公告版位

目前分類:學術研究 (9512)

瀏覽方式: 標題列表 簡短摘要

Bewise Inc. www.tool-tool.com Reference source from the internet.

From Wikipedia, the free encyclopedia

Jump to: navigation, search
28 cobaltnickelcopper
-

Ni

Pd

General
Name, Symbol, Number nickel, Ni, 28
Chemical series transition metals
Group, Period, Block 10, 4, d
Appearance lustrous, metallic and
silvery with a gold tinge
Standard atomic weight 58.6934(2) g·mol−1
Electron configuration [Ar] 3d8 4s2
Electrons per shell 2, 8, 16, 2
Physical properties
Phase solid
Density (near r.t.) 8.908 g·cm−3
Liquid density at m.p. 7.81 g·cm−3
Melting point 1728 K
(1455 °C, 2651 °F)
Boiling point 3186 K
(2913 °C, 5275 °F)
Heat of fusion 17.48 kJ·mol−1
Heat of vaporization 377.5 kJ·mol−1
Heat capacity (25 °C) 26.07 J·mol−1·K−1
Vapor pressure
P/Pa 1 10 100 1 k 10 k 100 k
at T/K 1783 1950 2154 2410 2741 3184
Atomic properties
Crystal structure face centered cubic
Oxidation states 2, 3
(mildly basic oxide)
Electronegativity 1.91 (Pauling scale)
Ionization energies
(more)
1st: 737.1 kJ·mol−1
2nd: 1753.0 kJ·mol−1
3rd: 3395 kJ·mol−1
Atomic radius 135 pm
Atomic radius (calc.) 149 pm
Covalent radius 121 pm
Van der Waals radius 163 pm
Miscellaneous
Magnetic ordering ferromagnetic
Electrical resistivity (20 °C) 69.3 nΩ·m
Thermal conductivity (300 K) 90.9 W·m−1·K−1
Thermal expansion (25 °C) 13.4 µm·m−1·K−1
Speed of sound (thin rod) (r.t.) 4900 m·s−1
Young's modulus 200 GPa
Shear modulus 76 GPa
Bulk modulus 180 GPa
Poisson ratio 0.31
Mohs hardness 4.0
Vickers hardness 638 MPa
Brinell hardness 700 MPa
CAS registry number 7440-02-0
Selected isotopes
Main article: Isotopes of nickel
iso NA half-life DM DE (MeV) DP
56Ni syn 6.075 d ε - 56Co
γ 0.158, 0.811 -
58Ni 68.077% Ni is stable with 30 neutrons
59Ni syn 76000 y ε - 59Co
60Ni 26.233% Ni is stable with 32 neutrons
61Ni 1.14% Ni is stable with 33 neutrons
62Ni 3.634% Ni is stable with 34 neutrons
63Ni syn 100.1 y β- 0.0669 63Cu
64Ni 0.926% Ni is stable with 36 neutrons
References
This box: view talk edit

Nickel (IPA: /ˈnɪkəl/) is a metallic chemical element in the periodic table that has the symbol Ni and atomic number 28.

[edit] Characteristics

Nickel

Nickel

Nickel is a silvery white metal that takes on a high polish. It belongs to the transition metals, and is hard and ductile. It occurs most usually in combination with sulfur and iron in pentlandite, with sulfur in millerite, with arsenic in the mineral nickeline, and with arsenic and sulfur in nickel glance.

Because of its permanence in air and its inertness to oxidation, it is used in coins, for plating iron, brass, etc., for chemical apparatus, and in certain alloys, such as German silver. It is magnetic, and is very frequently accompanied by cobalt, both being found in meteoric iron. It is chiefly valuable for the alloys it forms, especially many superalloys, and particularly stainless steel.

Nickel is one of the five ferromagnetic elements. However, the U.S. "nickel" coin is not magnetic, because it actually is mostly (75%) copper. The Canadian nickel minted at various periods between 1922-81 was 99.9% nickel, and these were magnetic.

The most common oxidation state of nickel is +2, though 0, +1, +3 and +4 Ni complexes are observed. It is also thought that a +6 oxidation state may exist, however, results are inconclusive.

