公告版位

Bewise Inc. www.tool-tool.com Reference source from the internet.

利潤自賺 麥迪遜社區貨幣衝擊連鎖商

【聯合報╱記者梁玉芳/台北報導】

2009.03.16 05:51 am

當世界經濟情勢看壞,愈來愈多人認為與其相信美鈔上的「In God We Trust(我們信任上帝)」,不如發展標榜「In Each Other We Trust(信任彼此)」理念的「社區貨幣」,免除全球化與消費主義的衝擊。

台灣學者陳孝平多年前就倡議,台灣該推行「社區貨幣」,以作為社區公益、環保、社會福利的「交易」之用。目前,台中弘道老人福利基金會就承此觀念,設立「時間銀行」,累積服務老人的時數以交換日後被服務的機會。

「花錢幫」幫友、美籍環保工作者孟磊指出,在他的家鄉威斯康辛州麥迪遜早在一九九五年已推行社區貨幣,稱為「Madison Hours(麥幣)」,主要是為了將社區財富留在當地,由在地店家與居民共享,以對抗連鎖企業對社區小店的摧毀;至今麥幣仍然流通。

孟磊解釋,連鎖店由外國、外地老遠運來貨物,低成本打敗傳統商店;只在社區流動的社區貨幣,當地約有一百家傳統店家接受,但屬外來系統的連鎖商收了社區貨幣,無法把利潤匯走,就必須再於當地用掉,讓當地人賺錢。

孟磊說,「麥幣」發展最盛時,當地工人的工資中,部分是以麥幣計價,可見其公信力;如同現在台灣的消費券,可以在當地商店消費;而且當時麥幣的幣值約是一小時單位麥幣兌換十美元,「比當時的基本生活工資還高」。

麥幣系統並發行月刊,其中刊登會員集體決議事項,及會員的需求的項目與供給,自行創業者可在此媒合平台找到客源。

孟磊指出,在全球化的強大壓力下,如何保有各地多樣文化產業與農產作物,是關切永續生活方式的重要課題;發行在地貨幣是一個有趣又有效的方法,花園新城極具人文藝術特色,是實踐社區貨幣與發展社區產業的好所在。

歡迎來到Bewise Inc.的世界,首先恭喜您來到這接受新的資訊讓產業更有競爭力,我們是提供專業刀具製造商,應對客戶高品質的刀具需求,我們可以協助客戶滿足您對產業的不同要求,我們有能力達到非常卓越的客戶需求品質,這是現有相關技術無法比擬的,我們成功的滿足了各行各業的要求,包括:精密HSS DIN切削刀具協助客戶設計刀具流程DIN or JIS 鎢鋼切削刀具設計NAS986 NAS965 NAS897 NAS937orNAS907 航太切削刀具,NAS航太刀具設計超高硬度的切削刀具醫療配件刀具設計複合式再研磨機PCD地板專用企口鑽石組合刀具NSK高數主軸與馬達專業模具修補工具-氣動與電動粉末造粒成型機主機版專用頂級電桿PCD V-Cut捨棄式圓鋸片組粉末成型機主機版專用頂級電汽車業刀具設計電子產業鑽石刀具木工產業鑽石刀具銑刀與切斷複合再研磨機銑刀與鑽頭複合再研磨機銑刀與螺絲攻複合再研磨機等等。我們的產品涵蓋了從民生刀具到工業級的刀具設計;從微細刀具到大型刀具;從小型生產到大型量產;全自動整合;我們的技術可提供您連續生產的效能,我們整體的服務及卓越的技術,恭迎您親自體驗!!

BW Bewise Inc. Willy Chen willy@tool-tool.com bw@tool-tool.com www.tool-tool.com skype:willy_chen_bw mobile:0937-618-190 Head &Administration Office No.13,Shiang Shang 2nd St., West Chiu Taichung,Taiwan 40356 http://www.tool-tool.com / FAX:+886 4 2471 4839 N.Branch 5F,No.460,Fu Shin North Rd.,Taipei,Taiwan S.Branch No.24,Sec.1,Chia Pu East Rd.,Taipao City,Chiayi Hsien,Taiwan

Welcome to BW tool world! We are an experienced tool maker specialized in cutting tools. We focus on what you need and endeavor to research the best cutter to satisfy users demand. Our customers involve wide range of industries, like mold & die, aerospace, electronic, machinery, etc. We are professional expert in cutting field. We would like to solve every problem from you. Please feel free to contact us, its our pleasure to serve for you. BW product including: cutting toolaerospace tool .HSS  DIN Cutting toolCarbide end millsCarbide cutting toolNAS Cutting toolNAS986 NAS965 NAS897 NAS937orNAS907 Cutting Tools,Carbide end milldisc milling cutter,Aerospace cutting toolhss drillФрезерыCarbide drillHigh speed steelCompound SharpenerMilling cutterINDUCTORS FOR PCDCVDD(Chemical Vapor Deposition Diamond )’PCBN (Polycrystalline Cubic Boron Nitride) Core drillTapered end millsCVD Diamond Tools Inserts’PCD Edge-Beveling Cutter(Golden FingerPCD V-CutterPCD Wood toolsPCD Cutting toolsPCD Circular Saw BladePVDD End Millsdiamond tool. INDUCTORS FOR PCD . POWDER FORMING MACHINE Single Crystal Diamond Metric end millsMiniature end millsСпециальные режущие инструменты Пустотелое сверло Pilot reamerFraisesFresas con mango PCD (Polycrystalline diamond) ‘FresePOWDER FORMING MACHINEElectronics cutterStep drillMetal cutting sawDouble margin drillGun barrelAngle milling cutterCarbide burrsCarbide tipped cutterChamfering toolIC card engraving cutterSide cutterStaple CutterPCD diamond cutter specialized in grooving floorsV-Cut PCD Circular Diamond Tipped Saw Blade with Indexable Insert PCD Diamond Tool Saw Blade with Indexable InsertNAS toolDIN or JIS toolSpecial toolMetal slitting sawsShell end millsSide and face milling cuttersSide chip clearance sawsLong end millsend mill grinderdrill grindersharpenerStub roughing end millsDovetail milling cuttersCarbide slot drillsCarbide torus cuttersAngel carbide end millsCarbide torus cuttersCarbide ball-nosed slot drillsMould cutterTool manufacturer.

Bewise Inc. www.tool-tool.com

ようこそBewise Inc.の世界へお越し下さいませ、先ず御目出度たいのは新たな

情報を受け取って頂き、もっと各産業に競争力プラス展開。

弊社は専門なエンドミルの製造メーカーで、客先に色んな分野のニーズ

豊富なパリエーションを満足させ、特にハイテク品質要求にサポート致します。

弊社は各領域に供給できる内容は:

(1)精密HSSエンドミルのR&D

(2)Carbide Cutting tools設計

(3)鎢鋼エンドミル設計

(4)航空エンドミル設計

(5)超高硬度エンドミル

(6)ダイヤモンドエンドミル

(7)医療用品エンドミル設計

(8)自動車部品&材料加工向けエンドミル設計

弊社の製品の供給調達機能は:

(1)生活産業~ハイテク工業までのエンドミル設計

(2)ミクロエンドミル~大型エンドミル供給

(3)小Lot生産~大量発注対応供給

(4)オートメーション整備調達

(5)スポット対応~流れ生産対応

弊社の全般供給体制及び技術自慢の総合専門製造メーカーに貴方のご体験を御待ちしております。

Bewise Inc. talaşlı imalat sanayinde en fazla kullanılan ve üç eksende (x,y,z) talaş kaldırabilen freze takımlarından olan Parmak Freze imalatçısıdır. Çok geniş ürün yelpazesine sahip olan firmanın başlıca ürünlerini Karbür Parmak Frezeler, Kalıpçı Frezeleri, Kaba Talaş Frezeleri, Konik Alın Frezeler, Köşe Radyüs Frezeler, İki Ağızlı Kısa ve Uzun Küresel Frezeler, İç Bükey Frezeler vb. şeklinde sıralayabiliriz.

BW специализируется в научных исследованиях и разработках, и снабжаем самым высокотехнологичным карбидовым материалом для поставки режущих / фрезеровочных инструментов для почвы, воздушного пространства и электронной индустрии. В нашу основную продукцию входит твердый карбид / быстрорежущая сталь, а также двигатели, микроэлектрические дрели, IC картонорезальные машины, фрезы для гравирования, режущие пилы, фрезеры-расширители, фрезеры-расширители с резцом, дрели, резаки форм для шлицевого вала / звездочки роликовой цепи, и специальные нано инструменты. Пожалуйста, посетите сайт  www.tool-tool.com  для получения большей информации.

BW is specialized in R&D and sourcing the most advanced carbide material with high-tech coating to supply cutting / milling tool for mould & die, aero space and electronic industry. Our main products include solid carbide / HSS end mills, micro electronic drill, IC card cutter, engraving cutter, shell end mills, cutting saw, reamer, thread reamer, leading drill, involute gear cutter for spur wheel, rack and worm milling cutter, thread milling cutter, form cutters for spline shaft/roller chain sprocket, and special tool, with nano grade. Please visit our web  www.tool-tool.com  for more info.

beeway 發表在 痞客邦 留言(0) 人氣()

Bewise Inc. www.tool-tool.com Reference source from the internet.

超深絞りが可能なステンレス材料「NTK D-8」
■化学成分

鋼種
C
Si
Mn
P
S
Ni
Cr
Cu

NTK-D8
<0.06
<1.00
<2.00
<0.045
<0.030
11.5-17.5
3.0-4.0
3.0-4.0

■特性
NTK D-8は、SUS XM7よりクロムをやや低くし、ニッケルを多くした材料です。
オーステナイト系極軟質ステンレス鋼で、SUS XM7より更に冷間加工硬化性が小さく、非磁性です。
深絞り、ヘッディングや冷間型打ちに適しています。
透磁率は70%加工以下で1.0146μ程度
■物理的性質(固溶化熱処理状態)
 0~500℃

比熱
熱伝導率
平均熱膨張係数

弾性係数
比重
体積抵抗率
 cal/g・℃

×10マイナス6乗/℃

kgf/mm2
20℃,μΩ・Cm
 0~100℃
 0~100℃
0~500℃
 0~100℃
 0~500℃

19.700
7.93
72
0.12
0.04
0.0
16.7
18.2

■機械的性質・常温機械的性質(測定値:2B材、t=1.0mm)

特性
熱間圧延板
冷間圧延板

引張強さ(kgf/mm2)
50
54

耐力(kgf/mm2)
21
24

伸び(%)
52
48

硬さ
HRB
74
-

HV
-
128

曲げ角度(R-1/2t)
180°
180°

■板材からの深絞りサンプル写真
サンプル
(有)豊岡製作所 様ご提供
中間焼鈍なしで、板材からパイプに絞っています。外径4.0㎜、内径3.42㎜、長さ約90㎜の円筒プレス品で、絞り比は9を超えています

歡迎來到Bewise Inc.的世界,首先恭喜您來到這接受新的資訊讓產業更有競爭力,我們是提供專業刀具製造商,應對客戶高品質的刀具需求,我們可以協助客戶滿足您對產業的不同要求,我們有能力達到非常卓越的客戶需求品質,這是現有相關技術無法比擬的,我們成功的滿足了各行各業的要求,包括:精密HSS DIN切削刀具協助客戶設計刀具流程DIN or JIS 鎢鋼切削刀具設計NAS986 NAS965 NAS897 NAS937orNAS907 航太切削刀具,NAS航太刀具設計超高硬度的切削刀具醫療配件刀具設計複合式再研磨機PCD地板專用企口鑽石組合刀具NSK高數主軸與馬達專業模具修補工具-氣動與電動粉末造粒成型機主機版專用頂級電桿PCD V-Cut捨棄式圓鋸片組粉末成型機主機版專用頂級電汽車業刀具設計電子產業鑽石刀具木工產業鑽石刀具銑刀與切斷複合再研磨機銑刀與鑽頭複合再研磨機銑刀與螺絲攻複合再研磨機等等。我們的產品涵蓋了從民生刀具到工業級的刀具設計;從微細刀具到大型刀具;從小型生產到大型量產;全自動整合;我們的技術可提供您連續生產的效能,我們整體的服務及卓越的技術,恭迎您親自體驗!!

