Spulen sind in der Elektrotechnik einerseits Wicklungen und Wickelgüter, die geeignet sind, ein Magnetfeld zu erzeugen oder zu detektieren. Sie sind dabei Teil eines elektrischen Bauelementes wie beispielsweise eines Transformators, Relais, Elektromotors oder Lautsprechers.
Andererseits sind Spulen induktive passive Bauelemente, deren wesentliche Eigenschaft eine definierte Induktivität ist. Sie werden überwiegend im Bereich der Signalverarbeitung für frequenzbestimmende Kreise, z. B. in LC-Schwingkreisen, Tiefpässen, Hochpässen, Bandpässen, zur Signalphasengangkorrektur, zur Störungsunterdrückung, zur Stromflussglättung oder als Energiespeicher in Schaltnetzteilen sowie vielen weiteren elektrischen und elektronischen Geräten eingesetzt. Die Einsatzhäufigkeit der Spulen ist allerdings wesentlich geringer als die von Widerständen und Kondensatoren, da diese vielfach billiger und einfacher herstellbar sind und auch günstiger in elektronischen Halbleiterschaltkreisen integrierbar sind. Beim elektronischen Schaltungsentwurf wird daher häufig – wenn irgend möglich – die Nutzung von Spulen vermieden, wenn diese mit Kondensatoren, Widerständen und aktiven Bauelementen (Transistoren) nachgebildet werden können, beispielsweise mittels einer Gyrator-Schaltung.
Die meisten Spulen bestehen aus mindestens einem Wickel eines Stromleiters aus Draht, Kupferlackdraht oder Hochfrequenzlitze, der mindestens eine halbe Windung besitzt und meist auf einem Spulenträger gewickelt ist sowie überwiegend mit einem magnetisierbaren Kern versehen ist. Die Windungsanordnung, ihr Durchmesser, das Wickel- und das Kernmaterial legen den Wert der Induktivität und weitere (Güte-)Eigenschaften der Spule fest. Darüber hinaus sind auch spiralförmig angelegte Leiterbahnen auf Leiterplatten, die mit umschließenden Ferritkernen umgeben sind, „Spulen“ im Sinne eines induktiven passiven Bauelementes. Für kleine Hochfrequenzspulen, zur Störunterdrückung in Daten-Bussystemen bzw. für Netzspannungszuführungen, gibt es vielfältige Varianten an gelochten, zylinderförmigen Ferrit- und Pulvereisenkernen, die auf den gestreckten „Spulendraht“ oder auf die mehradrigen Leitungen aufgefädelt werden und damit hier bauformbedingt im Normalfall keine Spulen mit Drahtwindungen sind. Die Windungen einer Spule müssen immer gegeneinander sowie gegen den häufig elektrisch leitenden Spulenkern isoliert sein, um einen „Windungsschluss“ zu verhindern, der die Funktion der Spule wesentlich beeinträchtigen würde. Bei Spulen und Transformatoren mit mehreren Windungslagen bzw. Wicklungen aus Kupferlackdraht sind außerdem bei Spannungsdifferenzen ab etwa 50 Volt die einzelnen Windungslagen bzw. Wicklungen z. B. durch Lackpapier gegen Spannungsdurchschlag zu isolieren.
Eine klassische Spule ist ein um einen festen Körper (Spulenkörper) gewickelter Draht. Dieser Körper muss nicht zwingend vorhanden sein. Fehlt der Wickelkörper oder ist er aus nichtmagnetischem Material, spricht man im mechanischen bzw. elektrischen Sinne von Luftspulen. Der Spulenkörper dient hier meist nur der mechanischen Stabilisation des Drahtes und hat im Gegensatz zum Spulenkern keinen magnetischen Einfluss.
Spulen gibt es auch in flacher Spiralform und mit rechteckigem oder beliebig anders geformtem Spulenquerschnitt. Sie können als spiralförmige Leiterbahn auch direkt auf einer Leiterplatte realisiert sein.
Spulen besitzen eine bestimmte Induktivität, diese Induktivität kann ihr eigentlicher Zweck (z. B. Drosselspulen, Filterspulen) oder nur sekundäre Eigenschaft sein (z. B. Transformatoren, Zugmagnete, Relaisspulen).
Bei Elektromotoren werden die Spulen als Wicklung und z. B. bei der Pupinspule als Bespulte Leitung bezeichnet.
Neben dem aufgewickelten Draht und dem Spulenkörper weist die Spule im Inneren oft einen (Spulen-)Kern (s. u.) auf, um die Induktivität zu erhöhen.
Das Wort Spule weist auf die Bauform hin (siehe Spule (Rolle)).
