公告版位

目前分類:學術研究 (9512)

瀏覽方式: 標題列表 簡短摘要


Bewise Inc. www.tool-tool.com Reference source from the internet.

v d e
Iron alloy phases

Austenite (γ-iron; hard)
Bainite
Martensite
Cementite (iron carbide; Fe3C)
Ledeburite (ferrite - cementite eutectic, 4.3% carbon)
Ferrite (α-iron, δ-iron; soft)
Pearlite (88% ferrite, 12% cementite)
Spheroidite

Types of steel

Carbon steel (≤2.1% carbon; low alloy)
Stainless steel (steel with chromium)
HSLA steel (high strength low alloy)
Tool steel (very hard)

Other iron-based materials

Cast iron (>2.1% carbon)
Wrought iron (contains slag)
Ductile iron


Carbon steel, also called plain carbon steel, is a metal alloy, a combination of two elements, iron and carbon, where other elements are present in quantities too small to affect the properties. The only other alloying elements allowed in plain-carbon steel are manganese (1.65% max), silicon (0.60% max), and copper (0.60% max).[1] Steel with a low carbon content has the same properties as iron, soft but easily formed. As carbon content rises, the metal becomes harder and stronger but less ductile and more difficult to weld. Higher carbon content lowers steel's melting point and its temperature resistance in general.

Carbon content influences the yield strength of steel because carbon molecules fit into the interstitial crystal lattice sites of the body-centered cubic arrangement of the iron molecules. The interstitial carbon reduces the mobility of dislocations, which in turn has a hardening effect on the iron. To get dislocations to move, a high enough stress level must be applied in order for the dislocations to "break away". This is because the interstitial carbon atoms cause some of the iron BCC lattice cells to distort.

[edit] Types of carbon steel

Typical compositions of carbon:

  • Mild (low carbon) steel: approximately 0.05–0.15% carbon content for low carbon steel and 0.16-0.29% carbon content for mild steel[2] (e.g. AISI 1018 steel). Mild steel has a relatively low tensile strength, but it is cheap and malleable; surface hardness can be increased through carburizing.[3]
  • Medium carbon steel: approximately 0.30–0.59% carbon content[2](e.g. AISI 1040 steel). Balances ductility and strength and has good wear resistance; used for large parts, forging and automotive components.[4]
  • High carbon steel: approximately 0.6–0.99% carbon content [2]. Very strong, used for springs and high-strength wires.[5]
  • Ultra-high carbon steel: approximately 1.0–2.0% carbon content [2]. Steels that can be tempered to great hardness. Used for special purposes like (non-industrial-purpose) knives, axles or punches. Most steels with more than 1.2% carbon content are made using powder metallurgy and usually fall in the category of high alloy carbon steels.

Steel can be heat-treated which allows parts to be fabricated in an easily-formable soft state. If enough carbon is present, the alloy can be hardened to increase strength, wear, and impact resistance. Steels are often wrought by cold-working methods, which is the shaping of metal through deformation at a low equilibrium or metastable temperature.

[edit] Metallurgy

Mild steel is the most common form of steel as its price is relatively low while it provides material properties that are acceptable for many applications. Mild steel has a low carbon content (up to 0.3%) and is therefore neither extremely brittle nor ductile. It becomes malleable when heated, and so can be forged. It is also often used where large amounts of steel need to be formed, for example as structural steel. Density of this metal is 7,861.093 kg/m³ (0.284 lb/in³), the tensile strength is a maximum of 500 MPa (72,500 psi) and it has a Young's modulus of 210 GPa.

Carbon steels which can successfully undergo heat-treatment have a carbon content in the range of 0.30–1.70% by weight. Trace impurities of various other elements can have a significant effect on the quality of the resulting steel. Trace amounts of sulfur in particular make the steel red-short. Low alloy carbon steel, such as A36 grade, contains about 0.05% sulfur and melts around 1426–1538 °C (2600–2800 °F).[6] Manganese is often added to improve the hardenability of low carbon steels. These additions turn the material into a low alloy steel by some definitions, but AISI's definition of carbon steel allows up to 1.65% manganese by weight.

Hardened steel usually refers to quenched or quenched and tempered steel.

Silver steel or high-carbon bright steel gets its name from its appearance. It is a very-high carbon steel. It is defined under the steel specification standards BS-1407. It is a 1%-carbon tool steel which can be ground to close tolerances. Usually the range of carbon is in the range 1.10% - 1.20%. It also contains trace elements of 0.35% Mn (range 0.30–0.40%), 0.40% Cr (range 0.4–0.5%), 0.30% Si (range 0.1–0.3%), and also sometimes sulfur (max 0.035%) and phosphorus (max 0.035%). Silver steel is sometimes used for making straight razors, due to its ability to produce and hold a micro-fine edge.

[edit] Heat treatments

Iron-carbon phase diagram, showing the temperature and carbon ranges for certain types of heat treatments.

Iron-carbon phase diagram, showing the temperature and carbon ranges for certain types of heat treatments.

The purpose of heat treating carbon steel is to change the mechanical properties of steel, usually ductility, hardness, yield strength, and impact resistance. Note that the electrical and thermal conductivity are slightly altered. As with most strengthening techniques for steel, the modulus of elasticity (Young's modulus) is never affected. Steel has a higher solid solubility for carbon in the austenite phase, therefore all heat treatments, except spheroidizing and process annealing, start by heating to an austenitic phase. The rate at which the steel is cooled through the eutectoid reaction affects the rate at which carbon diffuses out of austenite. Generally speaking, cooling quickly will give a finer pearlite (until the martensite critical temperature is reached) and cooling slowly will give a coarser pearlite. Cooling a hypoeutectoid (less than 0.77 wt% C) steel results in a pearlitic structure with α-ferrite at the grain boundaries. If it is hypereutectoid (more than 0.77 wt% C) steel then the structure is full pearlite with small grains of cementite scattered throughout. The relative amounts of constituents are found using the lever rule. Here is a list of the types of heat treatments possible:

  • Spheroidizing: Spheroidite forms when carbon steel is heated to approximately 700 °C for over 30 hours. Spheroidite can form at lower temperatures but the time needed drastically increases, as this is a diffusion controlled process. The result is a structure of rods or spheres of cementite within primary structure (ferrite or pearlite, depending on which side of the eutectoid you are on). The purpose is to soften higher carbon steels and allow more formability. This is the softest and most ductile form of steel. The image to the right shows where spheroidizing usually occurs.[7]
  • Full annealing: Carbon steel is heated to approximately 40 °C above Ac3 or Ac1 for 1 hour; this assures all the ferrite transforms into austenite (although cementite might still exist if the carbon content is greater than the eutectoid). The steel must then be cooled slowly, in the realm of 38 °C (100 °F) per hour. Usually it is just furnace cooled, where the furnace is turned off with the steel still inside. This results in a coarse pearlitic °structure, which means the "bands" of pearlite are thick. Fully annealed steel is soft and ductile, with no internal stresses, which is often necessary for cost-effective forming. Only spheroidized steel is softer and more ductile.[8]
  • Process annealing: A process used to relieve stress in a cold-worked carbon steel with less than 0.3 wt% C. The steel is usually heated up to 550–650 °C for 1 hour, but sometimes temperatures as high as 700 °C. The image to the right shows the area where process annealing occurs.
  • Isothermal annealing: It is a process in which hypoeutectoid steel is heated above the upper critical temperature and this temperature is maintained for a period of time and then the temperature is brought down below lower critical temperature and is again maintained. Then finally it is cooled at room temperature. This method helps in eliminating any temperature gradient.
  • Normalizing: Carbon steel is heated to approximately 55 °C above Ac3 or Acm for 1 hour; this assures the steel completely transforms to austenite. The steel is then air cooled, which is a cooling rate of approximately 38 °C (100 °F) per minute. This results in a fine pearlitic structure, and a more uniform structure. Normalized steel has a higher strength than annealed steel; it has a relatively high strength and ductility.[9]
  • Quenching: Carbon steel with at least 0.4 wt% C is heated to normalizing temperatures and then rapidly cooled (quenched) in water, brine, or oil to the critical temperature. The critical temperature is dependent on the carbon content, but as a general rule is lower as the carbon content increases. This results in a martensitic structure; a form of steel that possesses a super-saturated carbon content in a deformed body-centered cubic (BCC) crystalline structure, properly termed body-centered tetragonal (BCT). This crystalline structure has a very high amount of internal stress. Due to these internal stress quenched steel is extremely hard but brittle, usually too brittle for practical purposes. These internal stresses cause stress cracks on the surface. Quenched steel is approximately three (lower carbon content) to four (high carbon content) times harder than normalized steel.[10]
  • Martempering (Marquenching): Martempering is not actually a tempering procedure, hence the term "Marquenching." It is a form of isothermal heat treatment applied after an initial quench of typically in an oil or brine solution at a temperature right above the "martensite start temperature". At this temperature, residual stresses within the material are relieved and some bainite may be formed from the retained ferrite which did not have time to transform into anything else. In industry, this is a process used to control the ductility and hardness of a material. With longer marquenching time, the ductility increases with a minimal loss in strength; the steel is held in this solution until the center and surface temperatures equalize. Then the steel is cooled at a moderate speed to keep the temperature gradient minimal. Not only does this process reduce internal stresses and stress cracks, but it also increases the impact resistance.[11]
  • Quench and tempering: This is the most common heat treatment encountered, because the final properties can be precisely determined by the temperature and time of the tempering. Tempering involves reheating quenched steel to a temperature below the eutectoid temperature then cooling. The elevated temperature allows very small amounts of spheroidite to form, which restore ductility, but reduces hardness. Actual temperatures and times are carefully chosen for each composition.[12]
  • Austempering: The austempering process is the same as martempering, except the steel is held in the brine solution through the bainite transformation temperatures, and then moderately cooled. The resulting bainite steel has a greater ductility, higher impact resistance, and less distortion. The disadvantage of austempering is it can only be used on a few steels, and it requires a special brine solution.[13]

[edit] Case hardening

Only the exterior of the steel part is hardened, creating a hard, wear resistant skin, but preserving a tough and ductile interior.

A limitation of plain carbon steel is the very rapid rate of cooling needed to produce hardening. In large pieces it is not possible to cool the inside rapidly enough and so only the surfaces can be hardened. This can be improved with the addition of other elements resulting in alloy steel.

[edit] Flame and induction hardening

Induction heating is when the surface of the steel is heated to high temperatures then cooled rapidly through the use of localized heating mechanisms and water cooling. The purpose is to create a "case" of martensite on the surface where wear resistance is needed. A carbon content of 0.4–0.6 wt% C is needed for this type of hardening. Typical uses are for the shackle of a lock, where the outer layer is hardened to be file resistant, and mechanical gears where hard gear mesh surfaces are needed to maintain a long service life while toughness is required to maintain durability and resistance to catastrophic failure.

[edit] Carburizing

Main article: Carburization

A process used to case harden steel with a carbon content between 0.1 and 0.3 wt% C. In this process steel is introduced to a carbon rich environment and elevated temperatures for a certain amount of time. Because this is a diffusion controlled process, the longer the steel is held in this environment greater the carbon penetration will be and the higher the carbon content in these areas. The part is then quenched so that the carbon is locked in the structure. The hardness is moderately increased, but it can be hardened again through flame or induction hardening. It's possible to carburize only a portion of the part by covering it in copper plating or coating it with a commercial paste. The following are some examples of carburizing processes:[14]

  • Pack carburizing: Packing low carbon steel parts with a carbonaceous material and heating for some time diffuses carbon into the outer layers. A heating period of a few hours might form a high-carbon layer about one millimeter thick.
  • Liquid carburizing: This method involves heating the part in a bath of molten barium cyanide or sodium cyanide. The surface absorbs both sodium and carbon this way.[15]
  • Gas carburizing: Parts placed into a furnace at 927 °C (1700 °F) containing a partial methane or carbon monoxide atmosphere. The parts are then quenched.
  • Carburization may also be accomplished with an acetylene torch set with a fuel rich flame and heating and quenching repeatedly in a carbon rich fluid (oil).

[edit] Nitriding

Main article: Nitriding

This process heats the steel part to 482–621 °C (900–1150 °F) in an atmosphere of ammonia gas and dissociated ammonia. The time the part spends in this environment dictates the depth of the case. The hardness is achieved by the formation of nitrides. Nitride forming elements must be present for this method to work; these elements include chromium, molybdenum, and aluminium. The advantage of this process is it causes little distortion, so the part can be case hardened after being quench and tempered and machined.

[edit] Cyaniding

This is a casehardening process that is fast and efficient; it is mainly used on Low carbon steels. The part is heated to 1600-1750º F in a bath of sodium cyanide and then is quenched and rinsed, in water or oil, to remove any residual cyanide.

This process produces a thin, hard shell (0.010 in. and 0.030 in.) that is harder than the one produced by carburizing and can be completed in 20 to 30 minutes compared to several hours. Advantage of this method is the short time it requires to complete the diffusion; otherwise it should be avoided because of high distortion. The major drawback of Cyaniding is that cyanide salts are poisonous.

The Typical Applications of this process are Bolts, Nuts, Screws, and Small Gears.

[edit] Carbonitriding

Main article: Carbonitriding

This process is similar to cyaniding except a gaseous atmosphere of ammonia and hydrocarbons is used instead of sodium cyanide. If the part is to be quenched then the part is heated to 775–885 °C (1425–1625 °F); if not then the part is heated to 649–788 °C (1200–1450 °F). Trade names for the process include Tenifer, Melonite, Sursulf, Arcor, Tufftride, and Koline.

歡迎來到Bewise Inc.的世界,首先恭喜您來到這接受新的資訊讓產業更有競爭力,我們是提供專業刀具製造商,應對客戶高品質的刀具需求,我們可以協助客戶滿足您對產業的不同要求,我們有能力達到非常卓越的客戶需求品質,這是現有相關技術無法比擬的,我們成功的滿足了各行各業的要求,包括:精密HSS DIN切削刀具協助客戶設計刀具流程DIN or JIS 鎢鋼切削刀具設計NAS986 NAS965 NAS897 NAS937orNAS907 航太切削刀具,NAS航太刀具設計超高硬度的切削刀具BW捨棄式鑽石V卡刀BW捨棄式金屬圓鋸片木工捨棄式金屬圓鋸片PCD木工圓鋸片醫療配件刀具設計汽車業刀具設計電子產業鑽石刀具全鎢鋼V卡刀-電路版專用全鎢鋼鋸片焊刃式側銑刀焊刃式千鳥側銑刀焊刃式T型銑刀焊刃式千鳥T型銑刀焊刃式螺旋機械鉸刀全鎢鋼斜邊刀電路版專用鎢鋼焊刃式高速鉸刀超微粒鎢鋼機械鉸刀超微粒鎢鋼定點鑽焊刃式帶柄角度銑刀焊刃式螺旋立銑刀焊刃式帶柄倒角銑刀焊刃式角度銑刀焊刃式筒型平面銑刀木工產業鑽石刀具等等。我們的產品涵蓋了從民生刀具到工業級的刀具設計;從微細刀具到大型刀具;從小型生產到大型量產;全自動整合;我們的技術可提供您連續生產的效能,我們整體的服務及卓越的技術,恭迎您親自體驗!!

BW Bewise Inc. Willy Chen willy@tool-tool.com bw@tool-tool.com www.tool-tool.com skype:willy_chen_bw mobile:0937-618-190 Head &Administration Office No.13,Shiang Shang 2nd St., West Chiu Taichung,Taiwan 40356 http://www.tool-tool..com / FAX:+886 4 2471 4839 N.Branch 5F,No.460,Fu Shin North Rd.,Taipei,Taiwan S.Branch No.24,Sec.1,Chia Pu East Rd.,Taipao City,Chiayi Hsien,Taiwan

Welcome to BW tool world! We are an experienced tool maker specialized in cutting tools. We focus on what you need and endeavor to research the best cutter to satisfy users demand. Our customers involve wide range of industries, like mold & die, aerospace, electronic, machinery, etc. We are professional expert in cutting field. We would like to solve every problem from you. Please feel free to contact us, its our pleasure to serve for you. BW product including: cutting toolaerospace tool .HSS DIN Cutting toolCarbide end millsCarbide cutting toolNAS Cutting toolNAS986 NAS965 NAS897 NAS937orNAS907 Cutting Tools,Carbide end milldisc milling cutter,Aerospace cutting toolhss drillФрезерыCarbide drillHigh speed steelMilling cutterCVDD(Chemical Vapor Deposition Diamond )’PCBN (Polycrystalline Cubic Boron Nitride) Core drillTapered end millsCVD Diamond Tools Inserts’PCD Edge-Beveling Cutter(Golden FingerEdge modifying knifeSolid carbide saw blade-V typeV-type locking-special use for PC boardMetal Slitting SawaCarbide Side milling CuttersCarbide Side Milling Cutters With Staggered TeethCarbide T-Slot Milling CuttersCarbide T-Slot Milling Cutters With Staggered TeethCarbide Machine ReamersHigh speed reamer-standard typeHigh speed reamer-long type’’PCD V-CutterPCD Wood toolsPCD Cutting toolsPCD Circular Saw BladePVDD End Millsdiamond tool V-type locking-special use for PC board Single Crystal Diamond Metric end millsMiniature end millsСпециальные режущие инструменты Пустотелое сверло Pilot reamerFraisesFresas con mango PCD (Polycrystalline diamond) ‘FreseElectronics cutterStep drill


beeway 發表在 痞客邦 留言(0) 人氣()


Bewise Inc. www.tool-tool.com Reference source from the internet.

炭素鋼(たんそこう、carbon steel)とは、炭素合金のことである。炭素含有量が、最低で0.02[mass%]含まれるものを指す。最大含有量は2.14[mass%]。普通鋼ともいう。 一般的によく使用される鉄鋼材料であり、『鉄鋼材料』というときは、普通は炭素鋼を指す。

炭素のほか、珪素マンガンりん硫黄が含まれるが、これらは製造時に残った物である。 炭素鋼は含有されている炭素量が多くなると、引っ張り強さ・硬さが増す半面、伸び・絞りが減少し、切削性が悪くなる。また、熱処理を施すことにより、大きく性質を変える事が出来る。

炭素鋼のうち、C含有量が約0.3[mass%]以下を低炭素鋼、約0.3~0.7[mass%]を中炭素鋼、約0.7[mass%]以上を高炭素鋼と呼ぶ。

また、C含有量が0.6[mass%]以下で構造用に使われるものは構造用炭素鋼、0.6[mass%]以上で工具用に使われるものは工具用炭素鋼と呼ばれる。構造用炭素鋼は、日本工業規格(JIS)により、最低引っ張り強度が指定され、建築などに使われる一般構造用圧延鋼材(SS材)と、C含有量を規定し、機械や装置に使われる機械構造用炭素鋼材(SC材)が存在する。

歡迎來到Bewise Inc.的世界,首先恭喜您來到這接受新的資訊讓產業更有競爭力,我們是提供專業刀具製造商,應對客戶高品質的刀具需求,我們可以協助客戶滿足您對產業的不同要求,我們有能力達到非常卓越的客戶需求品質,這是現有相關技術無法比擬的,我們成功的滿足了各行各業的要求,包括:精密HSS DIN切削刀具協助客戶設計刀具流程DIN or JIS 鎢鋼切削刀具設計NAS986 NAS965 NAS897 NAS937orNAS907 航太切削刀具,NAS航太刀具設計超高硬度的切削刀具BW捨棄式鑽石V卡刀BW捨棄式金屬圓鋸片木工捨棄式金屬圓鋸片PCD木工圓鋸片醫療配件刀具設計汽車業刀具設計電子產業鑽石刀具全鎢鋼V卡刀-電路版專用全鎢鋼鋸片焊刃式側銑刀焊刃式千鳥側銑刀焊刃式T型銑刀焊刃式千鳥T型銑刀焊刃式螺旋機械鉸刀全鎢鋼斜邊刀電路版專用鎢鋼焊刃式高速鉸刀超微粒鎢鋼機械鉸刀超微粒鎢鋼定點鑽焊刃式帶柄角度銑刀焊刃式螺旋立銑刀焊刃式帶柄倒角銑刀焊刃式角度銑刀焊刃式筒型平面銑刀木工產業鑽石刀具等等。我們的產品涵蓋了從民生刀具到工業級的刀具設計;從微細刀具到大型刀具;從小型生產到大型量產;全自動整合;我們的技術可提供您連續生產的效能,我們整體的服務及卓越的技術,恭迎您親自體驗!!

BW Bewise Inc. Willy Chen willy@tool-tool.com bw@tool-tool.com www.tool-tool.com skype:willy_chen_bw mobile:0937-618-190 Head &Administration Office No.13,Shiang Shang 2nd St., West Chiu Taichung,Taiwan 40356 http://www.tool-tool..com / FAX:+886 4 2471 4839 N.Branch 5F,No.460,Fu Shin North Rd.,Taipei,Taiwan S.Branch No.24,Sec.1,Chia Pu East Rd.,Taipao City,Chiayi Hsien,Taiwan

Welcome to BW tool world! We are an experienced tool maker specialized in cutting tools. We focus on what you need and endeavor to research the best cutter to satisfy users demand. Our customers involve wide range of industries, like mold & die, aerospace, electronic, machinery, etc. We are professional expert in cutting field. We would like to solve every problem from you. Please feel free to contact us, its our pleasure to serve for you. BW product including: cutting toolaerospace tool .HSS DIN Cutting toolCarbide end millsCarbide cutting toolNAS Cutting toolNAS986 NAS965 NAS897 NAS937orNAS907 Cutting Tools,Carbide end milldisc milling cutter,Aerospace cutting toolhss drillФрезерыCarbide drillHigh speed steelMilling cutterCVDD(Chemical Vapor Deposition Diamond )’PCBN (Polycrystalline Cubic Boron Nitride) Core drillTapered end millsCVD Diamond Tools Inserts’PCD Edge-Beveling Cutter(Golden FingerEdge modifying knifeSolid carbide saw blade-V typeV-type locking-special use for PC boardMetal Slitting SawaCarbide Side milling CuttersCarbide Side Milling Cutters With Staggered TeethCarbide T-Slot Milling CuttersCarbide T-Slot Milling Cutters With Staggered TeethCarbide Machine ReamersHigh speed reamer-standard typeHigh speed reamer-long type’’PCD V-CutterPCD Wood toolsPCD Cutting toolsPCD Circular Saw BladePVDD End Millsdiamond tool V-type locking-special use for PC board Single Crystal Diamond Metric end millsMiniature end millsСпециальные режущие инструменты Пустотелое сверло Pilot reamerFraisesFresas con mango PCD (Polycrystalline diamond) ‘FreseElectronics cutterStep drillMetal cutting sawDouble margin drillGun barrelAngle milling cutterCarbide burrsCarbide tipped cutterChamfering toolIC card engraving cutterSide cutterNAS toolDIN or JIS toolSpecial toolMetal slitting sawsShell end millsSide and face milling cuttersSide chip clearance sawsLong end millsStub roughing end millsDovetail milling cuttersCarbide slot drillsCarbide torus cuttersAngel carbide end millsCarbide torus cuttersCarbide ball-nosed slot drillsMould cutterTool manufacturer.

Bewise Inc. www.tool-tool.com

ようこそBewise Inc.の世界へお越し下さいませ、先ず御目出度たいのは新たな

情報を受け取って頂き、もっと各産業に競争力プラス展開。

弊社は専門なエンドミルの製造メーカーで、客先に色んな分野のニーズ

豊富なパリエーションを満足させ、特にハイテク品質要求にサポート致します。

弊社は各領域に供給できる内容は:

(1)精密HSSエンドミルのR&D

(2)Carbide Cutting tools設計

(3)鎢鋼エンドミル設計

(4)航空エンドミル設計

(5)超高硬度エンドミル

(6)ダイヤモンドエンドミル

(7)医療用品エンドミル設計

(8)自動車部品&材料加工向けエンドミル設計

弊社の製品の供給調達機能は:

(1)生活産業~ハイテク工業までのエンドミル設計

(2)ミクロエンドミル~大型エンドミル供給

(3)小Lot生産~大量発注対応供給

(4)オートメーション整備調達

(5)スポット対応~流れ生産対応

弊社の全般供給体制及び技術自慢の総合専門製造メーカーに貴方のご体験を御待ちしております。

BW специализируется в научных исследованиях и разработках, и снабжаем самым высокотехнологичным карбидовым материалом для поставки режущих / фрезеровочных инструментов для почвы, воздушного пространства и электронной индустрии. В нашу основную продукцию входит твердый карбид / быстрорежущая сталь, а также двигатели, микроэлектрические дрели, IC картонорезальные машины, фрезы для гравирования, режущие пилы, фрезеры-расширители, фрезеры-расширители с резцом, дрели, резаки форм для шлицевого вала / звездочки роликовой цепи, и специальные нано инструменты. Пожалуйста, посетите сайт www.tool-tool.com для получения большей информации.

BW is specialized in R&D and sourcing the most advanced carbide material with high-tech coating to supply cutting / milling tool for mould & die, aero space and electronic industry. Our main products include solid carbide / HSS end mills, micro electronic drill, IC card cutter, engraving cutter, shell end mills, cutting saw, reamer, thread reamer, leading drill, involute gear cutter for spur wheel, rack and worm milling cutter, thread milling cutter, form cutters for spline shaft/roller chain sprocket, and special tool, with nano grade. Please visit our web www.tool-tool.com for more info.

beeway 發表在 痞客邦 留言(0) 人氣()

Bewise Inc. www.tool-tool.com Reference source from the internet.
This article is about Japanese Industrial Standards in general; see JIS encoding for the character encoding used in representing the Japanese language for computer software and communication.
JIS symbol (used since October 1, 2005 and all changed to this renewed JIS symbol from October 1, 2008).

JIS symbol (used since October 1, 2005 and all changed to this renewed JIS symbol from October 1, 2008).
JIS old symbol (allowed to use until end of September 30, 2008).

JIS old symbol (allowed to use until end of September 30, 2008).

Japanese Industrial Standards (JIS) specifies the standards used for industrial activities in Japan. The standardization process is coordinated by Japanese Industrial Standards Committee and published through Japanese Standards Association.

[edit] History

In the Meiji era, private enterprises were responsible for making standards. However, the Japanese government did have standards and specification documents for procurement purposes for certain articles, such as munitions.

These were summarized to form an official standard (old JES) in 1921. During World War II, simplified standards were established to increase matériel output.

The present Japanese Standards Association was established after Japan's defeat in World War II in 1945. The Japanese Industrial Standards Committee regulations were promulgated in 1946, Japanese standards (new JES) was formed.

The Industrial Standardization Law was enacted in 1949, which forms the the legal foundation for the present Japanese Industrial Standards (JIS).

The Industrial Standardization Law was revised in 2004 and the "JIS mark" (product certification system) was changed, and the new JIS mark was applied since October 1, 2005 upon re-certification. The old mark is allowed to be used until September 30, 2008, for a transition period of 3 years, and every manufacture obtaining new or renewing certification under the authority's approval are then able to use the new JIS mark. Therefore all JIS certified Japanese products shall have the new JIS mark after October 1, 2008.