BW Bewise Inc. Willy Chen willy@tool-tool.com bw@tool-tool.com www.tool-tool.com skype:willy_chen_bw mobile:0937-618-190 Head &Administration Office No.13,Shiang Shang 2nd St., West Chiu Taichung,Taiwan 40356 http://www.tool-tool.com / FAX:+886 4 2471 4839 N.Branch 5F,No.460,Fu Shin North Rd.,Taipei,Taiwan S.Branch No.24,Sec.1,Chia Pu East Rd.,Taipao City,Chiayi Hsien,Taiwan

Welcome to BW tool world! We are an experienced tool maker specialized in cutting tools. We focus on what you need and endeavor to research the best cutter to satisfy users demand. Our customers involve wide range of industries, like mold & die, aerospace, electronic, machinery, etc. We are professional expert in cutting field. We would like to solve every problem from you. Please feel free to contact us, its our pleasure to serve for you. BW product including: cutting toolaerospace tool .HSS  DIN Cutting toolCarbide end millsCarbide cutting toolNAS Cutting toolNAS986 NAS965 NAS897 NAS937orNAS907 Cutting Tools,Carbide end milldisc milling cutter,Aerospace cutting toolhss drillФрезерыCarbide drillHigh speed steelCompound SharpenerMilling cutterINDUCTORS FOR PCDCVDD(Chemical Vapor Deposition Diamond )’PCBN (Polycrystalline Cubic Boron Nitride) Core drillTapered end millsCVD Diamond Tools Inserts’PCD Edge-Beveling Cutter(Golden FingerPCD V-CutterPCD Wood toolsPCD Cutting toolsPCD Circular Saw BladePVDD End Millsdiamond tool. INDUCTORS FOR PCD . POWDER FORMING MACHINE Single Crystal Diamond Metric end millsMiniature end millsСпециальные режущие инструменты Пустотелое сверло Pilot reamerFraisesFresas con mango PCD (Polycrystalline diamond) ‘FresePOWDER FORMING MACHINEElectronics cutterStep drillMetal cutting sawDouble margin drillGun barrelAngle milling cutterCarbide burrsCarbide tipped cutterChamfering toolIC card engraving cutterSide cutterStaple CutterPCD diamond cutter specialized in grooving floorsV-Cut PCD Circular Diamond Tipped Saw Blade with Indexable Insert PCD Diamond Tool Saw Blade with Indexable InsertNAS toolDIN or JIS toolSpecial toolMetal slitting sawsShell end millsSide and face milling cuttersSide chip clearance sawsLong end millsend mill grinderdrill grindersharpenerStub roughing end millsDovetail milling cuttersCarbide slot drillsCarbide torus cuttersAngel carbide end millsCarbide torus cuttersCarbide ball-nosed slot drillsMould cutterTool manufacturer.

Bewise Inc. www.tool-tool.com

ようこそBewise Inc.の世界へお越し下さいませ、先ず御目出度たいのは新たな

情報を受け取って頂き、もっと各産業に競争力プラス展開。

弊社は専門なエンドミルの製造メーカーで、客先に色んな分野のニーズ

豊富なパリエーションを満足させ、特にハイテク品質要求にサポート致します。

弊社は各領域に供給できる内容は:

(1)精密HSSエンドミルのR&D

(2)Carbide Cutting tools設計

(3)鎢鋼エンドミル設計

(4)航空エンドミル設計

(5)超高硬度エンドミル

(6)ダイヤモンドエンドミル

(7)医療用品エンドミル設計

(8)自動車部品&材料加工向けエンドミル設計

弊社の製品の供給調達機能は:

(1)生活産業~ハイテク工業までのエンドミル設計

(2)ミクロエンドミル~大型エンドミル供給

(3)小Lot生産~大量発注対応供給

(4)オートメーション整備調達

(5)スポット対応~流れ生産対応

弊社の全般供給体制及び技術自慢の総合専門製造メーカーに貴方のご体験を御待ちしております。

Bewise Inc. talaşlı imalat sanayinde en fazla kullanılan ve üç eksende (x,y,z) talaş kaldırabilen freze takımlarından olan Parmak Freze imalatçısıdır. Çok geniş ürün yelpazesine sahip olan firmanın başlıca ürünlerini Karbür Parmak Frezeler, Kalıpçı Frezeleri, Kaba Talaş Frezeleri, Konik Alın Frezeler, Köşe Radyüs Frezeler, İki Ağızlı Kısa ve Uzun Küresel Frezeler, İç Bükey Frezeler vb. şeklinde sıralayabiliriz.

BW специализируется в научных исследованиях и разработках, и снабжаем самым высокотехнологичным карбидовым материалом для поставки режущих / фрезеровочных инструментов для почвы, воздушного пространства и электронной индустрии. В нашу основную продукцию входит твердый карбид / быстрорежущая сталь, а также двигатели, микроэлектрические дрели, IC картонорезальные машины, фрезы для гравирования, режущие пилы, фрезеры-расширители, фрезеры-расширители с резцом, дрели, резаки форм для шлицевого вала / звездочки роликовой цепи, и специальные нано инструменты. Пожалуйста, посетите сайт  www.tool-tool.com  для получения большей информации.

BW is specialized in R&D and sourcing the most advanced carbide material with high-tech coating to supply cutting / milling tool for mould & die, aero space and electronic industry. Our main products include solid carbide / HSS end mills, micro electronic drill, IC card cutter, engraving cutter, shell end mills, cutting saw, reamer, thread reamer, leading drill, involute gear cutter for spur wheel, rack and worm milling cutter, thread milling cutter, form cutters for spline shaft/roller chain sprocket, and special tool, with nano grade. Please visit our web  www.tool-tool.com  for more info.

beeway 發表在 痞客邦 留言(0) 人氣()

Bewise Inc. www.tool-tool.com Reference source from the internet.

硫化鉄被膜、あるいは硫化鉄を含んだ層を形成する処理は鉄基の機械部品の摩擦特性改善に使われる。歴史的には、硫黄系極圧添加剤が示す耐焼き付き性をより確実にするために導入されたようである。硫化鉄が介在した摩擦面は高荷重、あるいは高温下でも平滑状態を維持し焼き付かないといったことが1950年頃までに明らかにされている。
硫化鉄は、摩擦環境で用いられる場合、グラファイトや二硫化モリブデンなどとともに無機系の固体潤滑剤として分類される。しかし、硫化鉄(被膜)は、潤滑油の代替としてよりも、潤滑油(剤)との併用が多い。二硫化モリブデンなどの固体潤滑剤と硫化鉄を併用し両者の利点を相乗的に利用する方法もある。乾燥状態での用途では、低摩擦化よりも、焼き付き防止と同時に摩擦力の保持、あるいは分配が目的の場合が多いようである。
硫化鉄層を形成する処理は、浸硫処理と呼ばれる事が多い。また、鉄の中に硫黄を拡散(浸透)させる処理であるといった表現も用いられる。しかし、処理温度域(通常570℃以下)では鉄に対する硫黄の個溶限が小さいので、処理後に検出される硫黄のほとんどは硫化鉄を形成しており、個溶(浸透)状態の物は少ないと考えられる。他方、処理方法は千差万別で"硫化"処理といった言葉も不適当な場合もある。このような状況下で「浸硫処理」は硫化鉄を含む被膜(層)を形成する処理の総称として慣習的に使われているようである。

●硫化鉄の性質

形成される硫化鉄は酸性水溶液では分解するが、機械設備が使われるような環境では安定な融点1118℃、ビッカース硬度 (Hv)70前後の化合物である。摩擦面では反応により相手材に硫化被膜を形成することが多い。硫化鉄は、摩擦面が高温(実験によっては850℃)になってもその効果が維持されるため、ある温度以下で溶着の抑制剤として働き、それ以上の温度では軟化あるいは融解して、潤滑剤として働くというようにも考えられている。硫化鉄はFeとSの比が1対1に近い組成であるが、処理方法により、結晶質の場合と非結晶質の場合があると考えられている。しかし、構造差による摩擦特性の差は確認されていない。酸化(物)や水分の影響もほとんど受けない。

●処理の種類・分類方法

硫化鉄は常温から900℃程度の温度範囲で比較的簡単に形成できる。そのため、多くの処理技術が提案されているが、再現性などの問題があり、実際に工業化されている技術は比較的少ない。それらのほとんどは表面硬化処理としての窒化、あるいは浸炭焼入れを伴っている。前者は浸硫窒化処理と呼ばれ、硫化と窒化が同じ工程で570℃前後の温度域で行われる。後者では焼戻し後に電解を利用して200℃以下で処理する。それらは電解の方法や処理温度域、あるいは処理液の違いなどから以下の表のように分類できる。

処理温度

主な硬化法

処理環境

寸法変化

金属表面移動

被膜生成

浸硫窒化

~570℃

窒化(軟窒化)

塩浴・ガス・プラズマ

+

-

"浸硫"

陽極電解1

190℃

浸炭焼入れ

塩浴

-

-

硫化

陽極電解2

~常温

浸炭焼入れ

水溶液

(+~) -

-

硫化

陰極電解

~常温

浸炭焼入れ

水溶液

+

0

"電着・堆積"

寸法変化 : +は増加を表す。金属表面移動 : -は後退、寸法減を表す。

●浸硫窒化処理

浸硫窒化処理では、窒化鉄層の外層に、軟質の硫化鉄層あるいは硫化鉄をふくんだポーラス状の窒化鉄層が形成される。塩浴・大気圧雰囲気ガス・プラズマを使った方法が工業化されている。層厚さは処理時間や鋼種・用途などに依存するが、硬質層も含め、5~25[μm]の範囲が一般的である。処理による寸法変化は層厚さよりも少ない。X線回折では、Fe_(1-x)S、Fe_3N(ε)に加え、Fe_4N(ν')、 Fe_3O_4m、FeOなどが表面層から検出される。表面状態・硫化鉄の含有量・硬質層と軟質層の比率などは処理方法、あるいは条件に依存し、同時に摩擦摩耗特性も変化する。それらの詳細については不明な部分が多い。用途ごとの処理条件は、総被膜厚さや軟質層の比率などから経験的に選択し、実機テストを行い決定されることが多い。
浸硫窒化処理と同じような状態を作り出すために、通常の軟窒化と陽極電解処理を組み合わせることもある。

●陽極電解処理

陽極電解は通常、浸炭焼入れやショットピーニングなどの後工程として、常温水溶液中・あるいは190℃塩浴中で行われる。酸化膜・切削痕などは固々界面に残らず、処理品に密着した被膜が得られる。膜厚は2~8[μm]とするのが一般的である。陽極処理によると、処理浴や処理品材質などに依存するが、被膜形成に伴い鉄が溶出し、寸法変化が負になる場合が多い。金属表面(固々界面)は被膜厚さと同じ程度、あるいはそれ以上"後退"する。
陽極処理では硫化鉄を構成する硫黄はアルカリ金属塩(NaSCN、Na_2S_2O_3など)のチオシアン酸イオン(SCN^-)やチオ硫酸イオン (S_2O_3^2-)などから、そして鉄は処理品から供給される。水溶液を用いる場合はこれらの溶液が、そして塩浴処理では混合塩(NaSCN + KSCN)が用いられる。上述の鉄の溶出と被膜形成には、チオ硫酸塩を硫化剤とした場合、次のような反応の組み合わせが利用できる。

1) Fe {処理品} → Fe^(2+) {処理浴} + 2e^- {処理品}
2) 5Fe {処理品} + 4S_2O_3^(2-) → 5FeS {被膜} + 3SO_4^(2-) {処理浴} + 2e^- {処理品}

(1)は処理の溶出反応、(2)とは初期の硫化反応を示す。硫化鉄被膜が形成された後の固液界面の反応は、次のように、処理品のFeを硫化鉄被膜のFeに置き換えて考える。