Funktionsweise [Bearbeiten]
Die Haupteigenschaft von Spulen ist deren Induktivität. Zur Steigerung der Induktivität wird der elektrische Leiter (Spulendraht) mit einer bestimmten Anzahl Windungen auf den Spulenkörper aufgebracht. Durch die magnetische Verkettung (Flussverkettung) der einzelnen Windungen untereinander, bedingt durch die räumlich nahe Anordnung der einzelnen Windungen, steigt die Induktivität von gewickelten Spulen theoretisch im Quadrat mit der Windungsanzahl. Eine Verdoppelung der Windungszahl bei gleichen geometrischen Abmessungen bewirkt somit eine Vervierfachung der Induktivität.
Wird der Spulendraht von einem sich zeitlich ändernden Strom durchflossen, so entsteht um den elektrischen Leiter ein sich zeitlich ändernder magnetischer Fluss. Jede Änderung des Stromes erzeugt an den Enden des elektrischen Leiters eine Selbstinduktionsspannung. Diese Spannung ist dabei so gerichtet, dass sie ihrer Ursache (dem Strom) entgegen wirkt (Lenzsche Regel). Eine Zunahme der Änderungsrate des Stromes führt zur Erhöhung der Spannung, die dem Strom entgegen wirkt. Der Proportionalitätsfaktor zwischen sich zeitlich änderndem Strom durch den Leiter und der dabei entstehenden Selbstinduktionsspannung wird als Induktivität bezeichnet.
Reale Spulen besitzen neben der eigentlichen gewünschten Induktivität auch noch andere, im Regelfall unerwünschte elektrische Eigenschaften wie einen elektrischen Widerstand, parasitäre Kapazitäten und damit mindestens eine elektrische Resonanzstelle (Parallelschwingkreis) oder bei einem die Induktivität erhöhenden Spulenkern eine störende Remanenz sowie Wirbelstromverluste. Alle diese Parameter sind temperatur- und arbeitsfrequenzabhängig. Ihr Einsatz ist daher auch nur bis zu einer bauelementetypischen maximalen Grenzfrequenz sinnvoll, wo noch ein ausreichender induktiver Blindwiderstand bzw. Phasenwinkel in der entsprechenden Einsatzschaltung wirkt.
Soll ein hochwertiger Widerstand, bestehend aus einem langen aufgewickelten (Widerstands-)Draht, dagegen eine besonders geringe Induktivität haben, muss der mechanische Widerstandsdrahtträger, z. B. ein Porzellanrohr mit Kontaktschellen, bifilar mit einem gegenläufigen Draht bewickelt werden. So heben sich die entgegengesetzt gerichteten magnetischen Flüsse nahezu auf. Dieses Verfahren wird beispielsweise für Drahtlastwiderstände für den hohen Niederfrequenzbereich bis etwa 100 kHz angewendet.
Magnetfeld und Stromfluss [Bearbeiten]
Folgende Merksätze können benutzt werden, um festzustellen, welches Ende einer Spule bei einem durch sie fließenden Gleichstrom einen magnetischen Nord- und welches Ende einen Südpol bildet (als Stromrichtung ist die technische Stromrichtung, d.h. vom Plus- zum Minus-Pol zu benutzen):
- Schaut man auf ein Spulenende und wird dieses im Uhrzeigersinn vom elektrischen Strom umflossen, so entsteht dort ein magnetischer Südpol.
- Schaut man auf ein Spulenende und wird dieses gegen den Uhrzeigersinn vom elektrischen Strom umflossen, so entsteht dort ein magnetischer Nordpol.
Im Inneren einer schlanken Spule (Länge viel größer als Durchmesser) der Länge l mit n Windungen, in denen ein elektrischer Strom I fließt, entsteht das Magnetfeld mit der Feldstärke .
Die Flussdichte B ergibt sich mit der vom Spulenkern (s. u.) abhängigen Materialkonstanten μr und der magnetischen Feldkonstanten μ0 = 4π·10−7 H/m somit zu
.
Spulenkerne [Bearbeiten]
Spulenkerne haben die Aufgabe, die Induktivität der Spule zu verstärken oder zu verringern. Die durch einen magnetischen Kern erreichte Erhöhung der Induktivität führt zu einer Verringerung der für einen bestimmten Induktivitätswert erforderlichen Windungszahl bzw. Leiterlänge und damit zur Verringerung des störenden elektrischen Widerstandes der Spule.
Kerne aus elektrischen Leitern wie Kupfer oder Aluminium, die durch Feldverdrängung die Induktivität verringern, werden zur Abstimmung von (Schwingkreis-)Spulen im Hochfrequenzbereich, z. B. bei UKW-Tunern, verwendet.