[edit] Standards classification and numbering

Standards are named like "JIS X 0208:1997", where X denotes area division, followed by four digits (or five digits for some of the standards corresponding ISO standards), and the revision release year. Divisions of JIS and significant standards are:

  • A - Civil Engineering and Architecture
  • B - Mechanical Engineering
    • JIS B 7021-1989 : Classification and Water Resistibility of Water Resistant Watches for General Use
    • JIS B 7512-1993 : Steel tape measures
    • JIS B 7516-1987 : Metal Rules
  • C - Electronic and Electrical Engineering
    • JIS C 0920:2003 : Degrees of protection provided by enclosures (IP Code)
  • D - Automotive Engineering
  • E - Railway Engineering
  • F - Shipbuilding
  • G - Ferrous Materials and Metallurgy
  • H - Nonferrous materials and metallurgy[1]
    • H2105 - Pig lead
    • H2107 - Zinc ingots
    • H2113 - Cadmium metal
    • H2116 - Tungsten powder and tungsten carbide powder
    • H2118 - Aluminum alloy ingots for die castings
    • H2121 - Electrolytic cathode copper
    • H2141 - Silver bullion
    • H2201 - Zinc alloy ingots for die casting
    • H2202 - Copper alloy ingots for castings
    • H2211 - Aluminium alloy ingots for castings
    • H2501 - Phosphor copper metal
    • H3100 - Copper and copper alloy sheets, plates and strips
    • H3110 - Phosphor bronze and nickel silver sheets, plates and strips
    • H3130 - Copper beryllium alloy, copper titanium alloy, phosphor bronze, copper-nickel-tin alloy and nickel silver sheets, plates and strips for springs
    • H3140 - Copper bus bars
    • H3250 - Copper and copper alloy rods and bars
    • H3260 - Copper and copper alloy wires
    • H3270 - Copper beryllium alloy, phosphor bronze and nickel silver rods, bars and wires
    • H3300 - Copper and copper alloy seamless pipes and tubes
    • H3320 - Copper and copper alloy welded pipes and tubes
    • H3330 - Plastic covered copper tubes
    • H3401 - Pipe fittings of copper and copper alloys
    • H4000 - Aluminium and aluminium alloy sheets and plates, strips and coiled sheets
    • H4001 - Painted aluminium and aluminium alloy sheets and strips
    • H4040 - Aluminium and aluminium alloy rods, bars and wires
    • H4080 - Aluminium and aluminium alloys extruded tubes and cold-drawn tubes
    • H4090 - Aluminium and aluminium alloy welded pipes and tubes
    • H4100 - Aluminium and aluminium alloy extruded shape
    • H4160 - Aluminium and aluminium alloy foils
    • H4170 - High purity aluminium foils
    • H4301 - Lead and lead alloy sheets and plates
    • H4303 - DM lead sheets and plates
    • H4311 - Lead and lead alloy tubes for common industries
    • H4461 - Tungsten wires for lighting and electronic equipments
    • H4463 - Thoriated tungsten wires and rods for lighting and electronic equipment
    • H4631 - Titanium and titanium alloy tubes for heat exchangers
    • H4635 - Titanium and titanium alloy welded pipes
    • H5401 - White metal
    • H8300 - Thermal spraying―zinc, aluminium and their alloys
    • H8601 - Anodic oxide coatings on aluminium and aluminium alloys
    • H8602 - Combined coatings of anodic oxide and organic coatings on aluminium and aluminium alloys
    • H8615 - Electroplated coatings of chromium for engineering purposes
    • H8641 - Zinc hot dip galvanizings
    • H8642 - Hot dip aluminized coatings on ferrous products
  • K - Chemical Engineering
  • L - Textile Engineering
  • M - Mining
  • P - Pulp and Paper
    • JIS P 0138-61 (JIS P 0138:1998): process finished paper size (ISO 216 with a slightly larger B series)
  • Q - Management System
  • R - Ceramics
  • S - Domestic Wares
  • T - Medical Equipment and Safety Appliances
  • W - Aircraft and Aviation
  • X - Information Processing
    • JIS X 0201:1997 : Japanese national variant of ISO 646
    • JIS X 0202:1998 : Japanese national standard which corresponds to ISO 2022
    • JIS X 0208:1997 : 7-bit and 8-bit double byte coded KANJI sets for information interchange
    • JIS X 0212:1990 : Code of the supplementary Japanese graphic character set for information interchange
    • JIS X 0213:2004 : 7-bit and 8-bit double byte coded extended Kanji sets for information interchange
    • JIS X 0221-1:2001 : Japanese national standard which corresponds to ISO 10646
    • JIS X 0401:1973 : To-do-fu-ken (prefecture) identification code
    • JIS X 0402:2003 : Identification code for cities, towns and villages
    • JIS X 0405:1994 : Commodity classification code
    • JIS X 0408:2004 : Identification code for universities and colleges
    • JIS X 0501:1985 : Bar code symbol for uniform commodity code
    • JIS X 0510:2004 : QR Code
    • JIS X 3001-1:1998, JIS X 3001-2:2002, JIS X 3001-3 : Fortran programming language
    • JIS X 3002:1992 : COBOL
    • JIS X 3005-1:2002 : SQL
    • JIS X 3010:2003 : C programming language
    • JIS X 3014:2003 : C++
    • JIS X 3030:1994 : POSIX
    • JIS X 4061:1996 : Collation of Japanese character string
    • JIS X 6002:1980 : Keyboard layout for information processing using the JIS 7 bit coded character set
    • JIS X 6054-1:1999 : MIDI
    • JIS X 6241:1997 : 120 mm DVD -- Read-only disk
    • JIS X 6243:1998 : 120 mm DVD Rewritable Disk (DVD-RAM)
    • JIS X 6245:1999 : 80 mm (1.23GB/side) and 120 mm (3.95GB/side) DVD-Recordable-Disk (DVD-R)
    • JIS X 9051:1984 : 16-dots matrix character patterns for display devices
    • JIS X 9052:1983 : 24-dots matrix character patterns for dot printers
  • Z - Miscellaneous

歡迎來到Bewise Inc.的世界,首先恭喜您來到這接受新的資訊讓產業更有競爭力,我們是提供專業刀具製造商,應對客戶高品質的刀具需求,我們可以協助客戶滿足您對產業的不同要求,我們有能力達到非常卓越的客戶需求品質,這是現有相關技術無法比擬的,我們成功的滿足了各行各業的要求,包括:精密HSS DIN切削刀具協助客戶設計刀具流程DIN or JIS 鎢鋼切削刀具設計NAS986 NAS965 NAS897 NAS937orNAS907 航太切削刀具,NAS航太刀具設計超高硬度的切削刀具BW捨棄式鑽石V卡刀BW捨棄式金屬圓鋸片木工捨棄式金屬圓鋸片PCD木工圓鋸片醫療配件刀具設計汽車業刀具設計電子產業鑽石刀具全鎢鋼V卡刀-電路版專用全鎢鋼鋸片焊刃式側銑刀焊刃式千鳥側銑刀焊刃式T型銑刀焊刃式千鳥T型銑刀焊刃式螺旋機械鉸刀全鎢鋼斜邊刀電路版專用鎢鋼焊刃式高速鉸刀超微粒鎢鋼機械鉸刀超微粒鎢鋼定點鑽焊刃式帶柄角度銑刀焊刃式螺旋立銑刀焊刃式帶柄倒角銑刀焊刃式角度銑刀焊刃式筒型平面銑刀木工產業鑽石刀具等等。我們的產品涵蓋了從民生刀具到工業級的刀具設計;從微細刀具到大型刀具;從小型生產到大型量產;全自動整合;我們的技術可提供您連續生產的效能,我們整體的服務及卓越的技術,恭迎您親自體驗!!

BW Bewise Inc. Willy Chen willy@tool-tool.com bw@tool-tool.com www.tool-tool.com skype:willy_chen_bw mobile:0937-618-190 Head &Administration Office No.13,Shiang Shang 2nd St., West Chiu Taichung,Taiwan 40356 http://www.tool-tool..com / FAX:+886 4 2471 4839 N.Branch 5F,No.460,Fu Shin North Rd.,Taipei,Taiwan S.Branch No.24,Sec.1,Chia Pu East Rd.,Taipao City,Chiayi Hsien,Taiwan

Welcome to BW tool world! We are an experienced tool maker specialized in cutting tools. We focus on what you need and endeavor to research the best cutter to satisfy users demand. Our customers involve wide range of industries, like mold & die, aerospace, electronic, machinery, etc. We are professional expert in cutting field. We would like to solve every problem from you. Please feel free to contact us, its our pleasure to serve for you. BW product including: cutting toolaerospace tool .HSS DIN Cutting toolCarbide end millsCarbide cutting toolNAS Cutting toolNAS986 NAS965 NAS897 NAS937orNAS907 Cutting Tools,Carbide end milldisc milling cutter,Aerospace cutting toolhss drillФрезерыCarbide drillHigh speed steelMilling cutterCVDD(Chemical Vapor Deposition Diamond )’PCBN (Polycrystalline Cubic Boron Nitride) Core drillTapered end millsCVD Diamond Tools Inserts’PCD Edge-Beveling Cutter(Golden FingerEdge modifying knifeSolid carbide saw blade-V typeV-type locking-special use for PC boardMetal Slitting SawaCarbide Side milling CuttersCarbide Side Milling Cutters With Staggered TeethCarbide T-Slot Milling CuttersCarbide T-Slot Milling Cutters With Staggered TeethCarbide Machine ReamersHigh speed reamer-standard typeHigh speed reamer-long type’’PCD V-CutterPCD Wood toolsPCD Cutting toolsPCD Circular Saw BladePVDD End Millsdiamond tool V-type locking-special use for PC board Single Crystal Diamond Metric end millsMiniature end millsСпециальные режущие инструменты Пустотелое сверло Pilot reamerFraisesFresas con mango PCD (Polycrystalline diamond) ‘FreseElectronics cutterStep drillMetal cutting sawDouble margin drillGun barrelAngle milling cutterCarbide burrsCarbide tipped cutterChamfering toolIC card engraving cutterSide cutterNAS toolDIN or JIS toolSpecial toolMetal slitting sawsShell end millsSide and face milling cuttersSide chip clearance sawsLong end millsStub roughing end millsDovetail milling cuttersCarbide slot drillsCarbide torus cuttersAngel carbide end millsCarbide torus cuttersCarbide ball-nosed slot drills

beeway 發表在 痞客邦 留言(1) 人氣()

Bewise Inc. www.tool-tool.com Reference source from the internet.
新JISマーク (2005年10月1日から付記され、2008年10月1日以降は旧JISマークは使えず、すべてこの新JISマークとなる)

新JISマーク (2005年10月1日から付記され、2008年10月1日以降は旧JISマークは使えず、すべてこの新JISマークとなる)
旧JISマーク (新旧の移行措置として2008年9月末日まで付記できる)

旧JISマーク (新旧の移行措置として2008年9月末日まで付記できる)

日本工業規格(にほんこうぎょうきかく、Japanese Industrial Standards [1])は、工業標準化法に基づき、日本工業標準調査会の答申を受けて、主務大臣が制定する工業標準であり、日本の国家標準の一つである。JIS(ジス)またはJIS規格(ジスきかく)と通称されている[2]

[編集] 性格

[編集] 工業標準化法における定義

工業標準化法にいう工業標準化は、つぎの事項を「全国的に統一し、又は単純化すること」を意味し、工業標準は、そのための基準である(第2条)。この法律に基づいて主務大臣が制定する工業標準が、日本工業規格と呼ばれる(第17条第1項)。

  • 鉱工業品の種類、型式、形状、寸法、構造、装備、品質、等級、成分、性能、耐久度または安全度
  • 鉱工業品の生産方法、設計方法、製図方法、使用方法または原単位
  • 鉱工業品の生産に関する作業方法または安全条件
  • 鉱工業品の包装の種類、型式、形状、寸法、構造、性能または等級
  • 鉱工業品の包装方法
  • 鉱工業品に関する試験、分析、鑑定、検査、検定または測定の方法
  • 鉱工業の技術に関する用語、略語、記号、符号、標準数または単位
  • 建築物その他の構築物の設計、施行方法または安全条件

鉱工業品には、医薬品、農薬、化学肥料、蚕糸および農林物資の規格化及び品質表示の適正化に関する法律による農林物資を含まない。

[編集] 国家標準

工業標準化法における定義から明らかなように、JISは、日本全国を単位とした標準化のための基準である。この意味で、JISは日本の国家標準である。

JIS以外の日本の国家標準としては、日本薬局方日本農林規格などがある。

[編集] 公的標準

JISは、法律に基づく手続を経て制定される標準であり、JISには一定の公正さが期待できる。このため、日本の法令が技術的な基準への適合を強制するにあたって、その基準としてJISを採用することがある。この意味で、JISは公的標準(デジュール標準、デジュール・スタンダード、de jure standard)である。

[編集] 工業標準

工業標準化法における定義から明らかなように、JISは鉱工業に関する標準化のための基準、すなわち工業標準である。医薬品、農薬、化学肥料、蚕糸、食料品などの標準化は、日本薬局方および日本農林規格の範疇である。

情 報技術についても工業標準であるため、工業の範囲が広がっている。情報技術分類では、対象となる情報そのものの標準を制定している。 そのため、「工業」の範疇に収まらないJISも、近年制定している。例えば、2007年にはJIS X 0814 図書館統計というJISを制定している。

[編集] 任意標準

JISそれ自体は、JISに適合しない製品の製造、販売、使用、JISに適合しない方法の使用などを禁ずるものではない。この意味で、JISは基本的に任意標準である。

ただし、国および地方公共団体に対して、JISは強制標準に準じた性格を有している。工業標準化法第67条は、国および地方公共団体が鉱工業に関する技術上の基準を定めるとき、買い入れる鉱工業品に関する仕様を定めるときなどに、JISを尊重すべきことを定めている。

また、JISは法令が引用すれば、強制標準としてはたらくこともある。例えば、工業用水道事業法施行令第1条は、工業用水道事業者に対して、JIS K 0101 工業用水試験方法による水質の測定を、工業用水道事業法第19条の測定として義務づけている。

[編集] 規格

すくなくとも工業標準化法に関するかぎり、標準および規格を互いに区別すべき理由は見いだせない。そのうえ、工業標準化法第17条第1項は「第十一条の規定により制定された工業標準は、日本工業規格という」(強調は引用者による。)と宣言している。

したがって、JISが国家標準であり、公的標準であり、工業標準であり、任意標準であることは、JISが国家規格であり、公的規格であり、工業規格であり、任意規格であることと言いかえられる。ただし、規格を標準よりも広い概念として、規格および標準を区別する人もいる。

[編集] 制定から廃止まで

[編集] 原案作成

JIS制定の手続は、主務大臣の意思または利害関係人の申し出によって開始される。

主務大臣の意思によってJISを制定するときは、主務大臣または主務大臣から委託を受けた者がJISの原案(draft)を作成する。主務大臣は、標準化のための調査研究やJIS原案の作成を、国費を支出して日本規格協会(JSA)などの適当な者に委託する。JIS原案の作成を委託された団体には原案作成委員会(drafting committee)が結成され、この委員会がJIS原案を作成する。主務大臣はできあがった原案を調査会に付議する。

利害関係人は、 みずから作成した原案を添えて、主務大臣に工業標準を制定すべき旨を申し出ることができる(工業標準化法第12条第1 項)。申し出を受けた主務大臣がJISを制定すべきと認めるときは、大臣はその原案を調査会に付議する。制定の必要がないと認めるときは、大臣は調査会の 意見を徴したうえ、その旨を理由とともに利害関係人に通知する。現在、つくられる規格の約80パーセントは利害関係人からの申し出による(日本工業標準調 査会 2003)。

[編集] 制定

日本工業標準調査会は、その標準部会(the Standard Board)のもとに設置された専門委員会(technical committee)において、主務大臣から付議された原案の審議(investigation)および議決をする。標準部会長から上申を受けた調査会長は、主務大臣に答申する。JISを制定すべき旨の答申を受けたとき、主務大臣がJISの制定(establishment)をする。

主務大臣は環境大臣経済産業大臣厚生労働大臣国土交通大臣総務大臣農林水産大臣または文部科学大臣である(工業標準化法第69条)。複数の主務大臣が連名でJISを制定することもある。経済産業大臣を主務大臣とする規格が圧倒的に多い[3]

JISを制定した主務大臣は、その旨の公示(announcement) をする。公示は、名称、番号、および制定年月日を官報に掲載 することによりおこなわれる(工業標準化法施行規則第3条)。JISの内容は官報には掲載されない。内容は経済産業省本省、経済産業局、沖縄総合事務局ま たは都道府県庁で閲覧に供される。調査会のサイトにおいてPDFで閲覧することもできる。

[編集] 確認、改正または廃止

主務大臣は、JISの制定、確認または改正の日から5年以内に、それがなお適正であるかを調査会に付議する。調査会の答申に基づいて、主務大臣はJISの確認(re-affirmation)、改正(revision)または廃止(withdrawal)をおこなう。

制定、確認または改正から年月が経過しても規格が適正であるとき、規格は確認される。年月の経過にともなって規格を改める必要が生じたとき、規格は改正される。年月が経過して規格がもはや不要になったとき、規格は廃止される。

主務大臣は、JISを確認、改正または廃止したときには、制定したときと同様に、その旨を公示する。

[編集] 適合性

製品がJISの要求を満足していることをJISに適合しているといい、適合していることを適合性(conformance)という。製造者や輸入者が製品のJISへの適合性を取引者や需要者に示す手段として、第3者による認証(certification)、第2者による確認および第1者自己適合宣言の三つがある。

[編集] 認証

2005年10月1日から施行された改正工業標準化法のもとでは、製品のJISへの適合性を登録認証機関認証する。製造者または輸入者は、登録認証機関に認証を申請し、登録認証機関による審査を受ける。適合性の認証を受けた製品には、JISマークを表示することができる。


[編集] 自己適合宣言

自己適合宣言の指針はJIS Q 1000 適合性評価—製品規格への自己適合宣言指針に定められている。

[編集] 規格票

JISの内容は規格票という文書にあらわされる。

規格票の発行は日本規格協会に委託されていて、規格票の売上は日本規格協会の収入になっている。規格票の様式はJIS Z 8301 規格票の様式及び作成方法(Rules for the layout and drafting of Japanese Industrial Standards)というJISに規定されている。

[編集] JISハンドブック

日本規格協会は、複数の規格票を分野ごとにまとめてJISハンドブックとして発行している。JISハンドブックは、多くの規格について、規格票の末尾に付された解説を収録していない。また、一部の規格については、本文の一部を収録していない。JISハンドブックの各巻は1年から3年に1度改訂される。

[編集] 規格番号

JISの部門記号および部門
部門記号 部門
A 土木及び建築
B 一般機械
C 電子機器及び電気機械
D 自動車
E 鉄道
F 船舶
G 鉄鋼
H 非鉄金属
K 化学
L 繊維
M 鉱山
P パルプ及び紙
Q 管理システム
R 窯業
S 日用品
T 医療安全用具
W 航空
X 情報処理
Z-1 包装
Z-2 放射線
Z-3 溶接
Z-4 リサイクルその他

個々のJISは規格番号によって識別できる。例えば、JIS B 0001は規格番号の一つである。

規格番号のうち、「JIS」のつぎのローマ字1文字は、部門記号と呼ばれ、JISの部門をあらわす。現在、表に示す19の部門がある。

部門記号に続く数字は、各部門で一意な番号で ある。かつて、番号はもっぱら4桁であった。現在、国際規格と一致または対応するJIS については、国際規格の番号とJISの番号を同じにしておくことが便利であるので、国際規格が5桁の番号を持つ場合には、それに合わせた5桁の番号が用い られるようになっている。ISO/IEC 17000を翻訳したJIS Q 17000 適合性評価—用語及び一般原則はその例である。また、「電子機器及び電気機械」部門において、一部の規格の規格番号がIEC規格に対応した5桁のものに変更された(日本工業標準調査会 2004)。

大きな規格は第1部、第2部といった(part)に分かれていて、部ごとに制定、改正などがおこなわれ、部ごとに規格票が発行される。部を識別するために枝番号が用いられる。番号の後にハイフンおよび枝番号を記載する。つぎは、枝番号を使用した例である。

  • JIS B 0002-1 製図—ねじ及びねじ部品—第1部: 通則
  • JIS B 0002-2 製図—ねじ及びねじ部品—第2部: ねじインサート
  • JIS B 0002-3 製図—ねじ及びねじ部品—第3部: 簡略図示方法

文 書においてJISが規格番号によって参照されている場合、通常、読者がその文書を読んでいる時点での最新版が参照されていると考える。特定の版を 参照したいときには、規格番号の後にコロンおよび制定または改正の年を西暦で記載する。例えば、JIS B 0001の2000年改正版を参照したいときは、JIS B 0001:2000と書く。

1995年以前のJISでは、枝番号が用いられ ていなかった。現在では番号および枝番号を区切るために用いられているハイフンは、かつては番号およ び年を区切るために用いられていた。例えば、JIS B 0001は1958年にJIS B 0001-1958として制定された。

[編集] JISマーク

JISマークは、製品がJISへの適合性の認証を受けたときに、製品そのもの、製品の包装、製品の容器または製品の送り状に付することができる、JISへの適合性を示すためのマークである。

2004年には工業標準化法が改正され、JISマーク表示制度が大きく変化した。これにともない、新しいJISマークの公募がおこなわれた(日本規格協会 2004)。これには5,000件ちかい応募があった(日本工業標準調査会 2005a)。応募の中から水野尚雄がデザインしたものが選ばれ、2005年3月28日に発表された(経済産業省 2005)。

この新JISマークは2005年10月1日から製品などに付することができるが、改めて適合性の認証を得たうえでなければならない。ただし旧から新への移行期間として3年間、2008年9月末日まで旧マークは付することができ、この3年間内に改めて適合の認証を得る。認証が得られない場合は新マークを付することができない。すなわち、2008年10月1日以降の製品などはすべて改めて適合性の認証を得たか、新たに認証を得て新マークを付したものとなる。[4]

JISマークは直線および円弧のみを用いて描けるように設計されている。その設計図は、日本工業規格への適合性の認証に関する省令(平成17年3月30日厚生労働省・農林水産省・経済産業省・国土交通省令第6号)第1条第1項から第3項に掲げられている[5]。また、JISマークはこの省令の一部であるので、著作権法第13条(権利の目的とならない著作物)の第1号に該当し、著作権法第3章に規定された権利の対象とはならない。


[編集] JISおよび知的財産権

[編集] 特許権および実用新案権

日 本工業標準調査会(2006)は、特許権、実用新案権などと抵触する工業標準の案をJISとして制定するにあたっては、非差別的かつ合理的な条件 で実施許諾する旨の書面を権利者から取り付けるとしている。また、JISの制定後に特許権等との抵触が明らかになった場合であって、権利者が非差別的かつ 合理的条件で実施許諾する旨を表明しないときは、必要に応じて、JISの改正または廃止の手続をとるとしている。

JISと抵触することが判明している特許権のリストは、日本工業標準調査会のデータベース(#外部リンク)の「工業所有権情報」で閲覧できる。

[編集] 著作権

現 在、日本工業標準調査会(2005b)は、JISは著作権法により保護される著作物であると解釈している。それによれば、主務大臣または主務大臣 の委託を受けた者が作成した原案の著作権は国に帰属し、利害関係人が作成して主務大臣に提出した原案の著作権はその利害関係人に帰属する。

著作権法13条によれば、「国の機関が発する告示、訓令、通達その他これらに類するもの」には著作権が存在しない。 山本もぐ(2000)によれば、JISは著作権法による保護の対象となる著作物ではないという見解を、かつて工業技術院標準部が示した。この場合でも、JISの規格票の末尾に付されている解説は、JISの一部ではなく、その著作権は解説を著した原案作成者に帰属する。

なお、ISO規格、IEC規格およびANSI規格は著作権により保護されている。しかし、これらの規格はいずれも民間団体により制定されていて、大臣によって制定されるJISと同列に論じるのは適当といえない。詳細は、ピリ辛著作権相談室Q18:JIS規格って著作権で保護されるの?を参照。


[編集] 標準仕様書(TS)と標準報告書(TR)

日本工業標準調査会には、一般の標準規格の制定作業とは他に、標準仕様書(TS)制度と標準報告書(TR)制度がある。これは進歩が早い技術分野において、まだ標準規格としては未熟でも将来重要と考えられる技術文書をJISとして公開することで、議論を促し、将来のスムーズな標準化につなげることを目的としている。TS文書・TR文書は誰でも提案することができる。

[編集] 標準仕様書(TS)

現時点では日本工業標準調査会としてJIS化にふさわしいと判断されなかったが、将来は標準化の可能性があると思われる技術文書。

TS文書は公表後3年以内に、原則として廃止・JIS化・3年延長のいずれかの処理がなされる。なお3年延長は1度限りしか行われない。

[編集] 標準報告書(TR)

標準に関連する技術文書であるが、JISでの標準化がふさわしくないもの。

TR文書は公表後5年以内に原則として廃止される。

[編集] 歴史

明治時代には、日本の工業規格は民間団体が作っていた。ただし、軍需品などの政府調達品には、政府の購入規格、試験規格、標準仕様書があった。

[編集] 日本標準規格

1921年には、大正10年勅令第164号に基づいて工業品規格統一調査会が設置された。この調査会は、1941年までに520件の日本標準規格旧JES、Japanese Engineering Standards)を制定した。

[編集] 臨時日本標準規格

臨時日本標準規格臨JES)は、1939年から1945年までの間に931件制定された。臨JESには、規格が要求する品質を下げて物資の有効利用をはかること、および、制定手続を簡素化して規格の制定を促進すること、というねらいがあった(工業技術院標準部 1997、p. 226)。臨時規格または戦時規格とも呼ばれた(国立国会図書館 2006)。

[編集] 日本航空機規格

日本航空機規格航格)は、航空機製造事業法第6条に基づいて定められた規格である[6]。工業技術院標準部(1997、p. 229)は、臨JESとは別に航格が設けられた理由の一つに「外部に対して秘匿扱いする必要があるものもある」ことを挙げている。1945年までに660件の航格が制定された。

航格の特徴は、強制標準である点にある。航空機製造事業法第6条は、航格に適合しない航空機部品の製造または使用を禁じていた。

[編集] 日本規格

昭和21年勅令第98号によって、1946年2月に工業品統一調査会が廃止され、そのかわりに工業標準調査会が設けられた。旧JES、臨JESおよび航格を再検討し、これらのかわりに2,102件の日本規格新JES)が制定された(工業技術院標準部 1997、p. 231)。旧JES、臨JESおよび航格は文語体で書かれていたが、新JESは口語体で書かれた(工業技術院標準部 1997、p. 231)。

[編集] 日本工業規格

工業標準化法は、1949年6月1日に制定され、7月1日から施行された。工業標準調査会は廃止され、現存する日本工業標準調査会が設けられた。10月31日には、最初のJISであるJIS C 0901 電気機器の防爆構造(炭坑用)が制定された。

歡迎來到Bewise Inc.的世界,首先恭喜您來到這接受新的資訊讓產業更有競爭力,我們是提供專業刀具製造商,應對客戶高品質的刀具需求,我們可以協助客戶滿足您對產業的不同要求,我們有能力達到非常卓越的客戶需求品質,這是現有相關技術無法比擬的,我們成功的滿足了各行各業的要求,包括:精密HSS DIN切削刀具協助客戶設計刀具流程DIN or JIS 鎢鋼切削刀具設計NAS986 NAS965 NAS897 NAS937orNAS907 航太切削刀具,NAS航太刀具設計超高硬度的切削刀具BW捨棄式鑽石V卡刀BW捨棄式金屬圓鋸片木工捨棄式金屬圓鋸片PCD木工圓鋸片醫療配件刀具設計汽車業刀具設計電子產業鑽石刀具全鎢鋼V卡刀-電路版專用全鎢鋼鋸片焊刃式側銑刀焊刃式千鳥側銑刀焊刃式T型銑刀焊刃式千鳥T型銑刀焊刃式螺旋機械鉸刀全鎢鋼斜邊刀電路版專用鎢鋼焊刃式高速鉸刀超微粒鎢鋼機械鉸刀超微粒鎢鋼定點鑽焊刃式帶柄角度銑刀焊刃式螺旋立銑刀焊刃式帶柄倒角銑刀焊刃式角度銑刀焊刃式筒型平面銑刀木工產業鑽石刀具等等。我們的產品涵蓋了從民生刀具到工業級的刀具設計;從微細刀具到大型刀具;從小型生產到大型量產;全自動整合;我們的技術可提供您連續生產的效能,我們整體的服務及卓越的技術,恭迎您親自體驗!!

BW Bewise Inc. Willy Chen willy@tool-tool.com bw@tool-tool.com www.tool-tool.com skype:willy_chen_bw mobile:0937-618-190 Head &Administration Office No.13,Shiang Shang 2nd St., West Chiu Taichung,Taiwan 40356 http://www.tool-tool..com / FAX:+886 4 2471 4839 N.Branch 5F,No.460,Fu Shin North Rd.,Taipei,Taiwan S.Branch No.24,Sec.1,Chia Pu East Rd.,Taipao City,Chiayi Hsien,Taiwan

Welcome to BW tool world! We are an experienced tool maker specialized in cutting tools. We focus on what you need and endeavor to research the best cutter to satisfy users demand. Our customers involve wide range of industries, like mold & die, aerospace, electronic, machinery, etc. We are professional expert in cutting field. We would like to solve every problem from you. Please feel free to contact us, its our pleasure to serve for you. BW product including: cutting toolaerospace tool .HSS DIN Cutting toolCarbide end millsCarbide cutting toolNAS Cutting toolNAS986 NAS965 NAS897


beeway 發表在 痞客邦 留言(0) 人氣()

Bewise Inc. www.tool-tool.com Reference source from the internet.

The Magdeburg hemispheres were a pair of large copper hemispheres with mating rims. When the rims were sealed with grease and the air was pumped out, the sphere contained a vacuum and could not be pulled apart by teams of horses. The Magdeburg hemispheres were designed by German scientist Otto von Guericke in 1650 to demonstrate the air pump he had invented and the concept of air pressure. The first artificial vacuum had been produced a few years earlier by Evangelista Torricelli, and had inspired von Guericke to design the world's first vacuum pump, which consisted of a piston and cylinder with one-way flap valves. To power the machine, several people would turn a crank arm connected to the vacuum pump.

Gaspar Schott's sketch of Otto von Guericke's Magdeburg hemispheres experiment.
Gaspar Schott's sketch of Otto von Guericke's Magdeburg hemispheres experiment.

Contents

[hide]

[edit] Overview

The Magdeburg hemispheres, a little over a foot (30 cm) in diameter, were designed to demonstrate the vacuum pump that von Guericke had invented. When the air was sucked out from inside them, they were held firmly together by the air pressure of the surrounding atmosphere.

[edit] Demonstrations

Guericke's demonstration was presented on 8 May 1654 to the Reichstag and the Emperor Ferdinand III in 1654 in Regensburg, where 30 horses, in two teams of 15, could not separate the hemispheres until the vacuum was released. In 1656 he repeated the demonstration with 16 horses (2 teams of 8) in his hometown of Magdeburg, where he was mayor. In 1657, Gaspar Schott was the first to describe the experiment in print in his Mechanica Hydraulico-Pneumatica. In 1663 (or according to some sources in 1661) the demonstration was given in Berlin before Frederick William, Elector of Brandenburg) with 24 horses.

The original hemispheres are maintained by the Deutsches Museum in Munich. Many copies of them (usually smaller) have been made to illustrate the principle of air pressure to students. Re-enactments of von Guerike's 1654 experiment are performed in locations around the world by the Otto von Guericke Society. The experiment has been commemorated on at least two German stamps.

[edit] Related

After learning about Guericke's pump through Schott's book, Robert Boyle worked with Robert Hooke to design and build an improved air pump. From this, through various experiments, they formulated what is called Boyle's law, which states that the volume of a body of an ideal gas is inversely proportional to its pressure. Soon the ideal gas law was formulated.

Based on these concepts, in 1679, an associate of Boyle's named Denis Papin built a bone digester, which is a closed vessel with a tightly fitting lid that confines steam until a high pressure is generated. Later designs implemented a steam release valve to keep the machine from exploding. By watching the valve rhythmically move up and down, Papin conceived of the idea of a piston and cylinder engine. He did not, however, follow through with his design. Nevertheless, in 1697, based on Papin's designs, engineer Thomas Savery built the first commercial steam engine.

歡迎來到Bewise Inc.的世界,首先恭喜您來到這接受新的資訊讓產業更有競爭力,我們是提供專業刀具製造商,應對客戶高品質的刀具需求,我們可以協助客戶滿足您對產業的不同要求,我們有能力達到非常卓越的客戶需求品質,這是現有相關技術無法比擬的,我們成功的滿足了各行各業的要求,包括:精密HSS DIN切削刀具協助客戶設計刀具流程DIN or JIS 鎢鋼切削刀具設計NAS986 NAS965 NAS897 NAS937orNAS907 航太切削刀具,NAS航太刀具設計超高硬度的切削刀具BW捨棄式鑽石V卡刀BW捨棄式金屬圓鋸片木工捨棄式金屬圓鋸片PCD木工圓鋸片醫療配件刀具設計汽車業刀具設計電子產業鑽石刀具全鎢鋼V卡刀-電路版專用全鎢鋼鋸片焊刃式側銑刀焊刃式千鳥側銑刀焊刃式T型銑刀焊刃式千鳥T型銑刀焊刃式螺旋機械鉸刀全鎢鋼斜邊刀電路版專用鎢鋼焊刃式高速鉸刀超微粒鎢鋼機械鉸刀超微粒鎢鋼定點鑽焊刃式帶柄角度銑刀焊刃式螺旋立銑刀焊刃式帶柄倒角銑刀焊刃式角度銑刀焊刃式筒型平面銑刀木工產業鑽石刀具等等。我們的產品涵蓋了從民生刀具到工業級的刀具設計;從微細刀具到大型刀具;從小型生產到大型量產;全自動整合;我們的技術可提供您連續生產的效能,我們整體的服務及卓越的技術,恭迎您親自體驗!!

