公告版位


Bewise Inc. www.tool-tool.com Reference source from the internet.

Fresadora universal con sus accesorios.

Fresadora universal con sus accesorios.

Una fresadora es una máquina herramienta utilizada para realizar mecanizados por arranque de viruta mediante el movimiento de una herramienta rotativa de varios filos de corte denominada fresa.[1] En las fresadoras tradicionales, la pieza se desplaza acercando las zonas a mecanizar a la herramienta, permitiendo obtener formas diversas, desde superficies planas a otras más complejas.

Inventadas a principios del siglo XIX, las fresadoras se han convertido en máquinas básicas en el sector del mecanizado. Gracias a la incorporación del control numérico, son las máquinas herramientas más polivalentes por la variedad de mecanizados que pueden realizar y la flexibilidad que permiten en el proceso de fabricación. La diversidad de procesos mecánicos y el aumento de la competitividad global han dado lugar a una amplia variedad de fresadoras que, aunque tienen una base común, se diferencian notablemente según el sector industrial en el que se utilicen.[2] Asimismo, los progresos técnicos de diseño y calidad que se han realizado en las herramientas de fresar, han hecho posible el empleo de parámetros de corte muy altos, lo que conlleva una reducción drástica de los tiempos de mecanizado.

Debido a la variedad de mecanizados que se pueden realizar en las fresadoras actuales, al amplio número de máquinas diferentes entre sí, tanto en su potencia como en sus características técnicas, a la diversidad de accesorios utilizados y a la necesidad de cumplir especificaciones de calidad rigurosas; la utilización de fresadoras requiere de personal cualificado profesionalmente ya sea programador, preparador o fresador.[3]

El empleo de estas máquinas, con elementos móviles y cortantes, así como líquidos tóxicos para la refrigeración y lubricación del corte, requiere unas condiciones de trabajo que preserven la seguridad y salud de los trabajadores y eviten daños a las máquinas, a las instalaciones y a los productos finales o semielaborados.

Historia [editar]

Fresadora universal antigua.

Fresadora universal antigua.

La primera máquina de fresar se construyó en 1818 y fue diseñada por estadounidense Eli Whitney con el fin de agilizar la construcción de fusiles en la ciudad de Connecticut. Esta máquina se conserva en el Mechanical Engineering Museum de Yale.[4] En la década de 1830, la empresa Gay & Silver construyó una fresadora que incorporaba el mecanismo de regulación vertical y un soporte para el husillo portaherramientas.

En 1848 el ingeniero americano Frederick. W. Howe diseñó y fabricó para la empresa Robbins & Lawrence la primera fresadora universal que incorporaba un dispositivo de copiado de perfiles. Por esas mismas fechas se dio a conocer la fresadora Lincoln, que incorporaba un carnero cilíndrico regulable en sentido vertical. A mediados del siglo XIX se inició la construcción de fresadoras verticales. Concretamente, en el museo Conservatoire National des Arts et Métiers de París, se conserva una fresadora vertical construida en 1857.

La primera fresadora universal equipada con plato divisor que permitía la fabricación de engranajes rectos y helicoidales fue fabricada por Brown & Sharpe en 1853 por iniciativa y a instancias de Frederick W. Howe y fue presentada en la Exposición Universal de París de 1867. En 1884 la empresa americana Cincinnati construyó una fresadora universal que incorporaba un carnero cilíndrico posicionado axialmente.

En 1874, el constructor francés de máquinas-herramienta, Pierre Philippe Huré, diseñó una máquina de doble husillo, vertical y horizontal que se posicionaban mediante giro manual.

En 1894 el francés R. Huré, diseñó un cabezal universal con el que se pueden realizar diferentes mecanizados con variadas posiciones de la herramienta. Este tipo cabezal con ligeras modificaciones es uno de los accesorios más utilizados actualmente en las fresadoras universales.

En 1938 surge la compañía Bridgeport Machines, Inc. en Bridgeport, Connecticut, la cual en las décadas posteriores se hace famosa por sus fresadoras verticales de tamaño pequeño y mediano.[5]

Introducción del control numérico [editar]

Fresadora de control numérico por computadora (CNC).

El primer desarrollo en el área del control numérico por computadora (CNC) lo realizó el inventor norteamericano John T. Parsons (Detroit 1913-2007)[6] junto con su empleado Frank L. Stulen, en la década de 1940. El concepto de control numérico implicaba el uso de datos en un sistema de referencia para definir las superficies de contorno de las hélices de un helicóptero. La aplicación del control numérico abarca gran variedad de procesos. Se dividen las aplicaciones en dos categorías: las aplicaciones con máquina herramienta, tales como taladrado, fresado, laminado o torneado; y las aplicaciones sin máquina herramienta, tales como el ensamblaje, trazado, oxicorte,o metrología.

El principio de operación común de todas las aplicaciones del control numérico es el control de la posición relativa de una herramienta o elemento de procesado con respecto al objeto a procesar. Al principio los desplazamientos eran de punto a punto, y se utilizaban básicamente en taladradoras. La invención de las funciones de interpolación lineal y circular y el cambio automático de herramientas hizo posible la construcción de una generación de máquinas herramientas con las que se taladra, rosca, fresa e incluso se tornea y que han pasado a denominarse centros de mecanizado en lugar de fresadoras propiamente dichas.[7]

Control numérico por computadora en fresadoras [editar]

Consola de control numérico.

Consola de control numérico.

Las fresadoras con control numérico por computadora (CNC) son un ejemplo de automatización programable. Se diseñaron para adaptar las variaciones en la configuración de productos. Su principal aplicación se centra en volúmenes de producción medios de piezas sencillas y en volúmenes de producción medios y bajos de piezas complejas, permitiendo realizar mecanizados de precisión con la facilidad que representa cambiar de un modelo de pieza a otra mediante la inserción del programa correspondiente y de las nuevas herramientas que se tengan que utilizar así como el sistema de sujeción de las piezas. Utilizando el control numérico, el equipo de procesado se controla a través de un programa que utiliza números, letras y otros símbolos, (por ejemplo los llamados códigos G y M). Estos números, letras y símbolos, los cuales llegan a incluir &, %, $ y " (comillas), están codificados en un formato apropiado para definir un programa de instrucciones para desarrollar una tarea concreta. Cuando la tarea en cuestión varía se cambia el programa de instrucciones. En las grandes producciones en serie, el control numérico resulta útil para la robotización de la alimentación y retirada de las piezas mecanizadas.

Las fresadoras universales modernas cuentan con dispositivos electrónicos donde se visualizan -en forma mas sofisticada en unas que en otras- las posiciones de las herramientas, y así se facilita mejor la lectura de cotas en sus desplazamientos. Asimismo, a muchas fresadoras se les incorpora un sistema de control numérico por computadora (CNC) que permite automatizar su trabajo. También pueden incorporar un mecanismo de copiado para diferentes perfiles de mecanizado.

Existen varios lenguajes de programación CNC para fresadoras, todos ellos de programación numérica, entre los que destacan el lenguaje normalizado internacional ISO y los lenguajes Fagor y Siemens. Para desarrollar un programa de CNC habitualmente se utilizan simuladores que, mediante la utilización de una computadora, permiten comprobar la secuencia de operaciones programadas.

Campo de aplicación del control numérico [editar]

La aplicación de sistemas de control numérico por computadora en las máquinas-herramienta permite aumentar la productividad respecto a las máquinas convencionales y ha hecho posible efectuar operaciones de conformado que son imposibles de realizar con un elevado grado de precisión dimensional en máquinas convencionales, por ejemplo la realización de superficies esféricas. El uso del control numérico incide favorablemente en los costos de producción al propiciar la reducción del número de tipos de máquinas utilizadas en un taller de mecanizado, manteniendo o mejorando su calidad.

Los procesos que utilizan máquinas-herramienta de control numérico tienen un coste horario superior a los procesos que utilizan máquinas convencionales, pero inferior a los procesos que utilizan máquinas especiales con mecanismos de transferencia (transfert) que permiten la alimentación y retirada de piezas de forma automatizada. En el mismo sentido, los tiempos de preparación para un lote son mayores en una máquina de control numérico que en una máquina convencional, pues se necesita preparar la programación de control numérico de las operaciones del proceso. Sin embargo, los tiempos de operación son menores en una máquina de control numérico que en una máquina convencional, por lo cual, a partir de cierto número de piezas en un lote, el mecanizado es más económico utilizando el control numérico. Sin embargo, para lotes grandes, el proceso es más económico utilizando maquinas especializadas con mecanismos de transferencia.[8]

Tipos de fresadoras [editar]

Tren de fresado.

Tren de fresado.

Las fresadoras pueden clasificarse según varios aspectos, como la orientación del eje de giro o el número de ejes de operación. A continuación se indican las clasificaciones más usuales.

Fresadoras según la orientación de la herramienta [editar]

Dependiendo de la orientación del eje de giro de la herramienta de corte, se distinguen tres tipos de fresadoras: horizontales, verticales y universales.

Una fresadora horizontal utiliza fresas cilíndricas que se montan sobre un eje horizontal accionado por el cabezal de la máquina y apoyado por un extremo sobre dicho cabezal y por el otro sobre un rodamiento situado en el puente deslizante llamado carnero. Esta máquina permite realizar principalmente trabajos de ranurado, con diferentes perfiles o formas de las ranuras. Cuando las operaciones a realizar lo permiten, principalmente al realizar varias ranuras paralelas, puede aumentarse la productividad montando en el eje portaherramientas varias fresas conjuntamente formando un tren de fresado. La profundidad máxima de una ranura está limitada por la diferencia entre el radio exterior de la fresa y el radio exterior de los casquillos de separación que la sujetan al eje portafresas.

En una fresadora vertical, el eje del husillo está orientado verticalmente, perpendicular a la mesa de trabajo. Las fresas de corte se montan en el husillo y giran sobre su eje. En general, puede desplazarse verticalmente, bien el husillo, o bien la mesa, lo que permite profundizar el corte. Hay dos tipos de fresadoras verticales: las fresadoras de banco fijo o de bancada y las fresadoras de torreta o de consola. En una fresadora de torreta, el husillo permanece estacionario durante las operaciones de corte y la mesa se mueve tanto horizontalmente como verticalmente. En las fresadoras de banco fijo, sin embargo, la mesa se mueve sólo perpendicularmente al husillo, mientras que el husillo en sí se mueve paralelamente a su propio eje.[1]

Una fresadora universal tiene un husillo principal para el acoplamiento de ejes portaherramientas horizontales y un cabezal que se acopla a dicho husillo y que convierte la máquina en una fresadora vertical. Su ámbito de aplicación está limitado principalmente por el costo y por el tamaño de las piezas que se pueden trabajar. En las fresadoras universales, al igual que en las horizontales, el puente es deslizante, conocido en el argot como carnero, puede desplazarse de delante a detrás y viceversa sobre unas guías.