The unit cell of nickel is a face centred cube with a lattice parameter of 0.356 nm giving a radius of the atom of 0.126 nm.

Nickel-62 is the most stable nuclide of all the existing elements; it is more stable even than Iron-56.

[edit] History

The use of Nickel is ancient, and can be traced back as far as 3500 BC. Bronzes from what is now Syria had a nickel content of up to 2%. Further, there are Chinese manuscripts suggesting that "white copper" (i.e. baitung) was used in the Orient between 1700 and 1400 BC. However, because the ores of nickel were easily mistaken for ores of silver, any understanding of this metal and its use dates to more contemporary times.

Minerals containing nickel (e.g. kupfernickel, meaning copper of the devil ("Nick"), or false copper) were of value for colouring glass green. In 1751, Baron Axel Fredrik Cronstedt was attempting to extract copper from kupfernickel (now called niccolite), and obtained instead a white metal that he called nickel.

In the United States, the term "nickel" or "nick" was originally applied to the copper-nickel Indian cent coin introduced in 1859. Later, the name designated the three-cent coin introduced in 1865, and the following year the five-cent shield nickel appropriated the designation, which has remained ever since. Coins of pure nickel were first used in 1881 in Switzerland. [1]

[edit] Biological role

Although not recognized until the 1970s, nickel plays numerous roles in biology. In fact urease (an enzyme which assists in the hydrolysis of urea) contains nickel. The NiFe-hydrogenases contain nickel in addition to iron-sulfur clusters. Such [NiFe]-hydrogenases characteristically oxidise H2. A nickel-tetrapyrrole coenzyme, F430, is present in the methyl coenzyme M reductase which powers methanogenic archaea.

One of the carbon monoxide dehydrogenase enzymes consists of an Fe-Ni-S cluster.[1]

Other nickel-containing enzymes include a class of superoxide dismutase[2] and a glyoxalase.[3]

[edit] Occurrence

The bulk of the nickel mined comes from two types of ore deposits. The first are laterites where the principal ore minerals are nickeliferous limonite: (Fe, Ni)O(OH) and garnierite (a hydrous nickel silicate): (Ni, Mg)3Si2O5(OH). The second are magmatic sulfide deposits where the principal ore mineral is pentlandite: (Ni, Fe)9S8.

In terms of supply, the Sudbury region of Ontario, Canada, produces about 30 percent of the world's supply of nickel. The Sudbury Basin deposit is theorized to have been created by a massive meteorite impact event early in the geologic history of Earth. Russia contains about 40% of the world's known resources at the massive Norilsk deposit in Siberia. The Russian mining company MMC Norilsk Nickel mines this for the world market, as well as the associated palladium. Other major deposits of nickel are found in New Caledonia, Australia, Cuba, and Indonesia. The deposits in tropical areas are typically laterites which are produced by the intense weathering of ultramafic igneous rocks and the resulting secondary concentration of nickel bearing oxide and silicate minerals. A recent development has been the exploitation of a deposit in western Turkey, especially convenient for European smelters, steelmakers and factories. The one locality in the United States where nickel is commercially mined is Riddle, Oregon, where several square miles of nickel-bearing garnierite surface deposits are located.

Based on geophysical evidence, most of the nickel on Earth is postulated to be concentrated in the Earth's core.

[edit] Applications

Nickel is used in many industrial and consumer products, including stainless steel, magnets, coinage, and special alloys. It is also used for plating and as a green tint in glass. Nickel is pre-eminently an alloy metal, and its chief use is in the nickel steels and nickel cast irons, of which there are innumberable varieties. It is also widely used for many other alloys, such as nickel brasses and bronzes, and alloys with copper, chromium, aluminum, lead, cobalt, silver, and gold.

Nickel consumption can be summarized as: nickel steels (60%), nickel-copper alloys and nickel silver (14%), malleable nickel, nickel clad and Inconel (9%), plating (6%), nickel cast irons (3%), heat and electric resistance alloys (3%), nickel brasses and bronzes (2%), others (3%).