1)' Fe {FeS} → Fe^(2+) {処理浴} + 2e^- {処理品}

チオシアン酸塩が硫化剤の場合は次のように記述できる。

7Fe + 6SCN^- → 6FeS + Fe(CN)_6^(4-) + 2e^-

これらを使った解析によると、陽極電解処理では、通電された電気量のほとんどが処理部品の溶出に、そしてごく一部が硫黄の供給(硫化)に使われることが示される。しかし、電気量が硫化のみに使われる、つまり処理品の寸法が大きくなる、とするモデルも多い。実際には寸法が減少するので留意したい。

●陰極電解処理

鉄の錯イオンなどを含む処理浴中で、処理品を陰極として通電し、硫黄と鉄の両方を処理浴から供給し、硫化鉄被膜を部品表面に形成する処理である。そのため、固々界面の状態は維持される。この処理では、鉄鋼以外の金属でも被覆処理でき、寸法変化と被膜厚さが等しいといった特徴がある。

●摩擦特性

摩擦特性の評価例として乾燥状態でのファビリー(ファレックス)試験がある。この試験はφ6[mm]の試験ピンを2つのV ブロックの間に挟んで増加荷重下で回転させ、焼付き性や摩擦係数などを評価する試験である。処理されたピンとブロックの摩擦面は、赤熱する高荷重域でも焼付きを起こさず、平滑状態を保っている。これらの試験では、相手材も含めた反応の繰り返しなどにより、被膜厚さ以上に摩耗が進んだ場合でも、処理効果の持続が観察される。この試験は油中での摩擦で、油切れが起きた場合などもシミュレーションしていると考えられている。

●適用例

家電・電気機器、あるいは輸送・油圧機器などの初期なじみ、摩擦面の平滑化・焼付き・保油・ローラーピッチング強度・潤滑油温域・荷重分配・荷重の保持と解放、原音などで効果が確認されている。処理品としては、クランクシャフト・ベーン・ネジ・シュー・ブッシュ・吸気バルブ・ワッシャ・ロッカーアーム・ピニオンシャフト・シリンダブロック・ヘッド・ギヤ・プランジャ・リミッタ・シフトホーク・ボール・ケージ・ピン・リングなどがある。ただし、これらには浸炭窒化のみが適用されている部品も含まれている。

歡迎來到Bewise Inc.的世界,首先恭喜您來到這接受新的資訊讓產業更有競爭力,我們是提供專業刀具製造商,應對客戶高品質的刀具需求,我們可以協助客戶滿足您對產業的不同要求,我們有能力達到非常卓越的客戶需求品質,這是現有相關技術無法比擬的,我們成功的滿足了各行各業的要求,包括:精密HSS DIN切削刀具協助客戶設計刀具流程DIN or JIS 鎢鋼切削刀具設計NAS986 NAS965 NAS897 NAS937orNAS907 航太切削刀具,NAS航太刀具設計超高硬度的切削刀具醫療配件刀具設計複合式再研磨機PCD地板專用企口鑽石組合刀具NSK高數主軸與馬達專業模具修補工具-氣動與電動粉末造粒成型機主機版專用頂級電桿PCD V-Cut捨棄式圓鋸片組粉末成型機主機版專用頂級電汽車業刀具設計電子產業鑽石刀具木工產業鑽石刀具銑刀與切斷複合再研磨機銑刀與鑽頭複合再研磨機銑刀與螺絲攻複合再研磨機等等。我們的產品涵蓋了從民生刀具到工業級的刀具設計;從微細刀具到大型刀具;從小型生產到大型量產;全自動整合;我們的技術可提供您連續生產的效能,我們整體的服務及卓越的技術,恭迎您親自體驗!!

BW Bewise Inc. Willy Chen willy@tool-tool.com bw@tool-tool.com www.tool-tool.com skype:willy_chen_bw mobile:0937-618-190 Head &Administration Office No.13,Shiang Shang 2nd St., West Chiu Taichung,Taiwan 40356 http://www.tool-tool.com / FAX:+886 4 2471 4839 N.Branch 5F,No.460,Fu Shin North Rd.,Taipei,Taiwan S.Branch No.24,Sec.1,Chia Pu East Rd.,Taipao City,Chiayi Hsien,Taiwan

Welcome to BW tool world! We are an experienced tool maker specialized in cutting tools. We focus on what you need and endeavor to research the best cutter to satisfy users demand. Our customers involve wide range of industries, like mold & die, aerospace, electronic, machinery, etc. We are professional expert in cutting field. We would like to solve every problem from you. Please feel free to contact us, its our pleasure to serve for you. BW product including: cutting toolaerospace tool .HSS  DIN Cutting toolCarbide end millsCarbide cutting toolNAS Cutting toolNAS986 NAS965 NAS897 NAS937orNAS907 Cutting Tools,Carbide end milldisc milling cutter,Aerospace cutting toolhss drillФрезерыCarbide drillHigh speed steelCompound SharpenerMilling cutterINDUCTORS FOR PCDCVDD(Chemical Vapor Deposition Diamond )’PCBN (Polycrystalline Cubic Boron Nitride) Core drillTapered end millsCVD Diamond Tools Inserts’PCD Edge-Beveling Cutter(Golden FingerPCD V-CutterPCD Wood toolsPCD Cutting toolsPCD Circular Saw BladePVDD End Millsdiamond tool. INDUCTORS FOR PCD . POWDER FORMING MACHINE Single Crystal Diamond Metric end millsMiniature end millsСпециальные режущие инструменты Пустотелое сверло Pilot reamerFraisesFresas con mango PCD (Polycrystalline diamond) ‘FresePOWDER FORMING MACHINEElectronics cutterStep drillMetal cutting sawDouble margin drillGun barrelAngle milling cutterCarbide burrsCarbide tipped cutterChamfering toolIC card engraving cutterSide cutterStaple CutterPCD diamond cutter specialized in grooving floorsV-Cut PCD Circular Diamond Tipped Saw Blade with Indexable Insert PCD Diamond Tool Saw Blade with Indexable InsertNAS toolDIN or JIS toolSpecial toolMetal slitting sawsShell end millsSide and face milling cuttersSide chip clearance sawsLong end millsend mill grinderdrill grindersharpenerStub roughing end millsDovetail milling cuttersCarbide slot drillsCarbide torus cuttersAngel carbide end millsCarbide torus cuttersCarbide ball-nosed slot drillsMould cutterTool manufacturer.

Bewise Inc. www.tool-tool.com

ようこそBewise Inc.の世界へお越し下さいませ、先ず御目出度たいのは新たな

情報を受け取って頂き、もっと各産業に競争力プラス展開。

弊社は専門なエンドミルの製造メーカーで、客先に色んな分野のニーズ

豊富なパリエーションを満足させ、特にハイテク品質要求にサポート致します。

弊社は各領域に供給できる内容は:

(1)精密HSSエンドミルのR&D

(2)Carbide Cutting tools設計

(3)鎢鋼エンドミル設計

(4)航空エンドミル設計

(5)超高硬度エンドミル

(6)ダイヤモンドエンドミル

(7)医療用品エンドミル設計

(8)自動車部品&材料加工向けエンドミル設計

弊社の製品の供給調達機能は:

(1)生活産業~ハイテク工業までのエンドミル設計

(2)ミクロエンドミル~大型エンドミル供給

(3)小Lot生産~大量発注対応供給

(4)オートメーション整備調達

(5)スポット対応~流れ生産対応

弊社の全般供給体制及び技術自慢の総合専門製造メーカーに貴方のご体験を御待ちしております。

Bewise Inc. talaşlı imalat sanayinde en fazla kullanılan ve üç eksende (x,y,z) talaş kaldırabilen freze takımlarından olan Parmak Freze imalatçısıdır. Çok geniş ürün yelpazesine sahip olan firmanın başlıca ürünlerini Karbür Parmak Frezeler, Kalıpçı Frezeleri, Kaba Talaş Frezeleri, Konik Alın Frezeler, Köşe Radyüs Frezeler, İki Ağızlı Kısa ve Uzun Küresel Frezeler, İç Bükey Frezeler vb. şeklinde sıralayabiliriz.

BW специализируется в научных исследованиях и разработках, и снабжаем самым высокотехнологичным карбидовым материалом для поставки режущих / фрезеровочных инструментов для почвы, воздушного пространства и электронной индустрии. В нашу основную продукцию входит твердый карбид / быстрорежущая сталь, а также двигатели, микроэлектрические дрели, IC картонорезальные машины, фрезы для гравирования, режущие пилы, фрезеры-расширители, фрезеры-расширители с резцом, дрели, резаки форм для шлицевого вала / звездочки роликовой цепи, и специальные нано инструменты. Пожалуйста, посетите сайт  www.tool-tool.com  для получения большей информации.

BW is specialized in R&D and sourcing the most advanced carbide material with high-tech coating to supply cutting / milling tool for mould & die, aero space and electronic industry. Our main products include solid carbide / HSS end mills, micro electronic drill, IC card cutter, engraving cutter, shell end mills, cutting saw, reamer, thread reamer, leading drill, involute gear cutter for spur wheel, rack and worm milling cutter, thread milling cutter, form cutters for spline shaft/roller chain sprocket, and special tool, with nano grade. Please visit our web  www.tool-tool.com  for more info.

beeway 發表在 痞客邦 留言(0) 人氣()

 

Bewise Inc. www.tool-tool.com Reference source from the internet.

De Wikipedia, la enciclopedia libre

Saltar a navegación, búsqueda

Figura 1: Inductores.

Un inductor o bobina es un componente pasivo de un circuito eléctrico que, debido al fenómeno de la autoinducción, almacena energía en forma de campo magnético.

Construcción [editar]

Un inductor está constituido usualmente por una cabeza hueca de una bobina de material conductor, típicamente alambre o hilo de cobre esmaltado. Existen inductores con núcleo de aire o con núcleo de un material ferroso, para incrementar su capacidad de magnetismo entre la Intensidad (inductancia).
Los inductores pueden también estar construidos en circuitos integrados, usando el mismo proceso utilizado para realizar microprocesadores. En estos casos se usa, comúnmente, el aluminio como material conductor. Sin embargo, es raro que se construyan inductores dentro de los circuitos integrados; es mucho más práctico usar un circuito llamado "girador" que, mediante un amplificador operacional, hace que un condensador se comporte como si fuese un inductor. El inductor consta de las siguientes partes:

Pieza polar: Es la parte del circuito magnético situada entre la culata y el entrehierro, incluyendo el núcleo y la expansión polar.

Núcleo: Es la parte del circuito magnético rodeada por el devanado inductor.

Devanado inductor: Es el conjunto de espiras destinado a producir el flujo magnético, al ser recorrido por la corriente eléctrica.

Expansión polar: Es la parte de la pieza polar próxima al inducido y que bordea al entrehierro.

Polo auxiliar o de conmutación: Es un polo magnético suplementario, provisto o no, de devanados y destinado a mejorar la conmutación. Suelen emplearse en las máquinas de mediana y gran potencia.

Culata: Es una pieza de sustancia ferromagnética, no rodeada por devanados, y destinada a unir los polos de la máquina.

También pueden fabricarse pequeños inductores, que se usan para frecuencias muy altas, con un conductor pasando a través de un cilindro de ferrita o granulado.

Energía almacenada [editar]

La bobina almacena energía eléctrica en forma de campo magnético cuando aumenta la intensidad de corriente, devolviéndola cuando ésta disminuye. Matemáticamente se puede demostrar que la energía, \mathcal{E} \,\!, almacenada por una bobina con inductancia L\,\!, que es recorrida por una corriente de intensidad I \,\!, viene dada por:

\mathcal{E} = {1 \over 2} L I^2\,\!

Campo magnetico [editar]

Para un solenoide largo en el cual la distancia entre y uno de sus extremos al centro , es mucho mayor que el radio, el campo magnetico es:

      B=μo*n*I, donde μo es =4π*10^-7  T·m/A   ; n, es  el número de espiras por
 unidad de longitud N/L ; 
I, la corriente que pasa por el selenoide.

Inductancia [editar]

Autoinductancia, el flujo que atraviesa un circuito puede relacionarse con la corriente en el mismo y con las corrientes que circulan por los circuitos próximos.(No hay cercanía con ningún imán permanente).

L = \frac{\Phi m}{I} ={4}{\pi }{10^{-7}}{n^2}{A}{l} , donde Φm es el flujo magnetico, A el área transversal de la bobina, y l la longitud.