Fresadoras especiales [editar]

Además de las fresadoras tradicionales, existen otras fresadoras con características especiales que pueden clasificarse en determinados grupos. Sin embargo, las formas constructivas de estas máquinas varían sustancialmente de unas a otras dentro de cada grupo, debido a las necesidades de cada proceso de fabricación.

Las fresadoras circulares tienen una amplia mesa circular giratoria, por encima de la cual se desplaza el carro portaherramientas, que puede tener uno o varios cabezales verticales, por ejemplo, uno para operaciones de desbaste y otro para operaciones de acabado. Además pueden montarse y desmontarse piezas en una parte de la mesa mientras se mecanizan piezas en el otro lado.[8]

Las fresadoras copiadoras disponen de dos mesas: una de trabajo sobre la que se sujeta la pieza a mecanizar y otra auxiliar sobre la que se coloca un modelo. El eje vertical de la herramienta está suspendido de un mecanismo con forma de pantógrafo que está conectado también a un palpador sobre la mesa auxiliar. Al seguir con el palpador el contorno del modelo, se define el movimiento de la herramienta que mecaniza la pieza. Otras fresadoras copiadoras utilizan, en lugar de un sistema mecánico de seguimiento, sistemas hidráulicos, electro-hidráulicos o electrónicos.[2]

En las fresadoras de pórtico, también conocidas como fresadoras de puente, el cabezal portaherramientas vertical se halla sobre una estructura con dos columnas situadas en lados opuestos de la mesa. La herramienta puede moverse verticalmente y transversalmente y la pieza puede moverse longitudinalmente. Algunas de estas fresadoras disponen también a cada lado de la mesa sendos cabezales horizontales que pueden desplazarse verticalmente en sus respectivas columnas, además de poder prolongar sus ejes de trabajo horizontalmente. Se utilizan para mecanizar piezas de grandes dimensiones.[2]

En las fresadoras de puente móvil, en lugar de moverse la mesa, se mueve la herramienta en una estructura similar a un puente grúa. Se utilizan principalmente para mecanizar piezas de grandes dimensiones.

Una fresadora para madera es una máquina portátil que utiliza una herramienta rotativa para realizar fresados en superficies planas de madera. Son empleadas en bricolaje y ebanistería para realizar ranurados, como juntas de cola de milano o machihembrados; cajeados, como los necesarios para alojar cerraduras o bisagras en las puertas; y perfiles, como molduras. Las herramientas de corte que utilizan son fresas para madera, con dientes mayores y más espaciados que los que tienen las fresas para metal.[9] [10]

Fresadoras según el número de ejes [editar]

Fresadora CNC de cinco ejes con cabezal y mesa giratoria.

Fresadora CNC de cinco ejes con cabezal y mesa giratoria.

Las fresadoras pueden clasificarse en función del número de grados de libertad que pueden variarse durante la operación de arranque de viruta.

  • Fresadora de cuatro ejes. Además del movimiento relativo entre pieza y herramienta en tres ejes, se puede controlar el giro de la pieza sobre un eje, como con un mecanismo divisor o un plato giratorio. Se utilizan para generar superficies con un patrón cilíndrico, como engranajes o ejes estriados.
  • Fresadora de cinco ejes. Además del movimiento relativo entre pieza y herramienta en tres ejes, se puede controlar o bien el giro de la pieza sobre dos ejes, uno perpendicular al eje de la herramienta y otro paralelo a ella (como con un mecanismo divisor y un plato giratorio en una fresadora vertical); o bien el giro de la pieza sobre un eje horizontal y la inclinación de la herramienta alrededor de un eje perpendicular al anterior. Se utilizan para generar formas complejas, como el rodete de una turbina Francis.[11]

Movimientos [editar]

Ejes posibles en una fresadora.

Ejes posibles en una fresadora.
Movimientos básicos de fresado. 1.- Fresado frontal 2.- Fresado frontal y tangencial 3.- Fresado tangencial en oposición. 4.- Fresado tangencial en concordancia. Movimiento de corte. Movimiento de avance. Movimiento de profundidad de pasada.

Movimientos básicos de fresado.
1.- Fresado frontal
2.- Fresado frontal y tangencial
3.- Fresado tangencial en oposición.
4.- Fresado tangencial en concordancia. Movimiento de corte. Movimiento de avance. Movimiento de profundidad de pasada.

Movimientos de la herramienta [editar]

El principal movimiento de la herramienta es el giro sobre su eje. En algunas fresadoras también es posible variar la inclinación de la herramienta o incluso prolongar su posición a lo largo de su eje de giro. En las fresadoras de puente móvil todos los movimientos los realiza la herramienta mientras la pieza permanece inmóvil.

Movimientos de la mesa [editar]

La mesa de trabajo se puede desplazar de forma manual o automática con velocidades de avance de mecanizado o con velocidades de avance rápido en vacío. Para ello cuenta con una caja de avances expresados de mm/minuto, donde es posible seleccionar el avance de trabajo adecuado a las condiciones tecnológicas del mecanizado.

  • Movimiento longitudinal: según el eje X, que corresponde habitualmente al movimiento de trabajo. Para facilitar la sujeción de las piezas la mesa está dotada de unas ranuras en forma de T para permitir la fijación de mordazas u otros elementos de sujeción de las piezas y además puede inclinarse para el tallado de ángulos. Esta mesa puede avanzar de forma automática de acuerdo con las condiciones de corte que permita el mecanizado.
  • Movimiento transversal: según el eje Y, que corresponde al desplazamiento transversal de la mesa de trabajo. Se utiliza básicamente para posicionar la herramienta de fresar en la posición correcta.
  • Movimiento vertical: según el eje Z, que corresponde al desplazamiento vertical de la mesa de trabajo. Con el desplazamiento de este eje se establece la profundidad de corte del fresado.
  • Giro respecto a un eje longitudinal: según el grado de libertad U. Se obtiene con un cabezal divisor o con una mesa oscilante.
  • Giro respecto a un eje vertical: según el grado de libertad W. En algunas fresadoras se puede girar la mesa 45º a cada lado, en otras la mesa puede dar vueltas completas.

Movimiento relativo entre pieza y herramienta [editar]

El movimiento relativo entre la pieza y la herramienta puede clasificarse en tres tipos básicos:

  • El movimiento de corte es el que realiza la punta de la herramienta alrededor del eje del portaherramientas.
  • El movimiento de avance es el movimiento de aproximación de la herramienta desde la zona cortada a la zona sin cortar.
  • El movimiento de profundización, de perforación, o de profundidad de pasada es un tipo de movimiento de avance que se realiza para aumentar la profundidad del corte.

Estructura, componentes y características [editar]

Estructura de una fresadora [editar]

Diagrama de una fresadora horizontal. 1: base. 2: columna. 3: consola. 4: carro transversal. 5: mesa. 6: puente. 7: eje portaherramientas.

Diagrama de una fresadora horizontal.
1: base. 2: columna. 3: consola. 4: carro transversal. 5: mesa. 6: puente. 7: eje portaherramientas.
Detalle de mesa de una fresadora.

Detalle de mesa de una fresadora.

Los componentes principales de una fresadora son la base, el cuerpo, la consola, el carro, la mesa, el puente y el eje de la herramienta. La base permite un apoyo correcto de la fresadora en el suelo. El cuerpo o bastidor tiene forma de columna y se apoya sobre la base o ambas forman parte de la misma pieza. Habitualmente, la base y la columna son de fundición aleada y estabilizada. La columna tiene en la parte frontal unas guías templadas y rectificadas para el movimiento de la consola y unos mandos para el accionamiento y control de la máquina.

La consola se desliza verticalmente sobre las guías del cuerpo y sirve de sujeción para la mesa. La mesa tiene una superficie ranurada sobre la que se sujeta la pieza a conformar. La mesa se apoya sobre dos carros que permiten el movimiento longitudinal y transversal de la mesa sobre la consola.

El puente es una pieza apoyada en voladizo sobre el bastidor y en él se alojan unas lunetas donde se apoya el eje portaherramientas. En la parte superior del puente suele haber montado uno o varios tornillos de cáncamo para facilitar el transporte de la máquina.[2] El portaherramientas o portafresas es el apoyo de la herramienta y le transmite el movimiento de rotación del mecanismo de accionamiento alojado en el interior del bastidor. Este eje suele ser de acero aleado al cromo-vanadio para herramientas.[8]

Características técnicas de una fresadora [editar]

Al seleccionar una fresadora para su adquisición y para realizar trabajos con ella, deben tenerse en cuenta varias características técnicas de la misma. El tamaño de las piezas a mecanizar está limitado por las dimensiones de la superficie de la mesa y los recorridos de los elementos móviles. Dependiendo de las operaciones a realizar, puede ser necesaria la posibilidad de controlar varios ejes a la vez, como los proporcionados por mesas giratorias o por cabezales divisores, o incluso controlar estos ejes de forma automática por CNC, por ejemplo para realizar contorneados. En función del material de la pieza, de las herramientas de corte y de las tolerancias de fabricación requeridas, es necesario utilizar velocidades de corte y de avance diferentes, lo cual puede hacer necesaria la posibilidad de operar con gamas de velocidades, con velocidades máximas y potencias suficientes para lograr flexibilidad en el sistema de producción.

Los dispositivos electrónicos de control, desde la visualización de cotas hasta el control numérico, permiten aumentar la productividad y la precisión del proceso productivo.

Además, una fresadora debe tener dispositivos de seguridad, como botones de parada de emergencia (coloquialmente conocidos como setas de emergencia), dispositivo de seguridad contra sobrecargas (que consiste; bien en un embrague automático que desacopla el movimiento de la herramienta cuando se alcanza un límite de fricción o se vence la acción de unos muelles; o bien en un sistema electrónico) y pantallas de protección contra la proyección de virutas o partes de la pieza o la herramienta de corte.

Otro aspecto a tener en cuenta es el peso de la máquina, que influye en el transporte de la misma y las necesidades de cimentación de la nave para que las vibraciones estén controladas en niveles admisibles. Para un buen funcionamiento de la máquina se requiere que sus holguras e imperfecciones dimensionales estén controladas y no excedan de unas tolerancias determinadas, para lo cual se realizan inspecciones periódicas. Las guías de los componentes deslizantes, como los carros de mesa o el puente, habitualmente son trapezoidales o con forma de cola de milano por esta razón.[2] Los husillos de accionamiento de los movimientos deslizantes son husillos de bolas sin juego para disminuir las fuerzas de rozamiento y así ralentizar el crecimiento de las holguras.[8]

Equipamiento de una fresadora de control numérico [editar]

Husillo de bolas sin juego del movimiento longitudinal de la mesa.

Husillo de bolas sin juego del movimiento longitudinal de la mesa.