In the laboratory, nickel is frequently used as a catalyst for hydrogenation, most often using Raney nickel, a finely divided form of the metal.

[edit] Extraction and purification

Nickel output in 2005

Nickel output in 2005

Nickel can be recovered using extractive metallurgy. Most sulfide ores have traditionally been processed using pyrometallurgical techniques to produce a matte for further refining. Recent advances in hydrometallurgy have resulted in recent nickel processing operations being developed using these processes. Most sulphide deposits have traditionally been processed by concentration through a froth flotation process followed by pyrometallurgical extraction. Recent advances in hydrometallurgical processing of sulphides has led to some recent projects being built around this technology.

Nickel is extracted from its ores by conventional roasting and reduction processes which yield a metal of >75% purity. Final purification in the Mond process to >99.99% purity This process was patented by L. Mond and was used in South Wales in the 20th century. Nickel is reacted with carbon monoxide at around 50 degrees Celsius to form volatile nickel carbonyl. Any impurities remain solid. The nickel carbonyl gas is passed into a large chamber at high temperatures which tens of thousands of nickel spheres are maintained in constant motion. The nickel carbonyl decomposes depositing pure nickel onto the nickel spheres (known as pellets). Alternatively, the nickel carbonyl may be decomposed in a smaller chamber at 230 degrees Celsius to create fine powders. The resultant carbon monoxide is re-circulated through the process. The highly pure nickel produced by this process is known as carbonyl nickel. A second common form of refining involves the leaching of the metal matte followed by the electro-winning of the nickel from solution by plating it onto a cathode. In many stainless steel applications, the nickel can be taken directly in the 75% purity form, depending on the presence of any impurities.

In 2005, Russia was the largest producer of nickel with about one-fifth world share closely followed by Canada, Australia and Indonesia, reports the British Geological Survey.

[edit] Compounds

  • Kamacite is a naturally occurring alloy of iron and nickel, usually in the proportion of 90:10 to 95:5 although impurities such as cobalt or carbon may be present. Kamacite occurs in nickel-iron meteorites.

See also nickel compounds.

[edit] Isotopes

Main article: isotopes of nickel

Naturally occurring nickel is composed of 5 stable isotopes; 58Ni, 60Ni, 61Ni, 62Ni and 64Ni with 58Ni being the most abundant (68.077% natural abundance). 18 radioisotopes have been characterised with the most stable being 59Ni with a half-life of 76,000 years, 63Ni with a half-life of 100.1 years, and 56Ni with a half-life of 6.077 days. All of the remaining radioactive isotopes have half-lives that are less than 60 hours and the majority of these have half-lives that are less than 30 seconds. This element also has 1 meta state.

Nickel-56 is produced in large quantities in type Ia supernovae and the shape of the light curve of these supernovae corresponds to the decay of nickel-56 to cobalt-56 and then to iron-56.

Nickel-59 is a long-lived cosmogenic radionuclide with a half-life of 76,000 years. 59Ni has found many applications in isotope geology. 59Ni has been used to date the terrestrial age of meteorites and to determine abundances of extraterrestrial dust in ice and sediment. Nickel-60 is the daughter product of the extinct radionuclide 60Fe (half-life = 1.5 Myr). Because the extinct radionuclide 60Fe had such a long half-life, its persistence in materials in the solar system at high enough concentrations may have generated observable variations in the isotopic composition of 60Ni. Therefore, the abundance of 60Ni present in extraterrestrial material may provide insight into the origin of the solar system and its early history.

Nickel-62 has the highest binding energy per nucleon of any isotope for any element. Isotopes heavier than 62Ni cannot be formed by nuclear fusion without losing energy.

Nickel-48, discovered in 1999, is the most proton-rich nickel isotope known . With 28 protons and 20 neutrons 48Ni is "doubly magic" (like 208Pb) and therefore unusually stable [4].

