公告版位
Bewise Inc. www.tool-tool.com Reference source from the internet.

من ويكيبيديا، الموسوعة الحرة

اذهب إلى: تصفح, ابحث
مخرطة
مخرطة

المخرطة, يقصد بالمخارط كل انواع الماكنات التى تستخدم في تشكيل المعادن عن طريق دوران المشغولات المراد تشكيلها.

هناك العديد من انواع مكائن الخراطة، منها: المخرطة، المقشطة، الفريزة، المثقاب، الجلاخة.

تتم عملية التشكيل عن طريق ازالة الجزاز (الرايش) وهو جزء من المعدن عن طريق ادوات القطع المختلفة.

يمكن لمن شاء معرفة المزيد عن الخراطة الضغط على هذه الوصلة

هذه بذرة مقالة عن موضوع تقني تحتاج للنمو والتحسين؛ فساهم في إثرائها بالمشاركة في تحريرها.


BW Bewise Inc. Willy Chen willy@tool-tool.com bw@tool-tool.com www.tool-tool.com skype:willy_chen_bw mobile:0937-618-190 Head &Administration Office No.13,Shiang Shang 2nd St., West Chiu Taichung,Taiwan 40356 TEL:+886 4 24710048 / FAX:+886 4 2471 4839 N.Branch 5F,No.460,Fu Shin North Rd.,Taipei,Taiwan S.Branch No.24,Sec.1,Chia Pu East Rd.,Taipao City,Chiayi Hsien,Taiwan

Welcome to BW tool world! We are an experienced tool maker specialized in cutting tools. We focus on what you need and endeavor to research the best cutter to satisfy users demand. Our customers involve wide range of industries, like mold & die, aerospace, electronic, machinery, etc. We are professional expert in cutting field. We would like to solve every problem from you. Please feel free to contact us, its our pleasure to serve for you. BW product including: cutting toolaerospace tool .HSS Cutting toolCarbide end millsCarbide cutting toolNAS Cutting toolCarbide end millAerospace cutting toolФрезерыCarbide drillHigh speed steelMilling cutterCVDD(Chemical Vapor Deposition Diamond )PCBN (Polycrystalline Cubic Boron Nitride) Core drillTapered end millsCVD Diamond Tools Inserts’PCD Edge-Beveling Cutter(Golden Finger’PCD V-Cutter’PCD Wood tools’PCD Cutting tools’PCD Circular Saw Blade’PVDD End Mills’diamond tool Single Crystal Diamond Metric end millsMiniature end millsСпециальные режущие инструменты Пустотелое сверло Pilot reamerFraisesFresas con mango PCD (Polycrystalline diamond) FreseElectronics cutterStep drillMetal cutting sawDouble margin drillGun barrelAngle milling cutterCarbide burrsCarbide tipped cutterChamfering toolIC card engraving cutterSide cutterNAS toolDIN toolSpecial toolMetal slitting sawsShell end millsSide and face milling cuttersSide chip clearance sawsLong end millsStub roughing end millsDovetail milling cuttersCarbide slot drillsCarbide torus cuttersAngel carbide end millsCarbide torus cuttersCarbide ball-nosed slot drillsMould cutterTool manufacturer.

Bewise Inc. www.tool-tool.com

BW специализируется в научных исследованиях и разработках, и снабжаем самым высокотехнологичным карбидовым материалом для поставки режущих / фрезеровочных инструментов для почвы, воздушного пространства и электронной индустрии. В нашу основную продукцию входит твердый карбид / быстрорежущая сталь, а также двигатели, микроэлектрические дрели, IC картонорезальные машины, фрезы для гравирования, режущие пилы, фрезеры-расширители, фрезеры-расширители с резцом, дрели, резаки форм для шлицевого вала / звездочки роликовой цепи, и специальные нано инструменты. Пожалуйста, посетите сайт www.tool-tool.com для получения большей информации.

BW is specialized in R&D and sourcing the most advanced carbide material with high-tech coating to supply cutting / milling tool for mould & die, aero space and electronic industry. Our main products include solid carbide / HSS end mills, micro electronic drill, IC card cutter, engraving cutter, shell end mills, cutting saw, reamer, thread reamer, leading drill, involute gear cutter for spur wheel, rack and worm milling cutter, thread milling cutter, form cutters for spline shaft/roller chain sprocket, and special tool, with nano grade. Please visit our web www.tool-tool.com for more info.

beeway 發表在 痞客邦 留言(0) 人氣()

Bewise Inc. www.tool-tool.com Reference source from the internet.

от Уикипедия, свободната енциклопедия

Направо към: навигация, търсене

Стругът е машина, предаваща форма на материал чрез струговане при ротация.

Материалът, на който ще се предава форма, се захваща от универсал(главата на струга), която има възможност да се върти с различна скорост в зависимост от настройката и модела струг/от 16.до2000об.в минута./ В по-старите модели операторът регулира положението на режещия/шлайфащия инструмент с помощта на две врътки съответно за х и y оста.Шаблон:Или надлъжен и напречен супорт

Някои по-нови модели са автоматизирани и се контролират логичвски от компютър или програмируема логика FPGA, който управлява два стъпкови/серво-мотора.

Тази статия, свързана с техниката все още е мъниче. Можете да помогнете на Уикипедия, като я редактирате и я разширите.


BW Bewise Inc. Willy Chen willy@tool-tool.com bw@tool-tool.com www.tool-tool.com skype:willy_chen_bw mobile:0937-618-190 Head &Administration Office No.13,Shiang Shang 2nd St., West Chiu Taichung,Taiwan 40356 TEL:+886 4 24710048 / FAX:+886 4 2471 4839 N.Branch 5F,No.460,Fu Shin North Rd.,Taipei,Taiwan S.Branch No.24,Sec.1,Chia Pu East Rd.,Taipao City,Chiayi Hsien,Taiwan

Welcome to BW tool world! We are an experienced tool maker specialized in cutting tools. We focus on what you need and endeavor to research the best cutter to satisfy users demand. Our customers involve wide range of industries, like mold & die, aerospace, electronic, machinery, etc. We are professional expert in cutting field. We would like to solve every problem from you. Please feel free to contact us, its our pleasure to serve for you. BW product including: cutting toolaerospace tool .HSS Cutting toolCarbide end millsCarbide cutting toolNAS Cutting toolCarbide end millAerospace cutting toolФрезерыCarbide drillHigh speed steelMilling cutterCVDD(Chemical Vapor Deposition Diamond )PCBN (Polycrystalline Cubic Boron Nitride) Core drillTapered end millsCVD Diamond Tools Inserts’PCD Edge-Beveling Cutter(Golden Finger’PCD V-Cutter’PCD Wood tools’PCD Cutting tools’PCD Circular Saw Blade’PVDD End Mills’diamond tool Single Crystal Diamond Metric end millsMiniature end millsСпециальные режущие инструменты Пустотелое сверло Pilot reamerFraisesFresas con mango PCD (Polycrystalline diamond) FreseElectronics cutterStep drillMetal cutting sawDouble margin drillGun barrelAngle milling cutterCarbide burrsCarbide tipped cutterChamfering toolIC card engraving cutterSide cutterNAS toolDIN toolSpecial toolMetal slitting sawsShell end millsSide and face milling cuttersSide chip clearance sawsLong end millsStub roughing end millsDovetail milling cuttersCarbide slot drillsCarbide torus cuttersAngel carbide end millsCarbide torus cuttersCarbide ball-nosed slot drillsMould cutterTool manufacturer.

Bewise Inc. www.tool-tool.com

BW специализируется в научных исследованиях и разработках, и снабжаем самым высокотехнологичным карбидовым материалом для поставки режущих / фрезеровочных инструментов для почвы, воздушного пространства и электронной индустрии. В нашу основную продукцию входит твердый карбид / быстрорежущая сталь, а также двигатели, микроэлектрические дрели, IC картонорезальные машины, фрезы для гравирования, режущие пилы, фрезеры-расширители, фрезеры-расширители с резцом, дрели, резаки форм для шлицевого вала / звездочки роликовой цепи, и специальные нано инструменты. Пожалуйста, посетите сайт www.tool-tool.com для получения большей информации.

BW is specialized in R&D and sourcing the most advanced carbide material with high-tech coating to supply cutting / milling tool for mould & die, aero space and electronic industry. Our main products include solid carbide / HSS end mills, micro electronic drill, IC card cutter, engraving cutter, shell end mills, cutting saw, reamer, thread reamer, leading drill, involute gear cutter for spur wheel, rack and worm milling cutter, thread milling cutter, form cutters for spline shaft/roller chain sprocket, and special tool, with nano grade. Please visit our web www.tool-tool.com for more info.

beeway 發表在 痞客邦 留言(0) 人氣()

Bewise Inc. www.tool-tool.com Reference source from the internet.
Soustruh
Soustruh

Soustruh je obráběcí stroj, na němž se obrábí výrobek odborně nazývaný obrobek na požadovaný rotačně souměrný tvar. Základem tohoto druhu obrábění může být rychlejší rotační pohyb obrobku - což je hlavní pohyb. Obrobek je upnut do rotační části stroje, která se obvykle jinak než rotačním způsobem dále nepohybuje. Pohyb nástroje (obvykle se jedná o soustružnický nůž) bývá pomalejší a bývá přímočarý, a to buď ve směru osy obrobku - podélný posuv (tedy axiálně vůči obrobku), nebo ve směru kolmém na osu obrobku - pohyb příčný (tedy radiálně vůči obrobku). Oba tyto pohyby mohou být vykonávány současně (tedy kombinovaný pohyb axiálně-radiální), používá se např. při kopírovacím soustružení. Posun pracovního nástroje může být prováděn ručně resp. manuálně (používá se velmi často u dřevoobráběcích soustruhů), nebo strojně s tím, že strojní posun může být předem naprogramován a přímo řízen kupř. pomocí počítače. Pracovní nástroj resp. soustružnický nůž je pevně upnut do posuvné části stroje (suport nebo koník v loži stroje).

Stroj otáčí obrobek (rotační statický pohyb) a pracovní nůž se posouvá (lineární pohyb) a postupně odebírá jednotlivé vrstvy materiálu z povrchu či vnitřku obrobku. Vzniká tak tzv. tříska nazývaná také špona, což je vlastně odpad vzniklý při výrobním procesu obrábění. Velká část mechanické energie přenášená z elektromotoru stroje na obrobek se během procesu obrábění mění na odpadní teplo, které obrobek i nůž zahřívá, přehřátí obrobku či nože brání pomocný odvod tepelné energie prováděný vhodnou chladicí kapalinou.

Soustruh je poměrně starý druh stroje - jednoduché soustruhy pro obrábění dřeva byly užívány už ve starověku (dřevoobráběcí stroje). Soustruhy pro obrábění kovů jsou považovány za jedny z vůbec nejdůležitějších (patří mezi základní kovoobráběcí a tvářecí stroje) obráběcích strojů používaných v průmyslu (spolu s frézkami a lisy).

[editovat] Popis

Základními částmi univerzálního hrotového soustruhu jsou: lože, vřeteník, koník, suport, suportová skříň, posuvová a závitová převodovka, elektromotor. Princip: Po vedení lože se pohybuje suport nebo koník, u tohoto druhu soustruhu je vodící šroub, ten se používá k odvození podélného posuvu jen při řezání závitů nožem. Soustruhy se používají na obrábění vnějších i vnitřních válcových ploch, k obrábění kuželů, tvarových rotačních těles, řezání závitů. Obrobky se upínají do sklíčidla, hrotů, na trny apod. Velikost univerzálních hrotových soustruhů je dána oběžným průměrem D nad ložem a největší vzdáleností hrotů L. V dnešní době se často používají takzvané CNC soustruhy. Tyto soustruhy jsou řízeny počítačem.