Spule mit Eisenkern [Bearbeiten]
Wirbelströme im Eisenblock (oben) und in laminierten Blechen (unten)
Spule mit Schalenkern aus Pulver-Pressstoff
Festinduktivitäten mit Farbringen.
Oben: 6,8 µH
Mitte: 22 µH
Unten: 2,2 µH
Wird in eine Spule ein Eisenkern eingesetzt, so wird durch dessen ferromagnetische Eigenschaften die Permeabilität und damit auch die magnetische Flussdichte in der Spule erhöht. Somit kommt man mit wesentlich weniger Windungen und dadurch mit viel weniger Bauelementevolumen aus, um eine benötigte Induktivität zu erreichen. Ab einer bestimmten materialabhängigen Flussdichte tritt aber eine störende Sättigungsmagnetisierung des Kerns auf.
Weil das Eisen des Kerns ein elektrischer Leiter ist, wird darin wie in einer von Wechselstrom durchflossenen Kurzschluss-Spule ein unerwünschter Wirbelstrom induziert, der den Eisenkern erwärmt. Diesen Wirbelstrom kann man verringern, wenn der Kern nicht aus einem massiven Stück Eisen, sondern aus einem Stapel von Eisenblechen besteht. Diese müssen voneinander durch Lackschichten oder (früher) Papier isoliert sein, um den Wirbelstrom zu unterbrechen. Bei sehr hohen Frequenzen genügt auch das nicht, deshalb wird die Spule mit elektrisch nichtleitendem Material wie beispielsweise Ferrit oder Pulver-Pressstoff gefüllt, um die Induktivität zu erhöhen.
Diese magnetischen Kernmaterialien weisen typischerweise einen Hysterese-Effekt (Remanenz) auf, der zu elektrischen Verlusten führt, weil bei jeder Periode eines Wechselstroms der Kern ummagnetisiert werden muss. Außerdem kommt dadurch eine Verformung der Stromkurve mit zusätzlichen Spitzen in jeder Periode zustande, die bei manchen Anwendungen unwillkommen ist, da sie den Klirrfaktor erhöhen. Die Verluste, die durch Wirbelströme und Hysterese auftreten, nennt man Eisenverluste.
Auch wird das Einschaltverhalten von Spulen mit Eisenkern wesentlich komplexer, weil, je nach Zustand des Kerns vor dem Einschalten, fast gar keine Magnetisierung besteht oder aber als Remanenz schon eine merkliche Magnetisierung wirkt, die entweder der Strompolarität entspricht oder auch entgegengesetzt sein kann und dann durch den Einschaltstrom erst ummagnetisiert werden muss. Diese Effekte führen dazu, dass im Extremfall beim Einschalten einer Spannung Sicherungen auf Grund eines möglichen Einschaltstromstoßes bis zum zeitlichen Erreichen der nominellen, erst später strombegrenzenden Induktivität vorher schon ansprechen, obwohl eigentlich gar kein Überlastfall vorliegt. Bei größeren Induktivitäten, wie Transformatoren oder Drosselspulen mit Eisenkern, muss in Wechselstrom-Leistungsanwendungen daher häufig speziell für den Einschaltfall besondere Vorsorge getroffen werden, siehe beispielsweise bei Transformatorschaltrelais. Aber auch beim Ausschalten sind auftretende Selbstinduktionsspannungen schaltungstechnisch zu beachten. Bei Kleinsignalanwendungen führen die Hystereseeffekte lediglich zu einer verminderten Güte des Bauteils im Einschaltmoment. Bei Spulen und besonders bei Transformatoren größerer Leistung, schon ab wenigen Watt beginnend, tritt häufig im Niederfrequenzbereich eine störende akustische Geräuscherzeugung des Kernmaterials auf, das als Netzbrummen bezeichnet wird. Es hat seine Ursache in geringen mechanischen Größenänderungen des Kerns auf Grund des wechselnden Magnetfeldes, siehe Magnetostriktion. Vermindert werden kann dieser Effekt durch Vakuumtränkung mit Speziallack, was gleichzeitig noch die Spannungsfestigkeit zwischen verschiedenen (Transformator-)Spulen erhöht.
Die Elementarmagnete im Eisenkern richten sich nach den Polen der Spule. Ist der Nordpol links, so sind die Nordpole der Elementarmagneten ebenfalls links. Die Feldlinien treten demnach am Nordpol aus und dringen am Südpol wieder in das Spuleninnere ein. Im Spuleninneren verlaufen die Feldlinien von Süd nach Nord. Bei einer langgestreckten Spule mit vielen Windungen ist das Magnetfeld im Inneren homogen, es ähnelt dem Magnetfeld zwischen den Schenkeln eines Hufeisenmagneten. Im Außenraum ähnelt das Spulenfeld dem eines Stabmagneten.