Fuerza electromotriz autoinducida [editar]

Una variación de la intensidad de corriente (\quad i(t) = \Delta I/\Delta t) dará como resultado una variación del campo magnético y, por lo mismo, un cambio en el flujo que está atravesando el circuito. De acuerdo con la Ley de Faraday, un cambio del flujo, origina una fuerza electromotriz autoinducida. Esta fuerza electromotriz, de acuerdo con la Ley de Lenz, se opondrá a la causa que lo origina, esto es, la variación de la corriente eléctrica, por ello suele recibir el nombre de fuerza contralectromotriz. Su valor viene dado por la siguiente ecuación diferencial:

E =- \frac{d\Phi}{dt} = -L \frac{di}{dt}

donde el signo menos indica que se opone a la causa que lo origina.

En un inductor ideal, la fuerza contra-electromotriz autoinducida es igual a la tensión aplicada al inductor. La fórmula precedente puede leerse de esta manera: Si uno de los bornes del inductor es positivo con respecto al otro, la corriente que entra por el primero aumenta con el tiempo.

Cuando el inductor no es ideal porque tiene una resistencia interna en serie, la tensión aplicada es igual a la suma de la caída de tensión sobre la resistencia interna más la fuerza contra-electromotriz autoinducida.

Comportamientos ideal y real [editar]

Figura 2: Circuito con inductancia.

La bobina ideal (figura 2) puede definirse a partir de la siguiente ecuación:

 u(t) = L{di(t) \over dt} \;

donde, L es la inductancia, u (t) es la función diferencia de potencial aplicada a sus bornes e i (t) la intensidad resultante que circula.

Comportamiento en corriente continua [editar]

Figura 3. Diagrama cartesiano de las tensiones y corriente en una bobina.

Una bobina ideal en CC se comporta como un cortocircuito (conductor ideal) mientras que la real se comporta como una resistencia cuyo valor RL (figura 5a) será el de su devanado. Esto es así en régimen permanente ya que en régimen transitorio, esto es, al conectar o desconectar un circuito con bobina, suceden fenómenos electromagnéticos que inciden sobre la corriente (ver circuitos serie RL y RC).

Comportamiento en corriente alterna [editar]

Figura 4. Diagrama fasorial.

En CA, una bobina ideal ofrece una resistencia al paso de la corriente que recibe el nombre de reactancia inductiva, XL, cuyo valor viene dado por el producto de la pulsación ( \quad \omega = 2 \pi f \,\!) por la inductancia, L:

 \quad X_L = \omega L \,\!

Si la pulsación está en radianes por segundo (rad/s) y la inductancia en henrios (H) la reactancia resultará en ohmios.

Al conectar una CA senoidal v (t) a una bobina aparecerá una corriente i (t), también senoidal, esto es, variable, por lo que, como se comentó más arriba, aparecerá una fuerza contraelectromotriz, -e (t), cuyo valor absoluto puede demostrase que es igual al de v (t). Por tanto, cuando la corriente i (t) aumenta, e (t) disminuye para dificultar dicho aumento; análogamente, cuando i (t) disminuye, e (t) aumenta para oponerse a dicha disminución. Esto puede apreciarse en el diagrama de la figura 3. Entre 0º y 90º la curva i (t) es negativa, disminuyendo desde su valor máximo negativo hasta cero, observándose que e (t) va aumentando hasta alcanzar su máximo negativo. Entre 90º y 180º, la corriente aumenta desde cero hasta su valor máximo positivo, mientras e (t) disminuye hasta ser cero. Desde 180º hasta los 360º el razonamiento es similar al anterior.

Dado que la tensión aplicada, v (t) es igual a -e (t), o lo que es lo mismo, está desfasada 180º respecto de e (t), resulta que la corriente i (t) queda retrasada 90º respecto de la tensión aplicada. Consideremos por lo tanto, una bobina L, como la de la figura 2, a la que se aplica una tensión alterna de valor:

u(t)=V_0 \cdot \sin(\omega t + \beta),

Figura 5.: Circuitos equivalentes de una bobina real en CC, a), y en CA, b) y c).

De acuerdo con la ley de Ohm circulará una corriente alterna, retrasada 90º (π / 2) respecto a la tensión aplicada (figura 4), de valor:

i(t)= {u(t) \over R} = I_0 \cdot \sin(\omega t + \beta - {\pi \over 2}),

donde I_0 = {V_0 \over X_L}. Si se representa el valor eficaz de la corriente obtenida en forma polar:

\vec{I} = I \ \underline{\mid \beta - 90^\circ}

Y operando matemáticamente:

\vec{I} = {V \over X_L} \ \underline{\mid \beta - 90^\circ} = {{V \ \underline{\mid \beta}} \over {X_L \ \underline{\mid 90^\circ}}}

Por lo tanto, en los circuitos de CA, una bobina ideal se puede asimilar a una magnitud compleja sin parte real y parte imaginaria positiva:

\vec{X_L} = 0 + X_Lj = X_L \ \underline{\mid 90^\circ}

En la bobina real, habrá que tener en cuenta la resistencia de su bobinado, RL, pudiendo ser su circuito equivalente o modelo, el que aparece en la figura 5b) o 5c) dependiendo del tipo de bobina o frecuencia de funcionamiento, aunque para análisis más precisos pueden utilizarse modelos más complejos que los anteriores.

Asociaciones comunes [editar]

Figura 6. Asociación serie general.

Figura 7. Asociación paralelo general.

Al igual que la resistencias, las bobinas pueden asociarse en serie (figura 6), paralelo (figura 7) o de forma mixta. En estos casos, y siempre que no exista acoplamiento magnético, la inductancia equivalente para la asociación serie vendrá dada por:

L_{AB} = L_1 + L_2 +...+ L_n = \sum_{k=1}^n L_k

y para la paralelo:

L_{AB} = {1 \over \sum_{k=1}^n {1 \over L_k} }

Para la asociación mixta se procederá de forma análoga que con las resistencias.

Si se requiere una mayor comprensión del comportamiento reactivo de un inductor, es conveniente entonces analizar detalladamente la "Ley de Lenz" y comprobar de esta forma como se origina una reactancia de tipo inductiva , la cual nace debido a una oposición que le presenta el inductor o bobina a la variación de flujo magnetico.

Comportamiento a la interrupción del circuito - ANÁLISIS DE TRANSITORIOS [editar]

La alimentación carga el inductor a través la resistencia.

Examinemos el comportamiento práctico de un inductor cuando se interrumpe el circuito que lo alimenta. En el dibujo de derecha aparece un inductor que se carga a través una resistencia y un interruptor. El condensador dibujado en punteado representa las capacidades parásitas del inductor. Está dibujado separado del inductor, pero en realidad forma parte de él, porque representa las capacidades parásitas de las vueltas del devanado entre ellas mismas. Todo inductor tiene capacidades parásitas, incluso los devanados especialmente concebidos para minimizarlas como el devanado en "nido de abejas".

El interruptor se abre. La corriente solo puede circular cargando las capacidades parásitas.

A un cierto momento \scriptstyle{t_\circ} el interruptor se abre. Si miramos la definición de inductancia:

V = L{dI\over dt}

vemos que, para que la corriente que atraviesa el inductor se detenga instantáneamente, seria necesario la aparición de una tensión infinita, y eso no puede suceder. ¿Qué hace la corriente? Pues continúa pasando. ¿Por donde? Ella "se las arregla" para continuar. Al principio, el único camino que tiene es a través las capacidades parásitas. La corriente continúa circulando a través la capacidad parásita, cargando negativamente el punto alto del condensador en el dibujo.

En el instante \scriptstyle{t_\circ} el interruptor de abre dejando la inductancia oscilar con las capacidades parásitas.

Nos encontramos con un circuito LC que oscilará a una pulsación:

\textstyle{\omega = {1\over \sqrt{LC}}}

donde \scriptstyle{C} es el valor equivalente de las capacidades parásitas. Si los aislamientos del devanado son suficientemente resistentes a las altas tensiones, y si el interruptor interrumpe bien el circuito, la oscilación continuará con una amplitud que se amortiguará debido a las pérdidas dieléctricas y resistivas de las capacidades parásitas y del conductor del inductor. Si además, el inductor tiene un núcleo ferromagnético, habrá también pérdidas en el núcleo.
Hay que ver que la tensión máxima de la oscilación puede ser muy grande. Eso le vale el nombre de sobretensión. Se comprende que pueda ser grande, ya que el máximo de la tensión corresponde al momento en el cual toda la energía almacenada en la bobina \scriptstyle{{1\over 2}LI^2} habrá pasado a las capacidades parásitas \scriptstyle{{1\over 2}CV^2}. Si estas son pequeñas, la tensión puede ser muy grande y pueden producirse arcos eléctricos entre vueltas de la bobina o entre los contactos abiertos del interruptor.
Aunque los arcos eléctricos sean frecuentemente perniciosos y peligrosos, otras veces son útiles y deseados. Es el caso de la soldadura al arco, lámparas a arco, alto horno eléctrico y hornos a arco.
En el caso de la soldadura al arco, el interruptor de nuestro diagrama es el contacto entre el metal a soldar y el electrodo.

Si la tensión es grande pueden producirse arcos en el interruptor o en la bobina.

Lo que sucede cuando el arco aparece depende de las características eléctricas del arco. Y las características de un arco dependen de la corriente que lo atraviesa. Cuando la corriente es grande (decenas de amperios), el arco está formado por un camino espeso de moléculas y átomos ionizados que presentan poca resistencia eléctrica y una inercia térmica que lo hace durar. El arco disipa centenas de vatios y puede fundir metales y crear incendios. Si el arco se produce entre los contactos del interruptor, el circuito no estará verdaderamente abierto y la corriente continuará a circular.
Los arcos no deseados constituyen un problema serio y difícil de resolver cuando se utilizan altas tensiones y grandes potencias.

En el instante \scriptstyle{t_1} se produce un arco que dura hasta el instante \scriptstyle{t_2}. A partir de ese momento, la inductancia oscila con las capacidades parásitas. En punteado la corriente y la tensión que habría si el arco no se produjese.

Cuando las corrientes son pequeñas, el arco se enfría rápidamente y deja de conducir la electricidad.
En el dibujo de la derecha hemos ilustrado un caso particular que puede producirse, pero que solo es uno de los casos posibles. Hemos ampliado la escala del tiempo alrededor de la apertura del interruptor y de la formación del arco.
Después de la apertura del interruptor, la tensión a los bornes de la inductancia aumenta (con signo contrario). En el instante \scriptstyle{t_1}, la tensión es suficiente para crear un arco entre dos vueltas de la bobina. El arco presenta poca resistencia eléctrica y descarga rápidamente las capacidades parásitas. La corriente, en lugar de continuar a cargar las capacidades parásitas, comienza a pasar por el arco. Hemos dibujado el caso en el cual la tensión del arco es relativamente constante. La corriente del inductor disminuye hasta que al instante \scriptstyle{t_2} sea demasiado pequeña para mantener el arco y este se apaga y deja de conducir. La corriente vuelve a pasar por las capacidades parásitas y esta vez la oscilación continúa amortiguándose y sin crear nuevos arcos, ya que esta vez la tensión no alcanzará valores demasiado grandes.
Recordemos que este es solamente un caso posible.
Se puede explicar porqué puede uno recibir una pequeña descarga eléctrica al medir la resistencia de un bobinado con un simple óhmetro que solo puede alimentar unos miliamperios y unos pocos voltios. La razón es que para medir la resistencia del bobinado, le hace circular unos miliamperios. Si, cuando se desconectan los cables del óhmetro, sigue uno tocando con los dedos los bornes de la bobina, los miliamperios que circulaban en ella continuaran a hacerlo, pero pasando por los dedos.

El diodo sirve de camino a la corriente del inductor cuando el transistor se bloquea. Eso evita la aparición de altas tensiones entre el colector y la base del transistor.