[editovat] Rozdělení soustruhů

  • Univerzální
  • Hrotové
  • Čelní
  • Revolverové
  • Svislé
  • Poloautomatické
  • Automatické
  • Číslicově řízené


Čelní soustruh se používá pro soustružení přírubových součástí malých délek a v kusové výrobě. Obrobek se zde upíná na lícní desku. Lože se suportem tvoří samostatnou jednotku. Nemá koníka.

Revolverový soustruh se používá v sériové výrobě, umožňuje provést více úseků na jedno upnutí. Výměna nástrojů se provádí otočením revolverové hlavy.

Svislý soustruh neboli karusel se používá k obrábění rozměrných a těžkých součástí, pro soustružení válcových, kuželových a čelních ploch. Velikost svislých soustruhů je charakterizována největším oběžných průměrem.

Poloautomatický soustruh je zdokonalený hrotový, čelní nebo revolverový soustruh. Jeho pracovní cyklus je automatizován. Automatizace se dosahuje použitím čelních nebo obvodových vaček, kopírovacích systémů nebo programovatelných řídících systémů.

Automatický soustruh se používá ve velkosériové a hromadné výrobě. Výchozím polotovarem jsou obvykle tyče, jejichž celý pracovní cyklus včetně podávání je automatizován.

Číslicově řízený soustruh neboli zkr. NC (Numerical control), tj. číslicové řízení. Je řízen číselnými příkazy zaznamenanými děrováním na papírovou děrnou pásku, nebo uloženými do vnitřní paměti řídícího systému. Širší možnosti má systém CNC (Computer Numerical Control), jehož základem je malý počítač. Program lze upravovat i během obrábění.


BW Bewise Inc. Willy Chen willy@tool-tool.com bw@tool-tool.com www.tool-tool.com skype:willy_chen_bw mobile:0937-618-190 Head &Administration Office No.13,Shiang Shang 2nd St., West Chiu Taichung,Taiwan 40356 TEL:+886 4 24710048 / FAX:+886 4 2471 4839 N.Branch 5F,No.460,Fu Shin North Rd.,Taipei,Taiwan S.Branch No.24,Sec.1,Chia Pu East Rd.,Taipao City,Chiayi Hsien,Taiwan

Welcome to BW tool world! We are an experienced tool maker specialized in cutting tools. We focus on what you need and endeavor to research the best cutter to satisfy users demand. Our customers involve wide range of industries, like mold & die, aerospace, electronic, machinery, etc. We are professional expert in cutting field. We would like to solve every problem from you. Please feel free to contact us, its our pleasure to serve for you. BW product including: cutting toolaerospace tool .HSS Cutting toolCarbide end millsCarbide cutting toolNAS Cutting toolCarbide end millAerospace cutting toolФрезерыCarbide drillHigh speed steelMilling cutterCVDD(Chemical Vapor Deposition Diamond )PCBN (Polycrystalline Cubic Boron Nitride) Core drillTapered end millsCVD Diamond Tools Inserts’PCD Edge-Beveling Cutter(Golden Finger’PCD V-Cutter’PCD Wood tools’PCD Cutting tools’PCD Circular Saw Blade’PVDD End Mills’diamond tool Single Crystal Diamond Metric end millsMiniature end millsСпециальные режущие инструменты Пустотелое сверло Pilot reamerFraisesFresas con mango PCD (Polycrystalline diamond) FreseElectronics cutterStep drillMetal cutting sawDouble margin drillGun barrelAngle milling cutterCarbide burrsCarbide tipped cutterChamfering toolIC card engraving cutterSide cutterNAS toolDIN toolSpecial toolMetal slitting sawsShell end millsSide and face milling cuttersSide chip clearance sawsLong end millsStub roughing end millsDovetail milling cuttersCarbide slot drillsCarbide torus cuttersAngel carbide end millsCarbide torus cuttersCarbide ball-nosed slot drillsMould cutterTool manufacturer.

Bewise Inc. www.tool-tool.com

BW специализируется в научных исследованиях и разработках, и снабжаем самым высокотехнологичным карбидовым материалом для поставки режущих / фрезеровочных инструментов для почвы, воздушного пространства и электронной индустрии. В нашу основную продукцию входит твердый карбид / быстрорежущая сталь, а также двигатели, микроэлектрические дрели, IC картонорезальные машины, фрезы для гравирования, режущие пилы, фрезеры-расширители, фрезеры-расширители с резцом, дрели, резаки форм для шлицевого вала / звездочки роликовой цепи, и специальные нано инструменты. Пожалуйста, посетите сайт www.tool-tool.com для получения большей информации.

BW is specialized in R&D and sourcing the most advanced carbide material with high-tech coating to supply cutting / milling tool for mould & die, aero space and electronic industry. Our main products include solid carbide / HSS end mills, micro electronic drill, IC card cutter, engraving cutter, shell end mills, cutting saw, reamer, thread reamer, leading drill, involute gear cutter for spur wheel, rack and worm milling cutter, thread milling cutter, form cutters for spline shaft/roller chain sprocket, and special tool, with nano grade. Please visit our web www.tool-tool.com for more info.

beeway 發表在 痞客邦 留言(0) 人氣()

Bewise Inc. www.tool-tool.com Reference source from the internet.

Fra Wikipedia, den frie encyklopædi

Gå til: navigation, søg
Gammeldags foddrevet drejebænk

Gammeldags foddrevet drejebænk

En drejebænk er en maskine hvorpå man fastspænder et stykke træ eller metal og spinder det rundt. Her kan man så fjerne materiale fra emnet med et egnet stykke spåntagende værktøj, og dermed forme et objekt som er symmetrisk omkring dets egen akse, som fx en skakbrik.

Til trædrejebænke bruges drejerjern, der er en form for stemmejern. Disse holdes med hænderne og støttes mod et anlæg, der er en vandret jernskinne, der ligger tæt på emnet.

Til jern- og metalbænke benyttes forskellige drejestål, der er spændt fast i en stålholder. Denne er monteret på en tværslæde, der giver mulighed for at bevæge stålet på tværs af drejeaksen. Tværslæden er igen monteret på langslæden, der kan føres på langs af drejeaksen langs drejebænkens vanger. På begge typer drejebænke kan særligt lange emner støttes i den frie ende af en pinol, der er en konisk spids, der kan rotere sammen med emnet.

Drejede skakbrikker

Drejede skakbrikker


BW Bewise Inc. Willy Chen willy@tool-tool.com bw@tool-tool.com www.tool-tool.com skype:willy_chen_bw mobile:0937-618-190 Head &Administration Office No.13,Shiang Shang 2nd St., West Chiu Taichung,Taiwan 40356 TEL:+886 4 24710048 / FAX:+886 4 2471 4839 N.Branch 5F,No.460,Fu Shin North Rd.,Taipei,Taiwan S.Branch No.24,Sec.1,Chia Pu East Rd.,Taipao City,Chiayi Hsien,Taiwan

Welcome to BW tool world! We are an experienced tool maker specialized in cutting tools. We focus on what you need and endeavor to research the best cutter to satisfy users demand. Our customers involve wide range of industries, like mold & die, aerospace, electronic, machinery, etc. We are professional expert in cutting field. We would like to solve every problem from you. Please feel free to contact us, its our pleasure to serve for you. BW product including: cutting toolaerospace tool .HSS Cutting toolCarbide end millsCarbide cutting toolNAS Cutting toolCarbide end millAerospace cutting toolФрезерыCarbide drillHigh speed steelMilling cutterCVDD(Chemical Vapor Deposition Diamond )PCBN (Polycrystalline Cubic Boron Nitride) Core drillTapered end millsCVD Diamond Tools Inserts’PCD Edge-Beveling Cutter(Golden Finger’PCD V-Cutter’PCD Wood tools’PCD Cutting tools’PCD Circular Saw Blade’PVDD End Mills’diamond tool Single Crystal Diamond Metric end millsMiniature end millsСпециальные режущие инструменты Пустотелое сверло Pilot reamerFraisesFresas con mango PCD (Polycrystalline diamond) FreseElectronics cutterStep drillMetal cutting sawDouble margin drillGun barrelAngle milling cutterCarbide burrsCarbide tipped cutterChamfering toolIC card engraving cutterSide cutterNAS toolDIN toolSpecial toolMetal slitting sawsShell end millsSide and face milling cuttersSide chip clearance sawsLong end millsStub roughing end millsDovetail milling cuttersCarbide slot drillsCarbide torus cuttersAngel carbide end millsCarbide torus cuttersCarbide ball-nosed slot drillsMould cutterTool manufacturer.

Bewise Inc. www.tool-tool.com

BW специализируется в научных исследованиях и разработках, и снабжаем самым высокотехнологичным карбидовым материалом для поставки режущих / фрезеровочных инструментов для почвы, воздушного пространства и электронной индустрии. В нашу основную продукцию входит твердый карбид / быстрорежущая сталь, а также двигатели, микроэлектрические дрели, IC картонорезальные машины, фрезы для гравирования, режущие пилы, фрезеры-расширители, фрезеры-расширители с резцом, дрели, резаки форм для шлицевого вала / звездочки роликовой цепи, и специальные нано инструменты. Пожалуйста, посетите сайт www.tool-tool.com для получения большей информации.

BW is specialized in R&D and sourcing the most advanced carbide material with high-tech coating to supply cutting / milling tool for mould & die, aero space and electronic industry. Our main products include solid carbide / HSS end mills, micro electronic drill, IC card cutter, engraving cutter, shell end mills, cutting saw, reamer, thread reamer, leading drill, involute gear cutter for spur wheel, rack and worm milling cutter, thread milling cutter, form cutters for spline shaft/roller chain sprocket, and special tool, with nano grade. Please visit our web www.tool-tool.com for more info.

beeway 發表在 痞客邦 留言(0) 人氣()

Bewise Inc. www.tool-tool.com Reference source from the internet.

Die Drehmaschine ist eine Werkzeugmaschine zur Herstellung von meist runden Werkstücken durch Trennen des Werkstoffs mit einer Schneide. Allen Drehmaschinen gemeinsam ist die Drehbewegung des Werkstückes und ein nicht drehendes Werkzeug. Drehmaschinen der manuellen Arbeit werden Drehbank genannt, solche der Serienfertigung Drehautomat.

Die Drehmaschine ist eine Sonderform der Drechselbank, die eine der ältesten Maschinen ist. Ohne die Drehmaschine hätte die industrielle Revolution so nicht stattgefunden, denn die Kolben der Dampfmaschine und andere Präzisionsteile an Motoren und Produktionsmaschinen konnten wirtschaftlich nur durch Drehen hergestellt werden.

An ihr können Rotationskörper hergestellt werden, die einfachsten sind dabei zylindrische oder plane zur Drehachse rechtwinklige Flächen. Komplexere Formen sind Kegel- oder Kugelflächen oder freie Formen die mittels Zusatzeinrichtungen auch von der Drehsymmetrie abweichen können. Die Schnittbewegung führt das Werkstück durch Rotation aus, während das Schneidwerkzeug (Drehmeißel) fest auf den Werkzeugschlitten gespannt ist und kontinuierlich einen Span abnimmt, indem der Schlitten längs sowie quer zur Rotationsachse des Werkstücks entlang der zu bearbeitenden Fläche bewegt wird.