BW Bewise Inc. Willy Chen willy@tool-tool.com bw@tool-tool.com www.tool-tool.com skype:willy_chen_bw mobile:0937-618-190 Head &Administration Office No.13,Shiang Shang 2nd St., West Chiu Taichung,Taiwan 40356 http://www.tool-tool..com / FAX:+886 4 2471 4839 N.Branch 5F,No.460,Fu Shin North Rd.,Taipei,Taiwan S.Branch No.24,Sec.1,Chia Pu East Rd.,Taipao City,Chiayi Hsien,Taiwan

Welcome to BW tool world! We are an experienced tool maker specialized in cutting tools. We focus on what you need and endeavor to research the best cutter to satisfy users demand. Our customers involve wide range of industries, like mold & die, aerospace, electronic, machinery, etc. We are professional expert in cutting field. We would like to solve every problem from you. Please feel free to contact us, its our pleasure to serve for you. BW product including: cutting toolaerospace tool .HSS DIN Cutting toolCarbide end millsCarbide cutting toolNAS Cutting toolNAS986 NAS965 NAS897 NAS937orNAS907 Cutting Tools,Carbide end milldisc milling cutter,Aerospace cutting toolhss drillФрезерыCarbide drillHigh speed steelMilling cutterCVDD(Chemical Vapor Deposition Diamond )’PCBN (Polycrystalline Cubic Boron Nitride) Core drillTapered end millsCVD Diamond Tools Inserts’PCD Edge-Beveling Cutter(Golden FingerEdge modifying knifeSolid carbide saw blade-V typeV-type locking-special use for PC boardMetal Slitting SawaCarbide Side milling CuttersCarbide Side Milling Cutters With Staggered TeethCarbide T-Slot Milling CuttersCarbide T-Slot Milling Cutters With Staggered TeethCarbide Machine ReamersHigh speed reamer-standard typeHigh speed reamer-long type’’PCD V-CutterPCD Wood toolsPCD Cutting toolsPCD Circular Saw BladePVDD End Millsdiamond tool V-type locking-special use for PC board Single Crystal Diamond Metric end millsMiniature end millsСпециальные режущие инструменты Пустотелое сверло Pilot reamerFraisesFresas con mango PCD (Polycrystalline diamond) ‘FreseElectronics cutterStep drillMetal cutting sawDouble margin drillGun barrelAngle milling cutterCarbide burrsCarbide tipped cutterChamfering toolIC card engraving cutterSide cutterNAS toolDIN or JIS toolSpecial toolMetal slitting sawsShell end millsSide and face milling cuttersSide chip clearance sawsLong end millsStub roughing end millsDovetail milling cuttersCarbide slot drillsCarbide torus cuttersAngel carbide end millsCarbide torus cuttersCarbide ball-nosed slot drillsMould cutterTool manufacturer.

Bewise Inc. www.tool-tool.com

ようこそBewise Inc.の世界へお越し下さいませ、先ず御目出度たいのは新たな

情報を受け取って頂き、もっと各産業に競争力プラス展開。

弊社は専門なエンドミルの製造メーカーで、客先に色んな分野のニーズ

豊富なパリエーションを満足させ、特にハイテク品質要求にサポート致します。

弊社は各領域に供給できる内容は:

beeway 發表在 痞客邦 留言(0) 人氣()

Bewise Inc. www.tool-tool.com Reference source from the internet.

A field emission display (FED) is a type of flat panel display using field emitting cathodes to bombard phosphor coatings as the light emissive medium.

Field emission displays are very similar to cathode ray tubes, however they are only a few millimeters thick. Instead of a single electron gun, a field emission display (FED) uses a large array of fine metal tips or carbon nanotubes (which are the most efficient electron emitters known), with many positioned behind each phosphor dot, to emit electrons through a process known as field emission. Because of emitter redundancy, FEDs do not display dead pixels like LCDs even if 20% of the emitters fail. Sony is researching FED because it is the flat-panel technology that comes closest to matching the picture of a CRT.[citation needed]

FEDs are energy efficient and could provide a flat panel technology that features less power consumption than existing LCD and plasma display technologies. They can also be cheaper to make, as they have fewer total components. As of yet, however, there are no consumer production models available in the United States, although small demo panels have been produced.

A similar technology to be commercialized in 2007 is the SED (surface-conduction electron-emitter) display, a simplified variant of FED technology. Whereas FED uses a 'Spindt tip' semi-conductor or carbon nanotube emitter, with multiple redundant emitters per area of display[1], SED uses a single emitter based on palladium oxide laid down by an inkjet or silk-screen process.[2]. SED is considered the variant of FED that is currently feasible to mass-produce.

In 2001, Candescent had spent $600 million on producing FEDs with non-carbon material, but it was abandoned, with assets sold to Canon in August 2004, two months after filing for voluntary reorganization under Chapter 11. The UK company Advance Nanotech, in collaboration with the University of Bristol, has developed a similar panel that relies on specially doped diamond dust. The first 1000 Carbon Nanotechnologies was set to production in late 2006 by Sony. [3]

Nano-emissive display is the name given by Motorola for field emission display. A prototype model was demonstrated by Motorola in May 2005. Nano-emissive display (NED) is Motorola's term for their Carbon Nanotubes (CNTs)-based display technology.

Contents

[hide]

[edit] Potential disadvantages

Although physically simple, actual operation of field emitters in a production device are anything but simple. Field emitters depend on high electric field strength to tear electrons from the surface. Instead of very high voltages, FEDs use very small radii – atomic lattice size – and element spacing for cathodes. This small size renders the cathodes susceptible to damage by ion impact. The ions are produced by the high voltages interacting with residual gas molecules inside the device. FEDs require high vacuum levels which are difficult to attain: the vacuum suitable for conventional CRTs and vacuum tubes is not sufficient for long term FED operation. Intense electron bombardment of the phosphor layer will also release gas during use.

歡迎來到Bewise Inc.的世界,首先恭喜您來到這接受新的資訊讓產業更有競爭力,我們是提供專業刀具製造商,應對客戶高品質的刀具需求,我們可以協助客戶滿足您對產業的不同要求,我們有能力達到非常卓越的客戶需求品質,這是現有相關技術無法比擬的,我們成功的滿足了各行各業的要求,包括:精密HSS DIN切削刀具協助客戶設計刀具流程DIN or JIS 鎢鋼切削刀具設計NAS986 NAS965 NAS897 NAS937orNAS907 航太切削刀具,NAS航太刀具設計超高硬度的切削刀具BW捨棄式鑽石V卡刀BW捨棄式金屬圓鋸片木工捨棄式金屬圓鋸片PCD木工圓鋸片醫療配件刀具設計汽車業刀具設計電子產業鑽石刀具全鎢鋼V卡刀-電路版專用全鎢鋼鋸片焊刃式側銑刀焊刃式千鳥側銑刀焊刃式T型銑刀焊刃式千鳥T型銑刀焊刃式螺旋機械鉸刀全鎢鋼斜邊刀電路版專用鎢鋼焊刃式高速鉸刀超微粒鎢鋼機械鉸刀超微粒鎢鋼定點鑽焊刃式帶柄角度銑刀焊刃式螺旋立銑刀焊刃式帶柄倒角銑刀焊刃式角度銑刀焊刃式筒型平面銑刀木工產業鑽石刀具等等。我們的產品涵蓋了從民生刀具到工業級的刀具設計;從微細刀具到大型刀具;從小型生產到大型量產;全自動整合;我們的技術可提供您連續生產的效能,我們整體的服務及卓越的技術,恭迎您親自體驗!!

BW Bewise Inc. Willy Chen willy@tool-tool.com bw@tool-tool.com www.tool-tool.com skype:willy_chen_bw mobile:0937-618-190 Head &Administration Office No.13,Shiang Shang 2nd St., West Chiu Taichung,Taiwan 40356 http://www.tool-tool..com / FAX:+886 4 2471 4839 N.Branch 5F,No.460,Fu Shin North Rd.,Taipei,Taiwan S.Branch No.24,Sec.1,Chia Pu East Rd.,Taipao City,Chiayi Hsien,Taiwan

Welcome to BW tool world! We are an experienced tool maker specialized in cutting tools. We focus on what you need and endeavor to research the best cutter to satisfy users demand. Our customers involve wide range of industries, like mold & die, aerospace, electronic, machinery, etc. We are professional expert in cutting field. We would like to solve every problem from you. Please feel free to contact us, its our pleasure to serve for you. BW product including: cutting toolaerospace tool .HSS DIN Cutting toolCarbide end millsCarbide cutting toolNAS Cutting toolNAS986 NAS965 NAS897 NAS937orNAS907 Cutting Tools,Carbide end milldisc milling cutter,Aerospace cutting toolhss drillФрезерыCarbide drillHigh speed steelMilling cutterCVDD(Chemical Vapor Deposition Diamond )’PCBN (Polycrystalline Cubic Boron Nitride) Core drillTapered end millsCVD Diamond Tools Inserts’PCD Edge-Beveling Cutter(Golden FingerEdge modifying knifeSolid carbide saw blade-V typeV-type locking-special use for PC boardMetal Slitting SawaCarbide Side milling CuttersCarbide Side Milling Cutters With Staggered TeethCarbide T-Slot Milling CuttersCarbide T-Slot Milling Cutters With Staggered TeethCarbide Machine ReamersHigh speed reamer-standard typeHigh speed reamer-long type’’PCD V-CutterPCD Wood toolsPCD Cutting toolsPCD Circular Saw BladePVDD End Millsdiamond tool V-type locking-special use for PC board Single Crystal Diamond Metric end millsMiniature end millsСпециальные режущие инструменты Пустотелое сверло Pilot reamerFraisesFresas con mango PCD (Polycrystalline diamond) ‘FreseElectronics cutterStep drillMetal cutting sawDouble margin drillGun barrelAngle milling cutterCarbide burrsCarbide tipped cutterChamfering toolIC card engraving cutterSide cutterNAS toolDIN or JIS toolSpecial toolMetal slitting sawsShell end millsSide and face milling cuttersSide chip clearance sawsLong end millsStub roughing end millsDovetail milling cuttersCarbide slot drillsCarbide torus cuttersAngel carbide end millsCarbide torus cuttersCarbide ball-nosed slot drillsMould cutterTool manufacturer.

Bewise Inc. www.tool-tool.com

ようこそBewise Inc.の世界へお越し下さいませ、先ず御目出度たいのは新たな

情報を受け取って頂き、もっと各産業に競争力プラス展開。

弊社は専門なエンドミルの製造メーカーで、客先に色んな分野のニーズ

豊富なパリエーションを満足させ、特にハイテク品質要求にサポート致します。

弊社は各領域に供給できる内容は:

(1)精密HSSエンドミルのR&D

(2)Carbide Cutting tools設計

beeway 發表在 痞客邦 留言(0) 人氣()

Bewise Inc. www.tool-tool.com Reference source from the internet.
A solar cell, made from a monocrystalline silicon wafer

A solar cell, made from a monocrystalline silicon wafer

A solar cell or photovoltaic cell is a device that converts solar energy into electricity by the photovoltaic effect. Photovoltaics is the field of technology and research related to the application of solar cells as solar energy. Sometimes the term solar cell is reserved for devices intended specifically to capture energy from sunlight, while the term photovoltaic cell is used when the source is unspecified.

Assemblies of cells are used to make solar modules, which may in turn be linked in photovoltaic arrays.

Solar cells have many applications. Individual cells are used for powering small devices such as electronic calculators. Photovoltaic arrays generate a form of renewable electricity, particularly useful in situations where electrical power from the grid is unavailable such as in remote area power systems, Earth-orbiting satellites and space probes, remote radiotelephones and water pumping applications. Photovoltaic electricity is also increasingly deployed in grid-tied electrical systems.

[edit] History

The term "photovoltaic" comes from the Greek φώς:phos meaning "light", and "voltaic", meaning electrical, from the name of the Italian physicist Volta, after whom the measurement unit volt is named. The term "photo-voltaic" has been in use in English since 1849.[1]

The photovoltaic effect was first recognized in 1839 by French physicist Alexandre-Edmond Becquerel. However, it was not until 1883 that the first solar cell was built, by Charles Fritts, who coated the semiconductor selenium with an extremely thin layer of gold to form the junctions. The device was only around 1% efficient. Russell Ohl patented the modern solar cell in 1946 (U.S. Patent 2,402,662 , "Light sensitive device"). Sven Ason Berglund had a prior patent concerning methods of increasing the capacity of photosensitive cells. The modern age of solar power technology arrived in 1954 when Bell Laboratories, experimenting with semiconductors, accidentally found that silicon doped with certain impurities was very sensitive to light.

This resulted in the production of the first practical solar cells with a sunlight energy conversion efficiency of around 6 percent. Russia launched the first artificial satellite in 1957, and the United States' first artificial satellite was launched in 1958 using solar cells created by Peter Iles in an effort spearheaded by Hoffman Electronics. The first spacecraft to use solar panels was the US satellite Explorer 1 in January 1958. This milestone created interest in producing and launching a geostationary communications satellite, in which solar energy would provide a viable power supply. This was a crucial development which stimulated funding from several governments into research for improved solar cells.

In 1970 the first highly effective GaAs heterostructure solar cells were created by Zhores Alferov and his team in the USSR. [2][3][4] Metal Organic Chemical Vapor Deposition (MOCVD, or OMCVD) production equipment was not developed until the early 1980s, limiting the ability of companies to manufacture the GaAs solar cell. In the United States, the first 17% efficient air mass zero (AM0) single-junction GaAs solar cells were manufactured in production quantities in 1988 by Applied Solar Energy Corporation (ASEC). The "dual junction" cell was accidentally produced in quantity by ASEC in 1989 as a result of the change from GaAs on GaAs substrates to GaAs on Germanium (Ge) substrates. The accidental doping of Ge with the GaAs buffer layer created higher open circuit voltages, demonstrating the potential of using the Ge substrate as another cell. As GaAs single-junction cells topped 19% AM0 production efficiency in 1993, ASEC developed the first dual junction cells for spacecraft use in the United States, with a starting efficiency of approximately 20%. These cells did not utilize the Ge as a second cell, but used another GaAs-based cell with different doping. Eventually GaAs dual junction cells reached production efficiencies of about 22%. Triple Junction solar cells began with AM0 efficiencies of approximately 24% in 2000, 26% in 2002, 28% in 2005, and in 2007 have evolved to a 30% AM0 production efficiency, currently in qualification. In 2007, two companies in the United States, Emcore Photovoltaics and Spectrolab, produce 95% of the world's 28% efficient solar cells.

Possible reference please confirm

. Retrieved on 2008-05-22.

The first generation photovoltaic cell consists of a large-area, single-crystal, single layer p-n junction diode, capable of generating usable electrical energy from light sources with the wavelengths of sunlight. These cells are typically made using a diffusion process with silicon wafers. First-generation photovoltaic cells (also known as silicon wafer-based solar cells) are the dominant technology in the commercial production of solar cells, accounting for more than 86% of the terrestrial solar cell market.

The second generation of photovoltaic materials is based on the use of thin epitaxial deposits of semiconductors on lattice-matched wafers. There are two classes of epitaxial photovoltaics - space and terrestrial. Space cells typically have higher AM0 efficiencies (28-30%) in production, but have a higher cost per watt. Their "thin-film" cousins have been developed using lower-cost processes, but have lower AM0 efficiencies (7-9%) in production and are questionable for space applications. The advent of thin-film technology contributed to a prediction of greatly reduced costs for thin film solar cells that has yet to be achieved. There are currently (2007) a number of technologies/semiconductor materials under investigation or in mass production. Examples include amorphous silicon, polycrystalline silicon, micro-crystalline silicon, cadmium telluride, copper indium selenide/sulfide. An advantage of thin-film technology theoretically results in reduced mass so it allows fitting panels on light or flexible materials, even textiles. The advent of thin GaAs-based films for space applications (so-called "thin cells") with potential AM0 efficiencies of up to 37% are currently in the development stage for high specific power applications. Second generation solar cells now comprise a small segment of the terrestrial photovoltaic market, and approximately 90% of the space market.

Third-generation photovoltaics are proposed to be very different from the previous semiconductor devices as they do not rely on a traditional p-n junction to separate photogenerated charge carriers. For space applications quantum well devices (quantum dots, quantum ropes, etc.) and devices incorporating carbon nanotubes are being studied - with a potential for up to 45% AM0 production efficiency. For terrestrial applications, these new devices include photoelectrochemical cells, polymer solar cells, nanocrystal solar cells, Dye-sensitized solar cells and are still in the research phase.

[edit] Applications and implementations

Polycrystaline PV cells laminated to backing material in a PV module

Polycrystaline PV cells laminated to backing material in a PV module
Polycrystalline PV cells

Polycrystalline PV cells
Main article: photovoltaic array

Solar cells are often electrically connected and encapsulated as a module. PV modules often have a sheet of glass on the front (sun up) side , allowing light to pass while protecting the semiconductor wafers from the elements (rain, hail, etc.). Solar cells are also usually connected in series in modules, creating an additive voltage. Connecting cells in parallel will yield a higher current. Modules are then interconnected, in series or parallel, or both, to create an array with the desired peak DC voltage and current.

The power output of a solar array is measured in watts or kilowatts. In order to calculate the typical energy needs of the application, a measurement in watt-hours, kilowatt-hours or kilowatt-hours per day is often used. A common rule of thumb is that average power is equal to 20% of peak power, so that each peak kilowatt of solar array output power corresponds to energy production of 4.8 kW·h per day.

To make practical use of the solar-generated energy, the electricity is most often fed into the electricity grid using inverters (grid-connected PV systems); in stand alone systems, batteries are used to store the energy that is not needed immediately.

[edit] Theory

[edit] Simple explanation

  1. Photons in sunlight hit the solar panel and are absorbed by semiconducting materials, such as silicon.
  2. Electrons (negatively charged) are knocked loose from their atoms, allowing them to flow through the material to produce electricity. The complementary positive charges that are also created (like bubbles) are called holes and flow in the direction opposite of the electrons in a silicon solar panel.
  3. An array of solar panels converts solar energy into a usable amount of direct current (DC) electricity.

Optionally:

  1. The DC current enters an inverter.
  2. The inverter turns DC electricity into 120 or 240-volt AC (alternating current) electricity needed for home appliances.
  3. The AC power enters the utility panel in the house.
  4. The electricity is then distributed to appliances or lights in the house.
  5. The electricity that is not used will be re-routed and used in other facilities.

[edit] Photogeneration of charge carriers

When a photon hits a piece of silicon, one of three things can happen:

  1. the photon can pass straight through the silicon — this (generally) happens for lower energy photons,
  2. the photon can reflect off the surface,
  3. the photon can be absorbed by the silicon, if the photon energy is higher than the silicon band gap value. This generates an electron-hole pair and sometimes heat, depending on the band structure.

When a photon is absorbed, its energy is given to an electron in the crystal lattice. Usually this electron is in the valence band, and is tightly bound in covalent bonds between neighboring atoms, and hence unable to move far. The energy given to it by the photon "excites" it into the conduction band, where it is free to move around within the semiconductor. The covalent bond that the electron was previously a part of now has one fewer electron — this is known as a hole. The presence of a missing covalent bond allows the bonded electrons of neighboring atoms to move into the "hole," leaving another hole behind, and in this way a hole can move through the lattice. Thus, it can be said that photons absorbed in the semiconductor create mobile electron-hole pairs.

A photon need only have greater energy than that of the band gap in order to excite an electron from the valence band into the conduction band. However, the solar frequency spectrum approximates a black body spectrum at ~6000 K, and as such, much of the solar radiation reaching the Earth is composed of photons with energies greater than the band gap of silicon. These higher energy photons will be absorbed by the solar cell, but the difference in energy between these photons and the silicon band gap is converted into heat (via lattice vibrations — called phonons) rather than into usable electrical energy.

[edit] Charge carrier separation

There are two main modes for charge carrier separation in a solar cell:

  1. drift of carriers, driven by an electrostatic field established across the device
  2. diffusion of carriers from zones of high carrier concentration to zones of low carrier concentration (following a gradient of electrochemical potential).

In the widely used p-n junction solar cells, the dominant mode of charge carrier separation is by drift. However, in non-p-n-junction solar cells (typical of the third generation of solar cell research such as dye and polymer thin-film solar cells), a general electrostatic field has been confirmed to be absent, and the dominant mode of separation is via charge carrier diffusion.[citation needed]

[edit] The p-n junction

Main article: semiconductor

The most commonly known solar cell is configured as a large-area p-n junction made from silicon. As a simplification, one can imagine bringing a layer of n-type silicon into direct contact with a layer of p-type silicon. In practice, p-n junctions of silicon solar cells are not made in this way, but rather, by diffusing an n-type dopant into one side of a p-type wafer (or vice versa).

If a piece of p-type silicon is placed in intimate contact with a piece of n-type silicon, then a diffusion of electrons occurs from the region of high electron concentration (the n-type side of the junction) into the region of low electron concentration (p-type side of the junction). When the electrons diffuse across the p-n junction, they recombine with holes on the p-type side. The diffusion of carriers does not happen indefinitely however, because of an electric field which is created by the imbalance of charge immediately on either side of the junction which this diffusion creates. The electric field established across the p-n junction creates a diode that promotes current to flow in only one direction across the junction. Electrons may pass from the p-type side into the n-type side, and holes may pass from the n-type side to the p-type side, but not the other way around[5]. This region where electrons have diffused across the junction is called the depletion region because it no longer contains any mobile charge carriers. It is also known as the "space charge region".

[edit] Connection to an external load

Ohmic metal-semiconductor contacts are made to both the n-type and p-type sides of the solar cell, and the electrodes connected to an external load. Electrons that are created on the n-type side, or have been "collected" by the junction and swept onto the n-type side, may travel through the wire, power the load, and continue through the wire until they reach the p-type semiconductor-metal contact. Here, they recombine with a hole that was either created as an electron-hole pair on the p-type side of the solar cell, or swept across the junction from the n-type side after being created there.

[edit] Equivalent circuit of a solar cell

The equivalent circuit of a solar cell

The equivalent circuit of a solar cell
The schematic symbol of a solar cell

The schematic symbol of a solar cell

To understand the electronic behavior of a solar cell, it is useful to create a model which is electrically equivalent, and is based on discrete electrical components whose behavior is well known. An ideal solar cell may be modelled by a current source in parallel with a diode; in practice no solar cell is ideal, so a shunt resistance and a series resistance component are added to the model.[6] The resulting equivalent circuit of a solar cell is shown on the left. Also shown, on the right, is the schematic representation of a solar cell for use in circuit diagrams.

[edit] Circuit Equations defining solar cell

The equations which describe the I-V characteristics of the cell are

  1. I = I_L - I_o \left( e^{q \left( V + I \times R_s \right) / nkT} - 1 \right)
  2. I_L = I_{L \left( T_1 \right)} \left( 1 + K_o \left(T - T_1 \right) \right)
  3. I_{L \left( T_1 \right)} = G \times I_{sc \left( T_1 \right) }
  4. K_o = \left( I_{ sc \left(T_2 \right) } - I_{sc \left( T_1 \right) } \right) / \left( T_2 - T_1 \right)
  5. I_o = I_{ o \left( T_1 \right) } \times {\left( T / T_1 \right)}^{3/n} * e^{ -q * V_g / nk * \left( 1/T - 1/T_1 \right)}
  6. I_{ o \left( T_1 \right) } = I_{ sc \left( T_1 \right) }/ \left( e^{ q*V_{ oc \left( T_1 \right) } / nkT_1 } - 1 \right)
  7. R_s = - { \left( \tfrac{dV}{dI} \right) }_{ V_{oc} } - 1 / X_v
  8. X_v = I_{ o \left( T_1 \right) } \times q / nkT_1 \times e^{ q*V_{ oc \left( T_1 \right) } / nkT_1 }

where

  • k is Boltzman's constant
  • q is charge on an electron
  • Vg is band gap voltage
  • n is diode quality factor
  • Rs is series resistance of cell
  • Rsh is shunt resistance
  • T1 and T2 are reference temperature in Kelvin
  • T is working temperature of cell in Kelvin
  • Voc is open circuit voltage
  • Isc is short circuit current
  • Io is reverse saturation current of diode
  • I is the current through Rs
  • IL is current produced by the cell

in many sources IL is also known as Iph.

[edit] Solar cell efficiency factors

[edit] Energy conversion efficiency

A solar cell's energy conversion efficiency (η, "eta"), is the percentage of power converted (from absorbed light to electrical energy) and collected, when a solar cell is connected to an electrical circuit. This term is calculated using the ratio of the maximum power point, Pm, divided by the input light irradiance (E, in W/m²) under standard test conditions (STC) and the surface area of the solar cell (Ac in m²).

\eta = \frac{P_{m}}{E \times A_c}

STC specifies a temperature of 25°C and an irradiance of 1000 W/m² with an air mass 1.5 (AM1.5) spectrum. These correspond to the irradiance and spectrum of sunlight incident on a clear day upon a sun-facing 37°-tilted surface with the sun at an angle of 41.81° above the horizon.[7][8] This condition approximately represents solar noon near the spring and autumn equinoxes in the continental United States with surface of the cell aimed directly at the sun. Thus, under these conditions a solar cell of 12% efficiency with a 100 cm2 (0.01 m2) surface area can be expected to produce approximately 1.2 watts of power.

The losses of a solar cell may be broken down into reflectance losses, thermodynamic efficiency, recombination losses and resistive electrical loss. The overall efficiency is the product of each of these individual losses.

Due to the difficulty in measuring these parameters directly, other parameters are measured instead: Thermodynamic Efficiency, Quantum Efficiency, VOC ratio, and Fill Factor. Reflectance losses are a portion of the Quantum Efficiency under "External Quantum Efficiency". Recombination losses make up a portion of the Quantum Efficiency, VOC ratio, and Fill Factor. Resistive losses are predominantly categorized under Fill Factor, but also make up minor portions of the Quantum Efficiency, VOC ratio.

[edit] Thermodynamic Efficiency Limit

Solar cells operate as quantum energy conversion devices, and are therefore subject to the "Thermodynamic Efficiency Limit". Photons with an energy below the band gap of the absorber material cannot generate a hole-electron pair, and so their energy is not converted to useful output and only generates heat if absorbed. For photons with an energy above the band gap energy, only a fraction of the energy above the band gap can be converted to useful output. When a photon of greater energy is absorbed, the excess energy above the band gap is converted to kinetic energy of the carrier combination. The excess kinetic energy is converted to heat through phonon interactions as the kinetic energy of the carriers slows to equilibrium velocity.

Solar cells with multiple band gap absorber materials are able to more efficiently convert the solar spectrum. By using multiple band gaps, the solar spectrum may be broken down into smaller bins where the thermodynamic efficiency limit is higher for each bin.[9]

[edit] Quantum efficiency

As described above, when a photon is absorbed by a solar cell it is converted to an electron-hole pair. This electron-hole pair may then travel to the surface of the solar cell and contribute to the current produced by the cell; such a carrier is said to be collected. Alternatively, the carrier may give up its energy and once again become bound to an atom within the solar cell without reaching the surface; this is called recombination, and carriers that recombine do not contribute to the production of electrical current.

Quantum efficiency refers to the percentage of photons that are converted to electric current (i.e., collected carriers) when the cell is operated under short circuit conditions. External quantum efficiency is the fraction of incident photons that are converted to electrical current, while internal quantum efficiency is the fraction of absorbed photons that are converted to electrical current. Mathematically, internal quantum efficiency is related to external quantum efficiency by the reflectance of the solar cell; given a perfect anti-reflection coating, they are the same.

Quantum efficiency should not be confused with energy conversion efficiency, as it does not convey information about the power collected from the solar cell. Furthermore, quantum efficiency is most usefully expressed as a spectral measurement (that is, as a function of photon wavelength or energy). Since some wavelengths are absorbed more effectively than others in most semiconductors, spectral measurements of quantum efficiency can yield information about which parts of a particular solar cell design are most in need of improvement.

[edit] VOC ratio

Due to recombination, the open circuit voltage (VOC) of the cell will be below the band gap voltage of the cell. Since the energy of the photons must be at or above the band gap to generate a carrier pair, cell voltage below the band gap voltage represents a loss. This loss is represented by the ratio of VOC divided by VG

[edit] Maximum-power point

A solar cell may operate over a wide range of voltages (V) and currents (I). By increasing the resistive load on an irradiated cell continuously from zero (a short circuit) to a very high value (an open circuit) one can determine the maximum-power point, the point that maximizes V×I; that is, the load for which the cell can deliver maximum electrical power at that level of irradiation. (The output power is zero in both the short circuit and open circuit extremes).

A high quality, monocrystalline silicon solar cell, at 25 °C cell temperature, may produce 0.60 volts open-circuit (Voc). The cell temperature in full sunlight, even with 25 °C air temperature, will probably be close to 45 °C, reducing the open-circuit voltage to 0.55 volts per cell. The voltage drops modestly, with this type of cell, until the short-circuit current is approached (Isc). Maximum power (with 45 °C cell temperature) is typically produced with 75% to 80% of the open-circuit voltage (0.43 volts in this case) and 90% of the short-circuit current. This output can be up to 70% of the Voc x Isc product. The short-circuit current (Isc) from a cell is nearly proportional to the illumination, while the open-circuit voltage (Voc) may drop only 10% with a 80% drop in illumination. Lower-quality cells have a more rapid drop in voltage with increasing current and could produce only 1/2 Voc at 1/2 Isc. The usable power output could thus drop from 70% of the Voc x Isc product to 50% or even as little as 25%. Vendors who rate their solar cell "power" only as Voc x Isc, without giving load curves, can be seriously distorting their actual performance.

The maximum power point of a photovoltaic varies with incident illumination. For systems large enough to justify the extra expense, a maximum power point tracker tracks the instantaneous power by continually measuring the voltage and current (and hence, power transfer), and uses this information to dynamically adjust the load so the maximum power is always transferred, regardless of the variation in lighting.

[edit] Fill factor

Another defining term in the overall behavior of a solar cell is the fill factor (FF). This is the ratio of the maximum power point divided by the open circuit voltage (Voc) and the short circuit current (Isc):

FF = \frac{P_{m}}{V_{oc} \times I_{sc}} = \frac{\eta \times A_c \times E}{V_{oc} \times I_{sc}}

[edit] Comparison of energy conversion efficiencies

Main article: Photovoltaics

At this point, discussion of the different ways to calculate efficiency for space cells and terrestrial cells is necessary to alleviate confusion. In space, where there is no atmosphere, the spectrum of the sun is relatively unfiltered. However on earth, with air filtering the incoming light, the solar spectrum changes. To account for the spectral differences, a system was devised to calculate this filtering effect. Simply, the filtering effect ranges from Air Mass 0 in space, to approximately Air Mass 1.5 on earth. Multiplying the spectral differences by the quantum efficiency of the solar cell in question will yield the efficiency of the device. For example, a Silicon solar cell in space might have an efficiency of 14% at AM0, but have an efficiency of 16% on earth at AM 1.5. Terrestrial efficiencies typically are greater than space efficiencies.