Kerne bei Hochfrequenzspulen [Bearbeiten]
Meist wird für diesen Zweck ein Kern aus gepresstem magnetischem Pulver (Pulverkern) oder Ferrit verwendet. Zur Filterung hochfrequenter Störungen werden unter anderem Toroidspulen bzw. Ringkerndrosseln eingesetzt.
Bei abstimmbaren Spulen werden Ferritkerne mit einem Gewinde verwendet: durch Hinein- oder Herausschrauben kann die Induktivität einer solchen Spule erhöht bzw. vermindert werden. Wenn eine HF-Spule einen Kern aus Aluminium (oder einem anderen elektrisch leitfähigen Material) zum Abgleich hat, verringert das Hineindrehen des Kerns die Induktivität. Das kommt daher, dass der Kern wie eine kurzgeschlossene Sekundärwicklung eines Transformators wirkt. Ein tieferes Hineindrehen bewirkt eine Verdrängung des Magnetfeldes der Spule.
Hochfrequenzspulen [Bearbeiten]
Kreuzwickelspule mit HF-Litze und trimmbarem Eisenkern für den Mittelwellenbereich
Mit zunehmender Frequenz werden die Ströme immer mehr an die Oberfläche des Drahtes verdrängt (Skineffekt). Die Drahtoberfläche entscheidet dann zunehmend über die Güte der Spule. Ab ca. 100 kHz verwendet man zur Verringerung der Verluste daher oft Hochfrequenzlitze als Wickelmaterial; sie besteht aus mehreren, voneinander isolierten feinen Drähten. Ab etwa 50 MHz werden die Spulen meist freitragend mit dickerem Draht ausgeführt. Eine versilberte Oberfläche kann die Verluste zusätzlich vermindern. Kerne für Hochfrequenzspulen bestehen aus einem ferromagnetischen, elektrisch nichtleitenden Material. Damit werden Wirbelströme im Kern verhindert. Auch mit der Bauform kann man eine Spule hochfrequenztauglich machen, indem man bei solchen mit hohen Windungszahlen (beispielsweise für den Mittelwellenbereich) parasitäre Kapazitäten durch besondere Wickelformen verringert (Waben-, Korbboden- oder Kreuzwickelspulen).
Spulen für Oszillatoren [Bearbeiten]
Spulen in Oszillatoren oder auch Bandfiltern sollen grundsätzlich ihre Induktivität möglichst genau einhalten. Ein geringer noch vorhandener Temperaturkoeffizient, der hauptsächlich durch das verwendete Kernmaterial verursacht wird, kann durch einen gegengerichteten Temperaturkoeffizienten der verwendeten Schwingkreiskapazität bei entsprechender Bauelementeauswahl und Dimensionierung der Teilkondensatoren fast vollständig kompensiert werden.
Luftspulen können bei Erschütterung durch kleinste Induktivitätsänderungen eine Frequenzmodulation verursachen. Sie werden deshalb auf einen Spulenkörper gewickelt, mit Lack oder Kleber fixiert oder ganz in Wachs eingebettet.
Wechselstromverhalten [Bearbeiten]
Phasenverschiebung zwischen Strom und Spannung durch induktive Belastung
Verbraucherzählpfeilsystem: Strom- und Spannungspfeile zeigen im Bauelement in dieselbe Richtung
Wird eine Spule an Wechselspannung angelegt, so wechseln der Strom und das Magnetfeld ebenfalls periodisch ihre Richtung. Zwischen der Änderung des Spulenstromes i(t) und der Klemmenspannung u(t) besteht der Zusammenhang
,
wobei t die Zeit und L die Selbstinduktivität der Spule ist. Hier sind Strom und Spannung, wie bei passiven Bauelementen üblich, im Verbraucherzählpfeilsystem angegeben.
In Schulliteratur ist ebenfalls der Begriff „Selbstinduktionsspannung“ mit der Bezeichnung [1] geläufig. Das zugrundeliegende Modell ist jedoch nicht die Netzwerktheorie, sondern die allgemeiner gefasste Feldtheorie. Die induzierte Spannung bezeichnet das Kreisintegral des elektrischen Feldes entlang eines geschlossenen Weges, der die Spulenwicklungen enthält. Man spricht auch von der sogenannten Umlaufspannung ui(t), für die gilt:
Dabei wird, wie in physikalischen Gleichungen üblich, angenommen, dass die genannten Größen rechtshändig zueinander zugeordnet sind, das heißt, die Richtungen von elektrischem Feld, Stromflussrichtung und Integrationsweg stehen wie in der Abbildung gezeigt rechtshändig zum magnetischen Feld.