Los equipamientos de serie y opcionales que montan las fresadoras actuales son muy variables en función de las prestaciones que tengan.

Respecto al manejo de la información, es necesario tener en cuenta el tipo de lenguaje de programación que es posible utilizar, la capacidad de memoria de la máquina para un uso posterior de los programas almacenados, así como la forma de introducción y modificación de los programas: a pie de máquina, mediante dispositivos de almacenamiento de datos (disquete o memoria USB), o mediante una tarjeta de red.

La unidad central de proceso (CPU, por sus siglas en inglés) de la máquina controla accionamientos rotativos, para lo cual se utilizan servomotores que pueden variar su velocidad en un rango continuo. El movimiento lineal de los carros de la mesa se obtiene transformando el movimiento rotacional de los servomotores mediante husillos de bolas sin juego.

La CPU obtiene datos del programa y de los sensores instalados, los cuales permiten establecer una realimentación del control de las operaciones. La precisión de estos sensores y la velocidad de procesamiento de la CPU limitan la precisión dimensional que puede obtenerse. El tipo de sensor utilizado ha evolucionado con el tiempo, siendo en la actualidad muy utilizados los sensores de efecto Hall para el control de los desplazamientos y giros realizados. Para controlar la posición del origen del sistema de referencia de los movimientos realizados y el desgaste de la herramienta se utilizan uno o varios palpadores o sondas de medida. Un palpador es un dispositivo con un vástago que acciona un pulsador al hacer contacto con la pieza o con la mesa de la máquina. También puede establecerse el origen de coordenadas realizando un contacto en movimiento de la herramienta con la zona a mecanizar.

Además de los movimientos de la pieza y de la herramienta, pueden controlarse de manera automatizada otros parámetros como la herramienta empleada, que puede cambiarse desde un almacén de herramientas instalado en la máquina; el uso o no de fluido refrigerante o la apertura y cierre de las puertas de seguridad.

Accesorios principales [editar]

Visualizador de las cotas de los ejes.

Visualizador de las cotas de los ejes.

Existen varios accesorios que se instalan en las fresadoras para realizar operaciones de mecanizado diferentes o para una utilización con mayor rapidez, precisión y seguridad:[12]

  • Dispositivos de adición de ejes: cabezal multiangular (permite orientar el eje del portaherramientas), divisor universal con contrapunto y juego de engranes y mesa circular divisora.
  • Dispositivos para sujeción de piezas: plato universal de 3 garras con contraplato; contrapunto y lunetas; mordaza giratoria graduada; mordaza hidráulica.
  • Dispositivos para sujeción de herramientas: ejes porta-fresas largos y cortos, eje porta-pinzas y juego de pinzas.
  • Dispositivos para operaciones especiales: aparato de mortajar giratorio, cabezal de mandrinar.
  • Dispositivos de control: visualización digital de cotas y pal

beeway 發表在 痞客邦 留言(0) 人氣()


Bewise Inc. www.tool-tool.com Reference source from the internet.

Example of a CNC vertical milling center

Example of a CNC vertical milling center

A milling machine is a machine tool used for the shaping of metal and other solid materials. Its basic form is that of a rotating cutter which rotates about the spindle axis (similar to a drill), and a table to which the workpiece is affixed. The cutter and workpiece move relative to each other, generating a toolpath along which material is removed. The movement is precisely controlled, usually with slides and leadscrews or analogous technology. Often the movement is achieved by moving the table while the cutter rotates in one place, but regardless of how the parts of the machine slide, the result that matters is the relative motion between cutter and workpiece. Milling machines may be operated manually or by CNC (computer numerical control).

Milling machines can perform a vast number of operations, some of them with quite complex toolpaths, such as slot cutting, planing, drilling, diesinking, rebating, routing, etc.

Cutting fluid is often pumped to the cutting site to cool and lubricate the cut, and to sluice away the resulting swarf.

[edit] Types of milling machines

A miniature hobbyist mill plainly showing the basic parts of a mill.

A miniature hobbyist mill plainly showing the basic parts of a mill.
  1. Hand milling machine
  2. Plain milling machine
  3. Universal milling machine
  4. Omniversal milling machine

There are two main types of mill: the vertical mill and the horizontal mill. In the vertical mill the spindle axis is vertically oriented. Milling cutters are held in the spindle and rotate on its axis. The spindle can generally be extended (or the table can be raised/lowered, giving the same effect), allowing plunge cuts and drilling. There are two subcategories of vertical mills: the bedmill and the turret mill. Turret mills, like the ubiquitous Bridgeport, are generally smaller than bedmills, and are considered by some to be more versatile. In a turret mill the spindle remains stationary during cutting operations and the table is moved both perpendicular to and parallel to the spindle axis to accomplish cutting. In the bedmill, however, the table moves only perpendicular to the spindle's axis, while the spindle itself moves parallel to its own axis. Also of note is a lighter machine, called a mill-drill. It is quite popular with hobbyists, due to its small size and lower price. These are frequently of lower quality than other types of machines, however.

A horizontal mill has the same sort of xy table, but the cutters are mounted on a horizontal arbor across the table. A majority of horizontal mills also feature a +15/-15 degree rotary table that allows milling at shallow angles. While endmills and the other types of tools available to a vertical mill may be used in a horizontal mill, their real advantage lies in arbor-mounted cutters, called side and face mills, which have a cross section rather like a circular saw, but are generally wider and smaller in diameter. Because the cutters have good support from the arbor, quite heavy cuts can be taken, enabling rapid material removal rates. These are used to mill grooves and slots. Plain mills are used to shape flat surfaces. Several cutters may be ganged together on the arbor to mill a complex shape of slots and planes. Special cutters can also cut grooves, bevels, radii, or indeed any section desired. These specialty cutters tend to be expensive. Simplex mills have one spindle, and duplex mills have two. It is also easier to cut gears on a horizontal mill.

A more complex form of the milling machine is the Universal milling machine, in which the rotating cutter can be oriented vertically or horizontally, increasing the flexibility of the machine tool. The table of the universal machine can be swiveled through a small angle (up to about 15 degrees), enabling the axis of the spindle to coincide with the axis of a helix to be milled with the use of a gear driven indexing head.

[edit] Milling machine variants

  • Box or column mills are very basic hobbyist bench-mounted milling machines that feature a head riding up and down on a column or box way.
  • Turret or Vertical ram mills are more commonly referred to as bridgeport-type milling machines. The spindle can be aligned in many different positions for a very versatile, if somewhat less rigid machine.
  • C-Frame mills are larger, industrial production mills. They feature a knee and fixed spindle head that is only mobile vertically. They are typically much more powerful than a turret mill, featuring a separate hydraulic motor for integral hydraulic power feeds in all directions, and a twenty to fifty horsepower motor. Backlash eliminators are almost always standard equipment. They use large NMTB 40 or 50 tooling. The tables on C-frame mills are usually 18" by 68" or larger, to allow multiple parts to be machined at the same time.
  • Knee mill refers to any milling machine that has a vertically adjustable table.
  • Bed mill refers to any milling machine where the spindle is on a pendant that moves up and down to move the cutter into the work. These are generally more rigid than a knee mill.
  • Ram type mill refers to a mill that has a swiveling cutting head mounted on a sliding ram. The spindle can be oriented either vertically or horizontally, or anywhere in between. Van Norman specialized in ram type mills through most of the 20th century, but since the advent of CNC machines ram type mills are no longer made.
  • Jig borers are vertical mills that are built to bore holes, and very light slot or face milling. They are typically bed mills with a long spindle throw. The beds are more accurate, and the handwheels are graduated down to .0001" for precise hole placement.
  • Horizontal boring mills are large, accurate bed horizontal mills that incorporate many features from various machine tools. They are predominantly used to create large manufacturing jigs, or to modify large, high precision parts. They have a spindle stroke of several (usually between four and six) feet, and many are equipped with a tailstock to perform very long boring operations without losing accuracy as the bore increases in depth. A typical bed would have X and Y travel, and be between three and four feet square with a rotary table or a larger rectangle without said table. The pendant usually has between four and eight feet in vertical movement. Some mills have a large (30" or more) integral facing head. Right angle rotary tables and vertical milling attachments are available to further increase productivity.
  • Floor mills have a row of rotary tables, and a horizontal pendant spindle mounted on a set of tracks that runs parallel to the table row. These mills have predominantly been converted to CNC, but some can still be found (if one can even find a used machine available) under manual control. The spindle carriage moves to each individual table, performs the machining operations, and moves to the next table while the previous table is being set up for the next operation. Unlike any other kind of mill, floor mills have floor units that are entirely movable. A crane will drop massive rotary tables , X-Y tables , and the like into position for machining, allowing the largest and most complex custom milling operations to take place.
  • Portical mills It has the spindle mounted in a T structure

[edit] Computer numerical control

Thin wall milling of aluminum using a water based coolant on the milling cutter

Thin wall milling of aluminum using a water based coolant on the milling cutter

Most CNC milling machines or machining centers are computer controlled vertical mills with the ability to move the spindle vertically along the Z-axis. This extra degree of freedom permits their use in diesinking, engraving applications, and 2.5D surfaces such as relief sculptures. When combined with the use of conical tools or a ball nose cutter, it also significantly improves milling precision without impacting speed, providing a cost-efficient alternative to most flat-surface hand-engraving work.

Five-axis machining center with rotating table and computer interface

Five-axis machining center with rotating table and computer interface

CNC machines can exist in virtually any of the forms of manual machinery, like horizontal mills. The most advanced CNC milling-machines, the 5-axis machines, add two more axes in addition to the three normal axes (XYZ). Horizontal milling machines also have a C or Q axis, allowing the horizontally mounted workpiece to be rotated, essentially allowing asymmetric and eccentric turning. The fifth axis (B axis) controls the tilt of the tool itself. When all of these axes are used in conjunction with each other, extremely complicated geometries, even organic geometries such as a human head can be made with relative ease with these machines. But the skill to program such geometries is beyond that of most humans. Therefore, 5-axis milling machines are practically always programmed with CAM.

With the declining price of computers, free operating systems such as Linux, and open source CNC software, the entry price of CNC machines has plummeted. For example, Sherline, Prazi, and others make desktop CNC milling machines that are affordable by hobbyists.

High speed steel with cobalt endmills used for cutting operations in a milling machine.

High speed steel with cobalt endmills used for cutting operations in a milling machine.

[edit] Milling machine tooling

There is some degree of standardization of the tooling used with CNC Milling Machines and to a much lesser degree with manual milling machines.

CNC Milling machines will nearly always use SK (or ISO), CAT, BT or HSK tooling. SK tooling is the most common in Europe, while CAT tooling, sometimes called V-Flange Tooling, is the oldest variation and is probably still the most common in the USA. CAT tooling was invented by Caterpillar Inc. of Peoria, Illinois in order to standardize the tooling used on their machinery. CAT tooling comes in a range of sizes designated as CAT-30, CAT-40, CAT-50, etc. The number refers to the Association for Manufacturing Technology (formerly the National Machine Tool Builders Association (NMTB)) Taper size of the tool.