Der Wandel von der Drehbank zur Drehmaschine vollzog sich Ende des 18. Jahrhunderts mit der Einführung des Werkzeugschlittens, dem Einsatz der Leitspindel zur Erhaltung der Kinematik zwischen Drehung des Werkstücks und Vorschub des Werkzeugs sowie der komplett aus Metall gefertigten Drehmaschine. Somit wurde das Werkzeug zwangsgeführt und die Qualität der Drehteile hing nicht mehr so stark von dem Geschick des Drehers ab. Doch erst in den 1950ern begann der Begriff Drehmaschine in den allgemeinen Sprachgebrauch Einzug zu halten. Inzwischen hat er sich in den fachgebundenen Büchern und Publikationen vollständig durchgesetzt, obwohl viele Fachkräfte noch immer den Begriff Drehbank bevorzugen.

Drehmaschinen, bei denen die Werkzeugbewegungen durch ein Computerprogramm in einer Steuerung gesteuert wird, werden CNC-Drehmaschinen genannt.

Moderne Leit- und Zugspindeldrehmaschine

Moderne Leit- und Zugspindeldrehmaschine

Geschichte [Bearbeiten]

Über eine Fußwippe und eine Schnur wird an der Wippendrehbank das Drehteil in Rotation versetzt

Über eine Fußwippe und eine Schnur wird an der Wippendrehbank das Drehteil in Rotation versetzt
Nachbau einer altertümlichen Wippendrehbank

Nachbau einer altertümlichen Wippendrehbank
Ein Kannenmacher dreht Gebrauchsgegenstände aus Hartzinn, während sein Assistent das große Antriebsrad bedient. Illustration aus dem Ständebuch von Jost Ammann von 1568

Ein Kannenmacher dreht Gebrauchsgegenstände aus Hartzinn, während sein Assistent das große Antriebsrad bedient. Illustration aus dem Ständebuch von Jost Ammann von 1568
Eine Drehbank um 1889, links der Spindelstock mit verschiedenen Riemenscheiben, rechts der Reitstock, in der Mitte der Werkzeugschlitten (Support)

Eine Drehbank um 1889, links der Spindelstock mit verschiedenen Riemenscheiben, rechts der Reitstock, in der Mitte der Werkzeugschlitten (Support)

Die Entstehung der Drehmaschine lässt sich heute nicht mehr genau datieren, doch stellt sie eine Umkehrung der Kinematik des Bohrens dar. Die frühesten Funde, die aufgrund ihrer Form auf Drechselarbeiten schließen lassen, können auf des Ende des 2. Jahrtausends v. Chr. datiert werden und stammen aus dem mykenischen Raum. Jedoch sind die gefundenen Hölzer derart verwittert, dass die für das Drechseln typischen Rillen nicht mehr zu erkennen sind und damit der letzte Beweis ausbleibt. Die ersten sicher als Drechselarbeiten identifizierten Werkstücke entdeckte man in einem Grab bei Corneto, der sogenannten Tomba del Guerriero (Grab des Kriegers), dass auf das frühe 7. Jahrhundert v. Chr. datierbar ist. Die erste Darstellung, die das Prinzip der Drehbank beschreibt, fand man in einem ägyptischen Grab, dem Grab des Petosiris aus dem Jahre 300v. Chr[1]. Mit einer Schnur trieb ein Mann das Werkstück an, während der andere das Werkzeug gegen das Werkstück hielt. Nach Überlieferungen der griechischen Mythologie erfand Daidalos die Drehbank mit Schnürzug.

Aus dem 8. Jahrhundert n. Chr. stammt eine Zeichnung, bei der das Drehteil mit einer in einen Bogen gespannten Schnur (Fiedelbogenantrieb) durch hin- und hergehende Bewegung gedreht wurde. Im 13. Jahrhundert kam die Wipp- oder Wippendrehbank auf, bei der die Schnur mit einem Ende an einem Trittbrett und am anderen Ende an einer Feder, meist ein an der Decke befestigter Stock, befestigt war. Mit dieser Konstruktion konnte der Dreher mit dem Fuß die Apparatur antreiben und hatte beide Hände zum Führen des Werkzeugs frei.

Anfang des 15. Jahrhunderts nutzte man die Handkurbel als Antrieb. Auch Leonardo da Vinci erfand eine Drehbank, bei der eine Schwungscheibe über ein Trittbrett angetrieben wurde und so eine kontinuierlich Drehbewegung ermöglichte. Dieses Konzept konnte sich jedoch nicht durchsetzen. Aus dem Jahre 1480 stammt die erste Darstellung einer Drehbank mit Support. Die Zeichnung beschreibt eine Drehbank mit hölzernem Werkzeugschlitten zur Zustellung des Drehmeißels und einem in Längsrichtung verfahrbaren Drehteil. Auch Leonardo da Vinci verwendete 1490 bereits einen Werkzeughalter[2].

Jacques Besson konstruierte 1571 eine Drehbank mit selbsttätigem mechanischen Vorschub über die Leitspindel. Den Werkzeugschlitten zogen zwei Gewichte über Umlenkrollen nach oben und pressten damit das Werkzeug an das Werkstück. In der Feinmechanik waren die Drehbänke nach 1650 schon zu einem großen Teil aus Metall und verfügten ab 1750 schon über alle wesentlichen Merkmale einer modernen Drehmaschine, wie Leitspindel, Wechselräder und einen Kreuzsupport, sogar die Zeichnung einer Kopierdrehmaschine aus dem Jahre 1741 ist bekannt[3]. Diese frühen Leistungen waren nur auf Grund ihrer geringen Größe möglich. Die erste für den Maschinenbau geeignete Supportdrehbank stammt wahrscheinlich vom Amerikaner Sylvanin Brown aus dem Jahre 1791. Sieben Jahre später patentierte ebenfalls ein Amerikaner, David Wilkinson eine Supportdrehbank.

Henry Maudslay schließlich gelang es, eine Leitspindeldrehbank für den Maschinenbau komplett aus Metall zu fertigen. Sie verfügte über einen Kreuzsupport sowie einen von der Umdrehung abhängigen Vorschub, der die Herstellung gleicher, untereinander austauschbare Teile erlaubte. Kurz darauf konstruierte man den Planschlitten und koppelte auch ihn mit der Leitspindel. Maudslay wiederum setzte nun auch Wechselräder für den Vorschub ein, um Gewinde unterschiedlicher Steigung zu drehen. Die erste Leitspindeldrehmaschine in Deutschland kam 1810 aus London und wurde von der Maschinenfabrik Koenig & Bauer in Würzburg angeschafft. Die erste Karusselldrehbank fertigte 1839 der Schweizer Ingenieur Johann Georg Bodmer während seiner Zeit bei Withworth in England[2].

Joseph Whitworth erweiterte 1840 die bekannte Drehbank um weitere verfügbare Werkzeuge und Schlitten (Mehrstahl- und Mehrschlittendrehbank). 1852 versuchte man mit der Kurbelzapfendrehbank aus den USA, die Schnittbewegung mit umlaufendem Werkzeug zu erzeugen, jedoch konnte dieses Verfahren nie ausreichend Akzeptanz erringen. 1852–1860 führte der Amerikaner Stephen Fitch den Oberschlitten als Revolver aus und erfand damit die Revolverdrehmaschine. Schon ein Jahr danach, 1861, erweiterte man die Drehbank um weitere Arbeitsspindeln. Die erste automatisierte Drehbank ließ Ch. M. Spencer 1873 patentieren. Die Leit- und Zugspindeldrehbank wurde 1880 entwickelt und konnte damals nahezu alle anfallenden Dreharbeiten erledigen. In den folgenden Jahre kamen immer neue Varianten der Drehmaschine mit verfeinerter Technik auf den Markt, wie die Kopierdrehbank, die von Schablonen oder Mustern über eine Abtasteinrichtung Kopien erstellte, und der Drehautomat, der automatisch bestimmte Vorschubbewegungen ausführte.

Anfang der 1950er Jahre entwickelte man in den USA die ersten numerisch gesteuerten (NC-)Drehmaschinen, deren Werkzeugbewegungen und Drehzahlen von einer Steuerung überwacht werden, die mittels Lochstreifen ihre Befehle erhält. Der Lochstreifen wurde in den Steuerungen bis zum Ende der 1970er Jahre oft Satz für Satz mitlaufend verarbeitet: ein Steuerinformations-Datensatz wird in der Maschine abgearbeitet, derweilen liest die Steuerung den nächsten Datensatz ein und bereitet ihn rechnerisch für die nächste Bewegung auf. Der Fortschritt auf dem Gebiet der Datenverarbeitung wirkte sich seitdem unmittelbar auf die weitere Entwicklung der Drehmaschine aus.

Mechanisch wurde die Drehmaschine ab 1945 vor allem in der Genauigkeit und Geschwindigkeit verbessert. Dabei vergrößerte sich auch die Gestaltungsvielfalt, da durch die CNC-Technik die mechanischen Übertragungsglieder entfielen.

Allgemeiner Aufbau [Bearbeiten]

Dreher an einer Drehmaschine

Dreher an einer Drehmaschine
Mit einer CNC-Drehmaschine gedrehte Schachfiguren

Mit einer CNC-Drehmaschine gedrehte Schachfiguren
Drehen eines Flaschenöffners aus Aluminium auf einer Universaldrehmaschine

Drehen eines Flaschenöffners aus Aluminium auf einer Universaldrehmaschine

Die Drehmaschine wurde im Laufe ihrer Geschichte an viele spezielle Anwendungen angepasst. So steht heute ein breite Auswahl an verschiedenen Modellen zu Verfügung, die sich aber im grundsätzlichen Aufbau ähneln. Die Arbeitsspindel (Drehachse) ist bei kleinen Durchmessern des Werkstückes meist horizontal angeordnet, bei großen Durchmessern eher vertikal.

Gestell [Bearbeiten]

Das Gestell ist entweder eine geschweißte Stahlkonstruktion oder aus Gusseisen gefertigt, selten auch als Verbundbauweise mit Beton und Kunststoff. Es trägt das Gewicht aller Bauteile, fängt die Kräfte aus dem Bearbeitungsprozess ab und muss dementsprechend stark und verwindungssteif konstruiert sein. Zusätzlich muss es eine gute Dämpfung besitzen um Schwingungen innerhalb der Maschine zuverlässig abbauen zu können. Gestell und das unten aufgeführte Maschinenbett bilden bei regulären Baugrößen eine Einheit; nur sehr kleine Tischdrehbänke und Uhrmacherdrehmaschinen haben eine Trennung der Einheiten „Bett“ (unmittelbar für den Bearbeitungsprozess) und Gestell (zum hochheben der Maschine auf eine dem Menschen bequeme Arbeitshöhe).

Drehmaschinenbett [Bearbeiten]

Das waagerechte Drehmaschinenbett liegt an beiden Enden auf dem Gestell auf und trägt Werkzeugschlitten, Reitstock und Lünette. Da sich bei Drehmaschinen die Schneide ständig im Eingriff befindet, werden Maschinenteile zum Schwingen angeregt; eine Spanungsdickenmodulation entsteht. Diese vermindert die Oberflachengüte und die Maßhaltigkeit und erhöht den Werkzeugverschleiß, weswegen das Bett aus schwingungsdämpfendem Gusseisen mit Lamellengraphit oder Reaktionsharzbeton gegossen und die Hohlräume mit Sand oder kunstharzgebundenem Granit (Polymerbeton) ausgefüllt werden. Auf kleinen Maschinen bestehen Bett und Gestell aus einem Stück, und alle oben genannten Teile teilen sich zwei Führungen. Bei größeren Maschinen verfährt der Werkzeugschlitten auf zwei gesonderten Führungen. Zur Verbesserung der Arbeitsleistung wird das gesamte Bett zur besseren Spanabfuhr oft auch geneigt (Schrägbett) oder über der Hauptspindel liegen kann. Da die Drehachse bei Karusselldrehmaschinen senkrecht steht, spricht man bei den Schlittenführungen nicht von einem Bett, sondern vom Maschinenständer. An Frontdrehmaschinen für flache Rotationsteile wiederum liegt das Bett quer zur Drehachse der Arbeitsspindel.