Solar cell efficiencies vary from 6% for amorphous silicon-based solar cells to 40.7% with multiple-junction research lab cells and 42.8% with multiple dies assembled into a hybrid package.[10] Solar cell energy conversion efficiencies for commercially available multicrystalline Si solar cells are around 14-19%[11]. The highest efficiency cells have not always been the most economical — for example a 30% efficient multijunction cell based on exotic materials such as gallium arsenide or indium selenide and produced in low volume might well cost one hundred times as much as an 8% efficient amorphous silicon cell in mass production, while only delivering about four times the electrical power.

However, there is a way to "boost" solar power. By increasing the light intensity, typically photogenerated carriers are increased, resulting in increased efficiency by up to 15%. These so-called "concentrator systems" have only begun to become cost-competitive as a result of the development of high efficiency GaAs cells. The increase in intensity is typically accomplished by using concentrating optics. A typical concentrator system may use a light intensity 6-400 times the sun, and increase the efficiency of a one sun GaAs cell from 31% at AM 1.5 to 35%.

A common method used to express economic costs of electricity-generating systems is to calculate a price per delivered kilowatt-hour (kWh). The solar cell efficiency in combination with the available irradiation has a major influence on the costs, but generally speaking the overall system efficiency is important. Using the commercially available solar cells (as of 2006) and system technology leads to system efficiencies between 5 and 19%. As of 2005, photovoltaic electricity generation costs ranged from ~0.60 US$/kWh (0.50 €/kWh) (central Europe) down to ~0.30 US$/kWh (0.25 €/kWh) in regions of high solar irradiation. This electricity is generally fed into the electrical grid on the customer's side of the meter. The cost can be compared to prevailing retail electric pricing (as of 2005), which varied from between 0.04 and 0.50 US$/kWh worldwide. (Note: in addition to solar irradiance profiles, these costs/kwh calculations will vary depending on assumptions for years of useful life of a system. Most c-Si panels are warrantied for 25 years and should see 35+ years of useful life.)

The chart at the right illustrates the various commercial large-area module energy conversion efficiencies and the best laboratory efficiencies obtained for various materials and technologies.

Reported timeline of solar cell energy conversion efficiencies (from National Renewable Energy Laboratory (USA)

Reported timeline of solar cell energy conversion efficiencies (from National Renewable Energy Laboratory (USA)

[edit] Watts peak

Since solar cell output power depends on multiple factors, such as the sun's incidence angle, for comparison purposes between different cells and panels, the measure of watts peak (Wp) is used. It is the output power under these conditions known as STC:[12][13]

  1. insolation (solar irradiance) 1000 W/m²
  2. solar reference spectrum AM (airmass) 1.5
  3. cell temperature 25°C

[edit] Solar cells and energy payback

In the 1990s, when silicon cells were twice as thick, efficiencies were 30% lower than today and lifetimes were shorter, it may well have cost more energy to make a cell than it could generate in a lifetime. In the meantime, the technology has progressed significantly, and the energy payback time of a modern photovoltaic module is typically from 1 to 4 years [14] depending on the type and where it is used (see net energy gain). With a typical lifetime of 20 to 30 years, this means that modern solar cells are net energy producers, i.e they generate much more energy over their lifetime than the energy expended in producing them.[15][14][16]

[edit] Light-absorbing materials

All solar cells require a light absorbing material contained within the cell structure to absorb photons and generate electrons via the photovoltaic effect. The materials used in solar cells tend to have the property of preferentially absorbing the wavelengths of solar light that reach the earth surface; however, some solar cells are optimized for light absorption beyond Earth's atmosphere as well. Light absorbing materials can often be used in multiple physical configurations to take advantage of different light absorption and charge separation mechanisms. Many currently available solar cells are configured as bulk materials that are subsequently cut into wafers and treated in a "top-down" method of synthesis (silicon being the most prevalent bulk material). Other materials are configured as thin-films (inorganic layers, organic dyes, and organic polymers) that are deposited on supporting substrates, while a third group are configured as nanocrystals and used as quantum dots (electron-confined nanoparticles) embedded in a supporting matrix in a "bottom-up" approach. Silicon remains the only material that is well-researched in both bulk and thin-film configurations. The following is a current list of light absorbing materials, listed by configuration and substance-name:

[edit] Bulk

These bulk technologies are often referred to as wafer-based manufacturing. In other words, in each of these approaches, self-supporting wafers between 180 to 240 micrometers thick are processed and then soldered together to form a solar cell module. A general description of silicon wafer processing is provided in Manufacture and Devices.

[edit] Silicon

Basic structure of a silicon based solar cell and its working mechanism.

Basic structure of a silicon based solar cell and its working mechanism.

By far, the most prevalent bulk material for solar cells is crystalline silicon (abbreviated as a group as c-Si), also known as "solar grade silicon". Bulk silicon is separated into multiple categories according to crystallinity and crystal size in the resulting ingot, ribbon, or wafer.

  1. monocrystalline silicon (c-Si): often made using the Czochralski process. Single-crystal wafer cells tend to be expensive, and because they are cut from cylindrical ingots, do not completely cover a square solar cell module without a substantial waste of refined silicon. Hence most c-Si panels have uncovered gaps at the four corners of the cells.
  2. Poly- or multicrystalline silicon (poly-Si or mc-Si): made from cast square ingots — large blocks of molten silicon carefully cooled and solidified. These cells are less expensive to produce than single crystal cells but are less efficient.
  3. Ribbon silicon: formed by drawing flat thin films from molten silicon and having a multicrystalline structure. These cells have lower efficiencies than poly-Si, but save on production costs due to a great reduction in silicon waste, as this approach does not require sawing from ingots.

[edit] Thin films

Main article: Thin film

The various thin-film technologies currently being developed reduce the amount (or mass) of light absorbing material required in creating a solar cell. This can lead to reduced processing costs from that of bulk materials (in the case of silicon thin films) but also tends to reduce energy conversion efficiency, although many multi-layer thin films have efficiencies above those of bulk silicon wafers.

[edit] CdTe

Cadmium telluride is an efficient light-absorbing material for thin-film solar cells. Compared to other thin-film materials, CdTe is easier to deposit and more suitable for large-scale production. Despite much discussion of the toxicity of CdTe-based solar cells, this is the only technology (apart from amorphous silicon) that can be delivered on a large scale[citation needed]. The perception of the toxicity of CdTe is based on the toxicity of elemental cadmium, a heavy metal that is a cumulative poison. However it has been shown that the release of cadmium to the atmosphere is lower with CdTe-based solar cells than with silicon photovoltaics and other thin-film solar cell technologies. [17]

[edit] Copper-Indium Selenide

The materials based on CuInSe2 that are of interest for photovoltaic applications include several elements from groups I, III and VI in the periodic table. These semiconductors are especially attractive for thin film solar cell application because of their high optical absorption coefficients and versatile optical and electrical characteristics which can in principle be manipulated and tuned for a specific need in a given device. CIS is an abbreviation for general chalcopyrite films of copper indium selenide (CuInSe2), CIGS mentioned below is a variation of CIS. CIS films (no Ga) achieved greater than 14% efficiency.[18] However, manufacturing costs of CIS solar cells at present are high when compared with

beeway 發表在 痞客邦 留言(0) 人氣()


Bewise Inc. www.tool-tool.com Reference source from the internet.

A cloth of woven carbon fiber filaments, a common element in composite materials

A cloth of woven carbon fiber filaments, a common element in composite materials

Composite materials (or composites for short) are engineered materials made from two or more constituent materials with significantly different physical or chemical properties and which remain separate and distinct on a macroscopic level within the finished structure.

[edit] Background

Plywood is a common composite material that many people encounter in their everyday lives

Plywood is a common composite material that many people encounter in their everyday lives

The most primitive composite materials comprised straw and mud in the form of bricks for building construction; the Biblical book of Exodus speaks of the Israelites being oppressed by Pharaoh, by being forced to make bricks without straw being provided. The ancient brick-making process can still be seen on Egyptian tomb paintings in the Metropolitan Museum of Art[1]. The most advanced examples perform routinely on spacecraft in demanding environments. The most visible applications pave our roadways in the form of either steel and aggregate reinforced portland cement or asphalt concrete. Those composites closest to our personal hygiene form our shower stalls and bath tubs made of fiberglass. Solid surface, imitation granite and cultured marble sinks and counter tops are widely used to enhance our living experiences.

There are two categories of constituent materials: matrix and reinforcement. At least one portion of each type is required. The matrix material surrounds and supports the reinforcement materials by maintaining their relative positions. The reinforcements impart their special mechanical and physical properties to enhance the matrix properties. A synergism produces material properties unavailable from the individual constituent materials, while the wide variety of matrix and strengthening materials allows the designer of the product or structure to choose an optimum combination. Engineered composite materials must be formed to shape. The matrix material can be introduced to the reinforcement before or after the reinforcement material is placed into the mold cavity or onto the mold surface. The matrix material experiences a melding event, after which the part shape is essentially set. Depending upon the nature of the matrix material, this melding event can occur in various ways such as chemical polymerization or solidification from the melted state.

A variety of molding methods can be used according to the end-item design requirements. The principal factors impacting the methodology are the natures of the chosen matrix and reinforcement materials. Another important factor is the gross quantity of material to be produced. Large quantities can be used to justify high capital expenditures for rapid and automated manufacturing technology. Small production quantities are accommodated with lower capital expenditures but higher labor and tooling costs at a correspondingly slower rate. Most commercially produced composites use a polymer matrix material often called a resin solution. There are many different polymers available depending upon the starting raw ingredients. There are several broad categories, each with numerous variations. The most common are known as polyester, vinyl ester, epoxy, phenolic, polyimide, polyamide, polypropylene, PEEK, and others. The reinforcement materials are often fibers but also commonly ground minerals. The various methods described below have been developed to reduce the resin content of the final product, or the fibre content is increased. As a rule of thumb hand lay up results in a product containing 60% resin and 40% fibre, whereas vacuum infusion gives a final product with 40% resin and 60% fibre content. The strength of the product is greatly dependent on this ratio, so this increase in fibre content results in a dramatically stronger product.

[edit] Molding methods

In general, the reinforcing and matrix materials are combined, compacted and processed to undergo a melding event. After the melding event, the part shape is essentially set, although it can deform under certain process conditions. For a thermoset polymeric matrix material, the melding event is a curing reaction that is initiated by the application of additional heat or chemical reactivity such as an organic peroxide. For a thermoplastic polymeric matrix material, the melding event is a solidification from the melted state. For a metal matrix material such as titanium foil, the melding event is a fusing at high pressure and a temperature near the melt point.

For many molding methods, it is convenient to refer to one mold piece as a "lower" mold and another mold piece as an "upper" mold. Lower and upper refer to the different faces of the molded panel, not the mold's configuration in space. In this convention, there is always a lower mold, and sometimes an upper mold. Part construction begins by applying materials to the lower mold. Lower mold and upper mold are more generalized descriptors than more common and specific terms such as male side, female side, a-side, b-side, tool side, bowl, hat, mandrel, etc. Continuous manufacturing processes use a different nomenclature.

The molded product is often referred to as a panel. For certain geometries and material combinations, it can be referred to as a casting. For certain continuous processes, it can be referred to as a profile.

[edit] Open molding

A process using a rigid, one sided mold which shapes only one surface of the panel. The opposite surface is determined by the amount of material placed upon the lower mold. Reinforcement materials can be placed manually or robotically. They include continuous fiber forms fashioned into textile constructions and chopped fiber. The matrix is generally a resin, and can be applied with a pressure roller, a spray device or manually. This process is generally done at ambient temperature and atmospheric pressure. Two variations of open molding are Hand Layup and Spray-up.

[edit] Vacuum bag molding

A process using a two-sided mold set that shapes both surfaces of the panel. On the lower side is a rigid mold and on the upper side is a flexible membrane or vacuum bag. The flexible membrane can be a reusable silicone material or an extruded polymer film. Then, vacuum is applied to the mold cavity. This process can be performed at either ambient or elevated temperature with ambient atmospheric pressure acting upon the vacuum bag. Most economical way is using a venturi vacuum and air compressor or a vacuum pump.

[edit] Pressure bag molding

This process is related to vacuum bag molding in exactly the same way as it sounds. A solid female mold is used along with a flexible male mold. The reinforcement is place inside the female mold with just enough resin to allow the fabric to stick in place. A measured amount of resin is then liberally brushed indiscriminately into the mold and the mold is then clamped to a machine that contains the male flexible mold. The flexible male membrane is then inflated with heated compressed air or possibly steam. The female mold can also be heated. Excess resin is forced out along with trapped air. This process is extensively used in the production of composite helmets due to the lower cost of unskilled labor. Cycle times for a helmet bag molding machine vary form 20 to 45 minutes, but the finished shells require no further curing if the molds are heated.

[edit] Autoclave molding

A process using a two-sided mold set that forms both surfaces of the panel. On the lower side is a rigid mold and on the upper side is a flexible membrane made from silicone or an extruded polymer film such as nylon. Reinforcement materials can be placed manually or robotically. They include continuous fiber forms fashioned into textile constructions. Most often, they are pre-impregnated with the resin in the form of prepreg fabrics or unidirectional tapes. In some instances, a resin film is placed upon the lower mold and dry reinforcement is placed above. The upper mold is installed and vacuum is applied to the mold cavity. The assembly is placed into an autoclave pressure vessel. This process is generally performed at both elevated pressure and elevated temperature. The use of elevated pressure facilitates a high fiber volume fraction and low void content for maximum structural efficiency.

[edit] Resin transfer molding (RTM)

A process using a two-sided mold set that forms both surfaces of the panel. The lower side is a rigid mold. The upper side can be a rigid or flexible mold. Flexible molds can be made from composite materials, silicone or extruded polymer films such as nylon. The two sides fit together to produce a mold cavity. The distinguishing feature of resin transfer molding is that the reinforcement materials are placed into this cavity and the mold set is closed prior to the introduction of matrix material. Resin transfer molding includes numerous varieties which differ in the mechanics of how the resin is introduced to the reinforcement in the mold cavity. These variations include everything from vacuum infusion (see also resin infusion) to vacuum assisted resin transfer molding. This process can be performed at either ambient or elevated temperature.

[edit] Other

Other types of molding include press molding, transfer molding, pultrusion molding, filament winding, casting, centrifugal casting and continuous casting.

[edit] Tooling

Some types of tooling materials used in the manufacturing of composites structures include invar, steel, aluminum, reinforced silicon rubber, nickle, and carbon fiber. Selection of the tooling material is typically based on, but not limited to, the coefficient of thermal expansion, expected number of cycles, end item tolerance, desired or required surface condition, method of cure, glass transition temperature of the material being molded, molding method, matrix, cost and a variety of other considerations.

[edit] Mechanics of composite materials

The physical properties of composite materials are generally not isotropic (independent of direction of applied force) in nature, but rather are typically orthotropic (different depending on the direction of the applied force or load). For instance, the stiffness of a composite panel will often depend upon the orientation of the applied forces and/or moments. Panel stiffness is also dependent on the design of the panel. For instance, the fiber reinforcement and matrix used, the method of panel build, thermoset versus thermoplastic, type of weave, and orientation of fiber axis to the primary force.

In contrast, isotropic materials (for example, aluminium or steel), in standard wrought forms, typically have the same stiffness regardless of the directional orientation of the applied forces and/or moments.

The relationship between forces/moments and strains/curvatures for an isotropic material can be described with the following material properties: Young's Modulus, the Shear Modulus and the Poisson's ratio, in relatively simple mathematical relationships. For the anisotropic material, it requires the mathematics of a second order tensor and up to 21 material property constants. For the special case of orthogonal isotropy, there are three different material property constants for each of Young's Modulus, Shear Modulus and Poisson's ratio--a total of 9 constants to describe the relationship between forces/moments and strains/curvatures.

[edit] Categories of fiber reinforced composite materials

Fiber reinforced composite materials can be divided into two main categories normally referred to as short fiber reinforced materials and continuous fiber reinforced materials. Continuous reinforced materials will often constitute a layered or laminated structure. The woven and continuous fiber styles are typically available in a variety of forms, being pre-impregnated with the given matrix (resin), dry, uni-directional tapes of various widths, plain weave, harness satins, braided, and stitched.

The short and long fibers are typically employed in compression molding and sheet molding operations.These come in the form of flakes, chips, and random mate (which can also be made from a continuous fiber laid in random fashion until the desired thickness of the ply / laminate is achieved).

[edit] Failure of composites

Shock, impact, or repeated cyclic stresses can cause the laminate to separate at the interface between two layers, a condition known as delamination. Individual fibers can separate from the matrix e.g. fiber pull-out.

Composites can fail on the microscopic or macroscopic scale. Compression failures can occur at both the macro scale or at each individual reinforcing fiber in compression buckling. Tension failures can be net section failures of the part or degradation of the composite at a microscopic scale where one or more of the layers in the composite fail in tension of the matrix or failure the bond between the matrix and fibers.

Some composites are brittle and have little reserve strength beyond the initial onset of failure while others may have large deformations and have reserve energy absorbing capacity past the onset of damage. The variations in fibers and matrices that are available and the mixtures that can be made with blends leave a very broad range of properties that can be designed into a composite structure. The best known failure occurred when the carbon-fiber wing of the Space Shuttle Columbia fractured when impacted during take-off. It led to catastrophic break-up of the vehicle when it re-entered the earth's atmosphere on February 1, 2003.

[edit] Examples of composite materials

Fiber reinforced polymers or FRPs include wood (comprising cellulose fibers in a lignin and hemicellulose matrix), carbon-fiber reinforced plastic or CFRP, and glass reinforced plastic or GRP. If classified by matrix then there are thermoplastic composites, short fiber thermoplastics, long fiber thermoplastics or long fiber reinforced thermoplastics. There are numerous thermoset composites, but advanced systems usually incorporate aramid fibre and carbon fibre in an epoxy resin matrix.

Composites can also use metal fibres reinforcing other metals, as in metal matrix composites or MMC. Magnesium is often used in MMCs because it has similar mechanical properties as epoxy. The benefit of magnesium is that it does not degrade in outer space. Ceramic matrix composites include bone (hydroxyapatite reinforced with collagen fibers), Cermet (ceramic and metal) and concrete. Ceramic matrix composites are built primarily for toughness, not for strength. Organic matrix/ceramic aggregate composites include asphalt concrete, mastic asphalt, mastic roller hybrid, dental composite, syntactic foam and mother of pearl. Chobham armour is a special composite used in military applications.

Additionally, thermoplastic composite materials can be formulated with specific metal powders resulting in materials with a density range from 2 g/cc to 11 g/cc (same density as lead). These materials can be used in place of traditional materials such as aluminum, stainless steel, brass, bronze, copper, lead, and even tungsten in weighting, balancing, vibration dampening, and radiation shielding applications. High density composites are an economically viable option when certain materials are deemed hazardous and are banned (such as lead) or when secondary operations costs (such as machining, finishing, or coating) are a factor.

Engineered wood includes a wide variety of different products such as plywood, oriented strand board, wood plastic composite (recycled wood fiber in polyethylene matrix), Pykrete (sawdust in ice matrix), Plastic-impregnated or laminated paper or textiles, Arborite, Formica (plastic) and Micarta. Other engineered laminate composites, such as Mallite, use a central core of end grain balsa wood, bonded to surface skins of light alloy or GRP. These generate low-weight, high rigidity materials.

[edit] Typical products

Composite materials have gained popularity (despite their generally high cost) in high-performance products that need to be lightweight, yet strong enough to take harsh loading conditions such as aerospace components (tails, wings, fuselages, propellers), boat and scull hulls, bicycle frames and racing car bodies. Other uses include fishing rods and storage tanks. The new Boeing 787 Dreamliner structure including the wings and fuselage is composed of over 50 percent composites.

Carbon composite is a key material in today's launch vehicles and spacecrafts. It is widely used in solar panel substrates, antenna reflectors and yokes of spacecrafts. It is also used in payload adapters, inter-stage structures and heat shields of launch vehicles.

歡迎來到Bewise Inc.的世界,首先恭喜您來到這接受新的資訊讓產業更有競爭力,我們是提供專業刀具製造商,應對客戶高品質的刀具需求,我們可以協助客戶滿足您對產業的不同要求,我們有能力達到非常卓越的客戶需求品質,這是現有相關技術無法比擬的,我們成功的滿足了各行各業的要求,包括:精密HSS DIN切削刀具協助客戶設計刀具流程DIN or JIS 鎢鋼切削刀具設計NAS986 NAS965 NAS897 NAS937orNAS907 航太切削刀具,NAS航太刀具設計超高硬度的切削刀具BW捨棄式鑽石V卡刀BW捨棄式金屬圓鋸片木工捨棄式金屬圓鋸片PCD木工圓鋸片醫療配件刀具設計汽車業刀具設計電子產業鑽石刀具全鎢鋼V卡刀-電路版專用全鎢鋼鋸片焊刃式側銑刀焊刃式千鳥側銑刀焊刃式T型銑刀焊刃式千鳥T型銑刀焊刃式螺旋機械鉸刀全鎢鋼斜邊刀電路版專用鎢鋼焊刃式高速鉸刀超微粒鎢鋼機械鉸刀超微粒鎢鋼定點鑽焊刃式帶柄角度銑刀焊刃式螺旋立銑刀焊刃式帶柄倒角銑刀焊刃式角度銑刀焊刃式筒型平面銑刀木工產業鑽石刀具等等。我們的產品涵蓋了從民生刀具到工業級的刀具設計;從微細刀具到大型刀具;從小型生產到大型量產;全自動整合;我們的技術可提供您連續生產的效能,我們整體的服務及卓越的技術,恭迎您親自體驗!!

BW Bewise Inc. Willy Chen willy@tool-tool.com bw@tool-tool.com www.tool-tool.com skype:willy_chen_bw mobile:0937-618-190 Head &Administration Office No.13,Shiang Shang 2nd St., West Chiu Taichung,Taiwan 40356 http://www.tool-tool..com / FAX:+886 4 2471 4839 N.Branch 5F,No.460,Fu Shin North Rd.,Taipei,Taiwan S.Branch No.24,Sec.1,Chia Pu East Rd.,Taipao City,Chiayi Hsien,Taiwan

Welcome to BW tool world! We are an experienced tool maker specialized in cutting tools. We focus on what you need and endeavor to research the best cutter to satisfy users demand. Our customers involve wide range of industries, like mold & die, aerospace, electronic, machinery, etc. We are professional expert in cutting field. We would like to solve every problem from you. Please feel free to contact us, its our pleasure to serve for you. BW product including: cutting toolaerospace tool .HSS DIN Cutting toolCarbide end millsCarbide cutting toolNAS Cutting toolNAS986 NAS965 NAS897 NAS937orNAS907 Cutting Tools,Carbide end milldisc milling cutter,Aerospace cutting toolhss drillФрезерыCarbide drillHigh speed steelMilling cutterCVDD(Chemical Vapor Deposition Diamond )’PCBN (Polycrystalline Cubic Boron Nitride) Core drillTapered end millsCVD Diamond Tools Inserts’PCD Edge-Beveling Cutter(Golden FingerEdge modifying knifeSolid carbide saw blade-V typeV-type locking-special use for PC boardMetal Slitting SawaCarbide Side milling CuttersCarbide Side Milling Cutters With Staggered TeethCarbide T-Slot Milling CuttersCarbide T-Slot Milling Cutters With Staggered TeethCarbide Machine ReamersHigh speed reamer-standard typeHigh speed reamer-long type’’PCD V-CutterPCD Wood toolsPCD Cutting toolsPCD Circular Saw BladePVDD End Millsdiamond tool V-type locking-special use for PC board Single Crystal Diamond Metric end millsMiniature end millsСпециальные режущие инструменты Пустотелое сверло Pilot reamerFraises


beeway 發表在 痞客邦 留言(0) 人氣()


beeway 發表在 痞客邦 留言(0) 人氣()

Bewise Inc. www.tool-tool.com Reference source from the internet.

Topographic scan of a glass surface

Topographic scan of a glass surface

The atomic force microscope (AFM) or scanning force microscope (SFM) is a very high-resolution type of scanning probe microscope, with demonstrated resolution of fractions of a nanometer, more than 1000 times better than the optical diffraction limit. The precursor to the AFM, the scanning tunneling microscope, was developed by Gerd Binnig and Heinrich Rohrer in the early 1980s, a development that earned them the Nobel Prize for Physics in 1986. Binnig, Quate and Gerber invented the first AFM in 1986. The AFM is one of the foremost tools for imaging, measuring and manipulating matter at the nanoscale. The term 'microscope' in the name is actually a misnomer because it implies looking, while in fact the information is gathered by "feeling" the surface with a mechanical probe. Piezoelectric elements that facilitate tiny but accurate and precise movements on (electronic) command are what facilitates the very precise scanning.

[edit] Basic principle

Part of a series of articles on
Nanotechnology


History
Implications
Applications
Organizations
In fiction and popular culture
List of topics

Subfields and related fields

Nanomaterials
Fullerenes
Carbon nanotubes
Nanoparticles

Nanomedicine
Nanotoxicology
Nanosensor

Molecular self-assembly
Self-assembled monolayer
Supramolecular assembly
DNA nanotechnology

Nanoelectronics
Molecular electronics
Nanocircuitry
Nanolithography

Scanning probe microscopy
Atomic force microscope
Scanning tunneling microscope

Molecular nanotechnology
Molecular assembler
Nanorobotics
Mechanosynthesis

This box: view talk edit
Block Diagram of Atomic Force Microscope

Block Diagram of Atomic Force Microscope
AFM cantilever (after use) in the Scanning Electron Microscope, magnification 1,000 x (image width ~ 100 micrometers)

AFM cantilever (after use) in the Scanning Electron Microscope, magnification 1,000 x (image width ~ 100 micrometers)
AFM cantilever (after use) in the Scanning Electron Microscope, magnification 3,000 x (image width ~ 30 micrometers)

AFM cantilever (after use) in the Scanning Electron Microscope, magnification 3,000 x (image width ~ 30 micrometers)
AFM cantilever (after use) in the Scanning Electron Microscope, magnification 50,000 x (image width ~ 2 micrometers)

AFM cantilever (after use) in the Scanning Electron Microscope, magnification 50,000 x (image width ~ 2 micrometers)

The AFM consists of a microscale cantilever with a sharp tip (probe) at its end that is used to scan the specimen surface. The cantilever is typically silicon or silicon nitride with a tip radius of curvature on the order of nanometers. When the tip is brought into proximity of a sample surface, forces between the tip and the sample lead to a deflection of the cantilever according to Hooke's law. Depending on the situation, forces that are measured in AFM include mechanical contact force, Van der Waals forces, capillary forces, chemical bonding, electrostatic forces, magnetic forces (see Magnetic force microscope (MFM)), Casimir forces, solvation forces etc. As well as force, additional quantities may simultaneously be measured through the use of specialised types of probe (see Scanning thermal microscopy, photothermal microspectroscopy, etc.). Typically, the deflection is measured using a laser spot reflected from the top of the cantilever into an array of photodiodes. Other methods that are used include optical interferometry, capacitive sensing or piezoresistive AFM cantilevers. These cantilevers are fabricated with piezoresistive elements that act as a strain gauge. Using a Wheatstone bridge, strain in the AFM cantilever due to deflection can be measured, but this method is not as sensitive as laser deflection or interferometry.

If the tip were scanned at a constant height, there would be a risk that the tip would collide with the surface, causing damage. Hence, in most cases a feedback mechanism is employed to adjust the tip-to-sample distance to maintain a constant force between the tip and the sample. Traditionally, the sample is mounted on a piezoelectric tube, that can move the sample in the z direction for maintaining a constant force, and the x and y directions for scanning the sample. Alternatively a 'tripod' configuration of three piezo crystals may be employed, with each responsible for scanning in the x,y and z directions. This eliminates some of the distortion effects seen with a tube scanner. The resulting map of the area s = f(x,y) represents the topography of the sample.

The AFM can be operated in a number of modes, depending on the application. In general, possible imaging modes are divided into static (also called Contact) modes and a variety of dynamic (or non-contact) modes.

[edit] Imaging modes

The primary modes of operation are static (contact) mode and dynamic mode. In the static mode operation, the static tip deflection is used as a feedback signal. Because the measurement of a static signal is prone to noise and drift, low stiffness cantilevers are used to boost the deflection signal. However, close to the surface of the sample, attractive forces can be quite strong, causing the tip to 'snap-in' to the surface. Thus static mode AFM is almost always done in contact where the overall force is repulsive. Consequently, this technique is typically called 'contact mode'. In contact mode, the force between the tip and the surface is kept constant during scanning by maintaining a constant deflection.

In the dynamic mode, the cantilever is externally oscillated at or close to its resonance frequency. The oscillation amplitude, phase and resonance frequency are modified by tip-sample interaction forces; these changes in oscillation with respect to the external reference oscillation provide information about the sample's characteristics. Schemes for dynamic mode operation include frequency modulation and the more common amplitude modulation. In frequency modulation, changes in the oscillation frequency provide information about tip-sample interactions. Frequency can be measured with very high sensitivity and thus the frequency modulation mode allows for the use of very stiff cantilevers. Stiff cantilevers provide stability very close to the surface and, as a result, this technique was the first AFM technique to provide true atomic resolution in ultra-high vacuum conditions (Giessibl).

In amplitude modulation, changes in the oscillation amplitude or phase provide the feedback signal for imaging. In amplitude modulation, changes in the phase of oscillation can be used to discriminate between different types of materials on the surface. Amplitude modulation can be operated either in the non-contact or in the intermittent contact regime. In ambient conditions, most samples develop a liquid meniscus layer. Because of this, keeping the probe tip close enough to the sample for short-range forces to become detectable while preventing the tip from sticking to the surface presents a major hurdle for the non-contact dynamic mode in ambient conditions. Dynamic contact mode (also called intermittent contact or tapping mode) was developed to bypass this problem (Zhong et al). In dynamic contact mode, the cantilever is oscillated such that it comes in contact with the sample with each cycle, and then enough restoring force is provided by the cantilever spring to detach the tip from the sample.

Amplitude modulation has also been used in the non-contact regime to image with atomic resolution by using very stiff cantilevers and small amplitudes in an ultra-high vacuum environment.