CAT-40 Toolholder

CAT-40 Toolholder

An improvement on CAT Tooling is BT Tooling, which looks very similar and can easily be confused with CAT tooling. Like CAT Tooling, BT Tooling comes in a range of sizes and uses the same NMTB body taper. However, BT tooling is symmetrical about the spindle axis, which CAT tooling is not. This gives BT tooling greater stability and balance at high speeds. One other subtle difference between these two toolholders is the thread used to hold the pull stud. CAT Tooling is all Imperial thread and BT Tooling is all Metric thread. Note that this affects the pull stud only, it does not affect the tool that they can hold, both types of tooling are sold to accept both Imperial and metric sized tools.

SK and HSK tooling, sometimes called "Hollow Shank Tooling", is much more common in Europe where it was invented than it is in the United States. It is claimed that HSK tooling is even better than BT Tooling at high speeds. The holding mechanism for HSK tooling is placed within the (hollow) body of the tool and, as spindle speed increases, it expands, gripping the tool more tightly with increasing spindle speed. There is no pull stud with this type of tooling.

The situation is quite different for manual milling machines — there is little standardization. Newer and larger manual machines usually use NMTB tooling. This tooling is somewhat similar to CAT tooling but requires a drawbar within the milling machine. Furthermore, there are a number of variations with NMTB tooling that make interchangeability troublesome.

Boring head on Morse Taper Shank

Boring head on Morse Taper Shank

Two other tool holding systems for manual machines are worthy of note: They are the R8 collet and the Morse Taper #2 collet. Bridgeport Machines of Bridgeport, Connecticut so dominated the milling machine market for such a long time that their machine "The Bridgeport" is virtually synonymous with "Manual milling machine." The bulk of the machines that Bridgeport made from about 1965 onward used an R8 collet system. Prior to that, the bulk of the machines used a Morse Taper #2 collet system.

As an historical footnote: Bridgeport is now owned by Hardinge Brothers of Elmira, New York.

歡迎來到Bewise Inc.的世界,首先恭喜您來到這接受新的資訊讓產業更有競爭力,我們是提供專業刀具製造商,應對客戶高品質的刀具需求,我們可以協助客戶滿足您對產業的不同要求,我們有能力達到非常卓越的客戶需求品質,這是現有相關技術無法比擬的,我們成功的滿足了各行各業的要求,包括:精密HSS DIN切削刀具協助客戶設計刀具流程DIN or JIS 鎢鋼切削刀具設計NAS986 NAS965 NAS897 NAS937orNAS907 航太切削刀具,NAS航太刀具設計超高硬度的切削刀具BW捨棄式鑽石V卡刀BW捨棄式金屬圓鋸片木工捨棄式金屬圓鋸片PCD木工圓鋸片醫療配件刀具設計汽車業刀具設計電子產業鑽石刀具全鎢鋼V卡刀-電路版專用全鎢鋼鋸片焊刃式側銑刀焊刃式千鳥側銑刀焊刃式T型銑刀焊刃式千鳥T型銑刀焊刃式螺旋機械鉸刀全鎢鋼斜邊刀電路版專用鎢鋼焊刃式高速鉸刀超微粒鎢鋼機械鉸刀超微粒鎢鋼定點鑽焊刃式帶柄角度銑刀焊刃式螺旋立銑刀焊刃式帶柄倒角銑刀焊刃式角度銑刀焊刃式筒型平面銑刀木工產業鑽石刀具等等。我們的產品涵蓋了從民生刀具到工業級的刀具設計;從微細刀具到大型刀具;從小型生產到大型量產;全自動整合;我們的技術可提供您連續生產的效能,我們整體的服務及卓越的技術,恭迎您親自體驗!!

BW Bewise Inc. Willy Chen willy@tool-tool.com bw@tool-tool.com www.tool-tool.com skype:willy_chen_bw mobile:0937-618-190 Head &Administration Office No.13,Shiang Shang 2nd St., West Chiu Taichung,Taiwan 40356 http://www.tool-tool..com / FAX:+886 4 2471 4839 N.Branch 5F,No.460,Fu Shin North Rd.,Taipei,Taiwan S.Branch No.24,Sec.1,Chia Pu East Rd.,Taipao City,Chiayi Hsien,Taiwan

Welcome to BW tool world! We are an experienced tool maker specialized in cutting tools. We focus on what you need and endeavor to research the best cutter to satisfy users demand. Our customers involve wide range of industries, like mold & die, aerospace, electronic, machinery, etc. We are professional expert in cutting field. We would like to solve every problem from you. Please feel free to contact us, its our pleasure to serve for you. BW product including: cutting toolaerospace tool .HSS DIN Cutting toolCarbide end millsCarbide cutting toolNAS Cutting toolNAS986 NAS965 NAS897 NAS937orNAS907 Cutting Tools,Carbide end milldisc milling cutter,Aerospace cutting toolhss drillФрезерыCarbide drillHigh speed steelMilling cutterCVDD(Chemical Vapor Deposition Diamond )’PCBN (Polycrystalline Cubic Boron Nitride) Core drillTapered end millsCVD Diamond Tools Inserts’PCD Edge-Beveling Cutter(Golden FingerEdge modifying knifeSolid carbide saw blade-V typeV-type locking-special use for PC boardMetal Slitting SawaCarbide Side milling CuttersCarbide Side Milling Cutters With Staggered TeethCarbide T-Slot Milling CuttersCarbide T-Slot Milling Cutters With Staggered TeethCarbide Machine ReamersHigh speed reamer-standard typeHigh speed reamer-long type’’PCD V-CutterPCD Wood toolsPCD Cutting toolsPCD Circular Saw BladePVDD End Millsdiamond tool V-type locking-special use for PC board Single Crystal Diamond Metric end millsMiniature end millsСпециальные режущие инструменты Пустотелое сверло Pilot reamerFraisesFresas con mango PCD (Polycrystalline diamond) ‘FreseElectronics cutterStep drillMetal cutting sawDouble margin drillGun barrelAngle milling cutterCarbide burrsCarbide tipped cutterChamfering toolIC card engraving cutterSide cutterNAS toolDIN or JIS toolSpecial toolMetal slitting sawsShell end millsSide and face milling cuttersSide chip clearance sawsLong end millsStub roughing end millsDovetail milling cuttersCarbide slot drillsCarbide torus cuttersA

beeway 發表在 痞客邦 留言(0) 人氣()


Bewise Inc. www.tool-tool.com Reference source from the internet.

Burnishing is a form of pottery decoration in which the surface of the pot is polished, using a hard smooth surface such as a wooden or bone spatula, smooth stones, or even glass bulbs, while it still is in a leathery 'green' state, i.e. before firing. After firing, the surface is extremely shiny. Often the whole outer surface of the pot is thus decorated, but in certain ceramic traditions there is 'pattern burnishing' where the outside and, in the case of open bowls, the inside, are decorated with burnished patterns in which some areas are left matte.

This technique can be applied to concrete masonry units as well, creating a rich, stately appearance that one often can find inside educational facilities, financial institutions and even sporting venues such as Lambeau Field in Green Bay, Wisconsin, United States. This finish works for exterior use as well, the smooth face lending itself to a stunning mix of textures when combined with rougher, splitface block.

Burnishing can also be applied to wood. Hard woods are best to use with this. Rub them along one another, the more important one should be rubbed down its grain, but crossways will still work, and shortly a glossy sheen will come up and the wood will become slick. Burnishing does not protect the wood like a varnish does, but you do not have to wait for a burnished piece of wood to dry as you would if you had varnished it.

If one wood has a dye in it, or is colored in some way, it may rub off onto the other wood, so choose carefully and perform a test rub first.

歡迎來到Bewise Inc.的世界,首先恭喜您來到這接受新的資訊讓產業更有競爭力,我們是提供專業刀具製造商,應對客戶高品質的刀具需求,我們可以協助客戶滿足您對產業的不同要求,我們有能力達到非常卓越的客戶需求品質,這是現有相關技術無法比擬的,我們成功的滿足了各行各業的要求,包括:精密HSS DIN切削刀具協助客戶設計刀具流程DIN or JIS 鎢鋼切削刀具設計NAS986 NAS965 NAS897 NAS937orNAS907 航太切削刀具,NAS航太刀具設計超高硬度的切削刀具BW捨棄式鑽石V卡刀BW捨棄式金屬圓鋸片木工捨棄式金屬圓鋸片PCD木工圓鋸片醫療配件刀具設計汽車業刀具設計電子產業鑽石刀具全鎢鋼V卡刀-電路版專用全鎢鋼鋸片焊刃式側銑刀焊刃式千鳥側銑刀焊刃式T型銑刀焊刃式千鳥T型銑刀焊刃式螺旋機械鉸刀全鎢鋼斜邊刀電路版專用鎢鋼焊刃式高速鉸刀超微粒鎢鋼機械鉸刀超微粒鎢鋼定點鑽焊刃式帶柄角度銑刀焊刃式螺旋立銑刀焊刃式帶柄倒角銑刀焊刃式角度銑刀焊刃式筒型平面銑刀木工產業鑽石刀具等等。我們的產品涵蓋了從民生刀具到工業級的刀具設計;從微細刀具到大型刀具;從小型生產到大型量產;全自動整合;我們的技術可提供您連續生產的效能,我們整體的服務及卓越的技術,恭迎您親自體驗!!