Spindelstock [Bearbeiten]

Der Spindelstock liegt beinahe bei jeder Maschine auf der linken Seite. In kräftigen, vorgespannten und einstellbaren Präzisionswälzlagern wird dort die Arbeitsspindel geführt, welche oftmals als Hohlwelle ausgeführt ist, da dies die Formstabilität erhöht und eine Versorgung des Futters mit Stangenmaterial ermöglicht. Über Riementrieb (Flach-, Keil, oder Zahnriemen) und Getriebe ist die Arbeitsspindel mit dem Motor gekoppelt. CNC-Drehmaschinen und auch handbediente Maschinen mit stufenlos regelbarem Motor besitzen oft nur ein zwei- bis vierstufiges Getriebe. Dadurch kann auch innerhalb des Drehzahlregelbereiches eine konstante Schnittgeschwindigkeit bei variablen Drehdurchmessern, wie zum Beispiel beim Plandrehen, gewährleistet werden. Bei älteren Modellen handbedienter Maschinen hat das Getriebe 24 bis 52 Stufen, die mit zwei oder drei Hebeln umgeschaltet werden. Zusätzlich beinhaltet es bei manchen Maschinen ein Wendegetriebe, um die Drehrichtung der Spindel umzukehren. Jedoch ist es üblich, die Drehrichtung direkt am Motor zu ändern. An numerischen gesteuerten Mehrspindeldrehautomaten werden auch Motorspindeln eingesetzt. Die Spindel mit Werkstückaufnahme ist dabei direkt in den Motor verbaut, wodurch Bauraum gespart werden kann.

Vorschub [Bearbeiten]

Handbediente Universaldrehmaschinen verfügen noch über ein Vorschubgetriebe, das Kraft von der Arbeitsspindel ableitet und über Wechselräder und Vorschubgetriebe an Leit- und Zugspindel überträgt. Numerisch gesteuerte Maschinen verfügen dagegen für jede Bearbeitungsachse über einen eigenen Antrieb. Spielfreie Kugelgewindetriebe übertragen die Bewegung auf die Schlitten, wobei Vorschubgeschwindigkeiten bis 60 m/min und Beschleunigungen bis 8 m/s² möglich sind, gewöhnlich und besonders während der Bearbeitung aber deutlich niedriger liegen. Für höchste Beschleunigungen und Verfahrgeschwindigkeiten eignen sich zudem Linearantriebe, die in den letzten Jahren eine immer größere Verbreitung erfahren. Dem Werkzeugschlitten sind die Achsen in Längs- und Querrichtung (Z- und X-Achse) zugeordnet. Der Verfahrweg wird entweder an Skalenringen der Handräder abgelesen oder elektronisch mit Wegmesssystemen erfasst und angezeigt.

Für hohe Vorschübe und Schnittgeschwindigkeiten verwendet man heute in der Drehtechnik spezielle Materialien, etwa die Automatenstähle.

Werkzeugschlitten [Bearbeiten]

Trommelrevolverkopf einer CNC-Universaldrehmaschine

Trommelrevolverkopf einer CNC-Universaldrehmaschine

Auf dem Bett verfährt in Längsrichtung der meist als Kreuzsupport ausgeführte Werkzeugschlitten, auf dem der Planschlitten quer zur Drehachse verfährt. Als Werkzeugträger befindet sich bei der handbedienten Leit- und Zugspindeldrehmaschine obenauf der Oberschlitten, der einen Werkzeughalter (oft als Schnellwechselhalter für wirtschaftlichen Werkzeugwechsel ausgeführt) trägt, bei CNC-Drehmaschinen auch oft einen Werkzeugrevolver zur Aufnahme mehrerer Werkzeuge. Zur Führung stehen verschiedene Systeme zur Auswahl, wobei gilt, dass besser dämpfende Führungssysteme die Oberflächengüte und Maßhaltigkeit erhöhen und dem Stick-Slip-Effekt entgegenwirken.

CNC-Drehmaschinen können heutzutage auf allen Werkzeugplätzen des Revolvers oder auf einem Teil davon (oftmals dann auf jedem zweiten Platz) auch mit Werkzeugen ausgerüstet werden, die mechanisch angetrieben werden, um mit ihnen zu bohren oder zu fräsen. Dies geht sehr oft einher mit einer sogenannten Spindelorientierung, bei der die Drehspindel auf einen beliebigen exakten Winkelwert positioniert und dann stillgesetzt werden kann. Die Drehspindel wird dann als eigene CNC-Achse von der Steuerung angesprochen und benötigt einen eigenen Spindeldrehgeber. Dies ermöglicht es, auch NC-gesteuert zusammen mit einer oder mehreren anderen Achsen komplexe geometrische Bewegungsabläufe abzuarbeiten (Mehrachsen-Interpolation).

Reitstock und Lünette [Bearbeiten]

Der Reitstock dient zum Abstützen langer Drehteile mittels einer Zentrierspitze, die in die stirnseitig in das Werkstück eingebrachte Zentrierbohrung eingreift. Konventionelle Maschinen verfügen über eine Pinole im Reitstock mit Morsekegelaufnahme für Bohrfutter oder große Bohrer, welche mit einem Handrad parallel zum Bett herausgedreht werden kann zum Herstellen zentrischer Bohrungen.

Mit der Lünette können lange, dünne Drehteile an jeder beliebigen Stelle abgestützt werden. Sie verhindert ein Schwingen und Durchbiegen des Werkstücks aufgrund des Eigengewichts und der Bearbeitungskräfte. Das Drehteil wird dabei mittels Gleit- oder Wälzlager an ausreichend breiten Stellen gelagert. Optional oder zusätzlich kann auch ein Schnittkraftkompensator verwendet werden.

Frontdrehmaschinen und Karusselldrehmaschinen haben aufgrund ihrer Auslegung meist weder Reitstock noch Lünette.

Arbeitsraum-Bestimmung [Bearbeiten]

Mit den Maßen der oben angegebenen Komponenten lassen sich zunächst einige charakteristische Angaben machen über mögliche Abmessungen von Werkstücken, die sich auf der Drehmaschine bearbeiten lassen.

Man unterscheidet folgende Begriffe:

  • Drehlänge zwischen den Spitzen, Alternativangabe: Spitzenweite
  • Umlaufdurchmesser über dem Bett, Alternativangabe: Spitzenhöhe
  • Umlaufdurchmesser über dem Bettschlitten

Die „Drehlänge zwischen Spitzen“ wird oft gemessen, indem das Spannfutter der Drehmaschine demontiert ist und eine kurzer Stirnmitnehmer in die hohle Arbeitsspindel montiert wird, aus der die scharfgratigen Mitnehmerspitzen nur wenig hervorragen. Auf der rechten Seite der Drehmaschine wird eine ungelagerte, kurze starre Spitze in den Reitstock gesetzt um die maximale Drehlänge zu ermöglichen. Meist sind aber diese Ausrüstungen für den Drehzweck nicht optimal geeignet, sodass die real nutzbare Drehlänge abnimmt.

Die „Spitzenhöhe“ ist ein Radius-Maß, das in der Regel schräg von der Reitstockspitze gegen die nächste Führungsbahn des Maschinenbettes gemessen wird; Verdoppelung dieses Maßes liefert den Umlaufdurchmesser.

Der Umlaufdurchmesser über dem Bett ist jedoch keineswegs gleich dem maximalen Werkstückdurchmesser, da ein Werkstück zumeist von Backen am Futter noch außen gespannt werden muss, und auch diese Backen über dem Bett umlaufen müssen. Nur bei stirnseitig- oder innenspannbaren Werkstücken kann der Werkstückdurchmesser geringfügig kleiner als der Umlaufdurchmesser über dem Bett sein. In der Praxis geht es hier oft um wenige Millimeter, ob sich ein Werkstück auf einer bestimmten Maschine bearbeiten lässt oder eben nicht. Der Umlaufdurchmesser über Bett schließt den Werkzeugschlitten nicht ein: er muss hierbei rechts vom Werkstück verharren und die Bearbeitung muss, da der Schlitten nicht unterfahren kann, entweder auf der Stirnseite erfolgen, oder aber mit lang auskragenden und somit instabilen Werkzeughaltern auf der Umfangsseite geschehen.

Der Umlaufdurchmesser über Bettschlitten wiederum ist oftmals erheblich kleiner als der Durchmesser über dem Maschinenbett. Bei den allermeisten Drehmaschinen ist eine stabile Außenbearbeitung nur möglich, wenn der Schlitten unter dem Drehteil verfährt – und somit der Werkstückdurchmesser auf denjenigen „über Bettschlitten“ eingeschränkt ist. Da wiederum der Schlitten oft nicht „nackt“ bleibt, sondern mit unterschiedlich hohen Spannzeugen, Revolvern oder ähnlichem ebenso in den Maßen variiert, zählt nur eine Betrachtung im Ganzen. Zudem muss achtgegeben werden, dass die eventuell einzusetzenden Messmittel auch verwendet werden können. Die Frage zum ausreichenden Arbeitsraum einer Maschine lautet:

Lässt sich das vorgegebene Werkstück mit seinen Rohabmessungen (oder Vorabmessungen) mit den verfügbaren Spannmitteln stabil so einspannen, dass mit genügend stabilen Werkzeugen (samt ihren Einspannmitteln) sämtliche in der Zeichnung des Werkstücks angegebenen, zu bearbeitenden Drehflächen erreicht werden können, um (nicht nur eine im Extrem knapp mögliche, sondern auch) eine wirtschaftliche Bearbeitung durchzuführen?

Diese Frage ist mit schlichten Angaben wie „Spitzenhöhe 400 mal Spitzenweite 1200“ in aller Regel nicht beantwortbar.

Arten von Drehmaschinen [Bearbeiten]

Die Drehmaschinen können einerseits aus Sicht der Anwendung, also ihrem Anforderungsprofil entsprechen, unterteilt werden. Andererseits bietet die Bauweise und Struktur der Maschine Kriterien zur Unterscheidung. In der Praxis haben beide Methoden von Fall zu Fall ihre Bedeutung, und werden je nach Firmenstruktur des Herstellers und Kunden angewendet. Der Verein Deutscher Werkzeugmaschinenfabriken e. V. (VDW) sowie die Fachgemeinschaft Werkzeugmaschinen und Fertigungssysteme im Verband Deutscher Maschinen- und Anlagenbau e. V. (VDMA) publizieren seit Jahren ein Bezugsquellenverzeichniss, das die Werkzeugmaschinen nach verschiedenen Kriterien unterteilt. Diese unterscheidet sich leicht von den Katalogen der Veranstalter von Maschinenausstellungen, die sich am internationalen Markt orientieren, wie beispielsweise der Europäischen Werkzeugmaschinen-Ausstellung (EMO). In dieser Betrachtung soll auf die wichtigsten Maschinen in der Übersicht nach VDW und VDMA eingegangen werden, aber auch andere Bezeichnungen wie beispielsweise die Ultrapräzisionsdrehmaschine werden benutzt.

Leit- und Zugspindeldrehmaschine [Bearbeiten]

Drehmaschine mit Leit- und Zugspindel, Baujahr ca. 1930

Drehmaschine mit Leit- und Zugspindel, Baujahr ca. 1930
CNC-Universaldrehmaschine

CNC-Universaldrehmaschine

Die handbediente Leit- und Zugspindeldrehmaschine ist die heute meist eingesetzte Maschinen mit einem Anteil von mehr als 50 %[4] aller verkauften Drehmaschinen und bildet die Grundform der Universaldrehmaschine. Auf ihr lassen sich fast alle Drehverfahren anwenden und es stehen zahlreiche Erweiterungen zur Auswahl. Sie ist immer als Waagerechtdrehmaschine ausgelegt. Ihre Vorschübe können sowohl manuell als auch maschinell über Zug- und Leitspindel betätigt werden. Geringer Planungsaufwand, günstige Preise und der vielseitige Verwendungszweck ermöglichen in weiten Bereichen der Einzel- und Kleinstserienfertigung einfacher Drehteile einen wirtschaftlichen Einsatz.