The isotopes of nickel range in atomic weight from 48 u (48-Ni) to 78 u (78-Ni). Nickel-78's half-life was recently measured to be 110 milliseconds and is believed to be an important isotope involved in supernova nucleosynthesis of elements heavier than iron. [2]

[edit] Precautions

Exposure to nickel metal and soluble compounds should not exceed 0.05 mg/cm³ in nickel equivalents per 40-hour work week. Nickel sulfide fume and dust is believed to be carcinogenic, and various other nickel compounds may be as well.[5][6]

Nickel carbonyl, [Ni(CO)4], is an extremely toxic gas. The toxicity of metal carbonyls is a function of both the toxicity of a metal as well as the carbonyl's ability to give off highly toxic carbon monoxide gas, and this one is no exception. It is explosive in air.[citation needed]

Sensitised individuals may show an allergy to nickel affecting their skin. The amount of nickel which is allowed in products which come into contact with human skin is regulated by the European Union. In 2002 researchers found amounts of nickel being emitted by 1 and 2 Euro coins far in excess of those standards. This is believed to be due to a galvanic reaction.[7]

[edit] Metal Value

As of April 5, 2007 nickel was trading at 52,300 $US/mt (52.30 $US/kg, 23.51 $US/lb or 1.47 $US/oz) ,[3] [4]. Interestingly, the US nickel coin contains 0.04 oz (1.25gm) of nickel, which at this new price is worth 6.5 cents, along with 3.75 grams of copper worth about 3 cents, making the metal value over 9 cents. Since a nickel is worth 5 cents, this made it an attractive target for melting by people wanting to sell the metals at a profit. However, the United States Mint, in anticipation of this practice, implemented new interim rules on December 14, 2006, subject to public comment for 30 days, which criminalize the melting and export of cents and nickels.[5] Violators can be punished with a fine of up to $10,000 and/or imprisoned for a maximum of five years.

[edit] References

  1. ^ Jaouen, G., Ed. Bioorganometallics: Biomolecules, Labeling, Medicine; Wiley-VCH: Weinheim, 2006
  2. ^ Szilagyi, R. K. Bryngelson, P. A.; Maroney, M. J.; Hedman, B.; Hodgson, K. O.; Solomon, E. I."S K-Edge X-ray Absorption Spectroscopic Investigation of the Ni-Containing Superoxide Dismutase Active Site: New Structural Insight into the Mechanism" Journal of the American Chemical Society 2004, volume 126, 3018-3019.
  3. ^ Thornalley, P. J., "Glyoxalase I--structure, function and a critical role in the enzymatic defence against glycation", Biochemical Society Transactions, 2003, 31, 1343-8.
  4. ^ W., P. (October 23, 1999). Twice-magic metal makes its debut - isotope of nickel. Science News. Retrieved on 2006-09-29.
  5. ^ KS Kasprzak, FW Sunderman Jr, K Salnikow. Nickel carcinogenesis. Mutation Research. 2003 Dec 10;533(1-2):67-97. PubMed
  6. ^ JK Dunnick, MR Elwell, AE Radovsky, JM Benson, FF Hahn, KJ Nikula, EB Barr, CH Hobbs. Comparative Carcinogenic Effects of Nickel Subsulfide, Nickel Oxide, or Nickel Sulfate Hexahydrate Chronic Exposures in the Lung. Cancer Research. 1995 Nov 15;55(22):5251-6. PubMed
  7. ^ O Nestle, H Speidel, MO Speidel. High nickel release from 1- and 2-euro coins. Nature. 419, 132 (12 September 2002). free abstract


BW Bewise Inc. Willy Chen willy@tool-tool.com bw@tool-tool.com www.tool-tool.com skype:willy_chen_bw mobile:0937-618-190 Head &Administration Office No.13,Shiang Shang 2nd St., West Chiu Taichung,Taiwan 40356 TEL:+886 4 24710048 / FAX:+886 4 2471 4839 N.Branch 5F,No.460,Fu Shin North Rd.,Taipei,Taiwan S.Branch No.24,Sec.1,Chia Pu East Rd.,Taipao City,Chiayi Hsien,Taiwan