BW Bewise Inc. Willy Chen willy@tool-tool.com bw@tool-tool.com www.tool-tool.com skype:willy_chen_bw mobile:0937-618-190 Head &Administration Office No.13,Shiang Shang 2nd St., West Chiu Taichung,Taiwan 40356 http://www.tool-tool..com / FAX:+886 4 2471 4839 N.Branch 5F,No.460,Fu Shin North Rd.,Taipei,Taiwan S.Branch No.24,Sec.1,Chia Pu East Rd.,Taipao City,Chiayi Hsien,Taiwan

Welcome to BW tool world! We are an experienced tool maker specialized in cutting tools. We focus on what you need and endeavor to research the best cutter to satisfy users demand. Our customers involve wide range of industries, like mold & die, aerospace, electronic, machinery, etc. We are professional expert in cutting field. We would like to solve every problem from you. Please feel free to contact us, its our pleasure to serve for you. BW product including: cutting toolaerospace tool .HSS DIN Cutting toolCarbide end millsCarbide cutting toolNAS Cutting toolNAS986 NAS965 NAS897 NAS937orNAS907 Cutting Tools,Carbide end milldisc milling cutter,Aerospace cutting toolhss drillФрезерыCarbide drillHigh speed steelMilling cutterCVDD(Chemical Vapor Deposition Diamond )’PCBN (Polycrystalline Cubic Boron Nitride) Core drillTapered end millsCVD Diamond Tools Inserts’PCD Edge-Beveling Cutter(Golden FingerEdge modifying knifeSolid carbide saw blade-V typeV-type locking-special use for PC boardMetal Slitting SawaCarbide Side milling CuttersCarbide Side Milling Cutters With Staggered TeethCarbide T-Slot Milling CuttersCarbide T-Slot Milling Cutters With Staggered TeethCarbide Machine ReamersHigh speed reamer-standard typeHigh speed reamer-long type’’PCD V-CutterPCD Wood toolsPCD Cutting toolsPCD Circular Saw BladePVDD End Millsdiamond tool V-type locking-special use for PC board Single Crystal Diamond Metric end millsMiniature end millsСпециальные режущие инструменты Пустотелое сверло Pilot reamerFraisesFresas con mango PCD (Polycrystalline diamond) ‘FreseElectronics cutterStep drillMetal cutting sawDouble margin drillGun barrelAngle milling cutterCarbide burrsCarbide tipped cutterChamfering toolIC card engraving cutterSide cutterNAS toolDIN or JIS toolSpecial toolMetal slitting sawsShell end millsSide and face milling cuttersSide chip clearance sawsLong end millsStub roughing end millsDovetail milling cuttersCarbide slot drillsCarbide torus cuttersAngel carbide end millsCarbide torus cuttersCarbide ball-nosed slot drillsMould cutterTool manufacturer.

Bewise Inc. www.tool-tool.com

ようこそBewise Inc.の世界へお越し下さいませ、先ず御目出度たいのは新たな

情報を受け取って頂き、もっと各産業に競争力プラス展開。

弊社は専門なエンドミルの製造メーカーで、客先に色んな分野のニーズ

豊富なパリエーションを満足させ、特にハイテク品質要求にサポート致します。

弊社は各領域に供給できる内容は:

(1)精密HSSエンドミルのR&D

(2)Carbide Cutting tools設計

(3)鎢鋼エンドミル設計

(4)航空エンドミル設計

(5)超高硬度エンドミル

(6)ダイヤモンドエンドミル

(7)医療用品エンドミル設計

(8)自動車部品&材料加工向けエンドミル設計

弊社の製品の供給調達機能は:

(1)生活産業~ハイテク工業までのエンドミル設計

(2)ミクロエンドミル~大型エンドミル供給

(3)小Lot生産~大量発注対応供給

(4)オートメーション整備調達

(5)スポット対応~流れ生産対応

弊社の全般供給体制及び技術自慢の総合専門製造メーカーに貴方のご体験を御待ちしております。

BW специализируется в научных исследованиях и разработках, и снабжаем самым высокотехнологичным карбидовым материалом для поставки режущих / фрезеровочных инструментов для почвы, воздушного пространства и электронной индустрии. В нашу основную продукцию входит твердый карбид / быстрорежущая сталь, а также двигатели, микроэлектрические дрели, IC картонорезальные машины, фрезы для гравирования, режущие пилы, фрезеры-расширители, фрезеры-расширители с резцом, дрели, резаки форм для шлицевого вала / звездочки роликовой цепи, и специальные нано инструменты. Пожалуйста, посетите сайт www.tool-tool.com для получения большей информации.

BW is specialized in R&D and sourcing the most advanced carbide material with high-tech coating to supply cutting / milling tool for mould & die, aero space and electronic industry. Our main products include solid carbide / HSS end mills, micro electronic drill, IC card cutter, engraving cutter, shell end mills, cutting saw, reamer, thread reamer, leading drill, involute gear cutter for spur wheel, rack and worm milling cutter, thread milling cutter, form cutters for spline shaft/roller chain sprocket, and special tool, with nano grade. Please visit our web www.tool-tool.com for more info.

beeway 發表在 痞客邦 留言(0) 人氣()



Bewise Inc. www.tool-tool.com Reference source from the internet.

*用金刚石刀具切削加工钛合金有哪些特点?

从加工钛合金的各种刀具材料切削实验的结果可以看出,金刚石刀具加工钛合金的效果最为显著。这是因为金刚石在钛中的溶解度比在铁中小得多,切削时金刚石刀具的扩散磨损很小,故用金刚石刀具切削钛合金有以下特点:

(1)有很高的耐用度:用硬质合金刀具和金刚石复合片刀具车削钛合金棒料,采用的车削用量为Vc=56 m/minαp=1 mmf=0.05 mm/r,用硬质合金刀具车削时,刀具很快就磨损了,切下的切屑体积仅有0.07 cm3;而在相同的磨损条件下,金刚石车刀却能切下多得多的切屑,切屑体积高达132 cm3,是硬质合金刀具的1885倍。通过切削钛合金试验,在相同的条件下,刀具材料磨损量最大的是氧化铝基陶瓷,其次是硬质合金,磨损量最小的是金刚石。

(2)有很高的导热性:钛合金的导热系数为5.4410.47W(m.K),是45号钢的1/51/6,而金刚石的导热系数非常高,达146.5 W(m.K),是45号钢的3倍、硬质合金的1.77倍,加上金刚石硬度高,切削刃可磨得非常锋利,切削时产生的切削热较少,刀具又能传出很大部分切削热。因此用金刚石刀具加工钛合金的切削温度低。

(3)允许较高的切削速度:用YG类硬质合金加工TC4钛合金时,切削速度一般采用Vc=2050 m/min;而用金刚石刀具在没用切削液干切时采用Vc=100 m/min,湿切时可高达Vc=200 m/min,比硬质合金高出好几倍,且刀具几乎看不出有多少磨损。

(4)粘结和扩散磨损最小:用于切削钛合金的各种刀具材料中,金刚石与钛合金间产生粘结和扩散的可能性最小,即切削时刀具产生粘结磨损和扩散磨损最小。

实践证明,精切钛合金时以金刚石刀具最佳,粗加工时以YG类硬质合金湿切为好。金刚石刀具的几何参数是γ0=-5°、α0=17°、κr=30°、κ´r=20°、λs=0°,rε=0.1 mm;切削用量是Vc=8090 m/minαp =0.20.4 mmf=0.050.07 mm/r

*切削加工钛合金的实例有哪些?

(1)145 mm×65 mm的钛合金车成圆棒,在Vc=56m/minαp =2 mmf =0.1 mm/r的情况下,开始用YG8硬质合金刀具,只车下0.7 cm3体积的切屑。后改用金刚石复合刀片的车刀,切下切屑的体积达143 cm3,为硬质合金刀具的204倍,且后刀面磨损很小。又如,用天然金刚石刀具,在干式切削时,在Vc=100 m/min的条件下,切削30 min后,刀具几乎没磨损。在有切削液的条件下,切削速度可达200 m/min

(2)铣削TB2钛合金,刀具材料为YS30硬质合金,在Vc=100150 m/minαp =0.20.5 mmαf =0.060.08mm/z的条件下,切削十分轻快,刀具磨损很小。

(3)TC4钛合金车外圆和内孔,采用YM052硬质合金为刀具材料,在Vc=70120 m/minαp =12 mmf=0.2 mm/r的条件下,刀具磨损比较小,而且表面粗糙度Rn可达0.8μm

(4)TC4钛合金上加工M185×3的螺纹,螺纹为50mm长。采用YM051超细颗粒硬质合金车刀,刀具可车56件。

(5)用不同切削速度加工TC4钛合金时,切削条件为:γ0=3°,α0=14°,κr =κ´r =45°,rε=1 mmf=0.16 mm/rtip=1 mm,切削速度分别为30 m/min6070 m/min90100m/min,结果是:低速时YS2有很高的耐磨性,在高速时,YD15的耐磨性高于YS2

歡迎來到Bewise Inc.的世界,首先恭喜您來到這接受新的資訊讓產業更有競爭力,我們是提供專業刀具製造商,應對客戶高品質的刀具需求,我們可以協助客戶滿足您對產業的不同要求,我們有能力達到非常卓越的客戶需求品質,這是現有相關技術無法比擬的,我們成功的滿足了各行各業的要求,包括:精密HSS DIN切削刀具協助客戶設計刀具流程DIN or JIS 鎢鋼切削刀具設計NAS986 NAS965 NAS897 NAS937orNAS907 航太切削刀具,NAS航太刀具設計超高硬度的切削刀具BW捨棄式鑽石V卡刀BW捨棄式金屬圓鋸片木工捨棄式金屬圓鋸片PCD木工圓鋸片醫療配件刀具設計汽車業刀具設計電子產業鑽石刀具全鎢鋼V卡刀-電路版專用全鎢鋼鋸片焊刃式側銑刀焊刃式千鳥側銑刀焊刃式T型銑刀焊刃式千鳥T型銑刀焊刃式螺旋機械鉸刀全鎢鋼斜邊刀電路版專用鎢鋼焊刃式高速鉸刀超微粒鎢鋼機械鉸刀超微粒鎢鋼定點鑽焊刃式帶柄角度銑刀焊刃式螺旋立銑刀焊刃式帶柄倒角銑刀焊刃式角度銑刀焊刃式筒型平面銑刀木工產業鑽石刀具等等。我們的產品涵蓋了從民生刀具到工業級的刀具設計;從微細刀具到大型刀具;從小型生產到大型量產;全自動整合;我們的技術可提供您連續生產的效能,我們整體的服務及卓越的技術,恭迎您親自體驗!!

BW Bewise Inc. Willy Chen willy@tool-tool.com bw@tool-tool.com www.tool-tool.com skype:willy_chen_bw mobile:0937-618-190 Head &Administration Office No.13,Shiang Shang 2nd St., West Chiu Taichung,Taiwan 40356 http://www.tool-tool..com / FAX:+886 4 2471 4839 N.Branch 5F,No.460,Fu Shin North Rd.,Taipei,Taiwan S.Branch No.24,Sec.1,Chia Pu East Rd.,Taipao City,Chiayi Hsien,Taiwan

Welcome to BW tool world! We are an experienced tool maker specialized in cutting tools. We focus on what you need and endeavor to research the best cutter to satisfy users demand. Our customers involve wide range of industries, like mold & die, aerospace, electronic, machinery, etc. We are professional expert in cutting field. We would like to solve every problem from you. Please feel free to contact us, its our pleasure to serve for you. BW product including: cutting toolaerospace tool .HSS DIN Cutting toolCarbide end millsCarbide cutting toolNAS Cutting toolNAS986 NAS965 NAS897 NAS937orNAS907 Cutting Tools,Carbide end milldisc milling cutter,Aerospace cutting toolhss drillФрезерыCarbide drillHigh speed steelMilling cutterCVDD(Chemical Vapor Deposition Diamond )’PCBN (Polycrystalline Cubic Boron Nitride) Core drillTapered end millsCVD Diamond Tools Inserts’PCD Edge-Beveling Cutter(Golden FingerEdge modifying knifeSolid carbide saw blade-V typeV-type locking-special use for PC boardMetal Slitting SawaCarbide Side milling CuttersCarbide Side Milling Cutters With Staggered TeethCarbide T-Slot Milling CuttersCarbide T-Slot Milling Cutters With Staggered TeethCarbide Machine ReamersHigh speed reamer-standard typeHigh speed reamer-long type’’PCD V-CutterPCD Wood toolsPCD Cutting toolsPCD Circular Saw BladePVDD End Millsdiamond tool V-type locking-special use for PC board Single Crystal Diamond Metric end millsMiniature end millsСпециальные режущие инструменты Пустотелое сверло Pilot reamerFraisesFresas con mango PCD (Polycrystalline diamond) ‘FreseElectronics cutterStep drillMetal cutting sawDouble margin drillGun barrelAngle milling cutterCarbide burrsCarbide tipped cutterChamfering toolIC card engraving cutterSide cutterNAS toolDIN or JIS toolSpecial toolMetal slitting sawsShell end millsSide and face milling cuttersSide chip clearance sawsLong end millsStub roughing end millsDovetail milling cuttersCarbide slot drillsCarbide torus cuttersAngel carbide end millsCarbide torus cuttersCarbide ball-nosed slot drillsMould cutterTool manufacturer.