Universaldrehmaschinen [Bearbeiten]

Die Universaldrehmaschine stellt heute keinen bestimmten Typen mehr dar, sondern weist auf einen Anwendungsbereich hin. Es sind entweder mechanisch automatisierte Maschinen wie eine Leit- und Zugspindeldrehmaschinen mit Zusatzeinrichtungen oder numerisch gesteuerte Universaldrehmaschinen.

Sind auf dem Schlitten mehrere Werkzeuge in einer drehbaren Vorrichtung, dem Revolverkopf angebracht, bezeichnet man die Maschine als Revolverdrehmaschine. Der Revolver-Werkzeugschlitten besteht aus Bettschlitten, Planschlitten und Revolverkopf. Bei den Revolverköpfen unterscheidet man, je nach Orientierung der Werkzeugachse, Stern- oder Scheibenrevolver mit senkrechter Achse und Trommelrevolver mit waagerechter Achse.

In der Serienfertigung haben die numerisch gesteuerten Maschinen die manuell bedienten Drehmaschinen abgelöst. In der Großserienfertigung sind darüber hinaus immer noch mechanisch programmgesteuerte Maschinen als Einspindel-Drehautomaten in Betrieb.

Bei der Nachformdrehmaschine (oder Kopierdrehmaschine) wird eine zwei- oder dreidimensionale Kontur mechanisch abgetastet und auf die Vorschubbewegung des Werkzeugs übertragen. Die Übertragung der Kontur erfolgt entweder direkt mechanisch an einem Prototyp, über eine Leitkurve bzw. Leitlineal oder über kraftverstärkende Systeme, wobei die Kontur über einen Kopierfühler abgetastet und hydraulisch oder elektrisch über ein Servosystem an das Werkzeug weitergegeben wird. Da numerisch gesteuerte Maschinen diese Aufgaben gleich oder besser erfüllen, ist auch dieser Maschinentyp weitgehend verschwunden.

Die CNC-Drehmaschine vereinigt die Vorteile aller Universaldrehmaschinen. Sie verfügt oft über eine zusätzliche Hilfsachse, die im allgemeinen als Drehachse der Arbeitsspindel zugeordnet ist. Jede Vorschubachse verfügt über einen eigenen Motor und ein Wegmesssystem. Der Werkzeugschlitten kann einen drehbaren Werkzeugrevolver aufnehmen und ist von Lünette und Reitstock getrennt geführt, um unabhängig von ihnen zu verfahren. Das Maschinenbett ist meist seitlich um ca. 30 ° geneigt, um eine bessere Späneabfuhr zu ermöglichen. Nur der Planungsaufwand sowie die Kosten bei Einzelanfertigungen einfacher Teile liegen teilweise höher als bei den mechanischen gesteuerten Alternativen.

Senkrechtdrehmaschine Einständer- und Zweiständerbauart [Bearbeiten]

Laufrad einer Francisturbine auf einer Karusselldrehmaschine, hier zum Fräsen von Nuten

Laufrad einer Francisturbine auf einer Karusselldrehmaschine, hier zum Fräsen von Nuten

Eine Drehmaschine mit vertikaler Arbeitsspindel für besonders große Werkstücke nennt man Senkrechtdrehmaschine Einständer- und Zweiständerbauart, doch ist sie besser unter der Bezeichnung Karusselldrehmaschine bekannt. Das Werkstück wird dabei auf eine horizontal drehende Planscheibe gespannt. Kleinere und mittelgroße Maschinen verfügen in der Serienproduktion über die Möglichkeit, ein Werkstück mitsamt der Planscheibe zu wechseln. Während die eine Scheibe mit Werkstück in Betrieb ist, kann auf der anderen das Werkstück gewechselt oder an die nächste Maschine übergeben werden. Um ein Umspannen des Werkstücks mit der damit verbundenen Lageabweichungen und die dafür notwendige Zeit zu vermeiden, wird die Karusselldrehmaschine auch mit Werkzeugaufnahmen zum Bohren und Fräsen ausgestattet. Die Länge der Drehteile ist begrenzt, da eine Möglichkeit zum Abstützen wie ein Reitstock oder eine Lünette fehlen. Durch die Möglichkeit einer großflächige Lagerung der Planscheibe, die bei großen Maschinen hydrostatisch ausgeführt werden kann, können auch sehr schwere Werkstücke bearbeitet werden. Die Schlitten verfahren an ein oder zwei neben der Planscheibe befindlichen Maschinenständern oder an einer zwischen zwei Ständern angebrachten Traverse.

Senkrechtdrehmaschine mit selbstladender Spindel [Bearbeiten]

Vertikaldrehmaschinen für kleine Werkstücke verfügen über eine bewegliche, senkrechte Arbeitsspindel, die in der Regel ein Futter aufnimmt. In den meisten Fällen „hängt“ die Spindel an einer waagerechten Führung und führt einzelne oder alle Vorschubbewegungen aus. Die Versorgung mit Werkstücken übernimmt dabei die Arbeitsspindel (Pick-up-Spindel). Mit gesteuertem Futter legt sie das fertige Werkstück ab, greift sich ein neues Rohteil und fährt zurück in die Arbeitsposition. Die Drehwerkzeuge werden wie bei jeder modernen Maschine in einem Revolverkopf aufgenommen. Zur Rundumbearbeitung gibt es Zweispindel-Vertikaldrehmaschinen mit versetzt entgegengerichteten Arbeitsspindeln. Hat die „hängende“ Spindel ihr Programm abgefahren, gibt sie das Werkstück selbstständig an die zweite „stehende“ Spindel weiter, auf der anschließend die Rückseite des Teils bearbeitet wird. Der Werkzeugschlitten der zweiten Spindel verfährt dabei auf den gleichen Führungen wie die „hängende“ Spindel und führt alle Vorschubbewegungen aus.

Drehautomaten [Bearbeiten]

Für die Fertigung von größeren Stückzahlen einfacher Teile (z. B. Schrauben, Muttern u. ä.) werden Drehautomaten verwendet, die einen mit mehreren Werkzeugen bestückten und durch einen mechanischen Ablaufantrieb in entsprechenden Takten gesteuerten Schlitten (sowie Spannkopf und ggf. auch Reitstock) haben. Es gibt sie in Ein- und Mehrspindelausführung. Die Maschinen verfügen immer über eine automatische Werkstückversorgung, gelegentlich auch über Werkzeugwechseleinrichtungen. Bei Einspindelmaschinen kann das stangenförmige Halbzeug meist einfach durch die Hohlspindel mechanisch durchgeschoben werden. Mehrspindelautomaten benötigen dafür ein hinter den Hauptspindeln angeordnetes Stangenmagazin. Automatisierte Werkstoffhandhabung ermöglicht die Verkettung mehrerer Maschinen. Die mechanische Steuerung der Maschinen wird in zunehmenden Maße durch numerische Steuerungen abgelöst, wobei eine Steuerung auch mehrere Maschinen steuern kann. Im Unterschied zu Drehautomaten mit Stangenmagazin gibt es auch die sogenannten Ringdrehautomaten. Bei diesen rotiert nicht das Werkstück sondern die Drehwerkzeuge laufen um. Rohmaterial ist ringförmig aufgewickelter Draht, der der Maschine, in manchen Fällen auch abgerichtet, kontinuierlich zugeführt.

Des Weiteren sind noch die Kurzdrehautomaten (Kurzdreher) erwähnenswert, bei denen das das Werkstück in axialer Richtung bezüglich der Werkzeuge nicht verschoben werden kann und den Langdrehautomaten (Langdreher). Beim Langdreher gibt es eine Relativbewegung zwischen Werkstück und Werkzeug. Dabei wird das Werkstück in der Spindel mit Hilfe einer Spannzange gespannt und in einer Führungsbüchse (Lünette) geführt. Der axiale Abstand zwischen Führungsbüchse und Werkzeugen ist konstant. Es existieren zwei Systeme: Beim gebräuchlichen System "Schweizer" (benannt nach dem Erfinder) ist die Spindel axial in einer Längsführung verschiebbar, während beim eher exotischen System "Offenbacher" der Wippenständer mit den Werkzeugen und der darin befindlichen Führungsbüchse verschoben wird.

Der Vorteil beider Systeme liegt im gleichbleibenden Abstand zwischen Bearbeitungspunkt und Stützstelle (Lünette) auch bei der Längsbearbeitung. Dadurch können lange Werkstücke auch bei kleinen Durchmessern bearbeitet werden. Entwickelt und angewendet wurden Langdreher daher vor allem in der Uhrenindustrie zur Herstellung der Triebe wie sie in Uhrwerken Verwendung finden. Als weiteren Einsatzgebiet werden die Langdrehautomaten für die Fertigung medizinischen Instrumenten, z. B. Knochenschrauben aus Titan, sowie für die Dentalmedizin verwendet.

Flachbettdrehmaschinen [Bearbeiten]

Flachbettdrehmaschinen (oder Plandrehmaschine) haben immer ein horizontal angeordnetes Bett und eine horizontale Hauptspindel. Aufgrund der steifen Bauweise können schwere Werkstücke getragen und hohe Bearbeitungskräfte aufgenommen werden. Sie wird für Werkstücke mit einem Umlaufdurchmesser von mehr als 800 mm eingesetzt. Sie sind meist als Spitzendrehmaschine ähnlich der Leit- und Zugspindeldrehmaschine aufgebaut, nur das alle Komponenten wesentlich kräftiger und die Antriebe automatisch betrieben sind. Um auf spezifische Kundenwünsche eingehen zu können, bietet sich bei diesen teuren Maschinen die Modulbauweise an. Die Spitzenweite beträgt in der Regel mehrere Meter. Ist das Bett quer zur Hauptspindelachse angeordnet, spricht man meist von der unten beschriebenen Frontdrehmaschine.

Frontdrehmaschinen [Bearbeiten]

Auf Frontdrehmaschinen werden kurze Werkstücke bearbeitet, die kein Abstützen durch den Reitstock benötigen, wie z. B. Bremstrommeln. Das Drehmaschinenbett liegt oder steht quer zur Drehachse der Hauptspindel, wodurch sich kompakte Maschinengrößen ergeben und ein gute Zugänglichkeit gewährleistet ist. Frontdrehmaschinen zur Futterbearbeitung werden häufig mit zwei oder mehr Spindeln und automatischen Werkstückwechsel ausgestattet.

Ultrapräzisionsdrehmaschinen [Bearbeiten]

Besonders im optischen Bereich bei der Herstellung von Spiegeln, bei Formeinsätzen aus Nichteisenmetallen und zum Hartdrehen gehärteter Stähle kommen so genannte Ultrapräzisionsmaschinen zum Einsatz. Hochgenaue Linearführungen und Spindeln (Sub-Mikrometer-Toleranzen) sowie die Verwendung von „Einkorndiamanten“ als Drehmeißelschneide sind wesentliche Unterscheidungsmerkmale. Da die Abtragsraten sehr gering sind (wenige Mikrometer), werden gut vorgeformte Rohlinge vorausgesetzt. Bei extremen Anforderungen an die Genauigkeit der Dreharbeit werden diese Maschinen vom Boden entkoppelt und in klimatisierten Räumen betrieben. Die Führung der Schlitten und die Lagerung der Spindel erfolgt meist mit aerostatischen oder hydrostatischen Systemen, da diese eine wesentlich bessere Dämpfung aufweisen. Modernste Hydrostatische Gewindespindeln eliminieren zudem zusätzlich Vibrationen, sind jedoch aufgrund der hohen Kosten nur vereinzelt anzutreffen. Die Entwicklung auf dem Gebiet der Ultrapräzisionsmaschinen zielt derzeit auf einen Einsatz dieser Maschinen zur Bearbeitung gehärteter Stähle in der Massenproduktion als Alternative zum Schleifen ab.