Welcome to BW tool world! We are an experienced tool maker specialized in cutting tools. We focus on what you need and endeavor to research the best cutter to satisfy users demand. Our customers involve wide range of industries, like mold & die, aerospace, electronic, machinery, etc. We are professional expert in cutting field. We would like to solve every problem from you. Please feel free to contact us, its our pleasure to serve for you. BW product including: cutting toolaerospace tool .HSS Cutting toolCarbide end millsCarbide cutting toolNAS Cutting toolCarbide end millAerospace cutting tool、Фрезеры’Carbide drillHigh speed steelMilling cutterCVDD(Chemical Vapor Deposition Diamond )’PCBN (Polycrystalline Cubic Boron Nitride) ’Core drillTapered end millsCVD Diamond Tools Inserts’PCD Edge-Beveling Cutter(Golden Finger’PCD V-Cutter’PCD Wood tools’PCD Cutting tools’PCD Circular Saw Blade’PVDD End Mills’diamond tool ‘Single Crystal Diamond ‘Metric end millsMiniature end millsNAS986’DIN6537’DIN6537’NAS965’NAS907’NAS897’NAS937’DIN1837’DIN338’DIN340’DIN1897’DIN6539’DIN6529’DIN6527’DIN6528’DIN6535HA’DIN1833’ Специальные режущие инструменты

Пустотелое сверло DIN212’DIN850’DIN335’DIN334’DIN347’Pilot reamerFraises’Fresas con mango’ PCD (Polycrystalline diamond) ‘Frese’Electronics cutterStep drillMetal cutting sawDouble margin drillGun barrelAngle milling cutterCarbide burrsCarbide tipped cutterChamfering toolIC card engraving cutterSide cutterNAS toolDIN toolSpecial toolMetal slitting sawsShell end millsSide and face milling cuttersSide chip clearance sawsLong end millsStub roughing end millsDovetail milling cuttersCarbide slot drillsCarbide torus cuttersAngel carbide end millsCarbide torus cuttersCarbide ball-nosed slot drillsMould cutterTool manufacturer.

Bewise Inc. www.tool-tool.com

beeway 發表在 痞客邦 留言(0) 人氣()

Bewise Inc. www.tool-tool.com Reference source from the internet.

Από τη Βικιπαίδεια, την ελεύθερη εγκυκλοπαίδεια

Μετάβαση σε: πλοήγηση, αναζήτηση

Το χημικό στοιχείο Νικέλιο είναι ένα μέταλλο με ατομικό αριθμό 28 και ατομικό βάρος 58,71, Ειδικό βάρος 8,9 , θερμοκρασία τήξης 1453 C° και θερμοκρασία βρασμού 2732 C°. Χημικό σύμβολο: Ni.

Το σύνηθες νικέλιο είναι μίγμα 5 ισοτόπων των: 58 (66,4%), 60 (26,7%), 61 (1,6%), 62 (3,7%) και 64 (1,6%).

To Ni είναι αργυρόλευκο και κάτω από τους 385 βαθμούς ελαφρώς μαγνητικό μέταλλο. Είναι σκληρό όπως ο σίδηρος ή και σκληρότερο. Επίσης είναι ελατό, ανθεκτικότερο του σιδήρου και αμετάβλητο στον αέρα ως συμπαγές. Στιλβομένο παίρνει λαμπρή όψη. Διαλύεται στο νιτρικό οξύ, ενώ στο υδροχλωρικό οξύ διαλύεται αργά και "εν βρασμώ". Δεν αντιδρά με τα αλκάλια. Επειδή διαμοιρασμένο διαλύει 17 φορές τον όγκο του το υδρογόνο, χρησιμοποιείται ευρύτατα ως καταλύτης υδρογόνωσης των ελαίων στη παρασκευή λιπών.

[Επεξεργασία] Προέλευση

Κατ΄ αρχήν το Ni απαντάται ως μεταλλικό μαζί με τον Fe στους μετεωρίτες. Ως ορυκτά νικελίου ενδιαφέρον έχουν ο νικελίνης ή μιλλερίνης NiS, το αρσενονικέλιο NiAs, το αντιμονονικέλιο NiSb, ο αρσενονικελοπυρίτης (Ni,Fe)AsS, ο αντιμονονικελοπυρίτης NiSbS, ο χλοανθίτης (Ni,Co,Fe)As2 κ.ά.