Bewise Inc. www.tool-tool.com

ようこそBewise Inc.の世界へお越し下さいませ、先ず御目出度たいのは新たな

情報を受け取って頂き、もっと各産業に競争力プラス展開。

弊社は専門なエンドミルの製造メーカーで、客先に色んな分野のニーズ

豊富なパリエーションを満足させ、特にハイテク品質要求にサポート致します。

弊社は各領域に供給できる内容は:

beeway 發表在 痞客邦 留言(0) 人氣()


Bewise Inc. www.tool-tool.com Reference source from the internet.

Hardness refers to various properties of matter in the solid phase that give it high resistance to various kinds of shape change when force is applied. Hard matter is contrasted with soft matter.

Macroscopic hardness is generally characterized by strong intermolecular bonds. However, the behavior of solid materials under force is complex, resulting in several different scientific definitions of what might be called "hardness" in everyday usage.

In materials science, there are three principal operational definitions of hardness:

In physics, hardness encompasses:

[edit] Materials science

In materials science, hardness is the characteristic of a solid material expressing its resistance to permanent deformation. Hardness can be measured on the Mohs scale or various other scales. Some of the other scales used for indentation hardness in engineering—Rockwell, Vickers, and Brinell—can be compared using practical conversion tables.

[edit] Scratch hardness

In mineralogy, hardness commonly refers to a material's ability to penetrate softer materials. An object made of a hard material will scratch an object made of a softer material. Scratch hardness is usually measured on the Mohs scale of mineral hardness. One tool to make this measurement is the sclerometer.

Pure diamond is the hardest known natural mineral substance and will scratch any other natural material. Diamond is therefore used to cut other diamonds; in particular, higher-grade diamonds are used to cut lower-grade diamonds.

The hardest substance known today is aggregated diamond nanorods, with a hardness over 12 of and a stiffness 1.11 of diamond. Estimates from proposed molecular structure indicate the hardness of beta carbon nitride should also be greater than diamond (but less than ultrahard fullerite). This material has not yet been successfully synthesized.

Other materials which can scratch diamond include boron suboxide and rhenium diboride.

[edit] Indentation hardness


A Vickers hardness tester

A Vickers hardness tester
Main article: Indentation hardness

Primarily used in engineering and metallurgy, indentation hardness seeks to characterise a material's hardness; i.e. its resistance to permanent, and in particular plastic, deformation. It is usually measured by loading an indenter of specified geometry onto the material and measuring the dimensions of the resulting indentation.

There are several alternative definitions of indentation hardness, the most common of which are

There is, in general, no simple relationship between the results of different hardness tests. Though there are practical conversion tables for hard steels, for example, some materials show qualitatively different behaviours under the various measurement methods. The Vickers and Brinell hardness scales correlate well over a wide range, however, with Brinell only producing overestimated values at high loads.

Hardness increases with decreasing particle size. This is known as the Hall-Petch effect. However, below a critical grain-size, hardness decreases with decreasing grain size. This is known as the inverse Hall-Petch effect.

For measuring hardness of nanograined materials, nanoindentation is used.

In the December 4, 2005 issue of The Jerusalem Post, Professors Eli Altus, Harold Basch and Shmaryahu Hoz, with doctoral student Lior Itzhaki reported the discovery of a polyyne that is 40 times harder than diamond. It is a "superhard" molecular rod, comprised of acetylene units.

It is important to note that hardness of a material to deformation is dependent to its microdurability or small-scale shear modulus in any direction, not to any rigidity or stiffness properties such as its bulk modulus or Young's modulus. Scientists and journalists often confuse stiffness for hardness[1][2], and spuriously report materials that are not actually harder than diamond because the anisotropy of their solid cells compromise hardness in other dimensions, resulting in a material prone to spalling and flaking in squamose or acicular habits in that dimension. E.g., osmium is stiffer than diamond but is as hard as quartz. In other words, a claimed hard material should have similar hardness characteristics at any location on its surface.

[edit] Rebound hardness

Also known as dynamic hardness, rebound hardness measures the height of the "bounce" of a diamond-tipped hammer dropped from a fixed height onto a material. The device used to take this measurement is known as a scleroscope. [3]

One scale that measures rebound hardness is the Bennett Hardness Scale.

[edit] Physics

Diagram of a Stress-strain curve, showing the relationship between stress (force applied per unit area) and strain or deformation of a ductile metal.

Diagram of a Stress-strain curve, showing the relationship between stress (force applied per unit area) and strain or deformation of a ductile metal.

In solid mechanics, solids generally have three responses to force, depending on the amount of force and the type of material:

  • They exhibit elasticity—the ability to temporarily change shape, but return to the original shape when the pressure is removed. "Hardness" in the elastic range—a small temporary change in shape for a given force—is known as stiffness in the case of a given object, or a high elastic modulus in the case of a material.
  • They exhibit plasticity—the ability to permanently change shape in response to the force, but remain in one piece. The yield strength is the point at which elastic deformation gives way to plastic deformation. Deformation in the plastic range is non-linear, and is described by the stress-strain curve. This response produces the observed properties of scratch and indentation hardness, as described and measured in materials science. Some materials exhibit both elasticity and viscosity when undergoing plastic deformation; this is called viscoelasticity.
  • They fracture—split into two or more pieces. The "ultimate strength" or toughness of an object is the point at which fracture occurs.

Strength is a measure of the extent of a material's elastic range, or elastic and plastic ranges together. This is quantified as compressive strength, shear strength, tensile strength depending on the direction of the forces involved. Ultimate strength is measure of the maximum strain a material can withstand.

Brittleness, in technical usage, is the tendency of a material to fracture with very little or no detectable deformation beforehand. Thus in technical terms, a material can be both brittle and strong. In everyday usage "brittleness" usually refers to the tendency to fracture under a small amount of force, which exhibits both brittleness and a lack of strength (in the technical sense). For brittle materials, yield strength and ultimate strength are the same, because they do not experience detectable plastic deformation. The opposite of brittleness is ductility.

The toughness of a material is the maximum amount of energy it can absorb before fracturing, which is different than the amount of force that can be applied. Toughness tends to be small for brittle materials, because it is elastic and plastic deformations that allow materials to absorb large amounts of energy.

Materials whose properties are different in different directions (because of an asymmetrical crystal structure) are referred to as anisotropic.

歡迎來到Bewise Inc.的世界,首先恭喜您來到這接受新的資訊讓產業更有競爭力,我們是提供專業刀具製造商,應對客戶高品質的刀具需求,我們可以協助客戶滿足您對產業的不同要求,我們有能力達到非常卓越的客戶需求品質,這是現有相關技術無法比擬的,我們成功的滿足了各行各業的要求,包括:精密HSS DIN切削刀具協助客戶設計刀具流程DIN or JIS 鎢鋼切削刀具設計NAS986 NAS965 NAS897 NAS937orNAS907 航太切削刀具,NAS航太刀具設計超高硬度的切削刀具BW捨棄式鑽石V卡刀BW捨棄式金屬圓鋸片木工捨棄式金屬圓鋸片PCD木工圓鋸片醫療配件刀具設計汽車業刀具設計電子產業鑽石刀具全鎢鋼V卡刀-電路版專用全鎢鋼鋸片焊刃式側銑刀焊刃式千鳥側銑刀焊刃式T型銑刀焊刃式千鳥T型銑刀焊刃式螺旋機械鉸刀全鎢鋼斜邊刀電路版專用鎢鋼焊刃式高速鉸刀超微粒鎢鋼機械鉸刀超微粒鎢鋼定點鑽焊刃式帶柄角度銑刀焊刃式螺旋立銑刀焊刃式帶柄倒角銑刀焊刃式角度銑刀焊刃式筒型平面銑刀木工產業鑽石刀具等等。我們的產品涵蓋了從民生刀具到工業級的刀具設計;從微細刀具到大型刀具;從小型生產到大型量產;全自動整合;我們的技術可提供您連續生產的效能,我們整體的服務及卓越的技術,恭迎您親自體驗!!

BW Bewise Inc. Willy Chen willy@tool-tool.com bw@tool-tool.com www.tool-tool.com skype:willy_chen_bw mobile:0937-618-190 Head &Administration Office No.13,Shiang Shang 2nd St., West Chiu Taichung,Taiwan 40356 http://www.tool-tool..com / FAX:+886 4 2471 4839 N.Branch 5F,No.460,Fu Shin North Rd.,Taipei,Taiwan S.Branch No.24,Sec.1,Chia Pu East Rd.,Taipao City,Chiayi Hsien,Taiwan

Welcome to BW tool world! We are an experienced tool maker specialized in cutting tools. We focus on what you need and endeavor to research the best cutter to satisfy users demand. Our customers involve wide range of industries, like mold & die, aerospace, electronic, machinery, etc. We are professional expert in cutting field. We would like to solve every problem from you. Please feel free to contact us, its our pleasure to serve for you. BW product including: cutting toolaerospace tool .HSS DIN Cutting toolCarbide end millsCarbide cutting toolNAS Cutting toolNAS986 NAS965 NAS897 NAS937orNAS907 Cutting Tools,Carbide end milldisc milling cutter,Aerospace cutting toolhss drillФрезерыCarbide drillHigh speed steelMilling cutterCVDD(Chemical Vapor Deposition Diamond )’PCBN (Polycrystalline Cubic Boron Nitride) Core drillTapered end millsCVD Diamond Tools Inserts’PCD Edge-Beveling Cutter(Golden FingerEdge modifying knifeSolid carbide saw blade-V typeV-type locking-special use for PC boardMetal Slitting SawaCarbide Side milling CuttersCarbide Side Milling Cutters With Staggered TeethCarbide T-Slot Milling CuttersCarbide T-Slot Milling Cutters With Staggered TeethCarbide Machine ReamersHigh speed reamer-standard typeHigh speed reamer-long type’’PCD V-CutterPCD Wood toolsPCD Cutting toolsPCD Circular Saw BladePVDD End Millsdiamond tool V-type locking-special use for PC board Single Crystal Diamond Metric end millsMiniature end millsСпециальные режущие инструменты Пустотелое сверло Pilot reamerFraisesFresas con mango PCD (Polycrystalline diamond) ‘FreseElectronics cutterStep drillMetal cutting sawDouble margin drillGun barrelAngle milling cutterCarbide burrsCarbide tipped cutterChamfering toolIC card engraving cutterSide cutterNAS toolDIN or JIS toolSpecial toolMetal slitting sawsShell end millsSide and face milling cuttersSide chip clearance sawsLong end millsStub roughing end millsDovetail milling cuttersCarbide slot drillsCarbide torus cuttersAngel carbide end millsCarbide torus cuttersCarbide ball-nosed slot drillsMould cutterTool manufacturer.

beeway 發表在 痞客邦 留言(0) 人氣()


Bewise Inc. www.tool-tool.com Reference source from the internet.