Der Zusammenhang zwischen der induzierten Spannung ui(t) und der Klemmenspannung u(t) wird anhand der beigefügten Abbildung erläutert:
Zusammenhang von Selbstinduktionsspannung und Klemmenspannung
Integriert man das elektrische Feld über den mit gestrichelten Linien eingezeichneten Weg, so addieren sich dabei die in den Spulenwicklungen auftretenden Spannungen mit der Klemmenspannung. Sofern man jedoch von einer ideal leitfähigen Spulenwicklung ausgeht, kann innerhalb des Leiters keine elektrische Spannung entstehen (Feldfreiheit im metallischen Leiter). Die induzierte Spannung ist als Klemmenspannung zwischen den Spulenklemmen messbar. Die Richtung dieser Spannung entspricht dem gewählten Integrationsweg und verläuft im Beispiel von unten nach oben. Im Netzwerkmodell mit dem Verbraucherzählpfeilsystem ergibt sich ein positives Vorzeichen, da der Zählpfeil für die dort gewählte Klemmenspannung dem Integrationsweg entgegengesetzt von oben nach unten verläuft.
Da der Strom wegen des Energietransports in das magnetische Feld nur allmählich steigen bzw. fallen kann, folgt er dem Verlauf der Spannung stets mit zeitlicher Verzögerung; er ist phasenverschoben. Unter idealen Bedingungen (bei vernachlässigbar kleinem ohmschem Widerstand) eilt die Wechselspannung dem Strom um 90° voraus. Es besteht eine Trägheit der Spule gegen Stromänderungen. (Merksatz: „Bei Induktivitäten die Ströme sich verspäten“.)
Fließt Strom durch eine Spule, wird im Magnetfeld Energie gespeichert:
Rechnerisch folgt die Phasenverschiebung aus den Ableitungsregeln für trigonometrische Funktionen: Wird beispielsweise ein sinusförmiger Strom
in die Spule eingeprägt, so ergibt sich die Spannung an der Spule durch mathematische Ableitung zu
.
Das Verhältnis von maximaler Spulenspannung und maximalem Spulenstrom beträgt bei sinusförmiger Anregung
.
Der Spule kann so ein komplexer Wechselstromwiderstand (Impedanz): zugeordnet werden, der jedoch im Gegensatz zu einem ohmschen Widerstand keine Leistung in Wärme (Verlustleistung) umsetzt. Das rührt daher, dass während einer Viertelperiode von der Spule Energie aufgenommen und in der nächsten Viertelperiode wieder abgegeben wird. Dadurch pendelt die Energie nur hin und her, ohne verbraucht zu werden. Man nennt diese spezielle Form von Widerstand Blindwiderstand und den Strom Blindstrom.
Für eine Spule der Induktivität L und einen Wechselstrom der Frequenz f errechnet sich der Blindwiderstand (Reaktanz)
zu
mit der Dimension [V/A].
ω = 2πf
nennt man die Winkelfrequenz oder auch Kreisfrequenz.
Der Blindwiderstand wächst mit steigender Frequenz, wobei der ohmsche Drahtwiderstand gleich bleibt. Daher hat eine für Wechselspannung konzipierte Spule an einer gleichgroßen Gleichspannung (f = 0 Hz) einen sehr viel geringeren Widerstand, da nur noch der Drahtwiderstand den Strom behindert.
Parasitärelemente [Bearbeiten]
Zeigerdiagramm des Scheinwiderstandes Z einer Spule
Reale Spulen zeigen im Wechselstromkreis ein Phänomen, das mit Hilfe des topologischen Zeigerdiagramms erklärt werden kann. Der äquivalente ohmsche Serienwiderstand (ESR), der als Kupferwiderstand mit Gleichstrom bestimmt werden kann, scheint im Wechselstrombetrieb höher zu sein. Gründe dafür sind bauart- und materialbedingte zusätzliche Verluste (Wirbelstrom- und Ummagnetisierungsverluste im Kern, Skineffekt und Proximity Effect). Sie führen dazu, dass eine geringere Veränderung der Phasenlage des Stromes bzw. ein höherer Wirkanteil der elektrischen Verlustleistung auftritt, als es aufgrund des Kupferwiderstandes zu erwarten wäre.
Scheinbar ändert sich demnach der ESR (der Realteil von Z) gegenüber dem mit Gleichstrom bestimmten Wert. Diese parasitären Komponenten können zum Beispiel mit einer Messbrücke nachgewiesen werden, die in der Lage ist, Real- und Imaginärteil getrennt zu messen.
Ersatzschaltbild einer Spule mit magnetisierbarem Kern
Im Ersatzschaltbild der Spule mit der Induktivität L kann der ESR als Serienschaltung vom Kupferwiderstand RCu und einem frequenzabhängigen Kernwiderstand RFe dargestellt werden. Der Kernwiderstand setzt sich aus dem Wirbelverlust-, dem Hysterese- und dem Nachwirkungsanteil zusammen.