La regla es que, para evitar los arcos o las sobretensiones, hay que proteger los circuitos previendo un pasaje para la corriente del inductor cuando el circuito se interrumpe. En el diagrama de la derecha hay un ejemplo de un transistor que controla la corriente en una bobina (la de un relé, por ejemplo). Cuando el transistor se bloquea, la corriente que circula en la bobina carga las capacidades parásitas y la tensión del colector aumenta y puede sobrepasar fácilmente la tensión máxima de la junción colector-base y destruir el transistor. Colocando un diodo, como el diagrama, la corriente encuentra un camino en el diodo y la tensión del colector estará limitada a la tensión de alimentación más los 0,6 V del diodo. El precio funcional de esta protección es que la corriente de la bobina tarda más en disminuir y eso, en algunos casos, puede ser inconveniente. Se puede disminuir el tiempo si, en lugar de un diodo rectificador, se coloca un diodo zener o Transil.
No hay que olvidar que el dispositivo de protección deberá ser capaz de absorber casi toda la energía almacenada en el inductor.

Bobinas especiales [editar]

Bobina de Rogowski

Véase también [editar]

Enlaces externos [editar]

歡迎來到Bewise Inc.的世界,首先恭喜您來到這接受新的資訊讓產業更有競爭力,我們是提供專業刀具製造商,應對客戶高品質的刀具需求,我們可以協助客戶滿足您對產業的不同要求,我們有能力達到非常卓越的客戶需求品質,這是現有相關技術無法比擬的,我們成功的滿足了各行各業的要求,包括:精密HSS DIN切削刀具協助客戶設計刀具流程DIN or JIS 鎢鋼切削刀具設計NAS986 NAS965 NAS897 NAS937orNAS907 航太切削刀具,NAS航太刀具設計超高硬度的切削刀具醫療配件刀具設計複合式再研磨機PCD地板專用企口鑽石組合刀具NSK高數主軸與馬達專業模具修補工具-氣動與電動粉末造粒成型機主機版專用頂級電桿PCD V-Cut捨棄式圓鋸片組粉末成型機主機版專用頂級電汽車業刀具設計電子產業鑽石刀具木工產業鑽石刀具銑刀與切斷複合再研磨機銑刀與鑽頭複合再研磨機銑刀與螺絲攻複合再研磨機等等。我們的產品涵蓋了從民生刀具到工業級的刀具設計;從微細刀具到大型刀具;從小型生產到大型量產;全自動整合;我們的技術可提供您連續生產的效能,我們整體的服務及卓越的技術,恭迎您親自體驗!!

BW Bewise Inc. Willy Chen willy@tool-tool.com bw@tool-tool.com www.tool-tool.com skype:willy_chen_bw mobile:0937-618-190 Head &Administration Office No.13,Shiang Shang 2nd St., West Chiu Taichung,Taiwan 40356 http://www.tool-tool.com / FAX:+886 4 2471 4839 N.Branch 5F,No.460,Fu Shin North Rd.,Taipei,Taiwan S.Branch No.24,Sec.1,Chia Pu East Rd.,Taipao City,Chiayi Hsien,Taiwan

Welcome to BW tool world! We are an experienced tool maker specialized in cutting tools. We focus on what you need and endeavor to research the best cutter to satisfy users demand. Our customers involve wide range of industries, like mold & die, aerospace, electronic, machinery, etc. We are professional expert in cutting field. We would like to solve every problem from you. Please feel free to contact us, its our pleasure to serve for you. BW product including: cutting toolaerospace tool .HSS  DIN Cutting toolCarbide end millsCarbide cutting toolNAS Cutting toolNAS986 NAS965 NAS897 NAS937orNAS907 Cutting Tools,Carbide end milldisc milling cutter,Aerospace cutting toolhss drillФрезерыCarbide drillHigh speed steelCompound SharpenerMilling cutterINDUCTORS FOR PCDCVDD(Chemical Vapor Deposition Diamond )’PCBN (Polycrystalline Cubic Boron Nitride) Core drillTapered end millsCVD Diamond Tools Inserts’PCD Edge-Beveling Cutter(Golden FingerPCD V-CutterPCD Wood toolsPCD Cutting toolsPCD Circular Saw BladePVDD End Millsdiamond tool. INDUCTORS FOR PCD . POWDER FORMING MACHINE Single Crystal Diamond Metric end millsMiniature end millsСпециальные режущие инструменты Пустотелое сверло Pilot reamerFraisesFresas con mango PCD (Polycrystalline diamond) ‘FresePOWDER FORMING MACHINEElectronics cutterStep drillMetal cutting sawDouble margin drillGun barrelAngle milling cutterCarbide burrsCarbide tipped cutterChamfering toolIC card engraving cutterSide cutterStaple CutterPCD diamond cutter specialized in grooving floorsV-Cut PCD Circular Diamond Tipped Saw Blade with Indexable Insert PCD Diamond Tool Saw Blade with Indexable InsertNAS toolDIN or JIS toolSpecial toolMetal slitting sawsShell end millsSide and face milling cuttersSide chip clearance sawsLong end millsend mill grinderdrill grindersharpenerStub roughing end millsDovetail milling cuttersCarbide slot drillsCarbide torus cuttersAngel carbide end millsCarbide torus cuttersCarbide ball-nosed slot drillsMould cutterTool manufacturer.

Bewise Inc. www.tool-tool.com

ようこそBewise Inc.の世界へお越し下さいませ、先ず御目出度たいのは新たな

情報を受け取って頂き、もっと各産業に競争力プラス展開。

弊社は専門なエンドミルの製造メーカーで、客先に色んな分野のニーズ

豊富なパリエーションを満足させ、特にハイテク品質要求にサポート致します。

弊社は各領域に供給できる内容は:

(1)精密HSSエンドミルのR&D

(2)Carbide Cutting tools設計

(3)鎢鋼エンドミル設計

(4)航空エンドミル設計

(5)超高硬度エンドミル

(6)ダイヤモンドエンドミル

(7)医療用品エンドミル設計

(8)自動車部品&材料加工向けエンドミル設計

弊社の製品の供給調達機能は:

(1)生活産業~ハイテク工業までのエンドミル設計

(2)ミクロエンドミル~大型エンドミル供給

(3)小Lot生産~大量発注対応供給

(4)オートメーション整備調達

(5)スポット対応~流れ生産対応

弊社の全般供給体制及び技術自慢の総合専門製造メーカーに貴方のご体験を御待ちしております。

Bewise Inc. talaşlı imalat sanayinde en fazla kullanılan ve üç eksende (x,y,z) talaş kaldırabilen freze takımlarından olan Parmak Freze imalatçısıdır. Çok geniş ürün yelpazesine sahip olan firmanın başlıca ürünlerini Karbür Parmak Frezeler, Kalıpçı Frezeleri, Kaba Talaş Frezeleri, Konik Alın Frezeler, Köşe Radyüs Frezeler, İki Ağızlı Kısa ve Uzun Küresel Frezeler, İç Bükey Frezeler vb. şeklinde sıralayabiliriz.

BW специализируется в научных исследованиях и разработках, и снабжаем самым высокотехнологичным карбидовым материалом для поставки режущих / фрезеровочных инструментов для почвы, воздушного пространства и электронной индустрии. В нашу основную продукцию входит твердый карбид / быстрорежущая сталь, а также двигатели, микроэлектрические дрели, IC картонорезальные машины, фрезы для гравирования, режущие пилы, фрезеры-расширители, фрезеры-расширители с резцом, дрели, резаки форм для шлицевого вала / звездочки роликовой цепи, и специальные нано инструменты. Пожалуйста, посетите сайт  www.tool-tool.com  для получения большей информации.

BW is specialized in R&D and sourcing the most advanced carbide material with high-tech coating to supply cutting / milling tool for mould & die, aero space and electronic industry. Our main products include solid carbide / HSS end mills, micro electronic drill, IC card cutter, engraving cutter, shell end mills, cutting saw, reamer, thread reamer, leading drill, involute gear cutter for spur wheel, rack and worm milling cutter, thread milling cutter, form cutters for spline shaft/roller chain sprocket, and special tool, with nano grade. Please visit our web  www.tool-tool.com  for more info.

beeway 發表在 痞客邦 留言(0) 人氣()

 

Bewise Inc. www.tool-tool.com Reference source from the internet.

Kutimaj induktoroj

Induktiloinduktoro estas aparato ĉefa celo de kiu estas havi induktancon por elektra kurento. Induktilo kutime estas konstruita surbaze de skeleto aŭ magnetokonduktilo, sur kiun estas volvita drato. La magnetokonduktilo ofte havas grandan magnetan permeablon por pligrandigi la atingatan valoron de la induktanco.

Laŭ sia konstruo estas simila al transformatoro, sed malsimile al transformatoro induktilo povas havi nur unu volvaĵon.

歡迎來到Bewise Inc.的世界,首先恭喜您來到這接受新的資訊讓產業更有競爭力,我們是提供專業刀具製造商,應對客戶高品質的刀具需求,我們可以協助客戶滿足您對產業的不同要求,我們有能力達到非常卓越的客戶需求品質,這是現有相關技術無法比擬的,我們成功的滿足了各行各業的要求,包括:精密HSS DIN切削刀具協助客戶設計刀具流程DIN or JIS 鎢鋼切削刀具設計NAS986 NAS965 NAS897 NAS937orNAS907 航太切削刀具,NAS航太刀具設計超高硬度的切削刀具醫療配件刀具設計複合式再研磨機PCD地板專用企口鑽石組合刀具NSK高數主軸與馬達專業模具修補工具-氣動與電動粉末造粒成型機主機版專用頂級電桿PCD V-Cut捨棄式圓鋸片組粉末成型機主機版專用頂級電汽車業刀具設計電子產業鑽石刀具木工產業鑽石刀具銑刀與切斷複合再研磨機銑刀與鑽頭複合再研磨機銑刀與螺絲攻複合再研磨機等等。我們的產品涵蓋了從民生刀具到工業級的刀具設計;從微細刀具到大型刀具;從小型生產到大型量產;全自動整合;我們的技術可提供您連續生產的效能,我們整體的服務及卓越的技術,恭迎您親自體驗!!

BW Bewise Inc. Willy Chen willy@tool-tool.com bw@tool-tool.com www.tool-tool.com skype:willy_chen_bw mobile:0937-618-190 Head &Administration Office No.13,Shiang Shang 2nd St., West Chiu Taichung,Taiwan 40356 http://www.tool-tool.com / FAX:+886 4 2471 4839 N.Branch 5F,No.460,Fu Shin North Rd.,Taipei,Taiwan S.Branch No.24,Sec.1,Chia Pu East Rd.,Taipao City,Chiayi Hsien,Taiwan

Welcome to BW tool world! We are an experienced tool maker specialized in cutting tools. We focus on what you need and endeavor to research the best cutter to satisfy users demand. Our customers involve wide range of industries, like mold & die, aerospace, electronic, machinery, etc. We are professional expert in cutting field. We would like to solve every problem from you. Please feel free to contact us, its our pleasure to serve for you. BW product including: cutting toolaerospace tool .HSS  DIN Cutting toolCarbide end millsCarbide cutting toolNAS Cutting toolNAS986 NAS965 NAS897 NAS937orNAS907 Cutting Tools,Carbide end milldisc milling cutter,Aerospace cutting toolhss drillФрезерыCarbide drillHigh speed steelCompound SharpenerMilling cutterINDUCTORS FOR PCDCVDD(Chemical Vapor Deposition Diamond )’PCBN (Polycrystalline Cubic Boron Nitride) Core drillTapered end millsCVD Diamond Tools Inserts’PCD Edge-Beveling Cutter(Golden FingerPCD V-CutterPCD Wood toolsPCD Cutting toolsPCD Circular Saw BladePVDD End Millsdiamond tool. INDUCTORS FOR PCD . POWDER FORMING MACHINE Single Crystal Diamond Metric end millsMiniature end millsСпециальные режущие инструменты Пустотелое сверло Pilot reamerFraisesFresas con mango PCD (Polycrystalline diamond) ‘FresePOWDER FORMING MACHINEElectronics cutterStep drillMetal cutting sawDouble margin drillGun barrelAngle milling cutterCarbide burrsCarbide tipped cutterChamfering toolIC card engraving cutterSide cutterStaple CutterPCD diamond cutter specialized in grooving floorsV-Cut PCD Circular Diamond Tipped Saw Blade with Indexable Insert PCD Diamond Tool Saw Blade with Indexable InsertNAS toolDIN or JIS toolSpecial toolMetal slitting sawsShell end millsSide and face milling cuttersSide chip clearance sawsLong end millsend mill grinderdrill grindersharpenerStub roughing end millsDovetail milling cuttersCarbide slot drillsCarbide torus cuttersAngel carbide end millsCarbide torus cuttersCarbide ball-nosed slot drillsMould cutterTool manufacturer.