硬さ(hardness、硬度)とは物質、材料の特に表面または表面近傍の機械的性質の一つ。工業的に比較的簡単に検査でき、これを硬さ試験法と呼ぶ。例えば鋼製品の熱処理結果の管理などに用いられている。

硬さの概念は、それを数値化して表現しようとする場合、定義の仕方により様々な値を取り得る。 硬さ試験に多くの方法があるのは、利用しようとする実用材料、たとえば金属セラミックスゴムなどの材料特性により、微小な変形を与える力に対する挙動がそれぞれ異なり、また硬さ試験によって代用的に評価しようとする材料の性能項目が異なるために、実用目的のためにいろいろな測定法が開発されたためだと思われる。

金属では押し込み硬さ試験法が多く用いられる。これは一定荷重を加えてできる圧痕(くぼみ)の面積または深さから変形のしにくさ(硬さ)を評価するものだ。加える荷重圧痕をつける圧子先端の形状、硬さ値の計算方法がそれぞれ定義されている。

ゴムでは一定荷重を加えた時の変形量を硬さ値にする硬さ測定法が多く用いられている。

以下に示す複数の測定手段(定義)とそれに対応する値(硬さの尺度)が存在する。代表的な硬さ測定法の間の対応表が入手できるが、限定された材料で相関をとったもので大雑把な目安である。

”硬度”は、水の軟水、硬水の度合いの尺度(物質の”硬さ”とは関係ない)にも使用されることがあるので注意が必要。(硬度_(水)を参照。)

[編集] 硬さ一覧表

試験法名 分類 圧子形状 硬さ算出法 解説
ブリネル硬さ 押込み硬さ 球(一般に10 mmを使用) 圧痕表面積で試験荷重を割って算出
ビッカース硬さ 押込み硬さ 頂角136°四角錐 圧痕表面積で試験荷重を割って算出
ヌープ硬さ 押込み硬さ 頂角172.5°四角錐(対角線長比 1:7.11) 圧痕表面積で試験荷重を割って算出
ロックウェル硬さ 押込み硬さ 頂角120°円錐(先端0.3 mm)または鋼球(φ1.5875 mm) 試験荷重を加えた後、基準荷重に戻したときのくぼみの深さの差h
HR*=100-500h (HRA,HRD,HRC)
圧子・荷重によりいろいろなスケールがある(別表)。
スーパーフィシャル硬さ 押込み硬さ 頂角120°円錐(先端0.3 mm)または鋼球(φ1.5875 mm) 試験荷重を加えた後、基準荷重に戻したときのくぼみの深さの差h
HR*=100-1000h
ロックウェルより低試験荷重
マイヤ硬さ 押込み硬さ
測定荷重を圧子投影面積で割ったもの
HM=W/A
Hvなどの算出が圧子接触面積で割るのに比して物理的意味が高いとされている。
ジュロメータ硬さ 押込み硬さ 頂角35°円錐 圧子の押し込み深さ。822 gで押し込み深さ0を100、押し込み深さ2.54 mmで0 樹脂用硬さ計
バーコール硬さ 押込み硬さ 頂角26°円錐 圧子の押し込み深さ 樹脂用硬さ計
モノトロン硬さ 押込み硬さ 0.75 mm 球形圧子 圧子の押し込み深さ0.0457 mmになるときの荷重 樹脂用硬さ計
マルテンス硬さ ヒッカキ硬さ 対面角90°ピラミッド 0.01 mm巾のヒッカキ巾の荷重
ショア硬さ 反発硬さ


[編集] ロックウェル硬さスケール測定条件表

スケール 圧子 試験荷重 スケール 圧子 試験荷重 スケール 圧子 試験荷重
C 120°ダイアモンド
円錐圧子
150 kg G 1/16"鋼球 150 kg M 1/4"鋼球 100 kg
D 100 kg B 100 kg R 1/2"鋼球 60 kg
A 60 kg F 60 kg H 1/8"鋼球 60 kg






E 1/8"鋼球 100 kg

歡迎來到Bewise Inc.的世界,首先恭喜您來到這接受新的資訊讓產業更有競爭力,我們是提供專業刀具製造商,應對客戶高品質的刀具需求,我們可以協助客戶滿足您對產業的不同要求,我們有能力達到非常卓越的客戶需求品質,這是現有相關技術無法比擬的,我們成功的滿足了各行各業的要求,包括:精密HSS DIN切削刀具協助客戶設計刀具流程DIN or JIS 鎢鋼切削刀具設計NAS986 NAS965 NAS897 NAS937orNAS907 航太切削刀具,NAS航太刀具設計超高硬度的切削刀具BW捨棄式鑽石V卡刀BW捨棄式金屬圓鋸片木工捨棄式金屬圓鋸片PCD木工圓鋸片醫療配件刀具設計汽車業刀具設計電子產業鑽石刀具全鎢鋼V卡刀-電路版專用全鎢鋼鋸片焊刃式側銑刀焊刃式千鳥側銑刀焊刃式T型銑刀焊刃式千鳥T型銑刀焊刃式螺旋機械鉸刀全鎢鋼斜邊刀電路版專用鎢鋼焊刃式高速鉸刀超微粒鎢鋼機械鉸刀超微粒鎢鋼定點鑽焊刃式帶柄角度銑刀焊刃式螺旋立銑刀焊刃式帶柄倒角銑刀焊刃式角度銑刀焊刃式筒型平面銑刀木工產業鑽石刀具等等。我們的產品涵蓋了從民生刀具到工業級的刀具設計;從微細刀具到大型刀具;從小型生產到大型量產;全自動整合;我們的技術可提供您連續生產的效能,我們整體的服務及卓越的技術,恭迎您親自體驗!!

BW Bewise Inc. Willy Chen willy@tool-tool.com bw@tool-tool.com www.tool-tool.com skype:willy_chen_bw mobile:0937-618-190 Head &Administration Office No.13,Shiang Shang 2nd St., West Chiu Taichung,Taiwan 40356 http://www.tool-tool..com / FAX:+886 4 2471 4839 N.Branch 5F,No.460,Fu Shin North Rd.,Taipei,Taiwan S.Branch No.24,Sec.1,Chia Pu East Rd.,Taipao City,Chiayi Hsien,Taiwan

Welcome to BW tool world! We are an experienced tool maker specialized in cutting tools. We focus on what you need and endeavor to research the best cutter to satisfy users demand. Our customers involve wide range of industries, like mold & die, aerospace, electronic, machinery, etc. We are professional expert in cutting field. We would like to solve every problem from you. Please feel free to contact us, its our pleasure to serve for you. BW product including: cutting toolaerospace tool .HSS DIN Cutting toolCarbide end millsCarbide cutting toolNAS Cutting toolNAS986 NAS965 NAS897 NAS937orNAS907 Cutting Tools,Carbide end milldisc milling cutter,Aerospace cutting toolhss drillФрезерыCarbide drillHigh speed steelMilling cutterCVDD(Chemical Vapor Deposition Diamond )’PCBN (Polycrystalline Cubic Boron Nitride) Core drillTapered end millsCVD Diamond Tools Inserts’PCD Edge-Beveling Cutter(Golden FingerEdge modifying knifeSolid carbide saw blade-V typeV-type locking-special use for PC boardMetal Slitting SawaCarbide Side milling CuttersCarbide Side Milling Cutters With Staggered TeethCarbide T-Slot Milling CuttersCarbide T-Slot Milling Cutters With Staggered TeethCarbide Machine ReamersHigh speed reamer-standard typeHigh speed reamer-long type’’PCD V-CutterPCD Wood toolsPCD Cutting toolsPCD Circular Saw BladePVDD End Millsdiamond tool V-type locking-special use for PC board Single Crystal Diamond Metric end millsMiniature end millsСпециальные режущие инструменты Пустотелое сверло Pilot reamerFraisesFresas con mango PCD (Polycrystalline diamond) ‘FreseElectronics cutterStep drillMetal cutting sawDouble margin drillGun barrelAngle milling cutterCarbide burrsCarbide tipped cutterChamfering toolIC card engraving cutterSide cutterNAS toolDIN or JIS toolSpecial toolMetal slitting sawsShell end millsSide and face milling cuttersSide chip clearance sawsLong end millsStub roughing end millsDovetail milling cuttersCarbide slot drillsCarbide torus cuttersAngel carbide end millsCarbide torus cuttersCarbide ball-nosed slot drillsMould cutterTool manufacturer.

Bewise Inc. www.tool-tool.com

ようこそBewise Inc.の世界へお越し下さいませ、先ず御目出度たいのは新たな

情報を受け取って頂き、もっと各産業に競争力プラス展開。

弊社は専門なエンドミルの製造メーカーで、客先に色んな分野のニーズ

豊富なパリエーションを満足させ、特にハイテク品質要求にサポート致します。

弊社は各領域に供給できる内容は:

(1)精密HSSエンドミルのR&D

(2)Carbide Cutting tools設計

(3)鎢鋼エンドミル設計

(4)航空エンドミル設計

(5)超高硬度エンドミル

(6)ダイヤモンドエンドミル

(7)医療用品エンドミル設計

(8)自動車部品&材料加工向けエンドミル設計

弊社の製品の供給調達機能は:

(1)生活産業~ハイテク工業までのエンドミル設計

(2)ミクロエンドミル~大型エンドミル供給<

beeway 發表在 痞客邦 留言(0) 人氣()


Bewise Inc. www.tool-tool.com Reference source from the internet.