Drehschälmaschinen [Bearbeiten]

Drehschälmaschinen nehmen eine Sonderstellung bei den Drehmaschinen ein, da sich hier das Werkzeug dreht und der Vorschub in der Regel vom Werkstück ausgeführt wird. Sie dienen zum Runddrehen von Stangenmaterial auf einen über die gesamte Länge gleichen Durchmesser. Dazu fährt die Stange durch einen rotierenden mit mehreren nach innen gerichteten Drehmeißeln bestückten Ring. Vor allem zum Entfernen der Wälzhaut langer Stangen oder zur Herstellung nicht genormter Stangendurchmesser kommt diese Maschine zum Einsatz.

Bohrwerke [Bearbeiten]

Den Drehmaschinen im Aussehen ähnlich können spezielle Bohrwerke sein, die für die Innenbearbeitung hohler Werkstücke bestimmt sind. Sie gehören jedoch nicht zu Drehmaschinen, da bei ihnen die Werkzeuge rotieren und die Werkstücke fest eingespannt sind.

Sonderformen [Bearbeiten]

Uhrmacherdrehbank

Uhrmacherdrehbank

Nicht nur in der Massenproduktion sind spezielle Drehmaschinen rentabel, auch für Kleinserien können Maschinen den Bedürfnissen entsprechend mit Normteilen nach dem Baukastenprinzip gebaut werden. So gibt es beispielsweise spezielle Drehmaschinen für Nockenwellen, Turbinenräder, Achsen und Kurbelwellen. Insbesondere auch in der Feinmechanik gibt es hoch spezielle Drehmaschinen. In der Uhrmacherei ist dies die Uhrmacherdrehbank oder auch „Decolletagemaschinen“. Im Uhrmachergewerbe nennt man sie meistens immer noch Drehbank und nicht Drehmaschine. Auch die Bearbeitung von Radsätzen spezielle Drehmaschinen, die sogenannten Radsatzdrehmaschinen. Solche Drehmaschinen müssen über Einrichtungen verfügen, die in einer einzigen Aufspannung oder per automatisiertem Umspannen die komplette Rotationsgeometrie zu bearbeiten erlauben.

Es existieren Horizontaldrehmaschinen mit Umlaufdurchmessern von mehr als acht Metern und Drehlängen von ca. 30 Metern, die eine Großmaschinenhalle allein belegen (Siemens KWU in Mülheim an der Ruhr, zur Drehbearbeitung von Dampfturbinenläufern). Bei Vertikaldrehmaschinen (sogenannten „Karusseldrehbänken“) sind Werkstück-Umlaufdurchmesser auf der Planscheibe über 15 Metern realisiert, bei Bearbeitungshöhen bis zu zehn Metern (frühere Großteile-Fertigung bei Five-Caille in Lille, Nordfrankreich). Auf einer solchen Maschine könnte man somit ein mehrstöckiges Haus drehbearbeiten.

Ein weiteres Extrem sind ultragroße Karusselldrehmaschinen in Einzelkomponenten. In der Mineralindustrie (z. B. zur Erzgewinnung) werden vor Ort im Bergwerk (abseits von mechanischen Fertigungsstätten) Drehmaschinen-Komponenten eingesetzt, die nicht mehr über ein gemeinsames Maschinenbett verfügen. Ein Bearbeitungsfall ist das Drehen von teils über 25 Metern großen Durchmessern an Laufringen für Drehrohröfen und Rotationskonverter. Die Bearbeitung geschieht so, dass eine Plan-Antriebseinheit in den Boden einbetoniert wird, auf der ein Spannkreuz das Werkstück, den gegossenen Ring, trägt. 15 Meter radial im Abstand z. B. wird die Werkzeugschlitteneinheit einbetoniert. Messsysteme werden platziert, die die Maßzuordnung zwischen Antriebseinheit (Drehachse) und der Bearbeitungseinheit nicht nur statisch, sondern auch dynamisch zu erfassen erlauben. Während der laufenden Arbeit wird per Laserinterferometrie eine im Bearbeitungsprozess entstehende mögliche Distanzveränderung der Werkzeugeinheit zur Antriebseinheit in Echtzeit in mehreren Achsen gemessen und dementsprechend in der CNC korrigiert. Auch eine solche Maschine hat dennoch eine Art „Maschinenbett“: der Boden und damit das Erdreich, in das die Komponenten eingelassen sind. Schwingungen und Probleme aus der „Weichheit“ dieses „Maschinenbettes“ werden in der Steuerung kompensiert.

Zugspindeldrehmaschine als Hobbydrehbank

beeway 發表在 痞客邦 留言(0) 人氣()

Bewise Inc. www.tool-tool.com Reference source from the internet.

From Wikipedia, the free encyclopedia

Jump to: navigation, search
A lathe from 1911 showing component parts. a = bed, b = toolrest, c = headstock, d = geartrain to drive automatic screw shaft, e = pullies for belt drive from an external power source, f = spindle, g = tailstock. h = automatic screw shaft.

A lathe from 1911 showing component parts.
a = bed, b = toolrest, c = headstock, d = geartrain to drive automatic screw shaft, e = pullies for belt drive from an external power source, f = spindle, g = tailstock. h = automatic screw shaft.

A lathe (pronounced [leɪð]) is a machine tool which spins a block of material to perform various operations such as cutting, sanding, knurling, drilling, or deformation with tools that are applied to the workpiece to create an object which has symmetry about an axis of rotation.

Lathes are used in woodturning, metalworking, metal spinning, and glassworking. Lathes can be used to shape pottery, the best-known design being the potter's wheel. Most suitably equipped metalworking lathes can also be used to produce most solids of revolution, plane surfaces and screw threads or helices. Ornamental lathes can produce three-dimensional solids of incredible complexity. The material is held in place by either one or two centers, at least one of which can be moved horizontally to accommodate varying material lengths. Examples of objects that can be produced on a lathe include candlestick holders, cue sticks, table legs, bowls, baseball bats, crankshafts and camshafts.

[edit] History

The lathe is an ancient tool, dating at least to the Egyptians and, known and used in Assyria, Greece, the Roman and Byzantine Empires.

A turned wood bowl with natural edges

A turned wood bowl with natural edges

The origin of turning dates to around 1300BC when the Egyptians first developed a two-person lathe. One person would turn the wood work piece with a rope while the other used a sharp tool to cut shapes in the wood. The Romans improved the Egyptian design with the addition of a turning bow. Early bow lathes were also developed and used in Germany, France and Britain. In the Middle Ages a pedal replaced hand-operated turning, freeing both the craftsman's hands to hold the woodturning tools. The pedal was usually connected to a pole, often a straight-grained sapling. The system today is called the "spring pole" lathe (see Polelathe). Spring pole lathes were in common use into the early 20th Century. A two-person lathe, called a "great lathe", allowed a piece to turn continuously (like today's power lathes). A master would cut the wood while an apprentice turned the crank. [1]

During the industrial revolution the lathe was motorized, allowing wooden turned items to be created in less time and allowing the working of metal on a lathe. The motor also produced a greater rotational speed, making it easier to quickly produce high quality work. Today most commercial lathes are computer-operated allowing for mass-production that can be created with accurate precision and without the cost of employing craftsmen.

[edit] Description

[edit] Parts of a lathe

Parts of a wood lathe

Parts of a wood lathe

A lathe may or may not have a stand (or legs), which sits on the floor and elevates the lathe bed to a working height. Some lathes are small and sit directly on a workbench or table, and do not have a stand.

All lathes have a "bed", which is (almost always) a horizontal beam (although some CNC lathes have a vertical beam for bed to ensure that swarf, or chips, falls free of the bed.

At one end of the bed (almost always the left, as the operator faces the lathe) is a "headstock". The headstock contains high-precision spinning bearings.

Rotating within the bearings is a horizontal axle, with an axis parallel to the bed, called the "spindle". Spindles are often hollow, and have exterior threads and/or an interior Morse taper on the "inboard" (i.e., facing to the right / towards the bed) by which accessories which hold the workpiece may be mounted to the spindle. Spindles may also have exterior threads and/or an interior taper at their "outboard" (i.e., facing away from the bed) end, and/or may have a handwheel or other accessory mechanism on their outboard end. Spindles are powered, and impart motion to the workpiece.

The spindle is driven, either by foot power from a treadle and flywheel or by a belt drive to a power source. In some modern lathes this power source is an integral electric motor, often either in the headstock, to the left of the headstock, or beneath the headstock, concealed in the stand.

A feature commonly found at the other end of the bed (almost always the right, as the operator faces the lathe) is a tailstock. A tailstock provides auxiliary support to the workpiece. Two common forms of tailstock are the dead center, a static polished cone which provides support and a pivot point for the work, and a live center, which uses bearings to rotate with the work.

Metalworking lathes have a "cross slide", which is a flat piece that sits crosswise on the bed, and can be cranked at right angles to the bed. Sitting atop the cross slide is a toolpost, which holds a cutting tool which removes material from the workpiece. There may or may not be a leadscrew, which moves the cross slide along the bed.

Woodturning and metal spinning lathes do not have cross slides, but have "banjos", which are flat pieces that sit crosswise on the bed. The position of a banjo can be adjusted by hand; no gearing is involved. Ascending vertically from the banjo is a tool post, at the top of which is a horizontal "tool rest". In woodturning, hand tools are braced against the tool rest and levered into the workpiece. In metal spinning, the further pin ascends vertically from the tool rest, and serves as a fulcrum against which tools may be levered into the workpiece.

[edit] Accessories

Unless a workpiece has a taper machined onto it which perfectly matches the internal taper in the spindle, or has threads which perfectly match the external threads on the spindle (two things which almost never happen), an accessory must be used to mount a workpiece to the spindle.

A workpiece may be bolted or screwed to a faceplate, a large flat disk that mounts to the spindle. Alternatively faceplate dogs may be used to secure the work to the faceplate.

A workpiece may be clamped in a three- or four-jaw chuck, which mounts directly to the spindle.

In precision work (and in some classes of repetition work), cylindrical workpieces are invariably held in a collet inserted into the spindle and secured either by a drawbar, or by a collet closing cap on the spindle. Suitable collets may also be used to mount square or hexagonal workpieces. In precision toolmaking work such collets are usually of the draw in variety, where as collet is tightened the workpiece moves slightly back into the headstock, whereas for most repetition work the dead length variety is preferered as this ensures that the position of the workpiece does not move as the collet is tightened, so the workpiece can be set in the lathe to a fixed position and it will not move on tightening the collet.

A soft workpiece (wooden) may be pinched between centers by using a spur drive at the headstock, which bites into the wood and imparts torque to it.

Live center (top) Dead center (bottom)

Live center (top) Dead center (bottom)

A soft dead center is used in the headstock spindle as the work rotates with the centre. Because the centre is soft it can be trued in place before use. The included angle is 60 degrees. Traditionally a hard dead center is used together with suitable lubricant in the tailstock to support the workpiece. In modern practice the dead center is frequently replaced by a live center or (revolving center) as it turns freely with the workpiece usually on ball bearings, reducing the frictional heat, which is especially important at high RPM. A lathe carrier may also be employed when turning between two centers.