[edit] Tapping Mode

Single polymer chains (0.4 nm thick) recorded in a tapping mode under aqueous media with different pH. Green locations of the two-chains-superposition correspond to 0.8 nm thickness (Roiter and Minko, 2005).

Single polymer chains (0.4 nm thick) recorded in a tapping mode under aqueous media with different pH. Green locations of the two-chains-superposition correspond to 0.8 nm thickness (Roiter and Minko, 2005).

In tapping mode the cantilever is driven to oscillate up and down at near its resonance frequency by a small piezoelectric element mounted in the AFM tip holder. The amplitude of this oscillation is greater than 10 nm, typically 100 to 200 nm. Due to the interaction of forces acting on the cantilever when the tip comes close to the surface, Van der Waals force or dipole-dipole interaction, electrostatic forces, etc cause the amplitude of this oscillation to decrease as the tip gets closer to the sample. An electronic servo uses the piezoelectric actuator to control the height of the cantilever above the sample. The servo adjusts the height to maintain a set cantilever oscillation amplitude as the cantilever is scanned over the sample. A Tapping AFM image is therefore produced by imaging the force of the oscillating contacts of the tip with the sample surface. This is an improvement on conventional contact AFM, in which the cantilever just drags across the surface at constant force and can result in surface damage. Tapping mode is gentle enough even for the visualization of adsorbed single polymer molecules (for instance, 0.4 nm thick chains of synthetic polyelectrolytes) under liquid medium. At the application of proper scanning parameters, conformation of single molecules remain unchanged for hours (Roiter and Minko, 2005).

[edit] Force-distance measurements

Another major application of AFM (besides imaging) is the measurement of force-distance curves. Here, the AFM tip is approached towards and retracted from the surface and the static deflection of the cantilever is monitored as a function of piezo displacement. These measurements have been used to measure nanoscale contacts, atomic bonding, van-der-Waals and Casimir forces, hydration/solvation forces in liquids and single molecule stretching and rupture forces (Hinterdorfer & Dufrêne). Forces of the order of a few pico-Newton can now be routinely measured with a vertical distance resolution of better than 0.1 nanometer.

Problems with the technique include no direct measurement of the tip-sample separation and the common need for low stiffness cantilevers which tend to 'snap' to the surface. The snap-in can be reduced by measuring in liquids or by using stiffer cantilevers, but in the latter case a more sensitive deflection sensor is needed. By applying a small dither to the tip, the stiffness (force gradient) of the bond can be measured as well (Hoffmann et al.).

[edit] Identification of individual surface atoms

The atoms of a Sodium Chloride crystal viewed with an Atomic Force Microscope

The atoms of a Sodium Chloride crystal viewed with an Atomic Force Microscope

The AFM can be used to image and manipulate atoms and structures on a variety of surfaces. The atom at the apex of the tip "senses" individual atoms on the underlying surface when it forms incipient chemical bonds with each atom. Because these chemical interactions subtly alter the tip's vibration frequency, they can be detected and mapped.

Physicist Oscar Custance (Osaka University, Graduate School of Engineering, Osaka, Japan) and his team used this principle to distinguish between atoms of silicon, tin and lead on an alloy surface (Nature 2007, 446, 64).

The trick is to first measure these forces precisely for each type of atom expected in the sample. The team found that the tip interacted most strongly with silicon atoms, and interacted 23% and 41% less strongly with tin and lead atoms. Thus, each different type of atom can be identified in the matrix as the tip is moved across the surface.

Such a technique has been used now in biology and extended recently to cell biology. Forces corresponding to (i) the unbinding of receptor ligand couples (ii) unfolding of proteins (iii) cell adhesion at single cell scale have been gathered.

[edit] Advantages and disadvantages

The first Atomic Force Microscope

The first Atomic Force Microscope

The AFM has several advantages over the scanning electron microscope (SEM). Unlike the electron microscope which provides a two-dimensional projection or a two-dimensional image of a sample, the AFM provides a true three-dimensional surface profile. Additionally, samples viewed by AFM do not require any special treatments (such as metal/carbon coatings) that would irreversibly change or damage the sample. While an electron microscope needs an expensive vacuum environment for proper operation, most AFM modes can work perfectly well in ambient air or even a liquid environment. This makes it possible to study biological macromolecules and even living organisms. In principle, AFM can provide higher resolution than SEM. It has been shown to give true atomic resolution in ultra-high vacuum (UHV). UHV AFM is comparable in resolution to Scanning Tunneling Microscopy and Transmission Electron Microscopy.

A disadvantage of AFM compared with the scanning electron microscope (SEM) is the image size. The SEM can image an area on the order of millimetres by millimetres with a depth of field on the order of millimetres. The AFM can only image a maximum height on the order of micrometres and a maximum scanning area of around 150 by 150 micrometres.

Another inconvenience is that an incorrect choice of tip for the required resolution can lead to image artifacts. Traditionally the AFM could not scan images as fast as an SEM, requiring several minutes for a typical scan, while an SEM is capable of scanning at near real-time (although at relatively low quality) after the chamber is evacuated. The relatively slow rate of scanning during AFM imaging often leads to thermal drift in the image (Lapshin, 2004, 2007), making the AFM microscope less suited for measuring accurate distances between artifacts on the image. However, several fast-acting designs were suggested to increase microscope scanning productivity (Lapshin and Obyedkov, 1993) including what is being termed videoAFM (reasonable quality images are being obtained with videoAFM at video rate - faster than the average SEM). To eliminate image distortions induced by thermodrift, several methods were also proposed (Lapshin, 2004, 2007).

AFM images can also be affected by hysteresis of the piezoelectric material (Lapshin, 1995) and cross-talk between the (x,y,z) axes that may require software enhancement and filtering. Such filtering could "flatten" out real topographical features. However, newer AFM use real-time correction software (for example, feature-oriented scanning, Lapshin, 2004, 2007) or closed-loop scanners which practically eliminate these problems. Some AFM also use separated orthogonal scanners (as opposed to a single tube) which also serve to eliminate cross-talk problems.

Due to the nature of AFM probes, they cannot normally measure steep walls or overhangs. Specially made cantilevers can be modulated sideways as well as up and down (as with dynamic contact and non-contact modes) to measure sidewalls, at the cost of more expensive cantilevers and additional artifacts.

歡迎來到Bewise Inc.的世界,首先恭喜您來到這接受新的資訊讓產業更有競爭力,我們是提供專業刀具製造商,應對客戶高品質的刀具需求,我們可以協助客戶滿足您對產業的不同要求,我們有能力達到非常卓越的客戶需求品質,這是現有相關技術無法比擬的,我們成功的滿足了各行各業的要求,包括:精密HSS DIN切削刀具協助客戶設計刀具流程DIN or JIS 鎢鋼切削刀具設計NAS986 NAS965 NAS897 NAS937orNAS907 航太切削刀具,NAS航太刀具設計超高硬度的切削刀具BW捨棄式鑽石V卡刀BW捨棄式金屬圓鋸片木工捨棄式金屬圓鋸片PCD木工圓鋸片醫療配件刀具設計汽車業刀具設計電子產業鑽石刀具全鎢鋼V卡刀-電路版專用全鎢鋼鋸片焊刃式側銑刀焊刃式千鳥側銑刀焊刃式T型銑刀焊刃式千鳥T型銑刀焊刃式螺旋機械鉸刀全鎢鋼斜邊刀電路版專用鎢鋼焊刃式高速鉸刀超微粒鎢鋼機械鉸刀超微粒鎢鋼定點鑽焊刃式帶柄角度銑刀焊刃式螺旋立銑刀焊刃式帶柄倒角銑刀焊刃式角度銑刀焊刃式筒型平面銑刀木工產業鑽石刀具等等。我們的產品涵蓋了從民生刀具到工業級的刀具設計;從微細刀具到大型刀具;從小型生產到大型量產;全自動整合;我們的技術可提供您連續生產的效能,我們整體的服務及卓越的技術,恭迎您親自體驗!!

BW Bewise Inc. Willy Chen willy@tool-tool.com bw@tool-tool.com www.tool-tool.com skype:willy_chen_bw mobile:0937-618-190 Head &Administration Office No.13,Shiang Shang 2nd St., West Chiu Taichung,Taiwan 40356 http://www.tool-tool..com / FAX:+886 4 2471 4839 N.Branch 5F,No.460,Fu Shin North Rd.,Taipei,Taiwan S.Branch No.24,Sec.1,Chia Pu East Rd.,Taipao City,Chiayi Hsien,Taiwan

Welcome to BW tool world! We are an experienced tool maker specialized in cutting tools. We focus on what you need and endeavor to research the best cutter to satisfy users demand. Our customers involve wide range of industries, like mold & die, aerospace, electronic, machinery, etc. We are professional expert in cutting field. We would like to solve every problem from you. Please feel free to contact us, its our pleasure to serve for you. BW product including: cutting toolaerospace tool .HSS DIN Cutting toolCarbide end millsCarbide cutting toolNAS Cutting toolNAS986 NAS965 NAS897 NAS937orNAS907 Cutting Tools,Carbide end milldisc milling cutter,Aerospace cutting toolhss drillФрезерыCarbide drillHigh speed steelMilling cutterCVDD(Chemical Vapor Deposition Diamond )’PCBN (Polycrystalline Cubic Boron Nitride) Core drillTapered end millsCVD Diamond Tools Inserts’PCD Edge-Beveling Cutter(Golden FingerEdge modifying knife

beeway 發表在 痞客邦 留言(0) 人氣()

Bewise Inc. www.tool-tool.com Reference source from the internet.
Image of reconstruction on a clean Gold(100) surface.

Image of reconstruction on a clean Gold(100) surface.

Scanning tunneling microscopy (STM) is a powerful technique for viewing surfaces at the atomic level. Its development in 1981 won its inventors, Gerd Binnig and Heinrich Rohrer (at IBM Zürich), the Nobel Prize in Physics in 1986[1]. STM probes the density of states of a material using tunneling current. For STM, good resolution is considered to be 0.1 nm lateral resolution and 0.01 nm depth resolution[2]. The STM can be used not only in ultra high vacuum but also in air and various other liquid or gas ambients, and at temperatures ranging from near 0 Kelvin to a few hundred degrees Celsius[3].

The STM is based on the concept of quantum tunneling. When a conducting tip is brought very near to a metallic or semiconducting surface, a bias between the two can allow electrons to tunnel through the vacuum between them. For low voltages, this tunneling current is a function of the local density of states (LDOS) at the Fermi level, Ef, of the sample[3]. Variations in current as the probe passes over the surface are translated into an image. STM can be a challenging technique, as it requires extremely clean surfaces and sharp tips.

[edit] Tunnelling

Tunnelling is a functioning concept that arises from quantum mechanics. Classically, an object hitting an impenetrable wall will bounce back. Imagine throwing a baseball to a friend on the other side of a mile high brick wall, directly at the wall. One would be rightfully astonished if, rather than bouncing back upon impact, the ball were to simply pass through to your friend on the other side of the wall. For objects of very small mass, as is the electron, wavelike nature has a more pronounced effect, so such an event, referred to as tunneling, has a much greater probability[3].

Electrons behave as waves of energy, and in the presence of a potential U(z), assuming 1-dimensional case, the energy levels ψn(z) of the electrons are given by solutions to Schrödinger’s equation,

- \frac{\hbar^2}{2m} \frac{\partial^2\psi_n (z)}{\partial z^2} + U(z) \psi_n (z) = E\psi_n (z) ,

where ħ is Planck’s constant, z is the position, and m is the mass of an electron[3]. If an electron of energy E is incident upon an energy barrier of height U(z), the electron wave function is a traveling wave solution,

\psi_n (z) = \psi_n (0)e^{\pm ikz},

where

 k=\frac{\sqrt{2m(E-U)}}{\hbar}

if E > U(z), which is true for a wave function inside the tip or inside the sample[3]. Inside a barrier, such as between tip and sample, E < U(z) so the wave functions which satisfies this are decaying waves,

\psi_n (z) = \psi_n (0)e^{\pm \kappa z},

where

 \kappa = \frac{\sqrt{2m(U-E)}}{\hbar}

quantifies the decay of the wave inside the barrier, with the barrier in the +z direction for − κ [3].

Knowing the wave function allows one to calculate the probability density for that electron to be found at some location. In the case of tunneling, the tip and sample wave functions overlap such that when under a bias, there is some finite probability to find the electron in the barrier region and even on the other side of the barrier[3]. Let us assume the bias is V and the barrier width is W, as illustrated in Figure 1. This probability, P, that an electron at z=0 (left edge of barrier) can be found at z=W (right edge of barrier) is proportional to the wave function squared,

P \propto |\psi_n (0)|^2 e^{-2 \kappa W} [3].

If the bias is small, we can let UEφM in the expression for κ, where φM, the work function, gives the minimum energy needed to bring an electron from an occupied level, the highest of which is at the Fermi level (for metals at T=0 kelvins), to vacuum level. When a small bias V is applied to the system, only electronic states very near the Fermi level, within eV, are excited[3]. These excited electrons can tunnel across the barrier. In other words, tunneling occurs mainly with electrons of energies near the Fermi level.

However, tunneling does require that there is an empty level of the same energy as the electron for the electron to tunnel into on the other side of the barrier. It is because of this restriction that the tunneling current can be related to the density of available or filled states in the sample. The current due to an applied voltage V (assume tunneling occurs sample to tip) depends on two factors: 1) the number of electrons between Ef and eV in the sample, and 2) the number among them which have corresponding free states to tunnel into on the other side of the barrier at the tip[3]. The higher density of available states the greater the tunneling current. When V is positive, electrons in the tip tunnel into empty states in the sample; for a negative bias, electrons tunnel out of occupied states in the sample into the tip[3].

Mathematically, this tunneling current is given by

 I \propto \sum_{E_f-eV}^{Ef} |\psi_n (0)|^2 e^{-2 \kappa W} .

One can sum the probability over energies between EfeV and eV to get the number of states available in this energy range per unit volume, thereby finding the local density of states (LDOS) near the Fermi level[3]. The LDOS near some energy E in an interval ε is given by

 \rho_s (z,E) = \frac{1}{\epsilon} \sum_{E- \epsilon}^{E} | \psi_n (z)|^2 ,

and the tunnel current at a small bias V is proportional to the LDOS near the Fermi level, which gives important information about the sample[3]. It is desirable to use LDOS to express the current because this value does not change as the volume changes, while probability density does[3]. Thus the tunneling current is given by

 I \propto V \rho_s (0, E_f) e^{-2 \kappa W}

where ρs(0,Ef) is the LDOS near the Fermi level of the sample at the sample surface[3]. By using equation (6), this current can also be expressed in terms of the LDOS near the Fermi level of the sample at the tip surface,

 I \propto V \rho_s (W, E_f) V

The exponential term in (9) is very significant in that small variations in W greatly influence the tunnel current. If the separation is decreased by 1 Ǻ, the current increases by an order of magnitude, and vice versa[4].

This approach fails to account for the rate at which electrons can pass the barrier. This rate should affect the tunnel current, so it can be accounted for by using Fermi’s Golden Rule with the appropriate tunneling matrix element. John Bardeen solved this problem in his study of the metal-insulator-metal junction, MIM[5]. He found that if he solved Schrödinger’s equation for each side of the junction separately to obtain the wave functions ψ and χ for each electrode, he could obtain the tunnel matrix, M, from the overlap of these two wave functions[3]. This can be applied to STM by making the electrodes the tip and sample, assigning ψ and χ as sample and tip wave functions, respectively, and evaluating M at some surface S between the metal electrodes at z=zo, where z=0 at the sample surface and z=W at the tip surface[3].

Now, Fermi’s Golden Rule gives the rate for electron transfer across the barrier, and is written

 w = \frac{2 \pi}{\hbar} |M|^2 \delta (E_{\psi} - E_{\chi} ) ,

where δ(Eψ-Eχ) restricts tunneling to occur only between electron levels with the same energy[3]. The tunnel matrix element, given by

 M= \frac{\hbar}{2 \pi} \int_{z=z_0} ( \chi* \frac {\partial \psi}{\partial z}-\psi \frac{\partial \chi*}{\partial z}) dS ,

is a description of the lower energy associated with the interaction of wave functions at the overlap, also called the resonance energy[3].

Summing over all the states gives the tunneling current as

 I = \frac{4 \pi e}{\hbar}\int_{-\infty}^{+\infty} [f(E_f -eV) - f(E_f + \epsilon)] \rho_s (E_f - eV + \epsilon) \rho_T (E_f + \epsilon)|M|^2 d \epsilon ,

where f is the Fermi function, ρs and ρT are the density of states in the sample and tip, respectively[3]. The Fermi distribution function describes the filling of electron levels at a given temperature T.

[edit] Procedure

First the tip is brought into close proximity of the sample by some coarse sample-to-tip control. The values for common sample-to-tip distance, W, range from about 4-7 Ǻ, which is the equilibrium position between attractive (3<10ǻ) id="cite_ref-Chen_2-20" class="reference">[3]. Once tunneling is established, piezoelectric transducers are implemented to move the tip in three directions. As the tip is rastered across the sample in the x-y plane, the density of states and therefore the tunnel current changes. This change in current with respect to position can be measured itself, or the height, z, of the tip corresponding to a constant current can be measured[3]. These two modes are called constant height mode and constant current mode, respectively.

In constant current mode, feedback electronics adjust the height by a voltage to the piezoelectric height control mechanism[6]. This leads to a height variation and thus the image comes from the tip topography across the sample and gives a constant charge density surface; this means contrast on the image is due to variations in charge density[4].

In constant height, the voltage and height are both held constant while the current changes to keep the voltage from changing; this leads to an image made of current changes over the surface, which can be related to charge density[4]. The benefit to using a constant height mode is that it is faster, as the piezoelectric movements require more time to register the change in constant current mode than the voltage response in constant height mode[4].

In addition to scanning across the sample, information on the electronic structure of the sample can be obtained by sweeping voltage and measuring current at a specific location[2]. This type of measurement is called scanning tunneling spectroscopy (STS).

[edit] Instrumentation

Schematic view of an STM

Schematic view of an STM

The components of an STM include scanning tip, piezoelectric controlled height and x,y scanner, coarse sample-to-tip control, vibration isolation system, and computer[6].

The resolution of an image is limited by the radius of curvature of the scanning tip of the STM. Additionally, image artifacts can occur if the tip has two tips at the end rather than a single atom; this leads to “double-tip imaging,” a situation in which both tips contribute to the tunneling[2]. Therefore it has been essential to develop processes for consistently obtaining sharp, usable tips. Recently, carbon nanotubes have been used in this instance.

A closeup of a simple scanning tunneling microscope head at the University of St Andrews scanning MoS2 using a Platinum-Iridium stylus.

A closeup of a simple scanning tunneling microscope head at the University of St Andrews scanning MoS2 using a Platinum-Iridium stylus.

The tip is often made of tungsten or platinum-iridium, though gold is also used[2]. Tungsten tips are usually made by electrochemical etching, and platinum-iridium tips by mechanical shearing[2]. Both processes are outlined in C. Bai’s book, reference[2] below.

Due to the extreme sensitivity of tunnel current to height, proper vibration isolation is imperative for obtaining usable results. In the first STM by Binnig and Rohrer, magnetic levitation was used to keep the STM free from vibrations; now spring systems are often used[3]. Additionally, mechanisms for reducing eddy currents are implemented.

Maintaining the tip position with respect to the sample, scanning the sample in raster fashion and acquiring the data is computer controlled[6]. The computer is also used for enhancing the image with the help of image processing as well as performing quantitative morphological measurements.

[edit] Other STM Related Studies

Many other microscopy techniques have been developed based upon STM. These include Photon Scanning Tunneling Microscopy (PSTM), which uses an optical tip to tunnel photons[2]; Scanning Tunneling Potentiometry (STP), which measures electric potential across a surface[2]; and spin polarized scanning tunneling microscopy (SPSTM), which uses a ferromagnetic tip to tunnel spin-polarized electrons into a magnetic sample[7].

Other STM methods involve manipulating the tip in order to change the topography of the sample. This is attractive for several reasons. Firstly the STM has an atomically precise positioning system which allows very accurate atomic scale manipulation. Furthermore, after the surface is modified by the tip, it is a simple matter to then image with the same tip, without changing the instrument. IBM researchers developed a way to manipulate Xenon atoms absorbed on a nickel surface[2] This technique has been used to create electron "corrals" with a small number of adsorbed atoms, which allows the STM to be used to observe electron Friedel Oscillations on the surface of the material. Aside from modifying the actual sample surface, one can also use the STM to tunnel electrons into a layer of E-Beam photoresist on a sample, in order to do lithography. This has the advantage of offering more control of the exposure than traditional Electron beam lithography.

Recently groups have found they can use the STM tip to rotate individual bonds within single molecules. The electrical resistance of the molecule depends on the orientation of the bond, so the molecule effectively becomes a molecular switch.

[edit] Early Invention

An early, patented invention, based on the above-mentioned principles, and later acknowledged by the Nobel committee itself, was the Topografiner of R. Young, J. Ward, and F. Scire from the NIST ("National Institute of Science and Technolology" of the USA)[8].

歡迎來到Bewise Inc.的世界,首先恭喜您來到這接受新的資訊讓產業更有競爭力,我們是提供專業刀具製造商,應對客戶高品質的刀具需求,我們可以協助客戶滿足您對產業的不同要求,我們有能力達到非常卓越的客戶需求品質,這是現有相關技術無法比擬的,我們成功的滿足了各行各業的要求,包括:精密HSS DIN切削刀具協助客戶設計刀具流程DIN or JIS 鎢鋼切削刀具設計NAS986 NAS965 NAS897 NAS937orNAS907 航太切削刀具,NAS航太刀具設計超高硬度的切削刀具BW捨棄式鑽石V卡刀BW捨棄式金屬圓鋸片木工捨棄式金屬圓鋸片PCD木工圓鋸片醫療配件刀具設計汽車業刀具設計電子產業鑽石刀具全鎢鋼V卡刀-電路版專用全鎢鋼鋸片焊刃式側銑刀焊刃式千鳥側銑刀焊刃式T型銑刀焊刃式千鳥T型銑刀焊刃式螺旋機械鉸刀全鎢鋼斜邊刀電路版專用鎢鋼焊刃式高速鉸刀超微粒鎢鋼機械鉸刀超微粒鎢鋼定點鑽焊刃式帶柄角度銑刀焊刃式螺旋立銑刀焊刃式帶柄倒角銑刀焊刃式角度銑刀焊刃式筒型平面銑刀木工產業鑽石刀具等等。我們的產品涵蓋了從民生刀具到工業級的刀具設計;從微細刀具到大型刀具;從小型生產到大型量產;全自動整合;我們的技術可提供您連續生產的效能,我們整體的服務及卓越的技術,恭迎您親自體驗!!

BW Bewise Inc. Willy Chen willy@tool-tool.com bw@tool-tool.com www.tool-tool.com skype:willy_chen_bw mobile:0937-618-190 Head &Administration Office No.13,Shiang Shang 2nd St., West Chiu Taichung,Taiwan 40356 http://www.tool-tool..com / FAX:+886 4 2471 4839 N.Branch 5F,No.460,Fu Shin North Rd.,Taipei,Taiwan S.Branch No.24,Sec.1,Chia Pu East Rd.,Taipao City,Chiayi Hsien,Taiwan

Welcome to BW tool world! We are an experienced tool maker specialized in cutting tools. We focus on what you need and endeavor to research the best cutter to satisfy users demand. Our customers involve wide range of industries, like mold & die, aerospace, electronic, machinery, etc. We are professional expert in cutting field. We would like to solve every problem from you. Please feel free to contact us, its our pleasure to serve for you. BW product including: cutting toolaerospace tool .HSS DIN Cutting toolCarbide end millsCarbide cutting toolNAS Cutting toolNAS986 NAS965 NAS897 NAS937orNAS907 Cutting Tools,Carbide end milldisc milling cutter,Aerospace cutting toolhss drillФрезерыCarbide drillHigh speed steelMilling cutterCVDD(Chemical Vapor Deposition Diamond )’PCBN (Polycrystalline Cubic Boron Nitride) Core drillTapered end millsCVD Diamond Tools Inserts’PCD Edge-Beveling Cutter(Golden FingerEdge modifying knifeSolid carbide saw blade-V typeV-type locking-special use for PC boardMetal Slitting SawaCarbide Side milling CuttersCarbide Side Milling Cutters With Staggered TeethCarbide T-Slot Milling CuttersCarbide T-Slot Milling Cutters With Staggered TeethCarbide Machine Reamers

beeway 發表在 痞客邦 留言(0) 人氣()

Bewise Inc. www.tool-tool.com Reference source from the internet.

Part of a series of articles on
Nanotechnology


History
Implications
Applications
Organizations
In fiction and popular culture
List of topics

Subfields and related fields

Nanomaterials
Fullerenes
Carbon nanotubes
Nanoparticles

Nanomedicine
Nanotoxicology
Nanosensor

Molecular self-assembly
Self-assembled monolayer
Supramolecular assembly
DNA nanotechnology

Nanoelectronics
Molecular electronics
Nanocircuitry
Nanolithography

Scanning probe microscopy
Atomic force microscope
Scanning tunneling microscope

Molecular nanotechnology
Molecular assembler
Nanorobotics
Mechanosynthesis

This box: view talk edit

Scanning probe microscopy (SPM) is a branch of microscopy that forms images of surfaces using a physical probe that scans the specimen. An image of the surface is obtained by mechanically moving the probe in a raster scan of the specimen, line by line, and recording the probe-surface interaction as a function of position. SPM was founded with the invention of the scanning tunneling microscope in 1981.

Many scanning probe microscopes can image several interactions simultaneously. The manner of using these interactions to obtain an image is generally called a mode.

The resolution varies somewhat from technique to technique, but some probe techniques reach a rather impressive atomic resolution. They owe this largely to the ability of piezoelectric actuators to execute motions with a precision and accuracy at the atomic level or better on electronic command. One could rightly call this family of technique 'piezoelectric techniques'. The other common denominator is that the data are typically obtained as a two-dimensional grid of data points, visualized in false color as a computer image.

[edit] Established types of scanning probe microscopy

[edit] Advantages of scanning probe microscopy

  • The resolution of the microscopes is not limited by diffraction, but only by the size of the probe-sample interaction volume (i.e., point spread function), which can be as small as a few picometres.
  • The interaction can be used to modify the sample to create small structures (nanolithography).

[edit] Disadvantages of scanning probe microscopy

  • The scanning techniques are generally slower in acquiring images, due to the scanning process. As a result, efforts are being made to greatly improve the scanning rate.
  • The maximum image size is generally smaller.

[edit] Atomic Force Microscope Manufacturers

[edit] Programs

歡迎來到Bewise Inc.的世界,首先恭喜您來到這接受新的資訊讓產業更有競爭力,我們是提供專業刀具製造商,應對客戶高品質的刀具需求,我們可以協助客戶滿足您對產業的不同要求,我們有能力達到非常卓越的客戶需求品質,這是現有相關技術無法比擬的,我們成功的滿足了各行各業的要求,包括:精密HSS DIN切削刀具協助客戶設計刀具流程DIN or JIS 鎢鋼切削刀具設計NAS986 NAS965 NAS897 NAS937orNAS907 航太切削刀具,NAS航太刀具設計超高硬度的切削刀具BW捨棄式鑽石V卡刀BW捨棄式金屬圓鋸片木工捨棄式金屬圓鋸片PCD木工圓鋸片醫療配件刀具設計汽車業刀具設計電子產業鑽石刀具全鎢鋼V卡刀-電路版專用全鎢鋼鋸片焊刃式側銑刀焊刃式千鳥側銑刀焊刃式T型銑刀焊刃式千鳥T型銑刀焊刃式螺旋機械鉸刀全鎢鋼斜邊刀電路版專用鎢鋼焊刃式高速鉸刀超微粒鎢鋼機械鉸刀超微粒鎢鋼定點鑽焊刃式帶柄角度銑刀焊刃式螺旋立銑刀焊刃式帶柄倒角銑刀焊刃式角度銑刀焊刃式筒型平面銑刀木工產業鑽石刀具等等。我們的產品涵蓋了從民生刀具到工業級的刀具設計;從微細刀具到大型刀具;從小型生產到大型量產;全自動整合;我們的技術可提供您連續生產的效能,我們整體的服務及卓越的技術,恭迎您親自體驗!!

BW Bewise Inc. Willy Chen willy@tool-tool.com bw@tool-tool.com www.tool-tool.com skype:willy_chen_bw mobile:0937-618-190 Head &Administration Office No.13,Shiang Shang 2nd St., West Chiu Taichung,Taiwan 40356 http://www.tool-tool..com / FAX:+886 4 2471 4839 N.Branch 5F,No.460,Fu Shin North Rd.,Taipei,Taiwan S.Branch No.24,Sec.1,Chia Pu East Rd.,Taipao City,Chiayi Hsien,Taiwan

Welcome to BW tool world! We are an experienced tool maker specialized in cutting tools. We focus on what you need and endeavor to research the best cutter to satisfy users demand. Our customers involve wide range of industries, like mold & die, aerospace, electronic, machinery, etc. We are professional expert in cutting field. We would like to solve every problem from you. Please feel free to contact us, its our pleasure to serve for you. BW product including: cutting toolaerospace tool .HSS DIN Cutting toolCarbide end millsCarbide cutting toolNAS Cutting toolNAS986 NAS965 NAS897 NAS937orNAS907 Cutting Tools,Carbide end milldisc milling cutter,Aerospace cutting toolhss drillФрезерыCarbide drillHigh speed steelMilling cutterCVDD(Chemical Vapor Deposition Diamond )’PCBN (Polycrystalline Cubic Boron Nitride) Core drillTapered end millsCVD Diamond Tools Inserts’PCD Edge-Beveling Cutter(Golden FingerEdge modifying knifeSolid carbide saw blade-V typeV-type locking-special use for PC boardMetal Slitting SawaCarbide Side milling CuttersCarbide Side Milling Cutters With Staggered TeethCarbide T-Slot Milling CuttersCarbide T-Slot Milling Cutters With Staggered TeethCarbide Machine ReamersHigh speed reamer-standard typeHigh speed reamer-long type’’PCD V-CutterPCD Wood toolsPCD Cutting toolsPCD Circular Saw BladePVDD End Millsdiamond tool V-type locking-special use for PC board Single Crystal Diamond Metric end millsMiniature end millsСпециальные режущие инструменты Пустотелое сверло Pilot reamerFraisesFresas con mango PCD (Polycrystalline diamond) ‘FreseElectronics cutterStep drillMetal cutting sawDouble margin drillGun barrelAngle milling cutterCarbide burrsCarbide tipped cutterChamfering toolIC card engraving cutterSide cutter

beeway 發表在 痞客邦 留言(0) 人氣()

Bewise Inc. www.tool-tool.com Reference source from the internet.