[Επεξεργασία] Πηγές

Κυριότερες πηγές του νικελίου είναι το ορυκτό γαρνιερίτης, υδατούχο πυριτικό άλας, που απαντάται κυρίως στη Νέα Καληδονία και οι σιδηροπυρίτες (πετλανδίτες) του Καναδά που περιέχουν 3% νικέλιο. Στην Ελλάδα απαντάται ο γαρνιερίτης με 1-3% νικέλιο στη περιοχή της Λάρυμνας όπου από το 1953 βρίσκονται εγκαταστάσεις παρασκευής σιδηρονικελίου με ταυτόχρονη εκμετάλλευση και του σιδηριούχου μεταλλεύματος όπου απαντάται το νικέλιο.

[Επεξεργασία] Εφαρμογές

Εκτός της χρήσης του ως καταλύτης σε μικροποσότητες, σε μεγάλες ποσότητες χρησιμοποιείται κυρίως σε κράματα με το χάλυβα (νικελιοχάλυβα) για επαύξηση σκληρότητας και ανθεκτικότητας. Έτσι εξ αυτού παρασκευάζονται πυροσωλήνες (πυροβόλων όπλων) και στη θωράκιση αρμάτων μάχης. Χαρακτηριστική επίσης είναι και η νικέλωση (ή επινικέλωση) διαφόρων υλικών κυρίως οικιακής χρήσης για προστασία από τη διάβρωση. Άλλες χρήσεις είναι στη κατασκευή διαφόρων εργαλείων, αντικειμένων πολυτελείας, χημικών οργάνων, εξαρτήματα ραδιοφώνων και ηλεκτρονικών συσκευών, ασυρμάτων και τέλος στη παραγωγή ειδικών κραμάτων νικελίου.

[Επεξεργασία] Κράματα Νικελίου

Τα κράματα του Νικελίου είναι πολυάριθμα αν και δεν κατασκευάζονται σε ποσότητες. Έκαστο εξ αυτών βρίσκει ευρεία αφαρμογή λόγω των ιδιαίτερων ιδιοτήτων τους. Πολλά εξ αυτών περιέχουν μικρές ποσότητες πυριτίου, μαγγανίου, άνθρακος και θείου. Των περισσοτέρων το όνομα προέρχεται από τα στοιχεία που τα συγκροτούν. Σημαντικότερα κράματα Νικελίου είναι:

  • Χρωμιονικέλιο (Ni+Cr)
  • Ινκονέλ (Ni+Fe+Cr). Ανθεκτικό στη θερμότητα και διάβρωση, χρησιμοποιείται σε εγκαταστάσεις γαλακτοκομίας.
  • Περμαλλόυ (Ni+Fe)
  • Nichrome (Ni+Fe+Cr) διάφορο του "ινκονέλ". Χρησιμοποιείται στα σύρματα αντιστάσεων.
  • Χαστελλόυ (Ni+Fe+Mo). Ανθεκτικό στα οξέα.
  • Χιμπερνίκ (Ni+Fe), διάφορο του "περμαλλόυ".
  • Κονσταντάν (Ni+Cu). Έχει υψηλή ηλεκτρική ανθεκτικότητα.
  • Ινβάρ (Ni+Fe), διάφορο των "περμαλλόυ" και "χιμπερνίκ". Έχει χαμηλό συντελεστή θερμικής διαστολής και χρησιμοποιείται στα πρότυπα μέτρων και σταθμών ως και στους διμεταλλικούς θερμοστάτες.
  • Έλινβαρ . Χρησιμοποιείται στη κατασκευή ελατηρίων ρολογιών και οργάνων ακριβείας.
  • Θερμοανθεκτικό Ni (Ni+Fe+Cr), διάφορο των "Ινκονέλ" και "Nichrome".
  • Χαλκονικέλιο (Ni+Cu), διάφορο του "Κονσταντάν" και τέλος το
  • Νικέλιο κερμάτων ή "νικέλινα κέρματα" (Ni+Cu).