In woodturning, one subtype of a live center is a cup center, which is a cone of metal surrounded by an annular ring of metal that decreases the chances of the workpiece splitting.

A circular metal plate with even spaced holes around the periphery, mounted to the spindle, is called an "index plate". It can be used to rotate the spindle a precise number of degrees, then lock it in place, facilitating repeated auxiliary operations done to the workpiece.

[edit] Modes of use

When a workpiece is fixed between the headstock and the tailstock, it is said to be "between centers". When a workpiece is supported at both ends, it is more stable, and more force may be applied to the workpiece, via tools, at a right angle to the axis of rotation, without fear that the workpiece may break loose.

When a workpiece is fixed only to the spindle at the headstock end, the work is said to be "face work". When a workpiece is supported in this manner, less force may be applied to the workpiece, via tools, at a right angle to the axis of rotation, lest the workpiece rip free. Thus, most work must be done axially, towards the headstock, or at right angles, but gently.

When a workpiece is mounted with a certain axis of rotation, worked, then remounted with a new axis of rotation, this is referred to as "eccentric turning" or "multi axis turning". The result is that various cross sections of the workpiece are rotationally symmetric, but the workpiece as a whole is not rotationally symmetric. This technique is used for camshafts, various types of chair legs, etc.

[edit] Varieties

The smallest lathes are "jewelers lathes" or "watchmaker lathes", which are small enough that they may be held in one hand. Although the workpieces machined on a jeweler's lathes are metal, jeweler's lathes differ from all other metal working lathes in that the cutting tools (called "gravers") are hand held and supported by a T-rest, not fixed to a cross slide. The work is usually held in a collet. Two spindle bore sizes to receive the collets are common, namely 6 mm and 8 mm. Two patterns of bed are common: the WW (Webster Whitcomb) bed, a truncated triangular prism (found only on 8 mm watchmakers lathes); and the continental D-style bar bed (used on both 6 mm and 8 mm lathes by firms such as Lorch and Star). Other bed designs have been used, such a triangular prism on some Boley 6.5 mm lathes, and a V-edged bed on IME's 8 mm lathes.

Lathes that sit on a bench or table are called "bench lathes".

Lathes that do not have additional integral features for repetitive production, but rather are used for individual part production or modification as the primary role, are called "engine lathes".

Lathes with a very large spindle bore and a chuck on both ends of the spindle are called "oil field lathes."

Fully automatic mechanical lathes, employing cams and gear trains for controlled movement, are called automatic screw machines.

Lathes that are controlled by a computer are CNC lathes.

Lathes with the spindle mounted in a vertical configuration, instead of horizontal configuration, are called vertical lathes or vertical boring machines. They are used where very large diameters must be turned, and the workpiece (comparatively) is not very long.

A lathe with a cylindrical tailstock that can rotate around a vertical axis, so as to present different facets towards the headstock (and the workpiece) are turret lathes.

A lathe equipped with indexing plates, profile cutters, spiral or helical guides, etc., so as to enable ornam

beeway 發表在 痞客邦 留言(0) 人氣()

Bewise Inc. www.tool-tool.com Reference source from the internet.

From Wikipedia, the free encyclopedia

Jump to: navigation, search
A lathe from 1911 showing component parts. a = bed, b = toolrest, c = headstock, d = geartrain to drive automatic screw shaft, e = pullies for belt drive from an external power source, f = spindle, g = tailstock. h = automatic screw shaft.

A lathe from 1911 showing component parts.
a = bed, b = toolrest, c = headstock, d = geartrain to drive automatic screw shaft, e = pullies for belt drive from an external power source, f = spindle, g = tailstock. h = automatic screw shaft.

A lathe (pronounced [leɪð]) is a machine tool which spins a block of material to perform various operations such as cutting, sanding, knurling, drilling, or deformation with tools that are applied to the workpiece to create an object which has symmetry about an axis of rotation.

Lathes are used in woodturning, metalworking, metal spinning, and glassworking. Lathes can be used to shape pottery, the best-known design being the potter's wheel. Most suitably equipped metalworking lathes can also be used to produce most solids of revolution, plane surfaces and screw threads or helices. Ornamental lathes can produce three-dimensional solids of incredible complexity. The material is held in place by either one or two centers, at least one of which can be moved horizontally to accommodate varying material lengths. Examples of objects that can be produced on a lathe include candlestick holders, cue sticks, table legs, bowls, baseball bats, crankshafts and camshafts.

[edit] History

The lathe is an ancient tool, dating at least to the Egyptians and, known and used in Assyria, Greece, the Roman and Byzantine Empires.

A turned wood bowl with natural edges

A turned wood bowl with natural edges

The origin of turning dates to around 1300BC when the Egyptians first developed a two-person lathe. One person would turn the wood work piece with a rope while the other used a sharp tool to cut shapes in the wood. The Romans improved the Egyptian design with the addition of a turning bow. Early bow lathes were also developed and used in Germany, France and Britain. In the Middle Ages a pedal replaced hand-operated turning, freeing both the craftsman's hands to hold the woodturning tools. The pedal was usually connected to a pole, often a straight-grained sapling. The system today is called the "spring pole" lathe (see Polelathe). Spring pole lathes were in common use into the early 20th Century. A two-person lathe, called a "great lathe", allowed a piece to turn continuously (like today's power lathes). A master would cut the wood while an apprentice turned the crank. [1]

During the industrial revolution the lathe was motorized, allowing wooden turned items to be created in less time and allowing the working of metal on a lathe. The motor also produced a greater rotational speed, making it easier to quickly produce high quality work. Today most commercial lathes are computer-operated allowing for mass-production that can be created with accurate precision and without the cost of employing craftsmen.

[edit] Description

[edit] Parts of a lathe

Parts of a wood lathe

Parts of a wood lathe

A lathe may or may not have a stand (or legs), which sits on the floor and elevates the lathe bed to a working height. Some lathes are small and sit directly on a workbench or table, and do not have a stand.

All lathes have a "bed", which is (almost always) a horizontal beam (although some CNC lathes have a vertical beam for bed to ensure that swarf, or chips, falls free of the bed.

At one end of the bed (almost always the left, as the operator faces the lathe) is a "headstock". The headstock contains high-precision spinning bearings.

Rotating within the bearings is a horizontal axle, with an axis parallel to the bed, called the "spindle". Spindles are often hollow, and have exterior threads and/or an interior Morse taper on the "inboard" (i.e., facing to the right / towards the bed) by which accessories which hold the workpiece may be mounted to the spindle. Spindles may also have exterior threads and/or an interior taper at their "outboard" (i.e., facing away from the bed) end, and/or may have a handwheel or other accessory mechanism on their outboard end. Spindles are powered, and impart motion to the workpiece.

The spindle is driven, either by foot power from a treadle and flywheel or by a belt drive to a power source. In some modern lathes this power source is an integral electric motor, often either in the headstock, to the left of the headstock, or beneath the headstock, concealed in the stand.

A feature commonly found at the other end of the bed (almost always the right, as the operator faces the lathe) is a tailstock. A tailstock provides auxiliary support to the workpiece. Two common forms of tailstock are the dead center, a static polished cone which provides support and a pivot point for the work, and a live center, which uses bearings to rotate with the work.

Metalworking lathes have a "cross slide", which is a flat piece that sits crosswise on the bed, and can be cranked at right angles to the bed. Sitting atop the cross slide is a toolpost, which holds a cutting tool which removes material from the workpiece. There may or may not be a leadscrew, which moves the cross slide along the bed.

Woodturning and metal spinning lathes do not have cross slides, but have "banjos", which are flat pieces that sit crosswise on the bed. The position of a banjo can be adjusted by hand; no gearing is involved. Ascending vertically from the banjo is a tool post, at the top of which is a horizontal "tool rest". In woodturning, hand tools are braced against the tool rest and levered into the workpiece. In metal spinning, the further pin ascends vertically from the tool rest, and serves as a fulcrum against which tools may be levered into the workpiece.

[edit] Accessories

Unless a workpiece has a taper machined onto it which perfectly matches the internal taper in the spindle, or has threads which perfectly match the external threads on the spindle (two things which almost never happen), an accessory must be used to mount a workpiece to the spindle.

A workpiece may be bolted or screwed to a faceplate, a large flat disk that mounts to the spindle. Alternatively faceplate dogs may be used to secure the work to the faceplate.

A workpiece may be clamped in a three- or four-jaw chuck, which mounts directly to the spindle.

In precision work (and in some classes of repetition work), cylindrical workpieces are invariably held in a collet inserted into the spindle and secured either by a drawbar, or by a collet closing cap on the spindle. Suitable collets may also be used to mount square or hexagonal workpieces. In precision toolmaking work such collets are usually of the draw in variety, where as collet is tightened the workpiece moves slightly back into the headstock, whereas for most repetition work the dead length variety is preferered as this ensures that the position of the workpiece does not move as the collet is tightened, so the workpiece can be set in the lathe to a fixed position and it will not move on tightening the collet.

A soft workpiece (wooden) may be pinched between centers by using a spur drive at the headstock, which bites into the wood and imparts torque to it.

Live center (top) Dead center (bottom)

Live center (top) Dead center (bottom)

A soft dead center is used in the headstock spindle as the work rotates with the centre. Because the centre is soft it can be trued in place before use. The included angle is 60 degrees. Traditionally a hard dead center is used together with suitable lubricant in the tailstock to support the workpiece. In modern practice the dead center is frequently replaced by a live center or (revolving center) as it turns freely with the workpiece usually on ball bearings, reducing the frictional heat, which is especially important at high RPM. A lathe carrier may also be employed when turning between two centers.

In woodturning, one subtype of a live center is a cup center, which is a cone of metal surrounded by an annular ring of metal that decreases the chances of the workpiece splitting.

A circular metal plate with even spaced holes around the periphery, mounted to the spindle, is called an "index plate". It can be used to rotate the spindle a precise number of degrees, then lock it in place, facilitating repeated auxiliary operations done to the workpiece.

[edit] Modes of use

When a workpiece is fixed between the headstock and the tailstock, it is said to be "between centers". When a workpiece is supported at both ends, it is more stable, and more force may be applied to the workpiece, via tools, at a right angle to the axis of rotation, without fear that the workpiece may break loose.

When a workpiece is fixed only to the spindle at the headstock end, the work is said to be "face work". When a workpiece is supported in this manner, less force may be applied to the workpiece, via tools, at a right angle to the axis of rotation, lest the workpiece rip free. Thus, most work must be done axially, towards the headstock, or at right angles, but gently.

When a workpiece is mounted with a certain axis of rotation, worked, then remounted with a new axis of rotation, this is referred to as "eccentric turning" or "multi axis turning". The result is that various cross sections of the workpiece are rotationally symmetric, but the workpiece as a whole is not rotationally symmetric. This technique is used for camshafts, various types of chair legs, etc.

[edit] Varieties

The smallest lathes are "jewelers lathes" or "watchmaker lathes", which are small enough that they may be held in one hand. Although the workpieces machined on a jeweler's lathes are metal, jeweler's lathes differ from all other metal working lathes in that the cutting tools (called "gravers") are hand held and supported by a T-rest, not fixed to a cross slide. The work is usually held in a collet. Two spindle bore sizes to receive the collets are common, namely 6 mm and 8 mm. Two patterns of bed are common: the WW (Webster Whitcomb) bed, a truncated triangular prism (found only on 8 mm watchmakers lathes); and the continental D-style bar bed (used on both 6 mm and 8 mm lathes by firms such as Lorch and Star). Other bed designs have been used, such a triangular prism on some Boley 6.5 mm lathes, and a V-edged bed on IME's 8 mm lathes.