Classical logic identifies a class of formal logics that have been most intensively studied and most widely used. They are characterised by a number of properties[1]; non-classical logics are those that lack one or more of these properties, which are:

  1. Law of the excluded middle and Double negative elimination;
  2. Law of noncontradiction;
  3. Monotonicity of entailment and Idempotency of entailment;
  4. Commutativity of conjunction;
  5. De Morgan duality: every logical operator is dual to another.

Classical logic is bivalent, i.e. it uses only Boolean-valued functions. And while not entailed by the preceding conditions, contemporary discussions of classical logic normally only include propositional and first-order logics.[2][3]

[edit] Examples of classical logics

  • Aristotle's Organon introduces his theory of syllogisms, which is a logic with a restricted form of judgments: assertions take one of four forms, All Ps are Q, Some Ps are Q, No Ps are Q, and Some Ps are not Q. These judgments find themselves if two pairs of two dual operators, and each operator is the negation of another, relationships that Aristotle summarised with his square of oppositions. Aristotle explicitly formulated the law of the excluded middle and law of non-contradiction in justifying his system, although these laws cannot be expressed as judgments within the syllogistic framework.

[edit] Non-classical logics

In Deviant Logic, Fuzzy Logic: Beyond the Formalism, Susan Haack divided non-classical logics into deviant, quasi-deviant, and extended logics.[3]

[edit] References

  1. ^ Gabbay, Dov, (1994). 'Classical vs non-classical logic'. In D.M. Gabbay, C.J. Hogger, and J.A. Robinson, (Eds), Handbook of Logic in Artificial Intelligence and Logic Programming, volume 2, chapter 2.6. Oxford University Press.
  2. ^ Shapiro, Stewart (2000). Classical Logic. In Stanford Encyclopedia of Philosophy [Web]. Stanford: The Metaphysics Research Lab. Retrieved October 28, 2006, from http://plato.stanford.edu/entries/logic-classical/
  3. ^ a b Haack, Susan, (1996). Deviant Logic, Fuzzy Logic: Beyond the Formalism. Chicago: The University of Chicago Press.

歡迎來到Bewise Inc.的世界,首先恭喜您來到這接受新的資訊讓產業更有競爭力,我們是提供專業刀具製造商,應對客戶高品質的刀具需求,我們可以協助客戶滿足您對產業的不同要求,我們有能力達到非常卓越的客戶需求品質,這是現有相關技術無法比擬的,我們成功的滿足了各行各業的要求,包括:精密HSS DIN切削刀具協助客戶設計刀具流程DIN or JIS 鎢鋼切削刀具設計NAS986 NAS965 NAS897 NAS937orNAS907 航太切削刀具,NAS航太刀具設計超高硬度的切削刀具BW捨棄式鑽石V卡刀BW捨棄式金屬圓鋸片木工捨棄式金屬圓鋸片PCD木工圓鋸片醫療配件刀具設計汽車業刀具設計電子產業鑽石刀具全鎢鋼V卡刀-電路版專用全鎢鋼鋸片焊刃式側銑刀焊刃式千鳥側銑刀焊刃式T型銑刀焊刃式千鳥T型銑刀焊刃式螺旋機械鉸刀全鎢鋼斜邊刀電路版專用鎢鋼焊刃式高速鉸刀超微粒鎢鋼機械鉸刀超微粒鎢鋼定點鑽焊刃式帶柄角度銑刀焊刃式螺旋立銑刀焊刃式帶柄倒角銑刀焊刃式角度銑刀焊刃式筒型平面銑刀木工產業鑽石刀具等等。我們的產品涵蓋了從民生刀具到工業級的刀具設計;從微細刀具到大型刀具;從小型生產到大型量產;全自動整合;我們的技術可提供您連續生產的效能,我們整體的服務及卓越的技術,恭迎您親自體驗!!

BW Bewise Inc. Willy Chen willy@tool-tool.com bw@tool-tool.com www.tool-tool.com skype:willy_chen_bw mobile:0937-618-190 Head &Administration Office No.13,Shiang Shang 2nd St., West Chiu Taichung,Taiwan 40356 http://www.tool-tool..com / FAX:+886 4 2471 4839 N.Branch 5F,No.460,Fu Shin North Rd.,Taipei,Taiwan S.Branch No.24,Sec.1,Chia Pu East Rd.,Taipao City,Chiayi Hsien,Taiwan

Welcome to BW tool world! We are an experienced tool maker specialized in cutting tools. We focus on what you need and endeavor to research the best cutter to satisfy users demand. Our customers involve wide range of industries, like mold & die, aerospace, electronic, machinery, etc. We are professional expert in cutting field. We would like to solve every problem from you. Please feel free to contact us, its our pleasure to serve for you. BW product including: cutting toolaerospace tool .HSS DIN Cutting toolCarbide end millsCarbide cutting toolNAS Cutting toolNAS986 NAS965 NAS897 NAS937orNAS907 Cutting Tools,Carbide end milldisc milling cutter,Aerospace cutting toolhss drillФрезерыCarbide drillHigh speed steelMilling cutterCVDD(Chemical Vapor Deposition Diamond )’PCBN (Polycrystalline Cubic Boron Nitride) Core drillTapered end millsCVD Diamond Tools Inserts’PCD Edge-Beveling Cutter(Golden FingerEdge modifying knifeSolid carbide saw blade-V typeV-type locking-special use for PC boardMetal Slitting SawaCarbide Side milling CuttersCarbide Side Milling Cutters With Staggered TeethCarbide T-Slot Milling CuttersCarbide T-Slot Milling Cutters With Staggered TeethCarbide Machine ReamersHigh speed reamer-standard typeHigh speed reamer-long type’’PCD V-CutterPCD Wood toolsPCD Cutting toolsPCD Circular Saw BladePVDD End Millsdiamond tool V-type locking-special use for PC board Single Crystal Diamond Metric end millsMiniature end millsСпециальные режущие инструменты Пустотелое сверло Pilot reamerFraisesFresas con mango PCD (Polycrystalline diamond) ‘FreseElectronics cutterStep drillMetal cutting sawDouble margin drillGun barrelAngle milling cutterCarbide burrsCarbide tipped cutterChamfering toolIC card engraving cutterSide cutterNAS toolDIN or JIS toolSpecial toolMetal slitting sawsShell end millsSide and face milling cuttersSide chip clearance sawsLong end millsStub roughing end millsDovetail milling cuttersCarbide slot drillsCarbide torus cuttersAngel carbide end millsCarbide torus cuttersCarbide ball-nosed slot drillsMould cutterTool manufacturer.

Bewise Inc. www.tool-tool.com

ようこそBewise Inc.の世界へお越し下さいませ、先ず御目出度たいのは新たな

情報を受け取って頂き、もっと各産業に競争力プラス展開。

弊社は専門なエンドミルの製造メーカーで、客先に色んな分野のニーズ

豊富なパリエーションを満足させ、特にハイテク品質要求にサポート致します。

弊社は各領域に供給できる内容は:

(1)精密HSSエンド

beeway 發表在 痞客邦 留言(0) 人氣()

Bewise Inc. www.tool-tool.com Reference source from the internet.

Intuitionistic logic, or constructivist logic, is the symbolic logic system originally developed by Arend Heyting to provide a formal basis for Brouwer's programme of intuitionism. The system preserves justification, rather than truth, across transformations yielding derived propositions. From a practical point of view, there is also a strong motivation for using intuitionistic logic, since it has the existence property, making it also suitable for other forms of mathematical constructivism.

[edit] Syntax

Intuitionistic propositional formulas in one variable (aka Rieger–Nishimura lattice)

Intuitionistic propositional formulas in one variable (aka Rieger–Nishimura lattice)

The syntax of formulæ of intuitionistic logic is similar to propositional logic or first-order logic. However, intuitionistic connectives are not interdefinable in the same way as in classical logic, hence their choice matters. In intuitionistic propositional logic it is customary to use →, ∧, ∨, ⊥ as the basic connectives, treating ¬ as the abbreviation ¬A = (A → ⊥). In intuitionistic first-order logic both quantifiers ∃, ∀ are needed.

Many tautologies of classical logic can no longer be proven within intuitionistic logic. Examples include not only the law of excluded middle p ∨ ¬p, but also Peirce's law ((pq) → p) → p, and even double negation elimination. In classical logic, both p → ¬¬p and also ¬¬pp are theorems. In intuitionistic logic, only the former is a theorem: double negation can be introduced, but it cannot be eliminated.

The observation that many classically valid tautologies are not theorems of intuitionistic logic leads to the idea of weakening the proof theory of classical logic.

[edit] Sequent calculus

Main article: sequent calculus

Gentzen discovered that a simple restriction of his system LK (his sequent calculus for classical logic) results in a system which is sound and complete with respect to intuitionistic logic. He called this system LJ.

[edit] Hilbert-style calculus

Intuitionistic logic can be defined using the following Hilbert-style calculus. Compare with the deduction system at Propositional calculus#Alternative calculus.

In propositional logic, the inference rule is modus ponens

  • MP: from φ and φ → ψ infer ψ

and the axioms are

  • THEN-1: φ → (χ → φ)
  • THEN-2: (φ → (χ → ψ)) → ((φ → χ) → (φ → ψ))
  • AND-1: φ ∧ χ → φ
  • AND-2: φ ∧ χ → χ
  • AND-3: φ → (χ → (φ ∧ χ))
  • OR-1: φ → φ ∨ χ
  • OR-2: χ → φ ∨ χ
  • OR-3: (φ → ψ) → ((χ → ψ) → (φ ∨ χ → ψ))
  • FALSE: ⊥ → φ

To make this a system of first-order predicate logic, the generalization rules

  • ∀-GEN: from ψ → φ infer ψ → (∀x φ), if x is not free in ψ
  • ∃-GEN: from φ → ψ infer (∃x φ) → ψ, if x is not free in ψ

are added, along with the axioms

  • PRED-1: (∀x φ(x)) → φ(t), if no free occurrence of x in φ is bound by a quantifier quantifying a variable occurring in the term t
  • PRED-2: φ(t) → (∃x φ(x)), with the same restriction as for PRED-1

[edit] Optional connectives

[edit] Negation

If one wishes to include a connective ¬ for negation rather than consider it an abbreviation for φ → ⊥, it is enough to add:

  • NOT-1′: (φ → ⊥) → ¬φ
  • NOT-2′: ¬φ → (φ → ⊥)

There are a number of alternatives available if one wishes to omit the connective ⊥ (false). For example, one may replace the three axioms FALSE, NOT-1′, and NOT-2′ with the two axioms

  • NOT-1: (φ → χ) → ((φ → ¬χ) → ¬φ)
  • NOT-2: φ → (¬φ → χ)

as at Propositional calculus#Axioms. Alternatives to NOT-1 are (φ → ¬χ) → (χ → ¬φ) or (φ → ¬φ) → ¬φ.

[edit] Equivalence

The connective ↔ for equivalence may be treated as an abbreviation, with φ ↔ χ standing for (φ → χ) ∧ (χ → φ). Alternatively, one may add the axioms

  • IFF-1: (φ ↔ χ) → (φ → χ)
  • IFF-2: (φ ↔ χ) → (χ → φ)
  • IFF-3: (φ → χ) → ((χ → φ) → (φ ↔ χ))

IFF-1 and IFF-2 can, if desired, be combined into a single axiom (φ ↔ χ) → ((φ → χ) ∧ (χ → φ)) using conjunction.

[edit] Relation to classical logic

The system of classical logic is obtained by adding any one of the following axioms:

  • φ ∨ ¬φ (Law of the excluded middle. May also be formulated as (φ → χ) → ((¬φ → χ) → χ).)
  • ¬¬φ → φ (Double negation elimination)
  • ((φ → χ) → φ) → φ (Peirce's law)

In general, one may take as the extra axiom any classical tautology that is not valid in the two-element Kripke frame \circ{\longrightarrow}\circ (in other words, that is not included in Smetanich's logic).

[edit] Non-interdefinability of operators

In classical propositional logic, it is possible to take one of conjunction, disjunction, or implication as primitive, and define the other two in terms of it together with negation, such as in Łukasiewicz's three axioms of propositional logic. It is even possible to define all four in terms of a sole sufficient operator such as the Peirce arrow (NOR) or Sheffer stroke (NAND). Similarly, in classical first-order logic, one of the quantifiers can be defined in terms of the other and negation.

These are fundamentally consequences of the law of bivalence, which makes all such connectives merely boolean functions. The law of bivalence does not hold in intuitionistic logic, only the law of non-contradiction. As a result none of the basic connectives can be dispensed with, and the above axioms are all necessary. Most of the classical identities are only theorems of intuitionistic logic in one direction, although some are theorems in both directions. They are as follows:

Conjunction versus disjunction:

  • (\phi \wedge \psi) \to \neg (\neg \phi \vee \neg \psi)
  • (\phi \vee \psi) \to \neg (\neg \phi \wedge \neg \psi)
  • (\neg \phi \vee \neg \psi) \to \neg (\phi \wedge \psi)
  • (\neg \phi \wedge \neg \psi) \leftrightarrow \neg (\phi \vee \psi)

Conjunction versus implication:

  • (\phi \wedge \psi) \to \neg (\phi \to \neg \psi)
  • (\phi \to \psi) \to \neg (\phi \wedge \neg \psi)
  • (\phi \wedge \neg \psi) \to \neg (\phi \to \psi)
  • (\phi \to \neg \psi) \leftrightarrow \neg (\phi \wedge \psi)

Disjunction versus implication:

  • (\phi \vee \psi) \to (\neg \phi \to \psi)
  • (\neg \phi \vee \psi) \to (\phi \to \psi)
  • \neg (\phi \to \psi) \to \neg (\neg \phi \vee \psi)
  • \neg (\phi \vee \psi) \leftrightarrow \neg (\neg \phi \to \psi)

Universal versus existential quantification:

  • (\forall x \ \phi(x)) \to \neg (\exist x \ \neg \phi(x))
  • (\exist x \ \phi(x)) \to \neg (\forall x \ \neg \phi(x))
  • (\exist x \ \neg \phi(x)) \to \neg (\forall x \ \phi(x))
  • (\forall x \ \neg \phi(x)) \leftrightarrow \neg (\exist x \ \phi(x))

So, for example, "a or b" is a stronger statement than "if not a, then b", whereas these are classically interchangeable. On the other hand, "neither a nor b" is equivalent to "not a, and also not b".

If we include equivalence in the list of connectives, some of the connectives become definable from others:

  • (\phi\leftrightarrow \psi) \leftrightarrow ((\phi \to \psi)\land(\psi\to\phi))
  • (\phi\to\psi) \leftrightarrow ((\phi\lor\psi) \leftrightarrow \psi)
  • (\phi\to\psi) \leftrightarrow ((\phi\land\psi) \leftrightarrow \phi)
  • (\phi\land\psi) \leftrightarrow ((\phi\to\psi)\leftrightarrow\phi)
  • (\phi\land\psi) \leftrightarrow (((\phi\lor\psi)\leftrightarrow\psi)\leftrightarrow\phi)

In particular, {∨, ↔, ⊥} and {∨, ↔, ¬} are complete bases of intuitionistic connectives.

As shown by Kuznetsov, either of the following defined connectives can serve the role of a sole sufficient operator for intuitionistic logic:[1]

  • ((p\lor q)\land\neg r)\lor(\neg p\land(q\leftrightarrow r)),
  • p\to(q\land\neg r\land(s\lor t)).

[edit] Semantics

The semantics are rather more complicated than for the classical case. A model theory can be given by Heyting algebras or, equivalently, by Kripke semantics.

[edit] Heyting algebra semantics

In classical logic, we often discuss the truth values that a formula can take. The values are usually chosen as the members of a Boolean algebra. The meet and join operations in the Boolean algebra are identified with the ∧ and ∨ logical connectives, so that the value of a formula of the form AB is the meet of the value of A and the value of B in the Boolean algebra. Then we have the useful theorem that a formula is a valid sentence of classical logic if and only if its value is 1 for every valuation—that is, for any assignment of values to its variables.

A corresponding theorem is true for intuitionistic logic, but instead of assigning each formula a value from a Boolean algebra, one uses values from a Heyting algebra, of which Boolean algebras are a special case. A formula is valid in intuitionistic logic if and only if it receives the value of the top element for any valuation on any Heyting algebra.

It can be shown that to recognize valid formulas, it is sufficient to consider a single Heyting algebra whose elements are the open subsets of the real line R.[2] In this algebra, the ∧ and ∨ operations correspond to set intersection and union, and the value assigned to a formula AB is int(ACB), the interior of the union of the value of B and the complement of the value of A. The bottom element is the empty set ∅, and the top element is the entire line R. Negation is as usual defined as ¬A = A → ∅, so the value of ¬A reduces to int(AC), the interior of the complement of the value of A, also known as the exterior of A. With these assignments, intuitionistically valid formulas are precisely those that are assigned the value of the entire line.[2]

For example, the formula ¬(A ∧ ¬A) is valid, because no matter what set X is chosen as the value of the formula A, the value of ¬(A ∧ ¬A) can be shown to be the entire line:

Value(¬(A ∧ ¬A)) =
int((Value(A ∧ ¬A))C) =
int((Value(A) ∩ Value(¬A))C) =
int((X ∩ int((Value(A))C))C) =
int((X ∩ int(XC))C)

A theorem of topology tells us that int(XC) is a subset of XC, so the intersection is empty, leaving:

int(∅C) = int(R) = R

So the valuation of this formula is true, and indeed the formula is valid.

But the law of the excluded middle, A ∨ ¬A, can be shown to be invalid by letting the value of A be {y : y > 0 }. Then the value of ¬A is the interior of {y : y ≤ 0 }, which is {y : y <>y : y > 0 } and {y : y <>y : y ≠ 0 }, not the entire line.

The interpretation of any intuitionistically valid formula in the infinite Heyting algebra described above results in the top element, representing true, as the valuation of the formula, regardless of what values from the algebra are assigned to the variables of the formula.[2] Conversely, for every invalid formula, there is an assignment of values to the variables that yields a valuation that differs from the top element.[3][4] No finite Heyting algebra has both these properties.[2]

[edit] Kripke semantics

Main article: Kripke semantics

Building upon his work on semantics of modal logic, Saul Kripke created another semantics for intuitionistic logic, known as Kripke semantics or relational semantics

歡迎來到Bewise Inc.的世界,首先恭喜您來到這接受新的資訊讓產業更有競爭力,我們是提供專業刀具製造商,應對客戶高品質的刀具需求,我們可以協助客戶滿足您對產業的不同要求,我們有能力達到非常卓越的客戶需求品質,這是現有相關技術無法比擬的,我們成功的滿足了各行各業的要求,包括:精密HSS DIN切削刀具協助客戶設計刀具流程DIN or JIS 鎢鋼切削刀具設計NAS986 NAS965 NAS897 NAS937orNAS907 航太切削刀具,NAS航太刀具設計超高硬度的切削刀具BW捨棄式鑽石V卡刀BW捨棄式金屬圓鋸片木工捨棄式金屬圓鋸片PCD木工圓鋸片醫療配件刀具設計汽車業刀具設計電子產業鑽石刀具全鎢鋼V卡刀-電路版專用全鎢鋼鋸片焊刃式側銑刀焊刃式千鳥側銑刀焊刃式T型銑刀焊刃式千鳥T型銑刀焊刃式螺旋機械鉸刀全鎢鋼斜邊刀電路版專用鎢鋼焊刃式高速鉸刀超微粒鎢鋼機械鉸刀超微粒鎢鋼定點鑽焊刃式帶柄角度銑刀焊刃式螺旋立銑刀焊刃式帶柄倒角銑刀焊刃式角度銑刀焊刃式筒型平面銑刀木工產業鑽石刀具等等。我們的產品涵蓋了從民生刀具到工業級的刀具設計;從微細刀具到大型刀具;從小型生產到大型量產;全自動整合;我們的技術可提供您連續生產的效能,我們整體的服務及卓越的技術,恭迎您親自體驗!!

BW Bewise Inc. Willy Chen willy@tool-tool.com bw@tool-tool.com www.tool-tool.com skype:willy_chen_bw mobile:0937-618-190 Head &Administration Office No.13,Shiang Shang 2nd St., West Chiu Taichung,Taiwan 40356 http://www.tool-tool..com / FAX:+886 4 2471 4839 N.Branch 5F,No.460,Fu Shin North Rd.,Taipei,Taiwan S.Branch No.24,Sec.1,Chia Pu East Rd.,Taipao City,Chiayi Hsien,Taiwan

Welcome to BW tool world! We are an experienced tool maker specialized in cutting tools. We focus on what you need and endeavor to research the best cutter to satisfy users demand. Our customers involve wide range of industries, like mold & die, aerospace, electronic, machinery, etc. We are professional expert in cutting field. We would like to solve every problem from you. Please feel free to contact us, its our pleasure to serve for you. BW product including: cutting toolaerospace tool .HSS DIN Cutting toolCarbide end millsCarbide cutting toolNAS Cutting toolNAS986 NAS965 NAS897 NAS937orNAS907 Cutting Tools,Carbide end milldisc milling cutter,Aerospace cutting toolhss drillФрезерыCarbide drillHigh speed steelMilling cutterCVDD(Chemical Vapor Deposition Diamond )’PCBN (Polycrystalline Cubic Boron Nitride) Core drillTapered end millsCVD Diamond Tools Inserts’PCD Edge-Beveling Cutter(Golden FingerEdge modifying knifeSolid carbide saw blade-V typeV-type locking-special use for PC boardMetal Slitting SawaCarbide Side milling CuttersCarbide Side Milling Cutters With Staggered TeethCarbide T-Slot Milling CuttersCarbide T-Slot Milling Cutters With Staggered TeethCarbide Machine ReamersHigh speed reamer-standard typeHigh speed reamer-long type’’PCD V-CutterPCD Wood toolsPCD Cutting toolsPCD Circular Saw BladePVDD End Millsdiamond tool V-type locking-special use for PC board Single Crystal Diamond Metric end millsMiniature end mil

beeway 發表在 痞客邦 留言(0) 人氣()

Bewise Inc. www.tool-tool.com Reference source from the internet.

化学气相淀积[CVD(Chemical Vapor Deposition)],指把含有构成薄膜元素的气态反应剂或液态反应剂的蒸气及反应所需其它气体引入反应室,在衬底表面发生化学反应生成薄膜的过程。 在超大规模集成电路中很多薄膜都是采用CVD方法制备。

CVD特点:淀积温度低,薄膜成份易控,膜厚与淀积时间成正比,均匀性,重复性好,台阶覆盖性优良。

化学气相沉积(CVD)
将 工件置于反应室中,抽真空并加热至900~1100℃。如要涂覆TiC层,则将钛以挥发性氯化物(如TiCl4)与气体碳氢化合物(如CH4)一起通入 反应室内,这时就会在工表面发生化学反应生成TiC,并沉积在工件表面形成6~8μm厚的覆盖层。工件经气相沉积镀覆后,再进行淬火,回火处理,表面硬度 可达到2000~4000HV

物理气相沉积(PVD)
物理气相沉积是通过蒸发,电离或溅射等过程,产生金属粒子并与反应气体反应形成化合物沉积在工件表面。物理气象沉积方法有真空镀,真空溅射和离子镀三种,目前应用较广的是离子镀。
离 子镀是借助于惰性气体辉光放电,使镀料(如金属钛)气化蒸发离子化,离子经电场加速,以较高能量轰击工件表面,此时如通入CO2,N2等反应气体,便可 在工件表面获得TiC,TiN覆盖层,硬度高达2000HV。离子镀的重要特点是沉积温度只有500℃左右,且覆盖层附着力强,适用于高速钢工具,热锻模 等。

歡迎來到Bewise Inc.的世界,首先恭喜您來到這接受新的資訊讓產業更有競爭力,我們是提供專業刀具製造商,應對客戶高品質的刀具需求,我們可以協助客戶滿足您對產業的不同要求,我們有能力達到非常卓越的客戶需求品質,這是現有相關技術無法比擬的,我們成功的滿足了各行各業的要求,包括:精密HSS DIN切削刀具協助客戶設計刀具流程DIN or JIS 鎢鋼切削刀具設計NAS986 NAS965 NAS897 NAS937orNAS907 航太切削刀具,NAS航太刀具設計超高硬度的切削刀具BW捨棄式鑽石V卡刀BW捨棄式金屬圓鋸片木工捨棄式金屬圓鋸片PCD木工圓鋸片醫療配件刀具設計汽車業刀具設計電子產業鑽石刀具全鎢鋼V卡刀-電路版專用全鎢鋼鋸片焊刃式側銑刀焊刃式千鳥側銑刀焊刃式T型銑刀焊刃式千鳥T型銑刀焊刃式螺旋機械鉸刀全鎢鋼斜邊刀電路版專用鎢鋼焊刃式高速鉸刀超微粒鎢鋼機械鉸刀超微粒鎢鋼定點鑽焊刃式帶柄角度銑刀焊刃式螺旋立銑刀焊刃式帶柄倒角銑刀焊刃式角度銑刀焊刃式筒型平面銑刀木工產業鑽石刀具等等。我們的產品涵蓋了從民生刀具到工業級的刀具設計;從微細刀具到大型刀具;從小型生產到大型量產;全自動整合;我們的技術可提供您連續生產的效能,我們整體的服務及卓越的技術,恭迎您親自體驗!!

BW Bewise Inc. Willy Chen willy@tool-tool.com bw@tool-tool.com www.tool-tool.com skype:willy_chen_bw mobile:0937-618-190 Head &Administration Office No.13,Shiang Shang 2nd St., West Chiu Taichung,Taiwan 40356 http://www.tool-tool..com / FAX:+886 4 2471 4839 N.Branch 5F,No.460,Fu Shin North Rd.,Taipei,Taiwan S.Branch No.24,Sec.1,Chia Pu East Rd.,Taipao City,Chiayi Hsien,Taiwan

Welcome to BW tool world! We are an experienced tool maker specialized in cutting tools. We focus on what you need and endeavor to research the best cutter to satisfy users demand. Our customers involve wide range of industries, like mold & die, aerospace, electronic, machinery, etc. We are professional expert in cutting field. We would like to solve every problem from you. Please feel free to contact us, its our pleasure to serve for you. BW product including: cutting toolaerospace tool .HSS DIN Cutting toolCarbide end millsCarbide cutting toolNAS Cutting toolNAS986 NAS965 NAS897 NAS937orNAS907 Cutting Tools,Carbide end milldisc milling cutter,Aerospace cutting toolhss drillФрезерыCarbide drillHigh speed steelMilling cutterCVDD(Chemical Vapor Deposition Diamond )’PCBN (Polycrystalline Cubic Boron Nitride) Core drillTapered end millsCVD Diamond Tools Inserts’PCD Edge-Beveling Cutter(Golden FingerEdge modifying knifeSolid carbide saw blade-V typeV-type locking-special use for PC boardMetal Slitting SawaCarbide Side milling CuttersCarbide Side Milling Cutters With Staggered TeethCarbide T-Slot Milling CuttersCarbide T-Slot Milling Cutters With Staggered TeethCarbide Machine ReamersHigh speed reamer-standard typeHigh speed reamer-long type’’PCD V-CutterPCD Wood toolsPCD Cutting toolsPCD Circular Saw BladePVDD End Millsdiamond tool V-type locking-special use for PC board Single Crystal Diamond Metric end millsMiniature end millsСпециальные режущие инструменты Пустотелое сверло Pilot reamerFraisesFresas con mango PCD (Polycrystalline diamond) ‘FreseElectronics cutterStep drillMetal cutting sawDouble margin drillGun barrelAngle milling cutterCarbide burrsCarbide tipped cutterChamfering toolIC card engraving cutterSide cutterNAS toolDIN or JIS toolSpecial toolMetal slitting sawsShell end millsSide and face milling cuttersSide chip clearance sawsLong end millsStub roughing end millsDovetail milling cuttersCarbide slot drillsCarbide torus cuttersAngel carbide end millsCarbide torus cuttersCarbide ball-nosed slot drillsMould cutterTool manufacturer.

Bewise Inc. www.tool-tool.com

ようこそBewise Inc.の世界へお越し下さいませ、先ず御目出度たいのは新たな

情報を受け取って頂き、もっと各産業に競争力プラス展開。

弊社は専門なエンドミルの製造メーカーで、客先に色んな分野のニーズ

豊富なパリエーションを満足させ、特にハイテク品質要求にサポート致します。

弊社は各領域に供給できる内容は:

(1)精密HSSエンドミルのR&D

(2)Carbide Cutting tools設計

(3)鎢鋼エンドミル設計

(4)航空エンドミル設計

(5)超高硬度エンドミル

(6)ダイヤモンドエンドミル

(7)医療用品エンドミル設計

(8)自動車部品&材料加工向けエンドミル設計

弊社の製品の供給調達機能は:

(1)


beeway 發表在 痞客邦 留言(0) 人氣()


Bewise Inc. www.tool-tool.com Reference source from the internet.