Bewise Inc. www.tool-tool.com

ようこそBewise Inc.の世界へお越し下さいませ、先ず御目出度たいのは新たな

情報を受け取って頂き、もっと各産業に競争力プラス展開。

弊社は専門なエンドミルの製造メーカーで、客先に色んな分野のニーズ

豊富なパリエーションを満足させ、特にハイテク品質要求にサポート致します。

弊社は各領域に供給できる内容は:

(1)精密HSSエンドミルのR&D

(2)Carbide Cutting tools設計

(3)鎢鋼エンドミル設計

(4)航空エンドミル設計

(5)超高硬度エンドミル

(6)ダイヤモンドエンドミル

(7)医療用品エンドミル設計

(8)自動車部品&材料加工向けエンドミル設計

弊社の製品の供給調達機能は:

(1)生活産業~ハイテク工業までのエンドミル設計

(2)ミクロエンドミル~大型エンドミル供給

(3)小Lot生産~大量発注対応供給

(4)オートメーション整備調達

(5)スポット対応~流れ生産対応

弊社の全般供給体制及び技術自慢の総合専門製造メーカーに貴方のご体験を御待ちしております。

Bewise Inc. talaşlı imalat sanayinde en fazla kullanılan ve üç eksende (x,y,z) talaş kaldırabilen freze takımlarından olan Parmak Freze imalatçısıdır. Çok geniş ürün yelpazesine sahip olan firmanın başlıca ürünlerini Karbür Parmak Frezeler, Kalıpçı Frezeleri, Kaba Talaş Frezeleri, Konik Alın Frezeler, Köşe Radyüs Frezeler, İki Ağızlı Kısa ve Uzun Küresel Frezeler, İç Bükey Frezeler vb. şeklinde sıralayabiliriz.

BW специализируется в научных исследованиях и разработках, и снабжаем самым высокотехнологичным карбидовым материалом для поставки режущих / фрезеровочных инструментов для почвы, воздушного пространства и электронной индустрии. В нашу основную продукцию входит твердый карбид / быстрорежущая сталь, а также двигатели, микроэлектрические дрели, IC картонорезальные машины, фрезы для гравирования, режущие пилы, фрезеры-расширители, фрезеры-расширители с резцом, дрели, резаки форм для шлицевого вала / звездочки роликовой цепи, и специальные нано инструменты. Пожалуйста, посетите сайт  www.tool-tool.com  для получения большей информации.

BW is specialized in R&D and sourcing the most advanced carbide material with high-tech coating to supply cutting / milling tool for mould & die, aero space and electronic industry. Our main products include solid carbide / HSS end mills, micro electronic drill, IC card cutter, engraving cutter, shell end mills, cutting saw, reamer, thread reamer, leading drill, involute gear cutter for spur wheel, rack and worm milling cutter, thread milling cutter, form cutters for spline shaft/roller chain sprocket, and special tool, with nano grade. Please visit our web  www.tool-tool.com  for more info.

beeway 發表在 痞客邦 留言(0) 人氣()

 

 

 

Bewise Inc. www.tool-tool.com
Reference source from the internet.

 

Inductor

 


A selection of low-value inductors

 

Type
Passive

 

Working principle
Electromagnetic
induction

 

First production
Michael Faraday(1831)

 

Electronic
symbol

 

File:Inductor.svg

 

This box: view • talk

 

An inductor is a passive electrical
component
that can store energy in a magnetic field created by
the electric current
passing through it. An inductor's ability to store magnetic energy is measured
by its inductance, in
units of henries.
Typically an inductor is a conducting wire shaped as a coil, the loops help
create a strong magnetic field inside the coil due to Faraday's law
of induction
. Inductors are one of the basic electronic components used in
electronics where current and voltage change with time, due to the ability of
inductors to delay and reshape alternating currents.

 

An "ideal inductor" has inductance, but no resistance or capacitance, and does not
dissipate energy. A real inductor is equivalent to a combination of inductance,
some resistance due to the resistivity of the wire, and some capacitance. At
some frequency, usually much higher than the working frequency, a real inductor
behaves as a resonant
circuit
(due to its self capacitance).
In addition to dissipating energy in the resistance of the wire, magnetic core
inductors may dissipate energy in the core due to hysteresis, and at high
currents may show other departures from ideal behavior due to nonlinearity.

 

 

[edit]
Physics

 

 

[edit]
Overview

 

Inductance (L)
(measured in henries) is an effect
resulting from the magnetic field that forms
around a current-carrying conductor that
tends to resist changes in the current. Electric current
through the conductor creates a magnetic flux proportional
to the current. A change in this current creates a change in magnetic flux that,
in turn, by Faraday's
law
generates an electromotive force
(EMF) that acts to oppose this change in current. Inductance is a measure of the
amount of EMF generated for a unit change in current. For example, an inductor
with an inductance of 1 henry produces an EMF of 1 volt when the current through
the inductor changes at the rate of 1 ampere per second. The number of loops,
the size of each loop, and the material it is wrapped around all affect the
inductance. For example, the magnetic flux linking these turns can be increased
by coiling the conductor around a material with a high permeability
such as iron. This can increase the inductance by 2000 times, although less so
at high frequencies.

 

 

[edit]
Hydraulic model

 

Electric current can be modeled by the hydraulic analogy. An
inductor can be modeled by the flywheel effect of a heavy turbine rotated by the flow.
When water first starts to flow (current), the stationary turbine will cause an
obstruction in the flow and high pressure (voltage) opposing the flow until it
gets turning. Once it is turning, if there is a sudden interruption of water
flow the turbine will continue to turn by inertia, generating a high pressure to
keep the flow moving. Magnetic interactions such as in transformers are
not modeled hydraulically.

 

 

[edit]
Applications

 

 

 

 

An inductor with two 47mH windings, as may be found in a power supply.

 

Inductors are used extensively in analog circuits and
signal processing. Inductors in conjunction with capacitors and other
components form tuned circuits which can emphasize or filter out specific
signal frequencies. Applications range from the use of large inductors in power
supplies, which in conjunction with filter capacitors remove residual hum or other fluctuations from the
direct current output, to the small inductance of the ferrite bead or torus installed around a cable to
prevent radio frequency
interference
from being transmitted down the wire. Smaller
inductor/capacitor combinations provide tuned circuits used in
radio reception and broadcasting, for instance.

 

Two (or more) inductors which have coupled magnetic flux form a transformer, which is a
fundamental component of every electric utility power grid. The
efficiency of a transformer may decrease as the frequency increases due to eddy
currents in the core material and skin effect on the windings. Size of the core
can be decreased at higher frequencies and, for this reason, aircraft use 400
hertz alternating current rather than the usual 50 or 60 hertz, allowing a great
saving in weight from the use of smaller transformers[1].

 

An inductor is used as the energy storage device in some switched-mode
power supplies
. The inductor is energized for a specific fraction of the
regulator's switching frequency, and de-energized for the remainder of the
cycle. This energy transfer ratio determines the input-voltage to output-voltage
ratio. This XL is used in complement with an active
semiconductor device to maintain very accurate voltage control.

 

Inductors are also employed in electrical transmission systems, where they
are used to depress voltages from lightning strikes and to limit switching
currents and fault
current
. In this field, they are more commonly referred to as reactors.

 

Larger value inductors may be simulated by use of gyrator circuits.

 

 

[edit]
Kind of coils

 

 

[edit]
Ferrite honeycomb coil:

 

The honeycomb coils is wounded in a crisscross manner to reduce distributed
capacitance. It is used in the circuits tuners radio in the ranges of medium and
long waves, thanks to the shape of the winding are achieved inductive high
values in low volume.

 

 

[edit]
Toroidal core coil:

 

A simple coil wound on a cylindrical form creates an external magnetic field
with a north and south pole. A toroidal coil can be created from a cylindrical
coil by bending it into a doughnut shape thereby merging the north and south
poles. In a toroidal coil, the magnetic flux is largely kept internal to the
coil. This results in less magnetic radiation from coil, and less sensitivity to
external fields.

 

 

[edit]
Inductor construction

 

 

 

 

Inductors. Major scale in centimetres.

 

An inductor is usually constructed as a coil of conducting
material, typically copper wire, wrapped around a core either of air or of
ferromagnetic material.
Core materials with a higher permeability
than air increase the magnetic field and confine it closely to the inductor,
thereby increasing the inductance. Low frequency inductors are constructed like
transformers, with cores of electrical steel laminated to prevent eddy currents. 'Soft' ferrites are widely
used for cores above audio frequencies,
since they don't cause the large energy losses at high frequencies that ordinary
iron alloys do. This is because of their narrow hysteresis curves, and their
high resistivity prevents
eddy currents. Inductors
come in many shapes. Most are constructed as enamel coated wire wrapped around a
ferrite bobbin with wire exposed on the
outside, while some enclose the wire completely in ferrite and are called
"shielded". Some inductors have an adjustable core, which enables changing of
the inductance. Inductors used to block very high frequencies are sometimes made
by stringing a ferrite cylinder or bead on a wire.

 

Small inductors can be etched directly onto a printed circuit
board
by laying out the trace in a spiral pattern. Some such planar
inductors use a planar core.

 

Small value inductors can also be built on integrated circuits
using the same processes that are used to make transistors. Aluminium interconnect is typically
used, laid out in a spiral coil pattern. However, the small dimensions limit the
inductance, and it is far more common to use a circuit called a "gyrator" which uses a capacitor and active
components to behave similarly to an inductor.

 

 

[edit]
In electric circuits

 

An inductor opposes changes in current. An ideal inductor would offer no
resistance to a constant direct current; however,
only superconducting
inductors have truly zero electrical
resistance
.

 

In general, the relationship between the time-varying voltage
v(t) across an inductor with inductance L and the
time-varying current i(t) passing through it is described by the
differential
equation
:

 

v(t) = L \frac{di(t)}{dt}

 

When there is a sinusoidal alternating current
(AC) through an inductor, a sinusoidal voltage is induced. The amplitude of the
voltage is proportional to the product of the amplitude
(IP) of the current and the frequency ( f ) of
the current.

 

i(t) = I_P \sin(2 \pi f t)\,

 

\frac{di(t)}{dt} = 2 \pi f I_P \cos(2 \pi f t)

 

v(t) = 2 \pi f L I_P \cos(2 \pi f t)\,

 

In this situation, the phase of the current
lags that of the voltage by 90 degrees. #

 

If an inductor is connected to a DC current source, with
value I via a resistance, R, and then the current source short
circuited, the differential relationship above shows that the current through
the inductor will discharge with an exponential decay:

 

\ i(t) = I (e^{\frac{-tR}{L}})

 

 

[edit]
Laplace circuit analysis (s-domain)

 

When using the Laplace transform in
circuit analysis, the transfer impedance of an ideal inductor with no initial
current is represented in the s domain by:

 

Z(s) = Ls\,

where
L is the inductance, and
s is the complex frequency

 

If the inductor does have initial current, it can be represented by:

 


  • adding a voltage source in series with the inductor, having the value:

 

 L I_0 \,

 

(Note that the source should have a polarity that opposes the initial
current
)

 


  • or by adding a current source in parallel with the inductor, having the
    value:

 

 \frac{I_0}{s}

where
L is the inductance, and
I0 is the initial current in the
inductor.

 

 

[edit]
Inductor networks

 

Main article: Series and
parallel circuits

 

Inductors in a parallel
configuration each have the same potential difference (voltage). To find their
total equivalent inductance (Leq):

 

A diagram of several inductors, side by side, both leads of each connected to the same wires

 

 \frac{1}{L_\mathrm{eq}} = \frac{1}{L_1} + \frac{1}{L_2} + \cdots + \frac{1}{L_n}

 

The current through inductors in series
stays the same, but the voltage across each inductor can be different. The sum
of the potential differences (voltage) is equal to the total voltage. To find
their total inductance:

 

A diagram of several inductors, connected end to end, with the same amount of current going through each

 

 L_\mathrm{eq} = L_1 + L_2 + \cdots + L_n \,\!