Lathes that sit on a bench or table are called "bench lathes".

Lathes that do not have additional integral features for repetitive production, but rather are used for individual part production or modification as the primary role, are called "engine lathes".

Lathes with a very large spindle bore and a chuck on both ends of the spindle are called "oil field lathes."

Fully automatic mechanical lathes, employing cams and gear trains for controlled movement, are called automatic screw machines.

Lathes that are controlled by a computer are CNC lathes.

Lathes with the spindle mounted in a vertical configuration, instead of horizontal configuration, are called vertical lathes or vertical boring machines. They are used where very large diameters must be turned, and the workpiece (comparatively) is not very long.

A lathe with a cylindrical tailstock that can rotate around a vertical axis, so as to present different facets towards the headstock (and the workpiece) are turret lathes.

A lathe equipped with indexing plates, profile cutters, spiral or helical guides, etc., so as to enable ornamental turning is an ornamental lathe.

Various combinations are possible: e.g. one could have a "vertical CNC lathe", etc.

Lathes can be combined with other mechanisms into more complex machines, such as those with an overhead drill or vertical milling unit. These are usually referred to as combination lathes

[edit] Major categories of lathes

[edit] Woodworking lathes

A modern woodworking lathe.

A modern woodworking lathe.

Woodworking lathes are the oldest variety. All other varieties are descended from these simple lathes. An adjustable horizontal metal rail - the tool rest - between the material and the operator accommodates the positioning of shaping tools, which are usually hand-held. With wood, it is common practice to press and slide sandpaper against the still-spinning object after shaping to smooth the surface made with the metal shaping tools.

There are also woodworking lathes for making bowls and plates, which have no horizontal metal rail, as the bowl or plate needs only to be held by one side from a metal face plate. Without this rail, there is very little restriction to the width of the piece being turned. Further detail can be found on the woodturning page.

[edit] Metalworking lathes

A metalworking lathe

A metalworking lathe
Main article: Lathe (metal)

In a metalworking lathe, metal is removed from the workpiece using a hardened cutting tool, which is usually fixed to a solid moveable mounting called the "toolpost", which is then moved against the workpiece using handwheels and/or computer controlled motors.

The toolpost is operated by leadscrews that can accurately position the tool in a variety of planes. The toolpost may be driven manually or automatically to produce the roughing and finishing cuts required to turn the workpiece to the desired shape and dimensions, or for cutting threads, worm gears, etc. Cutting fluid may also be pumped to the cutting site to provide cooling, lubrication and clearing of swarf from the workpiece. Some lathes may be operated under control of a computer for mass production of parts (see "Computer Numerical Control").

Metalworking lathes are commonly provided with a variable ratio gear train to drive the main leadscrew. This enables different pitches of threads to be cut. Some older gear trains are changed manually by using interchangeable gears with various numbers of teeth, while more modern or elaborate lathes have a quick change box to provide commonly used ratios by the operation of a lever.

The threads that can be cut are, in some ways, determined by the pitch of the leadscrew: A lathe with a metric leadscrew will readily cut metric threads (including BA), while one with an imperial leadscrew will readily cut imperial unit based threads such as BSW or UTS (UNF,UNC).

The workpiece may be supported between a pair of points called centres, or it may be bolted to a faceplate or held in a chuck. A chuck has movable jaws that can grip the workpiece securely.

[edit] Cue lathes

Cue lathes function similar to turning and spinning lathes allowing for a perfectly radially-symmetrical cut for billiard cues. They can also be used to refinish cues that have been worn over the years.

[edit] Glassworking lathes

Glassworking lathes are similar in design to other lathes, but differ markedly in how the workpiece is modified. Glassworking lathes slowly rotate a hollow glass vessel over a fixed or variable temperature flame. The source of the flame may be either hand-held, or mounted to a banjo/cross slide that can be moved along the lathe bed. The flame serves to soften the glass being worked, so that the glass in a specific area of the workpiece becomes malleable, and subject to forming either by inflation ("glassblowing"), or by deformation with a heat resistant tool. Such lathes usually have two headstocks with chucks holding the work, arranged so that they both rotate together in unison. Air can be introduced through the headstock chuck spindle for glassblowing. The tools to deform the glass and tubes to blow (inflate) the glass are usually handheld.

In diamond turning, a computer-controlled lathe with a diamond-tipped tool is used to make precision optical surfaces in glass or other optical materials. Unlike conventional optical grinding, complex aspheric surfaces can be machined easily. Instead of the dovetailed ways used on the tool slide of a metal turning lathe, the ways typically float on air bearings and the position of the tool is measured by optical interferometry to achieve the necessary standard of precision for optical work. The finished work piece usually requires a small amount subsequent polishing by conventional techniques to achieve a finished surface suitably smooth for use in a lens, but the rough grinding time is significantly reduced for complex lenses.

[edit] Metal spinning lathes

Main article: metal spinning

In metal spinning, a disk of sheet metal is held perpendicularly to the main axis of the lathe, and tools with polished tips (spoons) are hand held, but levered by hand against fixed posts, to develop large amounts of torque/pressure that deform the spinning sheet of metal.

Metal spinning lathes are almost as simple as woodturning lathes (and, at this point, lathes being used for metal spinning almost always are woodworking lathes). Typically, metal spinning lathes require a user-supplied rotationally symmetric mandrel, usually made of wood, which serves as a template onto which the workpiece is moulded (non-symmetric shapes can be done, but it is a very advanced technique). For example, if you want to make a sheet metal bowl, you need a solid chunk of wood in the shape of the bowl; if you want to make a vase, you need a solid template of a vase, etc.

Given the advent of high speed, high pressure, industrial die forming, metal spinning is less common now than it once was, but still a valuable technique for producing one-off prototypes or small batches where die forming would be uneconomical.

[edit] Ornamental turning lathes

The ornamental turning lathe was developed around the same time as the industrial screwcutting lathe in the nineteenth century. It was used not for making practical objects, but for decorative work - ornamental turning. By using accessories such as the horizontal and vertical cutting frames, eccentric chuck and elliptical chuck, solids of extraordinary complexity may be produced by various generative procedures. A special purpose lathe, the Rose engine lathe is also used for ornamental turning, in particular for engine turning, typically in precious metals, for example to decorate pocket watch cases. As well as a wide range of accessories, these lathes usually have complex dividing arrangements to allow the exact rotation of the mandrel. Cutting is usually carried out by rotating cutters, rather than directly by the rotation of the work itself. Because of the difficulty of polishing such work, the materials turned, such as wood or ivory, are usually quite soft, and the cutter has to be exceptionally sharp. The finest ornamental lathes are generally considered to be those made by Holtzapffel around the turn of the 19th century.

[edit] Reducing Lathe

Many types of lathes can be equipped with accessory components to allow them to reproduce an item: the original item is mounted on one spindle, the blank is mounted on another, and as both turn in synchronized manner, one end of an arm "reads" the original and the other end of the arm "carves" the duplicate.

A reducing lathe is a specialized lathe that is designed with this feature, and which incorporates a mechanism similar to a pantograph, so that when the "reading" end of the arm reads a detail that measures one inch (for example), the cutting end of the arm creates an analogous detail that is (for example) one quarter of an inch (a 4:1 reduction, although given appropriate machinery and appropriate settings, any reduction ratio is possible).

Reducing lathes are used in coin-making, where a plaster original (or an epoxy master made from the plaster original, or a copper shelled master made from the plaster original, etc.) is duplicated and reduced on the reducing lathe, generating a master die.

[edit] Rotary lathes

A lathe in which softwood logs are turned against a very sharp blade and peeled off in one continuous or semi-continuous roll. Invented by Immanuel Nobel (father of the more famous Alfred Nobel). The first such lathes were set up in the United States in the mid-19th century

[edit] Watchmaker's lathes

Watchmaker's lathe

Watchmaker's lathe

Watchmakers lathes are delicate but precise metalworking lathes, usually without provision for screwcutting, and are still used by horologists for work such as the turning of balance shafts. A handheld tool called a graver is often used in preference to a slide mounted tool. The original watchmaker's turns was a simple dead-centre lathe with a moveable rest and two loose headstocks. The workpiece would be rotated by a bow, typically of horsehair, wrapped around it.

[edit] Gallery

[edit] Examples of lathes


[edit] Examples of work produced from a lathe


BW Bewise Inc. Willy Chen willy@tool-tool.com bw@tool-tool.com www.tool-tool.com skype:willy_chen_bw mobile:0937-618-190 Head &Administration Office No.13,Shiang Shang 2nd St., West Chiu Taichung,Taiwan 40356 TEL:+886 4 24710048 / FAX:+886 4 2471 4839 N.Branch 5F,No.460,Fu Shin North Rd.,Taipei,Taiwan S.Branch No.24,Sec.1,Chia Pu East Rd.,Taipao City,Chiayi Hsien,Taiwan

Welcome to BW tool world! We are an experienced tool maker specialized in cutting tools. We focus on what you need and endeavor to research the best cutter to satisfy users demand. Our customers involve wide range of industries, like mold & die, aerospace, electronic, machinery, etc. We are professional expert in cutting field. We would like to solve every problem from you. Please feel free to contact us, its our pleasure to serve for you. BW product including: cutting toolaerospace tool .HSS Cutting toolCarbide end millsCarbide cutting toolNAS Cutting toolCarbide end millAerospace cutting toolФрезерыCarbide drillHigh speed steelMilling cutterCVDD(Chemical Vapor Deposition Diamond )PCBN (Polycrystalline Cubic Boron Nitride) Core drillTapered end millsCVD Diamond Tools Inserts’PCD Edge-Beveling Cutter(Golden Finger’PCD V-Cutter’PCD Wood tools’PCD Cutting tools’PCD Circular Saw Blade’PVDD End Mills’diamond tool Single Crystal Diamond Metric end millsMiniature end millsСпециальные режущие инструменты Пустотелое сверло Pilot reamerFraisesFresas con mango PCD (Polycrystalline diamond) FreseElectronics cutterStep drillMetal cutting sawDouble margin drillGun barrelAngle milling cutterCarbide burrsCarbide tipped cutterChamfering toolIC card engraving cutterSide cutterNAS toolDIN toolSpecial toolMetal slitting sawsShell end millsSide and face milling cuttersSide chip clearance sawsLong end millsStub roughing end millsDovetail milling cuttersCarbide slot drillsCarbide torus cuttersAngel carbide end millsCarbide torus cuttersCarbide ball-nosed slot drillsMould cutterTool manufacturer.

Bewise Inc. www.tool-tool.com

BW специализируется в научных исследованиях и разработках, и снабжаем самым высокотехнологичным карбидовым материалом для поставки режущих / фрезеровочных инструментов для почвы, воздушного пространства и электронной индустрии. В нашу основную продукцию входит твердый карбид / быстрорежущая сталь, а также двигатели, микроэлектрические дрели, IC картонорезальные машины, фрезы для гравирования, режущие пилы, фрезеры-расширители, фрезеры-расширители с резцом, дрели, резаки форм для шлицевого вала / звездочки роликовой цепи, и специальные нано инструменты. Пожалуйста, посетите сайт www.tool-tool.com для получения большей информации.

BW is specialized in R&D and sourcing the most advanced carbide material with high-tech coating to supply cutting / milling tool for mould & die, aero space and electronic industry. Our main products include solid carbide / HSS end mills, micro electronic drill, IC card cutter, engraving cutter, shell end mills, cutting saw, reamer, thread reamer, leading drill, involute gear cutter for spur wheel, rack and worm milling cutter, thread milling cutter, form cutters for spline shaft/roller chain sprocket, and special tool, with nano grade. Please visit our web www.tool-tool.com for more info.

beeway 發表在 痞客邦 留言(0) 人氣()