数控工艺员复习题1、主辅在转动时若有一定的径向圆跳动,则工件加工后会产生结合度的误差。
是 否
2、步进电机在输入一个脉冲时所转过的角度称为步距角。(是)
是 否
3、基准不重合误差由前后设计基准不同而引起。(否)
是 否
4、如果后置设置的参数如上,程序尾中宏指令的编写是$G90 $DCMP_OFF Z200.0
$SPN_OFF@COOL_OFF@$PRO_STOP则产生程序的结尾处应该是(D)。
A. G90 G40 Z200.0 M05;
M30;
B. G90 Z200.0 M09;
M05;
M30;
C. G90 Z200.0 M09*
M30*
D.G90 G40 Z200.0 M05*
M09*
M30*
5、对称度要求较高的台阶面,通常采用换面法加工。
是 否
6、铣削直角沟槽时,若三面刃铣刀轴向摆差较大,铣出的槽宽会小于铣刀宽度。
是 否
7、粗磨的工序余量为( D )mm。
A .2.l B l. l
C. 0.79 D. 0.3
8、分度盘(孔盘)的作用是解决非整转数的分度。(是)
是 否
9、为消除粗加工的内应力,精加工常在( D )进行。
A.回火处理后 B.回火处理前
C.淬火处理后 D.退火处理后
10、机床空气干燥器必须( A )检查。
A.每半年 B.每两年
C.每月 D.每三年
11、在精加工和半精加工时一般要留加工余量,下列半精加工余量中( B )相对更为合理。
A.10mm B.0.5mm
C. 0.01mm D.0 005mm
12、用于主轴旋转速度控制的代码是( C )
A .T B. G C.S
13、切削力可分解为主切削力Fc、切深抗力Fp和进给抗力Ff,其中消耗功率最大的力是
( B )。
A.进给抗力Ff B.主切削力Fc
C.切深抗力Fp D.不确定
14、钢材淬火后获得的组织大部分为( C )。
A.洛氏体 B.奥氏体
C.马氏体 D.索氏体
15、测量孔的深度时,应选用圆规。(否)
是 否
16、在加工中心上加工箱体类零件时,工序安排的原则之一是( A )
A.当既有面又有孔时,应先铣面,再加工孔
B.在孔系加工时应先加工小孔,再加工大孔
C.在孔系加工时,一般应对一孔粗、精加工完成后,再对其它孔按顺序进行
粗、精加工
D.对跨距较小的同轴孔,应尽可能采用调头加工的方法
17、用盘铣刀在轴类工件表面切痕对刀,其切痕是椭圆形的。
是 否
18、( B )表示主轴停转的指令。
A .G50 B. M05
C. G66 D. M62
19、顺铣时,作用在工件上的力在进给方向的分力与进给方向相反,因此丝杠轴向间隙对顺
铣无明显影响。
是 否
20、( )表示主轴定向停止的指令。
A. M19 B. M18
C. G19 D. M20
2l、曲面加工常用( D )。
A.键槽刀 B.锥形刀
C.盘形刀 D.球形刀 ,
22、若液压系统压力表出现小于3. 9MPa,则解决的方法是( C )
A.加油 B.调节压力点螺钉
C.调节压力阀 D.清洗
23、由于角度铣刀的刀齿强度较差,容屑槽较小,因此应选择较小的每齿进给量。(是)
是 否
24、在额定转速以上,主轴电动机应工作于( A )。
A.恒功率方式 B.恒转矩方式
C.同步控制方式 D.恒转速控制方式
25、在运算指令中,形式为 # i = # j MOD # k代表的意义是( D )。
A.四次方根 B.微分
C.导数 D.取余
26、主轴正转,刀具以进给速度向下运动钻孔,到达孔底位置后,快速退回,这一钻孔指令
是( A )
A .G8l B .G82
C. G83 D .G84
27、下列对数控机床两轴加工解释正确的是( D )。
A.数控机床坐标系只有两个坐标轴
B.数控机床坐标系有两个可以单独移动的坐标轴
C.数控机床坐标系的两个轴可以联动,而主轴固定
D.数控机床坐标系的任意两个轴都可以实现联动
28、纯钢( )。
A.又称铍青钢 B.还有l0%的锌
C.牌号有T1、T2、T3 D.较硬的基体和耐磨的质点
29、当加工程序需使用几把刀时,因为每把刀长度总会有所不同,因而需用( A )。
A.刀具长度补偿 B.刀具半径补偿
C.刀具左补偿 D.刀其右补偿
30、为改善低碳钢加工性能应采用( C )。
A.淬火或回火 B.退火或调质
C.正火 D.调质或回火
3l、当工件基准面与工作台面平行时,应在( B )铣削平行面。
A.立铣上用周铣法 B.卧铣上用周铣法
C.卧铣上用端铣法
32、下列叙述中,除( D )外,均不适于在数控铣床上进行加工。
A.轮廓形状特别复杂或难于控制尺寸的回转体零件
B.箱体零件
C.精度要求高的回转体类零件
D.一般螺纹杆类零件;
33、插补运算的任务是确定刀具的( C )。
A.速度 B.加速度
C.运动轨迹 D.运动距离
34、数控机床的加工动作是由( D )规定的
A.输入装置 B.步进电机
C.伺服系统 D.加工程序
35、基准不重合误差由前后( A )不同而引起。
A.工序基准 B.加工误差
C.工艺误差 D.计算误差
36、主轴噪声增加的原因分析主要包括( B )
A.伺服电动机是否有故障
B.庄轴载荷是否过大
C.主轴定向是否准确
D.变压器有无问题
37、在程序中利用变量进行赋值及处理,使程序具有特殊功能,这种程序叫做小程序。(否)
是 否
38、装夹切断加工工件时,应使切断处尽量靠近夹紧点。
是 否
39、标注球面时,应在符号前加J。( 否 )
是 否
40、铸造内应力是灰铸铁在( )摄氏度从塑性向弹性状态转变时,由于壁厚不均、冷却收
缩不匀而造成的。
A. 620-400 B. 700
C. 180-380 D .120-350
41、刀齿齿背是( A )的铣刀称为铲齿铣刀。
A.阿基米德螺旋线 B.直线
C.折线
42、加工内廓凳零件时,( A )j。
A.要留有精加工余量
B.为保证顺铣,刀具要沿内廓表面顺时针运动
C.有用留有精加工余量
D.为保证顺铣,刀具要沿工件表面左右滑动
43、在运算指令中,形式为 #iI = # i AND #k代表的意义是( )。
A.分数 B.小数
C.倒数 D.逻辑数
44、六点定位原理是在夹其中用定位零件将工件的( A )个自由度都限制,则该元件在空间
的位置就完全确定了。
A. 6 B .4
C .12 D. 16
45、工件应在夹紧后定位。(否)
是 否
46、选用可倾虎钳装夹工件,铣削与基准面夹角为a的斜面,当基准面坚固耐用预加工表面
平行时,虎钳转角θ=( )。
A. -90 B. 90-a
C. 180 -а或а
47、可转位铣刀属于( B )铣刀。
A.整体 B.机械夹固式
C.镶齿
48、选择铣削加工的主轴转速的依据( C )
A.一般依赖于机床的特点和用户的经验
B.工件材料与刀具材料
C.机床本身、工件材料、刀具材料、工件的加工精度和表面租糙度
D.由加工时间定额决定
49、成形铣刀为了保证刃磨后齿形不变,一般都采用尖齿结构。
是 否
50、在批量生产中,检验键槽宽度是否合格,通常应选用( )检验。
A.塞规 B.游标卡尺
C.内径千分尺
51、特级质量钢的含磷量等于0. 11%。(否)
是否
52、若工件材料为退火15钢,经铣削加工后要求表面粗糙度达到,若要满足此加工要求,
需要( )。
A. 采用高速铣削
B.采用硬质合金刀具
C.铣削前先热处理,增加材料硬度
D.采用高速钢刀具精加工即可
53、在机床通电后,无须检查各开关按钮和键是否正常。(否)
是 否
54、具有三维/二维零件尺寸关联和约束功能的软件是( C )
A.AUTOCAD B. MASTERCAM
C.CAXA制造工程师XP D. Pro/E
55、增大锯片铣刀与工件的接触角,减小垂直分力,可减少和防止产生打刀现象.
是否
56、数控加工过程中,一旦出现紧急情况应( B )。
A.迅速关机床电器柜开关
B.迅速按下机床操作面板急停按钮
C.迅速拉下机床总电源
D.迅速请工程师前来处理
57、在变量赋值方方法l中,引数(自变量)J对应的变量是( D )
A. #201 B.#31
C. #21 D#5
58、成组夹具是为单位工件生产定制的。(否)
是 否
59、调质处理是( B )。
A.钢件经淬火后再进行退火处理
B.钢件经淬火后再进行高温回火处理
C.钢件经淬火后再进行低温回火处理
D.将铜件加温后保持一定时间,然后置于空气中冷却,
60、减少毛坯误差的办法是增加毛坯的余量。(否)
是 否

歡迎來到Bewise Inc.的世界,首先恭喜您來到這接受新的資訊讓產業更有競爭力,我們是提供專業刀具製造商,應對客戶高品質的刀具需求,我們可以協助客戶滿足您對產業的不同要求,我們有能力達到非常卓越的客戶需求品質,這是現有相關技術無法比擬的,我們成功的滿足了各行各業的要求,包括:精密HSS DIN切削刀具協助客戶設計刀具流程DIN or JIS 鎢鋼切削刀具設計NAS986 NAS965 NAS897 NAS937orNAS907 航太切削刀具,NAS航太刀具設計超高硬度的切削刀具BW捨棄式鑽石V卡刀BW捨棄式金屬圓鋸片木工捨棄式金屬圓鋸片PCD木工圓鋸片醫療配件刀具設計汽車業刀具設計電子產業鑽石刀具全鎢鋼V卡刀-電路版專用全鎢鋼鋸片焊刃式側銑刀焊刃式千鳥側銑刀焊刃式T型銑刀焊刃式千鳥T型銑刀焊刃式螺旋機械鉸刀全鎢鋼斜邊刀電路版專用鎢鋼焊刃式高速鉸刀超微粒鎢鋼機械鉸刀超微粒鎢鋼定點鑽焊刃式帶柄角度銑刀焊刃式螺旋立銑刀焊刃式帶柄倒角銑刀焊刃式角度銑刀焊刃式筒型平面銑刀木工產業鑽石刀具等等。我們的產品涵蓋了從民生刀具到工業級的刀具設計;從微細刀具到大型刀具;從小型生產到大型量產;全自動整合;我們的技術可提供您連續生產的效能,我們整體的服務及卓越的技術,恭迎您親自體驗!!

BW Bewise Inc. Willy Chen willy@tool-tool.com bw@tool-tool.com www.tool-tool.com skype:willy_chen_bw mobile:0937-618-190 Head &Administration Office No.13,Shiang Shang 2nd St., West Chiu Taichung,Taiwan 40356 http://www.tool-tool..com / FAX:+886 4 2471 4839 N.Branch 5F,No.460,Fu Shin North Rd.,Taipei,Taiwan S.Branch No.24,Sec.1,Chia Pu East Rd.,Taipao City,Chiayi Hsien,Taiwan

Welcome to BW tool world! We are an experienced tool maker specialized in cutting tools. We focus on what you need and endeavor to research the best cutter to satisfy users demand. Our customers involve wide range of industries, like mold & die, aerospace, electronic, machinery, etc. We are professional expert in cutting field. We would like to solve every problem from you. Please feel free to contact us, its our pleasure to serve for you. BW product including: cutting toolaerospace tool .HSS DIN Cutting toolCarbide end millsCarbide cutting toolNAS Cutting toolNAS986 NAS965 NAS897 NAS937orNAS907 Cutting Tools,Carbide end milldisc milling cutter,Aerospace cutting toolhss drillФрезерыCarbide drillHigh speed steelMilling cutterCVDD(Chemical Vapor Deposition Diamond )’PCBN (Polycrystalline Cubic Boron Nitride) Core drillTapered end millsCVD Diamond Tools Inserts’PCD Edge-Beveling Cutter(Golden FingerEdge modifying knifeSolid carbide saw blade-V typeV-type locking-special use for PC boardMetal Slitting SawaCarbide Side milling CuttersCarbide Side Milling Cutters With Staggered TeethCarbide T-Slot Milling CuttersCarbide T-Slot Milling Cutters With Staggered TeethCarbide Machine ReamersHigh speed reamer-standard typeHigh speed reamer-long type’’PCD V-CutterPCD Wood toolsPCD Cutting toolsPCD Circular Saw BladePVDD End Millsdiamond tool V-type locking-special use for PC board Single Crystal Diamond Metric end millsMiniature end millsСпециальные режущие инструменты Пустотелое сверло Pilot reamerFraisesFresas con mango PCD (Polycrystalline diamond) ‘FreseElectronics cutterStep drillMetal cutting sawDouble margin drillGun barrelAngle milling cutterCarbide burrsCarbide tipped cutterChamfering toolIC card engraving cutterSide cutterNAS toolDIN or JIS toolSpecial toolMetal slitting sawsShell end millsSide and face milling cuttersSide chip clearance sawsLong end millsStub roughing end millsDovetail milling cuttersCarbide slot drillsCarbide torus cuttersAngel carbide end millsCarbide torus cuttersCarbide ball-nosed slot drillsMould cutterTool manufacturer.

Bewise Inc. www.tool-tool.com

ようこそBewise Inc.の世界へお越し下さいませ、先ず御目出度たいのは新たな

情報を受け取って頂き、もっと各産業に競争力プラス展開。

弊社は専門なエンドミルの製造メーカーで、客先に色んな分野のニーズ

豊富なパリエーションを満足させ、特にハイテク品質要求にサポート致します。

弊社は各領域に供給できる内容は:

(1)精密HSSエンドミルのR&D

(2)Carbide Cutting tools設計

(3)鎢鋼エンドミル設計

(4)航空エンドミル設計

(5)超高硬度エンドミル

(6)ダイヤモンドエンドミル

(7)医療用品エンドミル設計

(8)自動車部品&材料加工向けエンドミル設計

弊社の製品の供給調達機能は:

(1)生活産業~ハイテク工業までのエンドミル設計

(2)ミクロエンドミル~大型エンドミル供給

beeway 發表在 痞客邦 留言(0) 人氣()

Bewise Inc. www.tool-tool.com Reference source from the internet.
Electrical Discharge Machine

Electrical Discharge Machine

Electrical Discharge Machining (or EDM) is a machining method primarily used for hard metals or those that would be impossible to machine with traditional techniques. One critical limitation, however, is that EDM only works with materials that are electrically conductive, and generaly those materials are ferrous alloys. EDM can cut small or odd-shaped angles, intricate contours or cavities in pre-hardened steel without the need for heat treatment to soften and re-harden them as well as exotic metals such as titanium, hastelloy, kovar, and inconel.

Sometimes referred to as spark machining or spark eroding, EDM is a non-traditional method of removing material by a series of rapidly recurring electric arcing discharges between an electrode (the cutting tool) and the workpiece, in the presence of an energetic electric field. The EDM cutting tool is guided along the desired path very close to the work but it does not touch the piece. Consecutive sparks produce a series of micro-craters on the work piece and remove material along the cutting path by melting and vaporization. The particles are washed away by the continuously flushing dielectric fluid. It is also important to note that a similar micro-crater is formed on the surface of the electrode, the debris from which must also be flushed away. These micro-craters result in the gradual erosion of the electrode, many times necessitating several different electrodes of varying tolerances to be used, or, in the case of wire EDM machining, constant replacement of the wire by feeding from a spool.

There are two main types of EDM machines: Sinker EDM (also called Conventional EDM and Ram EDM) and Wire EDM.

[edit] History

The EDM process was improved by two Russian scientists, Dr. B.R. Lazarenko and Dr. N.I. Lazarenko in 1943.

The first numerically controlled (NC, or computer controlled) EDM was invented by Makino in Japan in 1980.

[edit] Advantages

Some of the advantages of EDM include machining of:

  • complex shapes that would otherwise be difficult to produce with conventional cutting tools
  • extremely hard material to very close tolerances
  • very small work pieces where conventional cutting tools may damage the part from excess cutting tool pressure.

[edit] Disadvantages

Some of the disadvantages of EDM include:

  • The inability to machine non-conductive materials.
  • The slow rate of material removal.
  • The additional time and cost used for creating electrodes for ram / Sinker EDM.
  • Reproducing sharp corners on the workpiece is difficult due to electrode wear.

[edit] Conventional EDM

[edit] Prototype production

The EDM process is most widely used by the mould-making tool and die industries, but is becoming a common method of making prototype and production parts, especially in the aerospace, automobile and electronics industries in which production quantities are relatively low. In Sinker EDM, a graphite or pure copper electrode is machined into the desired (negative) shape and fed into the workpiece on the end of a vertical ram.

[edit] Coinage die making

For the creation of dies for producing jewelry and badges by the coinage (stamping) process, the positive master may be made from sterling silver, since (with appropriate machine settings) the master is not significantly eroded and is used only once. The resultant negative die is then hardened and used in a drop hammer to produce stamped flats from cutout sheet blanks of bronze, silver, or low proof gold alloy. For badges these flats may be further shaped to a curved surface by another die. This type of EDM is usually performed submerged in an oil-based dielectric. The finished object may be further refined by hard (glass) or soft (paint) enameling and/or electroplated with pure gold or nickel. Softer materials such as silver may be hand engraved as a refinement.

EDM control panel (Hansvedt machine). Machine may be adjusted for a refined surface (electropolish) at end of process.

EDM control panel (Hansvedt machine). Machine may be adjusted for a refined surface (electropolish) at end of process.
Master at top, badge die workpiece at bottom, oil jets at left (oil has been drained). Initial flat stamping will be &quot;dapped&quot; to give a curved surface.

Master at top, badge die workpiece at bottom, oil jets at left (oil has been drained). Initial flat stamping will be "dapped" to give a curved surface.

[edit] Small hole drilling EDM

Small hole drilling EDM is used to make a through hole in a workpiece in through which to thread the wire in Wire-cut EDM machining. The small hole drilling head is mounted on wire-cut machine and allows large hardened plates to have finished parts eroded from them as needed and without pre-drilling. There are also stand-alone small hole drilling EDM machines with an xy axis also known as a super drill or hole popper that can machine blind or through holes. EDM Drills bore holes with a long brass or copper tube electrode that rotates in a chuck with a constant flow of distilled or deionized water flowing through the electrode as a flushing agent and dielectric. The electrode tubes operate like the wire in wire-cut EDM machines, having a spark gap and wear rate. Some small-hole drilling EDMs are able to drill through 100 mm of soft or through hardened steel in less than 10 seconds, averaging 50% to 80% wear rate. Holes of 0.3 mm to 6.1 mm can be achieved in this drilling operation. Brass electrodes are easier to machine but are not recommended for wire-cut operations due to eroded brass particles causing "brass on brass" wire breakage, therefore copper is recommended.

[edit] Cavity type EDM (sinker EDM)

Cavity type EDM is also known as Sinker EDM. Sinker EDM consists of an electrode and workpiece that are submerged in an insulating liquid such as oil. The electrode and workpiece are connected to a suitable power supply. The power supply generates an electrical potential between the two parts. As the electrode approaches the workpiece, dielectric breakdown occurs in the fluid, and a small spark jumps. The resulting heat and cavitation vaporize the base material, and to some extent, the electrode. These sparks strike one at a time in huge numbers at seemingly random locations across the electrode. As the base metal is eroded, and the spark gap subsequently increased, the electrode is lowered automatically by the machine so that the process can continue uninterrupted. Several hundred thousand sparks occur per second in this process, with the actual duty cycle being carefully controlled by the setup parameters. The typical part geometry is to cut small or odd shaped angles. Vertical, orbital, vectorial, directional, helical, conical, rotational, spin and indexing machining cycles are also used. The typical work materials are ferrous alloys. [1] [2] [3]

[edit] Wire Cut EDM

In wire electrical discharge machining (WEDM), or wire-cut EDM, a thin single-strand metal wire, usually brass, is fed through the workpiece, typically occurring submerged in a tank of dielectric fluid. This process is used to cut plates as thick as 300mm and to make punches, tools,and dies from hard metals that are too difficult to machine this other methods. The wire, which is constantly fed from a spool, is held between upper and lower diamond guides. The guides move in the xy plane, usually being CNC controlled and on almost all modern machines the upper guide can also move independently in the zuv axis, giving rise to the ability to cut tapered and transitioning shapes (circle on the bottom square at the top for example) and can control axis movements in xyuvijkl–. This gives the wire-cut EDM the ability to be programmed to cut very intricate and delicate shapes. The wire is controlled by upper and lower diamond guides that are usually accurate to 0.004 mm, and can have a cutting path or kerf as small as 0.12 mm using Ø 0.1 mm wire, though the average cutting kerf that achieves the best economic cost and machining time is 0.335 mm using Ø 0.25 brass wire. The reason that the cutting width is greater than the width of the wire is because sparking also occurs from the sides of the wire to the work piece, causing erosion. This "overcut" is necessary, predictable, and easily compensated for. Spools of wire are typically very long. For example, an 8 kg spool of 0.25 mm wire is just over 19 kilometers long. Today, the smallest wire diameter is 20 micrometres and the geometry precision is not far from +/- 1 micrometre. The wire-cut process uses water as its dielectric with the water's resistivity and other electrical properties carefully controlled by filters and de-ionizer units. The water also serves the very critical purpose of flushing the cut debris away from the cutting zone. Flushing is an important determining factor in the maximum feed rate available in a given material thickness, and poor flushing situations necessitate the reduction of the feed rate.

Along with tighter tolerances multiaxis EDM wire-cutting machining center have many added features such as: Multiheads for cutting two parts at the same time, controls for preventing wire breakage, automatic self-threading features in case of wire breakage, and programmable machining strategies to optimize the operation.

Wire-cutting EDM is commonly used when low residual stresses are desired. Wire EDM has no added residual stress because it has no cutting forces. There is little change in the mechanical properties of a material in wire-cutting EDM due to these low residual stresses.

歡迎來到Bewise Inc.的世界,首先恭喜您來到這接受新的資訊讓產業更有競爭力,我們是提供專業刀具製造商,應對客戶高品質的刀具需求,我們可以協助客戶滿足您對產業的不同要求,我們有能力達到非常卓越的客戶需求品質,這是現有相關技術無法比擬的,我們成功的滿足了各行各業的要求,包括:精密HSS DIN切削刀具協助客戶設計刀具流程DIN or JIS 鎢鋼切削刀具設計NAS986 NAS965 NAS897 NAS937orNAS907 航太切削刀具,NAS航太刀具設計超高硬度的切削刀具BW捨棄式鑽石V卡刀BW捨棄式金屬圓鋸片木工捨棄式金屬圓鋸片PCD木工圓鋸片醫療配件刀具設計汽車業刀具設計電子產業鑽石刀具全鎢鋼V卡刀-電路版專用全鎢鋼鋸片焊刃式側銑刀焊刃式千鳥側銑刀焊刃式T型銑刀焊刃式千鳥T型銑刀焊刃式螺旋機械鉸刀全鎢鋼斜邊刀電路版專用鎢鋼焊刃式高速鉸刀超微粒鎢鋼機械鉸刀超微粒鎢鋼定點鑽焊刃式帶柄角度銑刀焊刃式螺旋立銑刀焊刃式帶柄倒角銑刀焊刃式角度銑刀焊刃式筒型平面銑刀木工產業鑽石刀具等等。我們的產品涵蓋了從民生刀具到工業級的刀具設計;從微細刀具到大型刀具;從小型生產到大型量產;全自動整合;我們的技術可提供您連續生產的效能,我們整體的服務及卓越的技術,恭迎您親自體驗!!

BW Bewise Inc. Willy Chen willy@tool-tool.com bw@tool-tool.com www.tool-tool.com skype:willy_chen_bw mobile:0937-618-190 Head &Administration Office No.13,Shiang Shang 2nd St., West Chiu Taichung,Taiwan 40356 http://www.tool-tool..com / FAX:+886 4 2471 4839 N.Branch 5F,No.460,Fu Shin North Rd.,Taipei,Taiwan S.Branch No.24,Sec.1,Chia Pu East Rd.,Taipao City,Chiayi Hsien,Taiwan

Welcome to BW tool world! We are an experienced tool maker specialized in cutting tools. We focus on what you need and endeavor to research the best cutter to satisfy users demand. Our customers involve wide range of industries, like mold & die, aerospace, electronic, machinery, etc. We are professional expert in cutting field. We would like to solve every problem from you. Please feel free to contact us, its our pleasure to serve for you. BW product including: cutting toolaerospace tool .HSS DIN Cutting toolCarbide end millsCarbide cutting toolNAS Cutting toolNAS986 NAS965 NAS897 NAS937orNAS907 Cutting Tools,Carbide end milldisc milling cutter,Aerospace cutting toolhss drillФрезерыCarbide drillHigh speed steelMilling cutterCVDD(Chemical Vapor Deposition Diamond )’PCBN (Polycrystalline Cubic Boron Nitride) Core drillTapered end millsCVD Diamond Tools Inserts’PCD Edge-Beveling Cutter(Golden FingerEdge modifying knifeSolid carbide saw blade-V typeV-type locking-special use for PC boardMetal Slitting SawaCarbide Side milling CuttersCarbide Side Milling Cutters With Staggered TeethCarbide T-Slot Milling CuttersCarbide T-Slot Milling Cutters With Staggered TeethCarbide Machine ReamersHigh speed reamer-standard typeHigh speed reamer-long type’’PCD V-CutterPCD Wood toolsPCD Cutting toolsPCD Circular Saw BladePVDD End Millsdiamond tool V-type locking-special use for PC board Single Crystal Diamond Metric end millsMiniature end millsСпециальные режущие инструменты Пустотелое сверло Pilot reamerFraisesFresas con mango PCD (Polycrystalline diamond) ‘FreseElectronics cutterStep drillMetal cutting sawDouble margin drillGun barrelAngle milling cutterCarbide burrsCarbide tipped cutterChamfering toolIC card engraving cutterSide cutterNAS toolDIN or JIS toolSpecial toolMetal slitting sawsShell end mills

beeway 發表在 痞客邦 留言(0) 人氣()


Bewise Inc. www.tool-tool.com Reference source from the internet.

1923年に発明された超硬合金(WC-Co)は、その後TiC、TaCの添加で耐磨耗性が改善され、1969年にはCVD法によるコーティング技術が開発され、コーテッド超硬合金が急速に普及してきました。

他方、1974年ごろから、カーボナイトライド(TiC-TiN)系サーメットが開発され、今日の「荒切削はコーティング、仕上げ切削はサーメット」の考えが定着しました。
各種硬質物質の特性
硬質物質 かたさ
(Hv)
生成自由
エネルギー
(kcal/g・atom)

鉄への
溶解量
(%.1250°C)

熱伝導率
(W/m・k)

熱膨張係数※
(×10-6/k)

適用工具材料
ダイヤモンド
(C)
> 9,000 - 易反応 2,100 3,1 ダイヤモンド焼結体
立方晶窒化素硼素
(CBN)
> 4,500 - - 1,300 4,7 CBN焼結体
窒化珪素
(Si3N4)
1,600 - - 100 3,4 セラミックス
酸化アルミニウム
(Al2O3)
2,100 -100 ≒0 29 7,8 セラミックス
コーティング
炭化チタン
(TiC)
3,200 -35 <> 21 7,4 サーメット
コーティング
超硬合金
窒化チタン
(TiN)
2,500 -50 - 29 9,4 サーメット
コーティング
炭化タンタル
(TaC)
1,800 -40 0.5 21 6,3 超硬合金
炭化タングステン
(WC)
2,100 -10 7 121 5,2 超硬合金

※1W/m・K=2.39×10-3cal/cm・sec・゚C

歡迎來到Bewise Inc.的世界,首先恭喜您來到這接受新的資訊讓產業更有競爭力,我們是提供專業刀具製造商,應對客戶高品質的刀具需求,我們可以協助客戶滿足您對產業的不同要求,我們有能力達到非常卓越的客戶需求品質,這是現有相關技術無法比擬的,我們成功的滿足了各行各業的要求,包括:精密HSS DIN切削刀具協助客戶設計刀具流程DIN or JIS 鎢鋼切削刀具設計NAS986 NAS965 NAS897 NAS937orNAS907 航太切削刀具,NAS航太刀具設計超高硬度的切削刀具BW捨棄式鑽石V卡刀BW捨棄式金屬圓鋸片木工捨棄式金屬圓鋸片PCD木工圓鋸片醫療配件刀具設計汽車業刀具設計電子產業鑽石刀具全鎢鋼V卡刀-電路版專用全鎢鋼鋸片焊刃式側銑刀焊刃式千鳥側銑刀焊刃式T型銑刀焊刃式千鳥T型銑刀焊刃式螺旋機械鉸刀全鎢鋼斜邊刀電路版專用鎢鋼焊刃式高速鉸刀超微粒鎢鋼機械鉸刀超微粒鎢鋼定點鑽焊刃式帶柄角度銑刀焊刃式螺旋立銑刀焊刃式帶柄倒角銑刀焊刃式角度銑刀焊刃式筒型平面銑刀木工產業鑽石刀具等等。我們的產品涵蓋了從民生刀具到工業級的刀具設計;從微細刀具到大型刀具;從小型生產到大型量產;全自動整合;我們的技術可提供您連續生產的效能,我們整體的服務及卓越的技術,恭迎您親自體驗!!

BW Bewise Inc. Willy Chen willy@tool-tool.com bw@tool-tool.com www.tool-tool.com skype:willy_chen_bw mobile:0937-618-190 Head &Administration Office No.13,Shiang Shang 2nd St., West Chiu Taichung,Taiwan 40356 http://www.tool-tool..com / FAX:+886 4 2471 4839 N.Branch 5F,No.460,Fu Shin North Rd.,Taipei,Taiwan S.Branch No.24,Sec.1,Chia Pu East Rd.,Taipao City,Chiayi Hsien,Taiwan

Welcome to BW tool world! We are an experienced tool maker specialized in cutting tools. We focus on what you need and endeavor to research the best cutter to satisfy users demand. Our customers involve wide range of industries, like mold & die, aerospace, electronic, machinery, etc. We are professional expert in cutting field. We would like to solve every problem from you. Please feel free to contact us, its our pleasure to serve for you. BW product including: cutting toolaerospace tool .HSS DIN Cutting toolCarbide end millsCarbide cutting toolNAS Cutting toolNAS986 NAS965 NAS897 NAS937orNAS907 Cutting Tools,Carbide end milldisc milling cutter,Aerospace cutting toolhss drillФрезерыCarbide drillHigh speed steelMilling cutterCVDD(Chemical Vapor Deposition Diamond )’PCBN (Polycrystalline Cubic Boron Nitride) Core drillTapered end millsCVD Diamond Tools Inserts’PCD Edge-Beveling Cutter(Golden FingerEdge modifying knifeSolid carbide saw blade-V typeV-type locking-special use for PC boardMetal Slitting SawaCarbide Side milling CuttersCarbide Side Milling Cutters With Staggered TeethCarbide T-Slot Milling CuttersCarbide T-Slot Milling Cutters With Staggered TeethCarbide Machine ReamersHigh speed reamer-standard typeHigh speed reamer-long type’’PCD V-CutterPCD Wood toolsPCD Cutting toolsPCD Circular Saw BladePVDD End Millsdiamond tool V-type locking-special use for PC board Single Crystal Diamond Metric end millsMiniature end millsСпециальные режущие инструменты Пустотелое сверло Pilot reamerFraisesFresas con mango PCD (Polycrystalline diamond) ‘FreseElectronics cutterStep drillMetal cutting sawDouble margin drillGun barrelAngle milling cutterCarbide burrsCarbide tipped cutterChamfering toolIC card engraving cutterSide cutterNAS toolDIN or JIS toolSpecial toolMetal slitting sawsShell end millsSide and face milling cuttersSide chip clearance sawsLong end millsStub roughing end millsDovetail milling cuttersCarbide slot drillsCarbide torus cuttersAngel carbide end millsCarbide torus cuttersCarbide ball-nosed slot drillsMould cutterTool manufacturer.