A cermet is a composite material composed of ceramic (cer) and metallic (met) materials. A cermet is ideally designed to have the optimal properties of both a ceramic, such as high temperature resistance and hardness, and those of a metal, such as the ability to undergo plastic deformation. The metal is used as a binder for an oxide, boride, carbide, or alumina. Generally, the metallic elements used are nickel, molybdenum, and cobalt. Depending on the physical structure of the material, cermets can also be metal matrix composites, but cermets are usually less than 20% metal by volume.

Cermets are used in the manufacture of resistors (especially potentiometers), capacitors, and other electronic components which may experience high temperatures.

In the tool world, tungsten carbide is considered a cermet although tungsten carbide is so widely used that it is considered a class by itself.

Cermets are being used instead of tungsten carbide in saws and other brazed tools due to their superior wear and corrosion properties. TiCN, TiC, TiN and similar can be brazed like tungsten carbide if properly prepared however they require special handling during grinding.

More complex materials, know as Cermet 2 or Cermet II, are being utilized since they give considerably longer life in cutting tools while both brazing and grinding like tungsten carbide.

Some types of cermets are also being considered for use as spacecraft shielding as they resist the high velocity impacts of micrometeoroids and orbital debris much more effectively than more traditional spacecraft materials such as aluminum and other metals.

[edit] History[1]

After World War II, the need to develop high temperature and high stress-resistant materials in the US became clear. During the war, German scientists developed oxide base cermets as substitutes for alloys. They saw a use for this for the high-temperature sections of new jet engines as well as high temperature turbine blades. Today ceramics are routinely implemented in the combuster part of jet engines because it provides a heat resistant chamber. Ceramic turbine blades have also been developed. These blades are lighter than steel and allow for greater acceleration of the blade assemblies.

The United States Air Force saw potential in the material technology and became one of the principal sponsors for various research programs in the US. Some of the first universities to research were Ohio State University, University of Illinois, and Rutgers University.

The word cermet was actually coined by the United States Air Force, the idea being that they are a combination of two materials, a metal and a ceramic. Basic physical properties of metals include ductility, high strength, and high thermal conductivity. Ceramics possess basic physical properties such as a high melting point, chemical stability, and especially oxidation resistance.

The first ceramic metal material developed used magnesium oxide (MgO), Beryllium oxide (BeO), and aluminum oxide (Al2O3) for the ceramic part. Emphasis on high stress rupture strengths was around 1800F.[2] Ohio State University was the first to develop Al2O3 based cermets with high stress rupture strengths around 2200F. Kennametal, a metal-working and tool company based in Latrobe, PA, developed the first titanium carbide cermet with a 2800 psi and 100 hour stress-to-rupture strength at 1800F. Jet engines operate at this temperature and further research was invested on using these materials for components.

Quality control in manufacturing these ceramic metal composites was hard to standardize. Production had to be kept to small batches and within these batches, the properties varied greatly. Failure of the material was usually a result of undetected flaws usually nucleated during processing.

The existing technology in the 1950s reached a limit for jet engines where little more could be improved. Subsequently, engine manufactures were reluctant to develop ceramic metal engines.

Interest was renewed in the 1960s when silicon nitride and silicon carbide were looked at more closely. Both materials possessed better thermal shock resistance, high strength, and moderate thermal conductivity.

[edit] Applications

[edit] Ceramic-to-metal joints and seals

Cermets were first used extensively in ceramic-to-metal joint applications. Construction of vacuum tubes was one of the first critical systems, with the electronics industry employing and developing such seals. German scientists recognized that vacuum tubes with improved performance and reliability could be produced by substituting ceramics for glass. Ceramic tubes can be outgassed at higher temperatures. Because of the high-temperature seal, ceramic tubes withstand higher temperatures than glass tubes. Ceramic tubes are also mechanically stronger and less sensitive to thermal shock than glass tubes.[3] Today, cermet vacuum tube coatings have proved to be key to solar hot water systems.

Ceramic-to-metal mechanical seals have also been used. Traditionally they have been used in fuel cells and other devices that convert chemical, nuclear, or thermionic energy to electricity. The ceramic-to-metal seal is required to isolate the electrical sections of turbine-driven generators designed to operate in corrosive liquid-metal vapors.[3]

[edit] Bioceramics

Bioceramics play an extensive role in biomedical materials. The development of these materials and diversity of manufacturing techniques has broadened the applications that can be used in the human body. They can be in the form of thin layers on metallic implants, composites with a polymer component, or even just porous networks. These materials work well within the human body for several reasons. They are inert, and because they are resorbable and active, the materials can remain in the body unchanged. They can also dissolve and actively take part in physiological processes, for example, when hydroxylapatite, a material chemically similar to bone structure, can integrate and help bone grow into it. Common materials used for bioceramics include alumina, zirconia, calcium phosphate, glass ceramics, and pyrolytic carbons.

One important use of bioceramics is in hip replacement surgery. A hip joint essentially is a multiaxial ball and socket. The materials used for the replacement hip joints were usually metals such as titanium with the hip socket usually lined with plastic. The multiaxial ball was tough metal ball but was eventually replaced with a longer lasting ceramic ball. This reduced the roughening associated with the metal wall against the plastic lining of the artificial hip socket. The use of ceramic implants extended the life of the hip replacement parts.[4]

Cermets are also used in dentistry as a material for fillings and prostheses.

[edit] Cermets in transportation

Ceramic parts have been used in conjunction with metal parts as friction materials for brakes and clutches.[3]

[edit] Other applications

The United States Army and British Army has had extensive research in the development of cermets. These include the development of lightweight ceramic projectile proof armor for soldiers and also Chobham armor.

Cermets are also used in machining on cutting tools.

A cermet of depleted fissiable material (e.g. uranium, plutonium) and sodalite has been researched for its benefits in the storage of nuclear waste.[5] Similar composites have also been researched for use as a fuel source.

歡迎來到Bewise Inc.的世界,首先恭喜您來到這接受新的資訊讓產業更有競爭力,我們是提供專業刀具製造商,應對客戶高品質的刀具需求,我們可以協助客戶滿足您對產業的不同要求,我們有能力達到非常卓越的客戶需求品質,這是現有相關技術無法比擬的,我們成功的滿足了各行各業的要求,包括:精密HSS DIN切削刀具協助客戶設計刀具流程DIN or JIS 鎢鋼切削刀具設計NAS986 NAS965 NAS897 NAS937orNAS907 航太切削刀具,NAS航太刀具設計超高硬度的切削刀具BW捨棄式鑽石V卡刀BW捨棄式金屬圓鋸片木工捨棄式金屬圓鋸片PCD木工圓鋸片醫療配件刀具設計汽車業刀具設計電子產業鑽石刀具全鎢鋼V卡刀-電路版專用全鎢鋼鋸片焊刃式側銑刀焊刃式千鳥側銑刀焊刃式T型銑刀焊刃式千鳥T型銑刀焊刃式螺旋機械鉸刀全鎢鋼斜邊刀電路版專用鎢鋼焊刃式高速鉸刀超微粒鎢鋼機械鉸刀超微粒鎢鋼定點鑽焊刃式帶柄角度銑刀焊刃式螺旋立銑刀焊刃式帶柄倒角銑刀焊刃式角度銑刀焊刃式筒型平面銑刀木工產業鑽石刀具等等。我們的產品涵蓋了從民生刀具到工業級的刀具設計;從微細刀具到大型刀具;從小型生產到大型量產;全自動整合;我們的技術可提供您連續生產的效能,我們整體的服務及卓越的技術,恭迎您親自體驗!!

BW Bewise Inc. Willy Chen willy@tool-tool.com bw@tool-tool.com www.tool-tool.com skype:willy_chen_bw mobile:0937-618-190 Head &Administration Office No.13,Shiang Shang 2nd St., West Chiu Taichung,Taiwan 40356 http://www.tool-tool..com / FAX:+886 4 2471 4839 N.Branch 5F,No.460,Fu Shin North Rd.,Taipei,Taiwan S.Branch No.24,Sec.1,Chia Pu East Rd.,Taipao City,Chiayi Hsien,Taiwan

Welcome to BW tool world! We are an experienced tool maker specialized in cutting tools. We focus on what you need and endeavor to research the best cutter to satisfy users demand. Our customers involve wide range of industries, like mold & die, aerospace, electronic, machinery, etc. We are professional expert in cutting field. We would like to solve every problem from you. Please feel free to contact us, its our pleasure to serve for you. BW product including: cutting toolaerospace tool .HSS DIN Cutting toolCarbide end millsCarbide cutting toolNAS Cutting toolNAS986 NAS965 NAS897 NAS937orNAS907 Cutting Tools,Carbide end milldisc milling cutter,Aerospace cutting toolhss drillФрезерыCarbide drillHigh speed steelMilling cutterCVDD(Chemical Vapor Deposition Diamond )’PCBN (Polycrystalline Cubic Boron Nitride) Core drillTapered end millsCVD Diamond Tools Inserts’PCD Edge-Beveling Cutter(Golden FingerEdge modifying knifeSolid carbide saw blade-V typeV-type locking-special use for PC boardMetal Slitting SawaCarbide Side milling CuttersCarbide Side Milling Cutters With Staggered TeethCarbide T-Slot Milling CuttersCarbide T-Slot Milling Cutters With Staggered TeethCarbide Machine ReamersHigh speed reamer-standard typeHigh speed reamer-long type’’PCD V-CutterPCD Wood toolsPCD Cutting toolsPCD Circular Saw BladePVDD End Millsdiamond tool V-type locking-special use for PC board Single Crystal Diamond Metric end millsMiniature end millsСпециальные режущие инструменты Пустотелое сверло Pilot reamerFraisesFresas con mango PCD (Polycrystalline diamond) ‘FreseElectronics cutterStep drillMetal cutting sawDouble margin drillGun barrelAngle milling cutterCarbide burrsCarbide tipped cutterChamfering toolIC card engraving cutterSide cutterNAS toolDIN or JIS toolSpecial toolMetal slitting sawsShell end millsSide and face milling cuttersSide chip clearance sawsLong end millsStub roughing end millsDovetail milling cuttersCarbide slot drillsCarbide torus cuttersAngel carbide end millsCarbide torus cuttersCarbide ball-nosed slot drillsMould cutterTool manufacturer.

Bewise Inc. www.tool-tool.com

ようこそBewise Inc.の世界へお越し下さいませ、先ず御目出度たいのは新たな

情報を受け取って頂き、もっと各産業に競争力プラス展開。

弊社は専門なエンドミルの製造メーカーで、客先に色んな分野のニーズ

豊富なパリエーションを満足させ、特にハイテク品質要求にサポート致します。

弊社は各領域に供給できる内容は:

(1)精密HSSエンドミルのR&D

(2)Carbide Cutting tools設計

(3)鎢鋼エンドミル設計

(4)航空エンド

beeway 發表在 痞客邦 留言(0) 人氣()