Άλλα κράματα νικελίου είναι ο ορείχαλκος με νικέλιο και ο αλπακάς ή νεάργυρος. Επίσης κράμα νικελίου και αργύρου χρησιμοποιείται στην επιμετάλλωση που δίνει επικαλύμματα ανώτερα του αργύρου. Το γνωστό κράμα "μονέλ" λαμβάνεται από τα ορυκτά που περιέχουν θειούχο χαλκό και θειούχο νικέλιο.

[Επεξεργασία] Ενώσεις νικελίου

Στις ενώσεις του το νικέλιο παρουσιάζεται κυρίως ως δισθενές και πολύ σπάνια ως τετρασθενές. Όλα τα απλά άλατα του Ni καθώς και τα υδατικά διαλύματα αυτών είναι ανοικτοπράσινα. Τα άνυδρα άλατα συνήθως έχουν άλλο χρώμα. Επίσης όλα τα άλατα του στοιχείου αυτού σχηματίζουν σύμπλοκες ενώσεις. Σπουδαιότερες αυτών είναι:


BW Bewise Inc. Willy Chen willy@tool-tool.com bw@tool-tool.com www.tool-tool.com skype:willy_chen_bw mobile:0937-618-190 Head &Administration Office No.13,Shiang Shang 2nd St., West Chiu Taichung,Taiwan 40356 TEL:+886 4 24710048 / FAX:+886 4 2471 4839 N.Branch 5F,No.460,Fu Shin North Rd.,Taipei,Taiwan S.Branch No.24,Sec.1,Chia Pu East Rd.,Taipao City,Chiayi Hsien,Taiwan

Welcome to BW tool world! We are an experienced tool maker specialized in cutting tools. We focus on what you need and endeavor to research the best cutter to satisfy users demand. Our customers involve wide range of industries, like mold & die, aerospace, electronic, machinery, etc. We are professional expert in cutting field. We would like to solve every problem from you. Please feel free to contact us, its our pleasure to serve for you. BW product including: cutting toolaerospace tool .HSS Cutting toolCarbide end millsCarbide cutting toolNAS Cutting toolCarbide end millAerospace cutting tool、Фрезеры’Carbide drillHigh speed steelMilling cutterCVDD(Chemical Vapor Deposition Diamond )’PCBN (Polycrystalline Cubic Boron Nitride) ’Core drillTapered end millsCVD Diamond Tools Inserts’PCD Edge-Beveling Cutter(Golden Finger’PCD V-Cutter’PCD Wood tools’PCD Cutting tools’PCD Circular Saw Blade’PVDD End Mills’diamond tool ‘Single Crystal Diamond ‘Metric end millsMiniature end millsNAS986’DIN6537’DIN6537’NAS965’NAS907’NAS897’NAS937’DIN1837’DIN338’DIN340’DIN1897’DIN6539’DIN6529’DIN6527’DIN6528’DIN6535HA’DIN1833’ Специальные режущие инструменты

Пустотелое сверло DIN212’DIN850’DIN335’DIN334’DIN347’Pilot reamerFraises’Fresas con mango’ PCD (Polycrystalline diamond) ‘Frese’Electronics cutterStep drillMetal cutting sawDouble margin drillGun barrelAngle milling cutterCarbide burrsCarbide tipped cutterChamfering toolIC card engraving cutterSide cutterNAS toolDIN toolSpecial toolMetal slitting sawsShell end millsSide and face milling cuttersSide chip clearance sawsLong end millsStub roughing end millsDovetail milling cuttersCarbide slot drillsCarbide torus cuttersAngel carbide end millsCarbide torus cuttersCarbide ball-nosed slot drillsMould cutterTool manufacturer.

Bewise Inc. www.tool-tool.com

beeway 發表在 痞客邦 留言(0) 人氣()

Bewise Inc. www.tool-tool.com Reference source from the internet.