Bewise Inc. www.tool-tool.com

ようこそBewise Inc.の世界へお越し下さいませ、先ず御目出度たいのは新たな

情報を受け取って頂き、もっと各産業に競争力プラス展開。

弊社は専門なエンドミルの製造メーカーで、客先に色んな分野のニーズ

豊富なパリエーションを満足させ、特にハイテク品質要求にサポート致します。

弊社は各領域に供給できる内容は:

(1)精密HSSエンドミルのR&D

(2)Carbide Cutting tools設計

(3)鎢鋼エンドミル設計

(4)航空エンドミル設計

(5)超高硬度エンドミル

(6)ダイヤモンドエンドミル

(7)医療用品エンドミル設計

(8)自動車部品&材料加工向けエンドミル設計

弊社の製品の供給調達機能は:

(1)生活産業~ハイテク工業までのエンドミル設計

(2)ミクロエンドミル~大型エンドミル供給

(3)小Lot生産~大量発注対応供給

(4)オートメーション整備調達

(5)スポット対応~流れ生産対応

弊社の全般供給体制及び技術自慢の総合専門製造メーカーに貴方のご体験を御待ちしております。

BW специализируется в научных исследованиях и разработках, и снабжаем самым высокотехнологичным карбидовым материалом для поставки режущих / фрезеровочных инструментов для почвы, воздушного пространства и электронной индустрии. В нашу основную продукцию входит твердый карбид / быстрорежущая сталь, а также двигатели, микроэлектрические дрели, IC картонорезальные машины, фрезы для гравирования, режущие пилы, фрезеры-расширители, фрезеры-расширители с резцом, дрели, резаки форм для шлицевого вала / звездочки роликовой цепи, и специальные нано инструменты. Пожалуйста, посетите сайт www.tool-tool.com для получения большей информации.

BW is specialized in R&D and sourcing the most advanced carbide material with high-tech coating to supply cutting / milling tool for mould & die, aero space and electronic industry. Our main products include solid carbide / HSS end mills, micro electronic drill, IC card cutter, engraving cutter, shell end mills, cutting saw, reamer, thread reamer, leading drill, involute gear cutter for spur wheel, rack and worm milling cutter, thread milling cutter, form cutters for spline shaft/roller chain sprocket, and special tool, with nano grade. Please visit our web www.tool-tool.com for more info.

beeway 發表在 痞客邦 留言(0) 人氣()


Bewise Inc. www.tool-tool.com Reference source from the internet.

一、工模具新鋼種——超硬型高速鋼

   研究和發展模具新鋼種,是改善和提高模具鋼的強韌性,延長模具的使用壽命的重要途徑。我國模具工業在迅速發展,我國的材料工作者在借鑒國外先 進技術的基礎上結合本國資源情況和特點,引進和研製了不少新型模具鋼。經過生產上的考核篩選,一些性能優異、工藝性能也比較好的鋼種受到模具製造和使用單 位的歡迎,使模具的使用壽命達到甚至超過國內外同類模具的水平,如北京鋼鐵學院與大冶鋼廠研製的無Co超硬高速鋼W12Cr4Mo3V3N(簡稱V3N) 的各項性能優良,獲中華人民共和國國家發明獎,中華人民共和國專利(91102252), V3N模具性能比現用普通高速鋼提高2~10倍,相當於國際市 場現用含 10%Co的高速鋼,已成功地推廣應用在工模具生產中,可使壽命成倍增加。

二、V3N成分及性能特點

  W12Cr4Mo3V3N(簡稱V3N)是鎢-鉬系含氮無鈷超硬型高速鋼,V3N的化學成分c:1.21%; W: 11.88%; Mo: 2.95%; Cr4.00%; V:2.87%; N: 0.075%.新型超硬高速鋼V3N成分設計特點是:

  高C: C對冷作模具鋼的強韌性、耐磨性有決定性的影響。含碳量增加,則抗壓強度及耐磨性增加。因此,抗衝擊及高強韌冷作模具鋼含碳量較高。

高V: V強烈細化晶粒,強烈提高耐磨性、紅硬性及二次硬化能力。但含量過多會明顯惡化可鍛性及磨削性。

含N:N可細化晶粒,又有析出強化的作用,且機械性能及焊接性能都較好。

   主要技術性能:V3N鋼具有硬度高、耐磨性好、高的紅硬性和一定的韌性,在冷作模具鋼上應用效果十分顯著。該鋼與含鈷高速鋼相比,價格低廉且 易加工,通過適當的熱處理,可得到高硬度(HRC67~70)、高紅硬性(625℃4小時,HRC63~65)和高耐磨性,韌性和抗彎強度均不低於普通型 高速鋼,可克服模具刃口塌陷和崩裂等早期損壞。

三、V3N鋼模具的加工工藝

  模具熱處理方法和加工工藝的選擇同樣要根據模具的工作條件、失效方式和對性能的不同要求來確定。應不斷改善熱處理設備,改進熱處理工藝,使材料的強度、韌性得到最佳配合,並嚴格遵循熱處理工藝,控制加熱溫度、時間、冷卻速度,從而保證模具的使用性能。

  1,鍛造

  V3N鋼含有大量的一次碳化物和二次碳化物,若保留在淬火組織中,將急劇降低模具所有壽命。只有通過對原材料改鍛,擊碎碳化物,才能使其呈細小、均勻的形貌分佈於鋼基體,提高整體力學性能。

  V3N鋼導熱性差,鍛坯加熱時應充分預熱,始鍛溫度1170℃,終鍛溫度950℃,設備可採用250kg(小件)和400kg空氣錘,開始採用輕錘快打,中間用重錘打,最後慢打輕打,鍛後於石棉粉箱中緩冷取出後即進行退火處理。

  2,鍛後退火

  可採用等溫退火或普通860 oC退火4小時. 機械加工

  鍛後硬度較高,採用等溫或普通退火後,機加可順利進行,淬火後因工硬度較高,故工件成型磨削難度較大,可採用鐠鈮剛玉加鉻製作的砂輪進行磨削。

  熱處理工藝

   V3N鋼在1220~1230℃淬火時,由於存在未熔碳化物,硬度偏低,系淬火溫度不足;在1260~1270℃淬火時,晶粒明顯過大,系過 熱現象。選擇1230~1240℃淬火加熱溫度既能使碳化物和合金元素充分溶解到奧氏體中去,又能保持較細晶粒(10~10級)。

V3N 超硬高速鋼模具部件採用1220~1230℃經550℃四次回火,硬度可控制在HRC64~67,具體可根據零件尺寸的大小從熱處 理工藝上進行調整,達到硬度和強度較理想的配合,V3N超硬型高速鋼淬火後有較多殘餘奧氏體,據測定約為25%~30%,必須盡量消除減少,為此進行多次 高溫回火使之發生馬氏體轉變。進行4次高溫回火後,大部分殘餘奧氏體發生了馬氏體轉變,產生二次硬化效應。V3N鋼二次硬化效應溫度比普通高速鋼高 30~40℃,這一特性十分寶貴,表明V3N鋼有更高紅硬性。

精加工後的深冷處理

  經深冷處理後,由於殘留奧氏體向馬氏體轉變以及超細碳化物的析出,模具零件硬度和耐磨性將進一步改善,耐磨性可提高40%,既縮短回火時間節省了能量,又明顯提高了模具使用壽命。

  高速鋼模具深冷處理工藝過程為:模具除油污→放入保溫罐中→少量多次注入液氮(196℃)→保溫浸泡2.5h→取出模具迅速放入60~70℃熱水中。

  四、V3N鋼在冷作模具的應用與效果

  V3N超硬冷作模具壽命均比 Cr12MoV、Cr12等常用模具壽命提高3~5倍,比現用普通高速鋼提高2~10倍,經濟效益更為顯著,V3N鋼製模具性能相當於國際市場現用含10%Co的高速鋼。

  某廠硅鋼片沖模原來都是採用CrWMn、Cr12MoV等鉻鋼製作的,但由於硅鋼等硬面脆,故模具耗損量大,採用V3N鋼製作模具,經濟效果明顯
五、結語

V3N超硬高速鋼各項性能優良,適合加工沖裁模等冷作模具,壽命顯著提高。

V3N鋼熱加工工藝較嚴格,1220~1230℃淬火,550℃4次1小時回火,精加工後再經深冷處理可獲得高硬度、高耐磨性和良好的韌性配合,使用過程中還可定期對凹模進行去應力回火以延長壽命。

歡迎來到Bewise Inc.的世界,首先恭喜您來到這接受新的資訊讓產業更有競爭力,我們是提供專業刀具製造商,應對客戶高品質的刀具需求,我們可以協助客戶滿足您對產業的不同要求,我們有能力達到非常卓越的客戶需求品質,這是現有相關技術無法比擬的,我們成功的滿足了各行各業的要求,包括:精密HSS DIN切削刀具協助客戶設計刀具流程DIN or JIS 鎢鋼切削刀具設計NAS986 NAS965 NAS897 NAS937orNAS907 航太切削刀具,NAS航太刀具設計超高硬度的切削刀具BW捨棄式鑽石V卡刀BW捨棄式金屬圓鋸片木工捨棄式金屬圓鋸片PCD木工圓鋸片醫療配件刀具設計汽車業刀具設計電子產業鑽石刀具全鎢鋼V卡刀-電路版專用全鎢鋼鋸片焊刃式側銑刀焊刃式千鳥側銑刀焊刃式T型銑刀焊刃式千鳥T型銑刀焊刃式螺旋機械鉸刀全鎢鋼斜邊刀電路版專用鎢鋼焊刃式高速鉸刀超微粒鎢鋼機械鉸刀超微粒鎢鋼定點鑽焊刃式帶柄角度銑刀焊刃式螺旋立銑刀焊刃式帶柄倒角銑刀焊刃式角度銑刀焊刃式筒型平面銑刀木工產業鑽石刀具等等。我們的產品涵蓋了從民生刀具到工業級的刀具設計;從微細刀具到大型刀具;從小型生產到大型量產;全自動整合;我們的技術可提供您連續生產的效能,我們整體的服務及卓越的技術,恭迎您親自體驗!!

BW Bewise Inc. Willy Chen willy@tool-tool.com bw@tool-tool.com www.tool-tool.com skype:willy_chen_bw mobile:0937-618-190 Head &Administration Office No.13,Shiang Shang 2nd St., West Chiu Taichung,Taiwan 40356 http://www.tool-tool..com / FAX:+886 4 2471 4839 N.Branch 5F,No.460,Fu Shin North Rd.,Taipei,Taiwan S.Branch No.24,Sec.1,Chia Pu East Rd.,Taipao City,Chiayi Hsien,Taiwan

Welcome to BW tool world! We are an experienced tool maker specialized in cutting tools. We focus on what you need and endeavor to research the best cutter to satisfy users demand. Our customers involve wide range of industries, like mold & die, aerospace, electronic, machinery, etc. We are professional expert in cutting field. We would like to solve every problem from you. Please feel free to contact us, its our pleasure to serve for you. BW product including: cutting toolaerospace tool .HSS DIN Cutting toolCarbide end millsCarbide cutting toolNAS Cutting toolNAS986 NAS965 NAS897 NAS937orNAS907 Cutting Tools,Carbide end milldisc milling cutter,Aerospace cutting toolhss drillФрезерыCarbide drillHigh speed steelMilling cutterCVDD(Chemical Vapor Deposition Diamond )’PCBN (Polycrystalline Cubic Boron Nitride) Core drillTapered end millsCVD Diamond Tools Inserts’PCD Edge-Beveling Cutter(Golden FingerEdge modifying knifeSolid carbide saw blade-V typeV-type locking-special use for PC boardMetal Slitting SawaCarbide Side milling CuttersCarbide Side Milling Cutters With Staggered TeethCarbide T-Slot Milling CuttersCarbide T-Slot Milling Cutters With Staggered TeethCarbide Machine ReamersHigh speed reamer-standard typeHigh speed reamer-long type’’PCD V-CutterPCD Wood toolsPCD Cutting toolsPCD Circular Saw BladePVDD End Millsdiamond tool V-type locking-special use for PC board Single Crystal Diamond Metric end millsMiniature end millsСпециальные режущие инструменты Пустотелое сверло Pilot reamerFraisesFresas con mango PCD (Polycrystalline diamond) ‘FreseElectronics cutterStep drillMetal cutting sawDouble margin drillGun barrelAngle milling cutterCarbide burrsCarbide tipped cutterChamfering toolIC card engraving cutterSide cutterNAS toolDIN or JIS toolSpecial toolMetal slitting sawsShell end millsSide and face milling cuttersSide chip clearance sawsLong end millsStub roughing end millsDovetail milling cuttersCarbide slot drillsCarbide torus cuttersAngel carbide end millsCarbide torus cuttersCarbide ball-nosed slot drillsMould cutterTool manufacturer.

Bewise Inc. www.tool-tool.com

ようこそBewise Inc.の世界へお越し下さいませ、先ず御目出度たいのは新たな

情報を受け取って頂き、もっと各産業に競争力プラス展開。

弊社は専門なエンドミルの製造メーカーで、客先に色んな分野のニーズ

豊富なパリエーションを満足させ、特にハイテク品質要求にサポート致します。

弊社は各領域に供給できる内容は:

(1)精密HSSエンドミルのR&D

(2)Carbide Cutting tools設計

(3)鎢鋼エンドミル設計

(4)航空エンドミル設計

(5)超高硬度エンドミル

(6)ダイヤモンドエンドミル

(7)医療用品エンドミル設計

(8)自動車部品&材料加工向けエンドミル設計

弊社の製品の供給調達機能は:

(1)生活産業~ハイテク工業までのエンドミル設計

(2)ミクロエンドミル~大型エンドミル供給

(3)小Lot生産~大量発注対応供給

(4)オートメーション整備調達

(5)スポット対応~流れ生産対応

弊社の全般供給体制及び技術自慢の総合専門製造メーカーに貴方のご体験を御待ちしております。

BW специализируется в научных исследованиях и разработках, и снабжаем самым высокотехнологичным карбидовым материалом для поставки режущих / фрезеровочных инструментов для почвы, воздушного пространства и электронной индустрии. В нашу основную продукцию входит твердый карбид / быстрорежущая сталь, а также двигатели, микроэлектрические дрели, IC картонорезальные машины, фрезы для гравирования, режущие пилы, фрезеры-расширители, фрезеры-расширители с резцом, дрели, резаки форм для шлицевого вала / звездочки роликовой цепи, и специальные нано инструменты. Пожалуйста, посетите сайт www.tool-tool.com для получения большей информации.

BW

beeway 發表在 痞客邦 留言(0) 人氣()


Bewise Inc. www.tool-tool.com Reference source from the internet.

摘要:對國際先進製造技術研討會(ISAMT』2001)暨中國高校切削與先進製造技術研究會第七屆年會的有關論文進行了綜合評述,分析了國內切削加工和刀具技術的現狀,並對今後的發展策略提出了建議。

1 引言
國 際先進製造技術研討會(ISAMT』2001)暨中國高校切削與先進製造技術研究會第七屆年會於2001年10月在南京舉行。大會共徵集到論文200多 篇,其中關於切削技術方面的論文33篇,刀具與刀具材料方面的論文32篇,論文內容涉及製造領域中現代切削技術的新發展、刀具新材料和新結構、切削機理實 驗研究以及計算機技術在切削與刀具領域的開發與應用等。現對會議宣讀和交流論文中的相關內容作一綜合評述。


2 現代切削技術的發展
20世紀90年代以來,激烈的市場競爭推動以機械製造技術為先導的先進製造技術以前所未有的速度和廣度向前發展。高生產率和高質量是先進製造技術追求的兩大目標。高速切削、精密和超精密切削是當前切削技術的重要發展方向,已成為切削加工的主流技術。


高速切削技術
高速切削的主要內容包括高速軟切削、高速硬切削、高速干切削、大進給切削等。高速切削是一個相對概念,對其切削速度範圍的界定目前國內外專家尚未達成共識。通常認為高速加工時的切削速度比常規切削速度高5~10倍以上。


中 國工程院院士艾興教授在所作「高速切削刀具材料的發展及其合理應用」主題報告中指出,在高速切削時,隨著切削速度的提高,切削力減小,切削溫度的增加漸 趨緩慢,生產效率和加工質量提高,從而可降低製造成本,縮短產品開發週期。高速切削大致可使切削力減小15%~30%,表面質量提高1~2級,切削速度和 進給速度提高15%~20%,製造成本降低10%~15%。高速切削現已廣泛應用於航空、航天、汽車、摩托車、模具、機床等工業中對鋼、鑄鐵、有色金屬及 其合金、高溫耐熱合金、碳纖維增強塑料等複合材料的加工中,其中以鋁合金和鑄鐵的高速加工最為普遍。

目 前高速加工各種材料的切削速度:普通鋼和鑄鐵為 500~2000m/min(鑽、鉸削100~400m/min,攻絲100m/min,滾齒300~600m/min),淬硬鋼(35~65HRC)為 100~400m/min,結構鋁合金為3000~4000m/min,高硅鋁合金為500~1500m/min,鎳基、鈷基、鐵基和鈦合金等超級合金為 90~500m/min。高速加工追求的切削速度目標為:銑削加工:鋁及其合金為10000m/min,鑄鐵為5000m/min,普通鋼為 2500m/min;鑽削加工(機床主軸轉速):鋁及其合金為30000r/min,鑄鐵為20000r/min,普通鋼為10000r/min。大進給 目標:進給速度Vf=20~50m/min,每齒進給量fz=1.0~1.5mm/z。


高 速切削技術不只是切削速度的提高,它的發展主要取決於刀 具技術(包括刀具材料、塗層刀具結構、刀柄和裝夾系統、刃磨和動平衡、檢測和監控系統等)和高速 機床技術(包括電主軸、直線電機進給系統、數控與伺服系統、軸承及潤滑、刀庫等)的進步,而正確選用刀具與機床經常起著決定性作用。德國 Darmstadt工業大學H.Schulz教授在「高速切削機床」一文中詳盡介紹了選用高速機床時應注意的問題,給與會代表很大啟發。


隨 著環境 保護法律法規的嚴格實施,作為綠色製造工藝的干切削日益受到人們的高度重視。據國外企業統計,在集中冷卻加工系統中,切削液占加工總成本的14% ~16%,刀具成本僅佔2%~4%。據測算,如果20%的切削加工採用干式加工,製造總成本可降低1.6%。因此,干切削是未來切削加工的發展方向。目前 倡導的干切削並不是簡單地去掉原有工藝中的切削液,也不是消極地通過降低切削參數來保證刀具使用壽命,而需要採用耐熱性更好的新型刀具材料及塗層,設計合 理的刀具結構與幾何參數,選擇最佳切削速度,形成新的工藝條件。干切削是實現清潔高效加工的新工藝,是製造技術向高速切削髮展總趨勢的組成部分,也是隨著 人類社會進步和生產力發展而出現的新型切削方式,它的推廣應用推動著刀具材料、塗層技術、機床結構、加工條件和刀具結構技術的不斷發展。目前,干切削技術 在車削、鏜削和銑削上的應用日益廣泛,在鑽削、拉削和滾齒方面也有重大突破。

上海大眾汽車有限公 司、上海交通大學、哈爾濱理工大學、哈爾濱工業大學等單位 在「干切削及其應用」等有關論文中詳細介紹了干切削的機理和實施該工藝的途徑,以及採用激光輔助加工干切削、使用最少量潤滑液(MQL)的准干切削 (Near Dry Cutting)、用壓縮空氣冷風切削以及採用氮氣進行干切削等加工方法。


精密和超精密切削
發 展尖端技術、國防工業 和微電子工業都離不開通過精密和超精密加工製造的精密零件和產品。通常將加工精度在0.1~1μm,加工表面粗糙度在 Ra0.02~0.1μm的加工稱為精密加工;而將加工精度高於0.1μm,加工表面粗糙度小於Ra0.01μm的加工稱為超精密加工。超精密加工可達到 納米(nm)級水平。該領域主要包含三個分支:①精密和超精密切削加工;②精密和超精密磨削加工;③精密電子束和離子束等特種加工。


用 金剛石刀具 實施超精密切削已由過去只能加工銅、鋁及其合金等有色金屬,擴展到加工塑料、陶瓷和複合材料。為了切除極薄切屑,要求金剛石刀具切削刃的刃口 半徑p極小,經精密研磨的單晶天然金剛石刀具的刃口半徑p<0.05~0.1μm,研磨質量高的甚至可達幾個nm,可實現納米級切削。> 45HRC)和冷硬鑄鐵等硬材料、以車代磨等加工領域跨入到銑削加工領域。該刀具已在上海通用汽車公司(SGM)新建的 發動機柔性生產線上使用,取得了良好效果。該刀具銑削髮動機缸體平面時,切削速度高達2000m/min,刀具壽命為普通PCBN刀具的4倍。Seco Tools公司還推出了結構新穎、具有冷卻通道、可更換硬質合金頭部的鑽頭,其頭部有三種不同幾何形狀,P型硬質合金刀頭適用於切削鋼,K型硬質合金刀頭 適於切削鑄鐵,而刀刃銳利的M型刀頭適於鑽削高強度鋼和耐腐蝕鋼。


本次會議對傳統刀具和高 效刀具的設計、製造及使用也進行了技術交流。如廣東韶關 學院設計的徑向錯位量較大(為每轉進給量的2~3倍)的單組階梯式可轉位面 銑刀、燕山大學研製的可加工硬度55HRC以上大內齒輪(模數m=12mm,齒數z=97)的負前角刮削硬質合金球形滾刀、西安交通大學設計的前角可控的 等螺旋角錐形立銑刀、山西太原理工大學設計的齒向開槽的新型插齒刀等,在結構上都有一定特點與創新,用於生產中均取得了較好效果。


電鍍金剛石鉸刀加工出的孔具有尺寸分散度小、幾何形狀精度高(可達2μm)、表面粗糙度值小(5 切削機理的研究與刀具CAD
為促進高速切削、精密和超精密切削技術的發展,本次會議上交流了許多有關切削機理及其實驗研究方面的論文。


南 京航空航天大學對高溫合金、鈦合金、不銹鋼等難加工材料的高速切削進行了系統試驗研究,發現切削變形為集中剪切滑移,且滑移區很窄,形成鋸齒狀不連續切 屑,其變形機理完全不同於連續性切屑。為此,作者根據最小能量原理,利用集中剪切滑移的臨界條件,推導出集中剪切滑移條件下的切削方程式,為進一步發展高 速切削工藝技術建立了理論基礎。


山東大學探討了高速切削時工件材料與刀具材料的匹配、切削方式、刀具幾何參數、切削參數、振動和切削液等因素對已加工表面粗糙度的影響,為高速切削加工時切削參數的選擇和表面質量的控制提供了依據。


哈 爾濱理工大學、哈爾濱工業大學等對PCBN刀具干切削不同硬度的GCr15軸承鋼的切削力、切削溫度、已加工表面完整性等進行了切削試驗研究,發現存在 區分普通切削與硬態切削的臨界硬度,並得出GCr15軸承鋼的臨界硬度為50HRC。在臨界硬度附近進行切削時,刀具磨損嚴重,加工表面質量最差。
上海水產大學建立了「工程材料切削加工性的人工神經網絡綜合評判模型」,各評價指標的權值是從足夠多的訓練樣本中提出的,避免了人為確定權值和隸屬函數的主觀性,使評價結果更具客觀性和可比性。


大連理工大學建立了球頭銑刀銑削的計算機預報模型,並進行了數值仿真研究,對改進銑刀設計、優化切削用量和監控切削參數均有現實意義。


Jr.S.Prakash等學者在會上介紹的「微型硬質合金銑刀切削時刀具壽命的預報模型」,J.Wang等人介紹的「斜角切削時允許後刀面磨損的切削預報模型」等均與實驗結果相吻合,為精密切削和微量切削提供了理論依據。


CAD/CAM技術的應用可保證刀具設計和製造的高效率和高質量,本次會議上也有不少這方面的論文。例如,焦作工學院在AutoCAD2000平台上開發了一種「成形車刀CAD」軟件,對成形車刀的智能設計、參數化繪圖具有重要意義。


此外,還有許多關於刀具幾何參數、切削用量和工藝過程優化、切削液、切削數據庫(如北京第一機床廠在CIMS環境下建立的網絡數據庫)、振動切削等內容的論文也在會上進行了交流。


6 差距與建議
雖 然近十年來我國工具工業有了長足進步,切削技術迅速提高,但與國外先進水平相比仍有巨大差距。據專家分析,我國切削加工及刀具技術的水平與工業發達國家 相比大致要落後15~20年。近年來國內轎車工業引進了幾條具有國際20世紀90年代水平的生產線,但所用工具的國內供給率只能達到20%的低水平。為改 變這種狀況,我國工具行業需要加速進口刀具國產化的步伐,必須更新經營理念,從主要向用戶「賣刀具」轉到為用戶「提供成套切削技術,解決具體加工問題」的 經營方向上來。要根據自身產品的專業優勢,精通相應的切削工藝,不斷創新開發新產品。

用戶行業則應 增大刀具費用的投入,充分利用刀具在提高效率、降低成 本、縮短Intranet/Extranet,實現最大程度的資源(如切削數據庫)共享。建議有關部門將產、學、研各部門的科研力量組織起來,集中優勢, 一方面積極引進國外先進刀具製造技術,提高刀具產品水平,加快刀具產品(尤其是數控刀具產品)的國產化步伐;另一方面應結合生產實際,系統地推廣使用各種 先進刀具和先進切削技術。我們相信,通過正確的政策引導和企業的有序競爭,完全有可能使我國的切削加工與刀具技術趕上國外先進水平,並做到有所發展與創 新。

歡迎來到Bewise Inc.的世界,首先恭喜您來到這接受新的資訊讓產業更有競爭力,我們是提供專業刀具製造商,應對客戶高品質的刀具需求,我們可以協助客戶滿足您對產業的不同要求,我們有能力達到非常卓越的客戶需求品質,這是現有相關技術無法比擬的,我們成功的滿足了各行各業的要求,包括:精密HSS DIN切削刀具協助客戶設計刀具流程DIN or JIS 鎢鋼切削刀具設計NAS986 NAS965 NAS897 NAS937orNAS907 航太切削刀具,NAS航太刀具設計超高硬度的切削刀具BW捨棄式鑽石V卡刀BW捨棄式金屬圓鋸片木工捨棄式金屬圓鋸片PCD木工圓鋸片醫療配件刀具設計汽車業刀具設計電子產業鑽石刀具全鎢鋼V卡刀-電路版專用全鎢鋼鋸片焊刃式側銑刀焊刃式千鳥側銑刀焊刃式T型銑刀焊刃式千鳥T型銑刀焊刃式螺旋機械鉸刀全鎢鋼斜邊刀電路版專用鎢鋼焊刃式高速鉸刀超微粒鎢鋼機械鉸刀超微粒鎢鋼定點鑽焊刃式帶柄角度銑刀焊刃式螺旋立銑刀焊刃式帶柄倒角銑刀焊刃式角度銑刀焊刃式筒型平面銑刀木工產業鑽石刀具等等。我們的產品涵蓋了從民生刀具到工業級的刀具設計;從微細刀具到大型刀具;從小型生產到大型量產;全自動整合;我們的技術可提供您連續生產的效能,我們整體的服務及卓越的技術,恭迎您親自體驗!!

BW Bewise Inc. Willy Chen willy@tool-tool.com bw@tool-tool.com www.tool-tool.com skype:willy_chen_bw mobile:0937-618-190 Head &Administration Office No.13,Shiang Shang 2nd St., West Chiu Taichung,Taiwan 40356 http://www.tool-tool..com / FAX:+886 4 2471 4839 N.Branch 5F,No.460,Fu Shin North Rd.,Taipei,Taiwan S.Branch No.24,Sec.1,Chia Pu East Rd.,Taipao City,Chiayi Hsien,Taiwan

Welcome to BW tool world! We are an experienced tool maker specialized in cutting tools. We focus on what you need and endeavor to research the best cutter to satisfy users demand. Our customers involve wide range of industries, like mold & die, aerospace, electronic, machinery, etc. We are professional expert in cutting field. We would like to solve every problem from you. Please feel free to contact us, its our pleasure to serve for you. BW product including: cutting toolaerospace tool .HSS DIN Cutting toolCarbide end millsCarbide cutting toolNAS Cutting toolNAS986 NAS965 NAS897 NAS937orNAS907 Cutting Tools,Carbide end milldisc milling cutter,Aerospace cutting toolhss drillФрезерыCarbide drillHigh speed steelMilling cutterCVDD(Chemical Vapor Deposition Diamond )’PCBN (Polycrystalline Cubic Boron Nitride) Core drillTapered end millsCVD Diamond Tools Inserts’PCD Edge-Beveling Cutter(Golden FingerEdge modifying knifeSolid carbide saw blade-V typeV-type locking-special use for PC boardMetal Slitting SawaCarbide Side milling CuttersCarbide Side Milling Cutters With Staggered TeethCarbide T-Slot Milling CuttersCarbide T-Slot Milling Cutters With Staggered TeethCarbide Machine ReamersHigh speed reamer-standard typeHigh speed reamer-long type’’PCD V-CutterPCD Wood toolsPCD Cutting toolsPCD Circular Saw BladePVDD End Millsdiamond tool V-type locking-special use for PC board Single Crystal Diamond Metric end millsMiniature end millsСпециальные режущие инструменты Пустотелое сверло Pilot reamerFraisesFresas con mango PCD (Polycrystalline diamond) ‘FreseElectronics cutterStep drillMetal cutting sawDouble margin drillGun barrelAngle milling cutterCarbide burrsCarbide tipped cutterChamfering toolIC card engraving cutterSide cutterNAS toolDIN or JIS toolSpecial toolMetal slitting sawsShell end millsSide and face milling cuttersSide chip clearance sawsLong end millsStub roughing end millsDovetail milling cuttersCarbide slot drillsCarbide torus cuttersAngel carbide end millsCarbide torus cuttersCarbide ball-nosed slot drillsMould cutterTool manufacturer.

Bewise Inc. www.tool-tool.com

ようこそBewise Inc.の世界へお越し下さいませ、先ず御目出度たいのは新たな

情報を受け取って頂き、もっと各産業に競争力プラス展開。

弊社は専門なエンドミルの製造メーカーで、客先に色んな分野のニーズ

豊富なパリエーションを満足させ、特にハイテク品質要求にサポート致します。

弊社は各領域に供給できる内容は:

(1)精密HSSエンドミルのR&D

(2)Carbide Cutting tools設計

(3)鎢鋼エンドミル設計

(4)航空エンドミル設計

(5)超高硬度エンドミル

(6)ダイヤモンドエンドミル

(7)医療用品エンドミル設計

(8)自動車部品&材料加工向けエンドミル設計


beeway 發表在 痞客邦 留言(0) 人氣()