Ein weiterer parasitärer Effekt sind die Kapazitäten zwischen den Wicklungen und Anschlüssen. Diese Parasitärkapazitäten der Spule werden als Kapazität CP im Ersatzschaltbild zusammengefasst und liegen parallel zur Induktivität. Die Parasitärkapazitäten beeinflussen den Scheinwiderstand einer Spule deutlich. Bei Erhöhung der Frequenz von Null an steigt der Scheinwiderstand zunächst so an, wie es aufgrund der Induktivität zu erwarten wäre. Bei der Eigenresonanzfrequenz erlangt er dann seinen Maximalwert, um anschließend wieder zu sinken – nun zeigt die Spule kapazitives Verhalten.
Dieses Phänomen ist nachteilig bei Filter- und Entstöranwendungen, wo es erforderlich ist, dass auch sehr hohe Frequenzen durch die Spule noch ausreichend gedämpft werden. Man verringert den Effekt, indem man die Spule einlagig und langgestreckt oder kreuzlagig ausführt. Auch das verteilte Nacheinander-Bewickeln mehrerer Kammern ist üblich. Oft muss man bei Filteranwendungen (z. B. Netzfilter) verschiedene Spulenbauformen kombinieren, um einerseits hohe Induktivität und andererseits eine geringe parasitäre Kapazität zu erzielen.
Siehe auch: Blindleistungskompensation und komplexe Wechselstromrechnung
Zu- und Abschaltvorgänge bei Gleichspannung [Bearbeiten]
Zu- und Abschaltvorgang an einer realen Spule (RDraht = 10 Ω) mit „idealer“ Freilaufdiode; oben: Selbstinduktionsspannung, Mitte: Strom, unten: Speisespannung; die Zeitachse ist in auf die Zeitkonstante normierten Einheiten skaliert
Schaltet man eine reale (das heißt: verlustbehaftete) Spule an eine Gleichspannung, nehmen Strom sowie Spannung folgenden zeitlichen Verlauf:
- beim Einschaltvorgang:
- beim Ausschaltvorgang:
mit:
- (Zeitkonstante)
- L – Induktivität der Spule
- t – Zeit
- RL – ohmscher (Draht-)Widerstand der Spule
- U0 – Gleichspannung
Dieser Zusammenhang zeigt, dass sich der in einer Spule fließende Strom nicht sprunghaft ändern kann. Beim Einschalten eines Gleichstromkreises mit einer Spule verhindert die der Betriebsspannung entgegenwirkende Induktionsspannung einen raschen Stromanstieg. Dieser folgt den Gesetzen einer Exponentialfunktion. Wenn RL einen hohen Wert annimmt, wird τ kleiner, somit ist der Stromanstieg auf den Endwert I0 eher abgeschlossen.
Ein plötzliches Abschalten des Spulenstromes () ist nicht möglich. In der Realität entsteht beim Versuch, den Strom zu unterbrechen, eine Spannungsspitze umgekehrter Polarität, deren Höhe nur von der parasitären Kapazität der Spule und anderen spannungsbegrenzenden Effekten (elektrischer Durchbruch, Überschläge, Schaltlichtbogen) abhängt. Sie können Schäden durch Überspannung verursachen.
Mit Gleichstrom betriebene Spulen werden daher oft durch eine parallelgeschaltete Schutzdiode geschützt, die beim Abschalten des (Speise-)Stroms das Weiterfließen des (Spulen-)Stroms ermöglicht und die in der Spule gespeicherte magnetische Energie
größtenteils im Spulendraht und zu einem kleinen Teil in der Diode in Wärmeenergie umwandelt. Die hohe Spannungsspitze an den Anschlüssen der Spule wird damit verhindert, allerdings dauert es länger, bis der Strom auf geringe Werte abgesunken ist.
Für den Abschaltvorgang mit einer „idealen“ Freilaufdiode gilt:
.
Die Zeitkonstante τ ist der Quotient aus Induktivität und Drahtwiderstand , sie kann bei großen Induktivitäten hoher Güte einige Sekunden betragen. Die Zeitkonstante gleicht derjenigen zu Beginn der Einschaltkurve und lässt sich durch eine an den Beginn des Strom/Zeitverlaufs angelegte Tangente bestimmen, bei der diese den Endwert I0 schneidet. Zu diesem Zeitpunkt t = τ beträgt der Wert der Stromanstiegskurve:
.
Die Steilheit der Tangente im Nullpunkt errechnet sich aus:
.