 

These simple relationships hold true only when there is no mutual coupling of
magnetic fields between individual inductors.

 

 

[edit]
Stored energy

 

The energy (measured in joules, in SI) stored by an inductor is equal to
the amount of work required to establish the current through the inductor, and
therefore the magnetic field. This is given by:

 

 E_\mathrm{stored} = {1 \over 2} L I^2

 

where L is inductance and I is the current through the
inductor(****).

 

 

[edit]
Q factor

 

An ideal inductor will be lossless irrespective of the amount of current
through the winding. However, typically inductors have winding resistance from
the metal wire forming the coils. Since the winding resistance appears as a
resistance in series with the inductor, it is often called the series
resistance
. The inductor's series resistance converts electrical current
through the coils into heat, thus causing a loss of inductive quality. The quality factor (or Q) of
an inductor is the ratio of its inductive reactance to its resistance at a given
frequency, and is a measure of its efficiency. The higher the Q factor of the
inductor, the closer it approaches the behavior of an ideal, lossless, inductor.

 

The Q factor of an inductor can be found through the following formula, where
R is its internal electrical resistance and ωL is capacitive or
inductive reactance at resonance:

 

Q = \frac{\omega{}L}{R}

 

By using a ferromagnetic core, the
inductance is greatly increased for the same amount of copper, multiplying up
the Q. Cores however also introduce losses that increase with frequency. A grade
of core material is chosen for best results for the frequency band. At VHF or higher frequencies an air
core is likely to be used.

 

Inductors wound around a ferromagnetic core may saturate at
high currents, causing a dramatic decrease in inductance (and Q). This
phenomenon can be avoided by using a (physically larger) air core inductor. A
well designed air core inductor may have a Q of several hundred.

 

An almost ideal inductor (Q approaching infinity) can be created by immersing
a coil made from a superconducting alloy in liquid helium or liquid nitrogen. This
supercools the wire, causing its winding resistance to disappear. Because a
superconducting inductor is virtually lossless, it can store a large amount of
electrical energy within the surrounding magnetic field (see superconducting
magnetic energy storage
).

 

 

[edit]
Inductance formulae

 

The table below lists some common formulae for calculating the theoretical
inductance of several inductor constructions.

 

Construction
Formula
Dimensions

 

Cylindrical coil[2]
L=\frac{\mu_0KN^2A}{l}

 

 

Straight wire conductor
L = l\left(\ln\frac{4l}{d}-1\right) \cdot 200 \times 10^{-9}

 


  • L = inductance (H)

  • l = length of conductor (m)

  • d = diameter of conductor (m)

 

L = 5.08 \cdot l\left(\ln\frac{4l}{d}-1\right)

 


  • L = inductance (nH)

  • l = length of conductor (in)

  • d = diameter of conductor (in)

 

Short air-core cylindrical coil
L=\frac{r^2N^2}{9r+10l}

 


  • L = inductance (µH)

  • r = outer radius of coil (in)

  • l = length of coil (in)

  • N = number of turns

 

Multilayer air-core coil
L = \frac{0.8r^2N^2}{6r+9l+10d}

 


  • L = inductance (µH)

  • r = mean radius of coil (in)

  • l = physical length of coil winding (in)

  • N = number of turns

  • d = depth of coil (outer radius minus inner radius) (in)

 

Flat spiral air-core coil
L=\frac{r^2N^2}{(2r+2.8d) \times 10^5}

 


  • L = inductance (H)

  • r = mean radius of coil (m)

  • N = number of turns

  • d = depth of coil (outer radius minus inner radius) (m)

 

L=\frac{r^2N^2}{8r+11d}

 


  • L = inductance (µH)

  • r = mean radius of coil (in)

  • N = number of turns

  • d = depth of coil (outer radius minus inner radius) (in)

 

Toroidal core (circular cross-section)
L=\mu_0\mu_r\frac{N^2r^2}{D}

 


  • L = inductance (H)

  • μ0 = permeability
    of free space = 4π ×
    10-7 H/m

  • μr = relative permeability of core material

  • N = number of turns

  • r = radius of coil winding (m)

  • D = overall diameter of toroid (m)

 

 

[edit]
See also

 

 

 

[edit]
Synonyms

 

 

 

[edit]
Notes

 


  1. ^ http://www.wonderquest.com/expounding-aircraft-electrical-systems.htm
  2. ^ a
    b
    Nagaoka,
    Hantaro
    . The Inductance Coefficients of Solenoids[1].
    27. Journal of the College of Science, Imperial University, Tokyo, Japan.
    p. 18.

 

 

[edit]
External links

 

General

 

beeway 發表在 痞客邦 留言(0) 人氣()

 

Bewise Inc. www.tool-tool.com Reference source from the internet.

Inductor


A selection of low-value inductors

Type
Passive

Working principle
Electromagnetic induction

First production
Michael Faraday(1831)

Electronic symbol

File:Inductor.svg

This box: view • talk

An inductor is a passive electrical component that can store energy in a magnetic field created by the electric current passing through it. An inductor's ability to store magnetic energy is measured by its inductance, in units of henries. Typically an inductor is a conducting wire shaped as a coil, the loops help create a strong magnetic field inside the coil due to Faraday's law of induction. Inductors are one of the basic electronic components used in electronics where current and voltage change with time, due to the ability of inductors to delay and reshape alternating currents.

An "ideal inductor" has inductance, but no resistance or capacitance, and does not dissipate energy. A real inductor is equivalent to a combination of inductance, some resistance due to the resistivity of the wire, and some capacitance. At some frequency, usually much higher than the working frequency, a real inductor behaves as a resonant circuit (due to its self capacitance). In addition to dissipating energy in the resistance of the wire, magnetic core inductors may dissipate energy in the core due to hysteresis, and at high currents may show other departures from ideal behavior due to nonlinearity.

[edit] Physics

[edit] Overview

Inductance (L) (measured in henries) is an effect resulting from the magnetic field that forms around a current-carrying conductor that tends to resist changes in the current. Electric current through the conductor creates a magnetic flux proportional to the current. A change in this current creates a change in magnetic flux that, in turn, by Faraday's law generates an electromotive force (EMF) that acts to oppose this change in current. Inductance is a measure of the amount of EMF generated for a unit change in current. For example, an inductor with an inductance of 1 henry produces an EMF of 1 volt when the current through the inductor changes at the rate of 1 ampere per second. The number of loops, the size of each loop, and the material it is wrapped around all affect the inductance. For example, the magnetic flux linking these turns can be increased by coiling the conductor around a material with a high permeability such as iron. This can increase the inductance by 2000 times, although less so at high frequencies.

[edit] Hydraulic model

Electric current can be modeled by the hydraulic analogy. An inductor can be modeled by the flywheel effect of a heavy turbine rotated by the flow. When water first starts to flow (current), the stationary turbine will cause an obstruction in the flow and high pressure (voltage) opposing the flow until it gets turning. Once it is turning, if there is a sudden interruption of water flow the turbine will continue to turn by inertia, generating a high pressure to keep the flow moving. Magnetic interactions such as in transformers are not modeled hydraulically.

[edit] Applications

 

An inductor with two 47mH windings, as may be found in a power supply.

Inductors are used extensively in analog circuits and signal processing. Inductors in conjunction with capacitors and other components form tuned circuits which can emphasize or filter out specific signal frequencies. Applications range from the use of large inductors in power supplies, which in conjunction with filter capacitors remove residual hum or other fluctuations from the direct current output, to the small inductance of the ferrite bead or torus installed around a cable to prevent radio frequency interference from being transmitted down the wire. Smaller inductor/capacitor combinations provide tuned circuits used in radio reception and broadcasting, for instance.

Two (or more) inductors which have coupled magnetic flux form a transformer, which is a fundamental component of every electric utility power grid. The efficiency of a transformer may decrease as the frequency increases due to eddy currents in the core material and skin effect on the windings. Size of the core can be decreased at higher frequencies and, for this reason, aircraft use 400 hertz alternating current rather than the usual 50 or 60 hertz, allowing a great saving in weight from the use of smaller transformers[1].

An inductor is used as the energy storage device in some switched-mode power supplies. The inductor is energized for a specific fraction of the regulator's switching frequency, and de-energized for the remainder of the cycle. This energy transfer ratio determines the input-voltage to output-voltage ratio. This XL is used in complement with an active semiconductor device to maintain very accurate voltage control.

Inductors are also employed in electrical transmission systems, where they are used to depress voltages from lightning strikes and to limit switching currents and fault current. In this field, they are more commonly referred to as reactors.

Larger value inductors may be simulated by use of gyrator circuits.

[edit] Kind of coils

[edit] Ferrite honeycomb coil:

The honeycomb coils is wounded in a crisscross manner to reduce distributed capacitance. It is used in the circuits tuners radio in the ranges of medium and long waves, thanks to the shape of the winding are achieved inductive high values in low volume.

[edit] Toroidal core coil:

A simple coil wound on a cylindrical form creates an external magnetic field with a north and south pole. A toroidal coil can be created from a cylindrical coil by bending it into a doughnut shape thereby merging the north and south poles. In a toroidal coil, the magnetic flux is largely kept internal to the coil. This results in less magnetic radiation from coil, and less sensitivity to external fields.

[edit] Inductor construction

 

Inductors. Major scale in centimetres.

An inductor is usually constructed as a coil of conducting material, typically copper wire, wrapped around a core either of air or of ferromagnetic material. Core materials with a higher permeability than air increase the magnetic field and confine it closely to the inductor, thereby increasing the inductance. Low frequency inductors are constructed like transformers, with cores of electrical steel laminated to prevent eddy currents. 'Soft' ferrites are widely used for cores above audio frequencies, since they don't cause the large energy losses at high frequencies that ordinary iron alloys do. This is because of their narrow hysteresis curves, and their high resistivity prevents eddy currents. Inductors come in many shapes. Most are constructed as enamel coated wire wrapped around a ferrite bobbin with wire exposed on the outside, while some enclose the wire completely in ferrite and are called "shielded". Some inductors have an adjustable core, which enables changing of the inductance. Inductors used to block very high frequencies are sometimes made by stringing a ferrite cylinder or bead on a wire.

Small inductors can be etched directly onto a printed circuit board by laying out the trace in a spiral pattern. Some such planar inductors use a planar core.

Small value inductors can also be built on integrated circuits using the same processes that are used to make transistors. Aluminium interconnect is typically used, laid out in a spiral coil pattern. However, the small dimensions limit the inductance, and it is far more common to use a circuit called a "gyrator" which uses a capacitor and active components to behave similarly to an inductor.

[edit] In electric circuits

An inductor opposes changes in current. An ideal inductor would offer no resistance to a constant direct current; however, only superconducting inductors have truly zero electrical resistance.

In general, the relationship between the time-varying voltage v(t) across an inductor with inductance L and the time-varying current i(t) passing through it is described by the differential equation:

v(t) = L \frac{di(t)}{dt}

When there is a sinusoidal alternating current (AC) through an inductor, a sinusoidal voltage is induced. The amplitude of the voltage is proportional to the product of the amplitude (IP) of the current and the frequency ( f ) of the current.

i(t) = I_P \sin(2 \pi f t)\,
\frac{di(t)}{dt} = 2 \pi f I_P \cos(2 \pi f t)
v(t) = 2 \pi f L I_P \cos(2 \pi f t)\,

In this situation, the phase of the current lags that of the voltage by 90 degrees. #

If an inductor is connected to a DC current source, with value I via a resistance, R, and then the current source short circuited, the differential relationship above shows that the current through the inductor will discharge with an exponential decay:

\ i(t) = I (e^{\frac{-tR}{L}})

[edit] Laplace circuit analysis (s-domain)

When using the Laplace transform in circuit analysis, the transfer impedance of an ideal inductor with no initial current is represented in the s domain by:

Z(s) = Ls\,
where
L is the inductance, and
s is the complex frequency

If the inductor does have initial current, it can be represented by:

  • adding a voltage source in series with the inductor, having the value:
 L I_0 \,

(Note that the source should have a polarity that opposes the initial current)

  • or by adding a current source in parallel with the inductor, having the value:
 \frac{I_0}{s}
where
L is the inductance, and
I0 is the initial current in the inductor.

