缩短20%-30%。在产品、模具开发中应用Pro/E软件建立产品实体模型,在产品制造出来之前就能对产品的外观造 型及装配关系等进行分析,同时根据产品模型生成模具型芯、型腔及装配图,其设计数据准确可靠。采用UG软件编程加工可有效缩短制造周期、提高生产率、解决 制造瓶颈。通过实施计算机辅助设计制造技术捉高了模具的设计、制造质量和开发速度,有效地降低了设计和开发成本,赢得了众多用户,从而提升了企业市场竞争 的能力。

参考文献
1 塑料模设计手册编写组 塑料模设计手册,北京:机械工业出版社 1997
2 宋玉恒 塑料注射模具设计实用手册 北京:航空工业出版社 1994

Welcome to BW tool world! We are an experienced tool maker specialized in cutting tools. We focus on what you need and endeavor to research the best cutter to satisfy users’ demand. Our customers involve wide range of industries, like mold & die, aerospace, electronic, machinery, ,,,etc. We are professional expert in cutting field. We would like to solve every problem from you. Please feel free to contact us, it’s our pleasure to serve for you. BW product including: utting toolaerospace tool .HSS Cutting toolCarbide end millsCarbide cutting toolNAS Cutting toolCarbide end millAerospace cutting toolCarbide drillHigh speed steelMilling cutterCore drillTaperd end millsMetric end millsMiniature end millsPilot reamerElectronics cutterStep drillMetal cutting sawDouble margin drillGun barrelAngle milling cutterCarbide burrsCarbide tipped cutterChamfering toolIC card engraving cutterSide cutterNAS toolDIN toolSpecial toolMetal slitting sawsShell end millsSide and face milling cuttersSide chip clearance sawsLong end millsStub roughing end millsDovetail milling cuttersCarbide slot drillsCarbide torus cuttersAngeled carbide end millsCarbide torus cuttersCarbide ball-noseed slot drillsMould cutterTool manufacturer.

Bewise Inc. www.tool-tool.com

beeway 發表在 痞客邦 留言(0) 人氣()