Diese Stromanstiegsgeschwindigkeit (oft angegeben in ) ist ein wichtiger Wert für eine Vielzahl von Anwendungen, wie Thyristorschalter, Schaltnetzteile, Spannungswandler, Entstörglieder. Hier werden überall Spulen zur Energiespeicherung oder zur Begrenzung der Stromanstiegsgeschwindigkeit eingesetzt. Der Spulenstrom steigt in der Praxis aufgrund des meist relativ kleinen Realteiles der Spulenimpedanz zu Beginn fast linear mit der Zeit an. Theoretisch würde der Strom durch eine Spule an konstanter Spannung immer weiter steigen, die gespeicherte Energie würde immer schneller (proportional zum Quadrat der Zeit) größer werden. In der Praxis wird die Energie, die in einer Spule gespeichert werden kann, aus folgenden Gründen begrenzt:
- Das gegebenenfalls vorhandene Kernmaterial gerät ab einer bestimmten Flussdichte in Sättigung, wodurch die Induktivität stark sinkt (das führt zu einem schnellen und starken Stromanstieg).
- Mit steigender Stromstärke durch die Spule fällt am elektrische Widerstand RL des Spulendrahts schließlich die gesamte Spannung ab, der Strom kann sich nicht weiter erhöhen.
Es wird immer mehr elektrische Leistung in Wärmeleistung () umgewandelt und es droht eine Überhitzung.
Aufgrund ihrer oben beschriebenen Eigenschaften können periodisch geschaltete Spulen zur Erzeugung von hohen Spannungen aus kleinen Spannungen benutzt werden (zum Beispiel: Zündspule, Spannungswandler, Funkeninduktor, Aufwärtswandler und Schaltregler).
Umgekehrt können sie zur Strombegrenzung in Wechselspannungskreisen (Vorschaltdrossel, Kommutatordrossel), und zur verlustarmen Herabsetzung von Spannungen (Abwärtswandler) und Glättung von Strömen (Siebdrossel) eingesetzt werden.
引用出處:
http://de.wikipedia.org/wiki/Spule_%28Elektrotechnik%29
歡迎來到Bewise Inc.的世界,首先恭喜您來到這接受新的資訊讓產業更有競爭力,我們是提供專業刀具製造商,應對客戶高品質的刀具需求,我們可以協助客戶滿足您對產業的不同要求,我們有能力達到非常卓越的客戶需求品質,這是現有相關技術無法比擬的,我們成功的滿足了各行各業的要求,包括:精密HSS DIN切削刀具、協助客戶設計刀具流程、DIN or JIS 鎢鋼切削刀具設計、NAS986 NAS965 NAS897 NAS937orNAS907 航太切削刀具,NAS航太刀具設計、超高硬度的切削刀具、醫療配件刀具設計、複合式再研磨機、PCD地板專用企口鑽石組合刀具、粉末造粒成型機、主機版專用頂級電桿、SMD一体化粉末合金電感全自動無人化設備、common mode電感全自動設備、PCBN刀具、PCD刀具、單晶刀具、PCD V-Cut刀、捨棄式圓鋸片組、粉末成型機、航空機械鉸刀、主機版專用頂級電感、’汽車業刀具設計、電子產業鑽石刀具、木工產業鑽石刀具、銑刀與切斷複合再研磨機、銑刀與鑽頭複合再研磨機、銑刀與螺絲攻複合再研磨機等等。我們的產品涵蓋了從民生刀具到工業級的刀具設計;從微細刀具到大型刀具;從小型生產到大型量產;全自動整合;我們的技術可提供您連續生產的效能,我們整體的服務及卓越的技術,恭迎您親自體驗!!