[edit] Inductor networks

Main article: Series and parallel circuits

Inductors in a parallel configuration each have the same potential difference (voltage). To find their total equivalent inductance (Leq):

A diagram of several inductors, side by side, both leads of each connected to the same wires
 \frac{1}{L_\mathrm{eq}} = \frac{1}{L_1} + \frac{1}{L_2} + \cdots + \frac{1}{L_n}

The current through inductors in series stays the same, but the voltage across each inductor can be different. The sum of the potential differences (voltage) is equal to the total voltage. To find their total inductance:

A diagram of several inductors, connected end to end, with the same amount of current going through each
 L_\mathrm{eq} = L_1 + L_2 + \cdots + L_n \,\!

These simple relationships hold true only when there is no mutual coupling of magnetic fields between individual inductors.

[edit] Stored energy

The energy (measured in joules, in SI) stored by an inductor is equal to the amount of work required to establish the current through the inductor, and therefore the magnetic field. This is given by:

 E_\mathrm{stored} = {1 \over 2} L I^2

where L is inductance and I is the current through the inductor(****).

[edit] Q factor

An ideal inductor will be lossless irrespective of the amount of current through the winding. However, typically inductors have winding resistance from the metal wire forming the coils. Since the winding resistance appears as a resistance in series with the inductor, it is often called the series resistance. The inductor's series resistance converts electrical current through the coils into heat, thus causing a loss of inductive quality. The quality factor (or Q) of an inductor is the ratio of its inductive reactance to its resistance at a given frequency, and is a measure of its efficiency. The higher the Q factor of the inductor, the closer it approaches the behavior of an ideal, lossless, inductor.

The Q factor of an inductor can be found through the following formula, where R is its internal electrical resistance and ωL is capacitive or inductive reactance at resonance:

Q = \frac{\omega{}L}{R}

By using a ferromagnetic core, the inductance is greatly increased for the same amount of copper, multiplying up the Q. Cores however also introduce losses that increase with frequency. A grade of core material is chosen for best results for the frequency band. At VHF or higher frequencies an air core is likely to be used.

Inductors wound around a ferromagnetic core may saturate at high currents, causing a dramatic decrease in inductance (and Q). This phenomenon can be avoided by using a (physically larger) air core inductor. A well designed air core inductor may have a Q of several hundred.

An almost ideal inductor (Q approaching infinity) can be created by immersing a coil made from a superconducting alloy in liquid helium or liquid nitrogen. This supercools the wire, causing its winding resistance to disappear. Because a superconducting inductor is virtually lossless, it can store a large amount of electrical energy within the surrounding magnetic field (see superconducting magnetic energy storage).

[edit] Inductance formulae

The table below lists some common formulae for calculating the theoretical inductance of several inductor constructions.

Construction
Formula
Dimensions

Cylindrical coil[2]
L=\frac{\mu_0KN^2A}{l}

Straight wire conductor
L = l\left(\ln\frac{4l}{d}-1\right) \cdot 200 \times 10^{-9}

  • L = inductance (H)
  • l = length of conductor (m)
  • d = diameter of conductor (m)

L = 5.08 \cdot l\left(\ln\frac{4l}{d}-1\right)

  • L = inductance (nH)
  • l = length of conductor (in)
  • d = diameter of conductor (in)

Short air-core cylindrical coil
L=\frac{r^2N^2}{9r+10l}

  • L = inductance (µH)
  • r = outer radius of coil (in)
  • l = length of coil (in)
  • N = number of turns

Multilayer air-core coil
L = \frac{0.8r^2N^2}{6r+9l+10d}

  • L = inductance (µH)
  • r = mean radius of coil (in)
  • l = physical length of coil winding (in)
  • N = number of turns
  • d = depth of coil (outer radius minus inner radius) (in)

Flat spiral air-core coil
L=\frac{r^2N^2}{(2r+2.8d) \times 10^5}

  • L = inductance (H)
  • r = mean radius of coil (m)
  • N = number of turns
  • d = depth of coil (outer radius minus inner radius) (m)

L=\frac{r^2N^2}{8r+11d}

  • L = inductance (µH)
  • r = mean radius of coil (in)
  • N = number of turns
  • d = depth of coil (outer radius minus inner radius) (in)

Toroidal core (circular cross-section)
L=\mu_0\mu_r\frac{N^2r^2}{D}

  • L = inductance (H)
  • μ0 = permeability of free space = 4π × 10-7 H/m
  • μr = relative permeability of core material
  • N = number of turns
  • r = radius of coil winding (m)
  • D = overall diameter of toroid (m)

[edit] See also

[edit] Synonyms

[edit] Notes

  1. ^ http://www.wonderquest.com/expounding-aircraft-electrical-systems.htm
  2. ^ a b Nagaoka, Hantaro. The Inductance Coefficients of Solenoids[1]. 27. Journal of the College of Science, Imperial University, Tokyo, Japan. p. 18.

[edit] External links

General

歡迎來到Bewise Inc.的世界,首先恭喜您來到這接受新的資訊讓產業更有競爭力,我們是提供專業刀具製造商,應對客戶高品質的刀具需求,我們可以協助客戶滿足您對產業的不同要求,我們有能力達到非常卓越的客戶需求品質,這是現有相關技術無法比擬的,我們成功的滿足了各行各業的要求,包括:精密HSS DIN切削刀具協助客戶設計刀具流程DIN or JIS 鎢鋼切削刀具設計NAS986 NAS965 NAS897 NAS937orNAS907 航太切削刀具,NAS航太刀具設計超高硬度的切削刀具醫療配件刀具設計複合式再研磨機PCD地板專用企口鑽石組合刀具NSK高數主軸與馬達專業模具修補工具-氣動與電動粉末造粒成型機主機版專用頂級電桿PCD V-Cut捨棄式圓鋸片組粉末成型機主機版專用頂級電汽車業刀具設計電子產業鑽石刀具木工產業鑽石刀具銑刀與切斷複合再研磨機銑刀與鑽頭複合再研磨機銑刀與螺絲攻複合再研磨機等等。我們的產品涵蓋了從民生刀具到工業級的刀具設計;從微細刀具到大型刀具;從小型生產到大型量產;全自動整合;我們的技術可提供您連續生產的效能,我們整體的服務及卓越的技術,恭迎您親自體驗!!

BW Bewise Inc. Willy Chen willy@tool-tool.com bw@tool-tool.com www.tool-tool.com skype:willy_chen_bw mobile:0937-618-190 Head &Administration Office No.13,Shiang Shang 2nd St., West Chiu Taichung,Taiwan 40356 http://www.tool-tool.com / FAX:+886 4 2471 4839 N.Branch 5F,No.460,Fu Shin North Rd.,Taipei,Taiwan S.Branch No.24,Sec.1,Chia Pu East Rd.,Taipao City,Chiayi Hsien,Taiwan

Welcome to BW tool world! We are an experienced tool maker specialized in cutting tools. We focus on what you need and endeavor to research the best cutter to satisfy users demand. Our customers involve wide range of industries, like mold & die, aerospace, electronic, machinery, etc. We are professional expert in cutting field. We would like to solve every problem from you. Please feel free to contact us, its our pleasure to serve for you. BW product including: cutting toolaerospace tool .HSS  DIN Cutting toolCarbide end millsCarbide cutting toolNAS Cutting toolNAS986 NAS965 NAS897 NAS937orNAS907 Cutting Tools,Carbide end milldisc milling cutter,Aerospace cutting toolhss drillФрезерыCarbide drillHigh speed steelCompound SharpenerMilling cutterINDUCTORS FOR PCDCVDD(Chemical Vapor Deposition Diamond )’PCBN (Polycrystalline Cubic Boron Nitride) Core drillTapered end millsCVD Diamond Tools Inserts’PCD Edge-Beveling Cutter(Golden FingerPCD V-CutterPCD Wood toolsPCD Cutting toolsPCD Circular Saw BladePVDD End Millsdiamond tool. INDUCTORS FOR PCD . POWDER FORMING MACHINE Single Crystal Diamond Metric end millsMiniature end millsСпециальные режущие инструменты Пустотелое сверло Pilot reamerFraisesFresas con mango PCD (Polycrystalline diamond) ‘FresePOWDER FORMING MACHINEElectronics cutterStep drillMetal cutting sawDouble margin drillGun barrelAngle milling cutterCarbide burrsCarbide tipped cutterChamfering toolIC card engraving cutterSide cutterStaple CutterPCD diamond cutter specialized in grooving floorsV-Cut PCD Circular Diamond Tipped Saw Blade with Indexable Insert PCD Diamond Tool Saw Blade with Indexable InsertNAS toolDIN or JIS toolSpecial toolMetal slitting sawsShell end millsSide and face milling cuttersSide chip clearance sawsLong end millsend mill grinderdrill grindersharpenerStub roughing end millsDovetail milling cuttersCarbide slot drillsCarbide torus cuttersAngel carbide end millsCarbide torus cuttersCarbide ball-nosed slot drillsMould cutterTool manufacturer.

Bewise Inc. www.tool-tool.com

ようこそBewise Inc.の世界へお越し下さいませ、先ず御目出度たいのは新たな

情報を受け取って頂き、もっと各産業に競争力プラス展開。

弊社は専門なエンドミルの製造メーカーで、客先に色んな分野のニーズ

豊富なパリエーションを満足させ、特にハイテク品質要求にサポート致します。

弊社は各領域に供給できる内容は:

(1)精密HSSエンドミルのR&D

(2)Carbide Cutting tools設計

(3)鎢鋼エンドミル設計

(4)航空エンドミル設計

(5)超高硬度エンドミル

(6)ダイヤモンドエンドミル

(7)医療用品エンドミル設計

(8)自動車部品&材料加工向けエンドミル設計

弊社の製品の供給調達機能は:

(1)生活産業~ハイテク工業までのエンドミル設計

(2)ミクロエンドミル~大型エンドミル供給

(3)小Lot生産~大量発注対応供給

(4)オートメーション整備調達

(5)スポット対応~流れ生産対応

弊社の全般供給体制及び技術自慢の総合専門製造メーカーに貴方のご体験を御待ちしております。

Bewise Inc. talaşlı imalat sanayinde en fazla kullanılan ve üç eksende (x,y,z) talaş kaldırabilen freze takımlarından olan Parmak Freze imalatçısıdır. Çok geniş ürün yelpazesine sahip olan firmanın başlıca ürünlerini Karbür Parmak Frezeler, Kalıpçı Frezeleri, Kaba Talaş Frezeleri, Konik Alın Frezeler, Köşe Radyüs Frezeler, İki Ağızlı Kısa ve Uzun Küresel Frezeler, İç Bükey Frezeler vb. şeklinde sıralayabiliriz.

BW специализируется в научных исследованиях и разработках, и снабжаем самым высокотехнологичным карбидовым материалом для поставки режущих / фрезеровочных инструментов для почвы, воздушного пространства и электронной индустрии. В нашу основную продукцию входит твердый карбид / быстрорежущая сталь, а также двигатели, микроэлектрические дрели, IC картонорезальные машины, фрезы для гравирования, режущие пилы, фрезеры-расширители, фрезеры-расширители с резцом, дрели, резаки форм для шлицевого вала / звездочки роликовой цепи, и специальные нано инструменты. Пожалуйста, посетите сайт  www.tool-tool.com  для получения большей информации.

BW is specialized in R&D and sourcing the most advanced carbide material with high-tech coating to supply cutting / milling tool for mould & die, aero space and electronic industry. Our main products include solid carbide / HSS end mills, micro electronic drill, IC card cutter, engraving cutter, shell end mills, cutting saw, reamer, thread reamer, leading drill, involute gear cutter for spur wheel, rack and worm milling cutter, thread milling cutter, form cutters for spline shaft/roller chain sprocket, and special tool, with nano grade. Please visit our web  www.tool-tool.com  for more info.

beeway 發表在 痞客邦 留言(0) 人氣()