BW Bewise Inc. Willy Chen willy@tool-tool.com bw@tool-tool.com www.tool-tool.com skype:willy_chen_bw Head &Administration Office No.13,Shiang Shang 2nd St., West Chiu Taichung,Taiwan 40356 http://www.tool-tool.com/ / FAX:+886 4 2471 4839 N.Branch 5F,No.460,Fu Shin North Rd.,Taipei,Taiwan S.Branch No.24,Sec.1,Chia Pu East Rd.,Taipao City,Chiayi Hsien,Taiwan
Welcome to BW tool world! We are an experienced tool maker specialized in cutting tools. We focus on what you need and endeavor to research the best cutter to satisfy users’ demand. Our customers involve wide range of industries, like mold & die, aerospace, electronic, machinery, etc. We are professional expert in cutting field. We would like to solve every problem from you. Please feel free to contact us, its our pleasure to serve for you. BW product including: cutting tool、aerospace tool .HSS DIN Cutting tool、Carbide end mills、Carbide cutting tool、NAS Cutting tool、NAS986 NAS965 NAS897 NAS937orNAS907 Cutting Tools,Carbide end mill、disc milling cutter,Aerospace cutting tool、hss drill’Фрезеры’Carbide drill、High speed steel、Compound Sharpener’Milling cutter、INDUCTORS FOR PCD’CVDD(Chemical Vapor Deposition Diamond )’PCBN (Polycrystalline Cubic Boron Nitride) ’Core drill、Tapered end mills、CVD Diamond Tools Inserts’PCD Edge-Beveling Cutter(Golden Finger’PCD V-Cutter’PCD Wood tools’PCD Cutting tools’PCD Circular Saw Blade’PVDD End Mills’diamond tool. INDUCTORS FOR PCD . POWDER FORMING MACHINE ‘Single Crystal Diamond ‘Metric end mills、Miniature end mills、Специальные режущие инструменты ‘Пустотелое сверло ‘Pilot reamer、Fraises’Fresas con mango’ PCD (Polycrystalline diamond) ‘Frese’POWDER FORMING MACHINE’Electronics cutter、Step drill、Metal cutting saw、Double margin drill、Gun barrel、Angle milling cutter、Carbide burrs、Carbide tipped cutter、Chamfering tool、IC card engraving cutter、Side cutter、Staple Cutter’PCD diamond cutter specialized in grooving floors’V-Cut PCD Circular Diamond Tipped Saw Blade with Indexable Insert’ PCD Diamond Tool’ Saw Blade with Indexable Insert’NAS tool、DIN or JIS tool、Special tool、Metal slitting saws、Shell end mills、Side and face milling cutters、Side chip clearance saws、Long end mills’end mill grinder’drill grinder’sharpener、Stub roughing end mills、Dovetail milling cutters、Carbide slot drills、Carbide torus cutters、Angel carbide end mills、Carbide torus cutters、Carbide ball-nosed slot drills、Mould cutter、Tool manufacturer.
Bewise Inc. www.tool-tool.com
ようこそBewise Inc.の世界へお越し下さいませ、先ず御目出度たいのは新たな
情報を受け取って頂き、もっと各産業に競争力プラス展開。
弊社は専門なエンド・ミルの製造メーカーで、客先に色んな分野のニーズ、
豊富なパリエーションを満足させ、特にハイテク品質要求にサポート致します。
弊社は各領域に供給できる内容は:
(1)精密HSSエンド・ミルのR&D
(2)Carbide Cutting tools設計
(3)鎢鋼エンド・ミル設計
(4)航空エンド・ミル設計
(5)超高硬度エンド・ミル
(6)ダイヤモンド・エンド・ミル
(7)医療用品エンド・ミル設計
(8)自動車部品&材料加工向けエンド・ミル設計
弊社の製品の供給調達機能は:
(1)生活産業~ハイテク工業までのエンド・ミル設計
(2)ミクロ・エンド・ミル~大型エンド・ミル供給
(3)小Lot生産~大量発注対応供給
(4)オートメーション整備調達
(5)スポット対応~流れ生産対応
弊社の全般供給体制及び技術自慢の総合専門製造メーカーに貴方のご体験を御待ちしております。
Bewise Inc. talaşlı imalat sanayinde en fazla kullanılan ve üç eksende (x,y,z) talaş kaldırabilen freze takımlarından olan Parmak Freze imalatçısıdır. Çok geniş ürün yelpazesine sahip olan firmanın başlıca ürünlerini Karbür Parmak Frezeler, Kalıpçı Frezeleri, Kaba Talaş Frezeleri, Konik Alın Frezeler, Köşe Radyüs Frezeler, İki Ağızlı Kısa ve Uzun Küresel Frezeler, İç Bükey Frezeler vb. şeklinde sıralayabiliriz.
BW специализируется в научных исследованиях и разработках, и снабжаем самым высокотехнологичным карбидовым материалом для поставки режущих / фрезеровочных инструментов для почвы, воздушного пространства и электронной индустрии. В нашу основную продукцию входит твердый карбид / быстрорежущая сталь, а также двигатели, микроэлектрические дрели, IC картонорезальные машины, фрезы для гравирования, режущие пилы, фрезеры-расширители, фрезеры-расширители с резцом, дрели, резаки форм для шлицевого вала / звездочки роликовой цепи, и специальные нано инструменты. Пожалуйста, посетите сайт www.tool-tool.com для получения большей информации.
BW is specialized in R&D and sourcing the most advanced carbide material with high-tech coating to supply cutting / milling tool for mould & die, aero space and electronic industry. Our main products include solid carbide / HSS end mills, micro electronic drill, IC card cutter, engraving cutter, shell end mills, cutting saw, reamer, thread reamer, leading drill, involute gear cutter for spur wheel, rack and worm milling cutter, thread milling cutter, form cutters for spline shaft/roller chain sprocket, and special tool, with nano grade. Please visit our web www.tool-tool.com for more info.