Eigenschaften

Allgemein
Name, Symbol, Ordnungszahl Nickel, Ni, 28
Serie Übergangsmetalle
Gruppe, Periode, Block 10, 4, d
Aussehen glänzend, metallisch, silbrig
Massenanteil an der Erdhülle 0,01 %
Atomar
Atommasse 58,6934 u
Atomradius (berechnet) 135 (149) pm
Kovalenter Radius 121 pm
Van-der-Waals-Radius 163 pm
Elektronenkonfiguration [Ar] 3d84s2
Elektronen pro Energieniveau 2, 8, 16, 2
Austrittsarbeit 5,01–5,2 eV
1. Ionisierungsenergie 737,1 kJ/mol
2. Ionisierungsenergie 1753 kJ/mol
3. Ionisierungsenergie 3395 kJ/mol
4. Ionisierungsenergie 5300 kJ/mol
Physikalisch
Aggregatzustand fest
Modifikationen
Kristallstruktur kubisch flächenzentriert
Dichte 8908 kg/m3
Mohshärte 3,8
Magnetismus ferromagnetisch
Schmelzpunkt 1728 K (1455 °C)
Siedepunkt 3186 K (2913 °C)
Molares Volumen 6,59 · 10−6 m3/mol
Verdampfungswärme 370,4 kJ/mol
Schmelzwärme 17,47 kJ/mol
Dampfdruck

237 Pa bei 1726 K

Schallgeschwindigkeit 4970 m/s bei 293,15 K
Spezifische Wärmekapazität 440 J/(kg · K)
Elektrische Leitfähigkeit 14,3 · 106 S/m
Wärmeleitfähigkeit 90,7 W/(m · K)
Chemisch
Oxidationszustände 2, seltener −1, 0, 1, 3, 4
Oxide (Basizität) NiO, Ni2O3 (leicht basisch)
Normalpotential −0,257 V (Ni2+ + 2e → Ni)
Elektronegativität 1,91 (Pauling-Skala)
Isotope
Isotop NH t1/2 ZM ZE MeV ZP
56Ni

{syn.}

6,077 d ε 2,136 56Co
57Ni

{syn.}

35,60 h ε 3,264 57Co
58Ni

68,077 %

Stabil
59Ni

{syn.}

76000 a ε 1,072 59Co
60Ni

26,233 %

Stabil
61Ni

1,14 %

Stabil
62Ni

3,634 %

Stabil
63Ni

{syn.}

100,1 a β 2,137 63Cu
64Ni

0,926 %

Stabil
65Ni

{syn.}

2,5172 h β 2,137 65Cu
66Ni

{syn.}

54,6 h β 0,225 66Cu
NMR-Eigenschaften
Spin γ in
rad·T−1·s−1
E fL bei
B = 4,7 T
in MHz
61Ni −3/2 2,39 · 107 0,00357 17,9
Sicherheitshinweise
Gefahrstoffkennzeichnung
aus RL 67/548/EWG, Anh. 1
Gefahrensymbole
Gesundheitsschädlich
Xn
Gesundheits-
schädlich
R- und S-Sätze R: 40-43
S: (2-)22-36
Soweit möglich und gebräuchlich, werden SI-Einheiten verwendet.
Wenn nicht anders vermerkt, gelten die angegebenen Daten bei Standardbedingungen.

Nickel ist ein chemisches Element mit dem Symbol Ni und der Ordnungszahl 28. Der Name Nickel leitet sich von einem Erdgeist ab. Diese Sage kommt daher, dass Nickelerze im Mittelalter (ähnlich Cobalterze) nicht nutzbar waren. Vor allem das Erz Nickelin (Rotnickelkies, NiAs) hat eine ähnliche Farbe wie Kupfer, sondert aber beim Rösten einen üblen Geruch nach Arsen ab.

Geschichte [Bearbeiten]

Nickel wurde bereits 3400 v. Chr. benutzt, aber wohl nicht absichtlich und gezielt. Bronze aus dem Gebiet des heutigen Syriens enthielt bis zu 2 % Nickel, das wohl schon im Kupfer- oder Zinnerz enthalten war. Chinesische Schriften bezeugen, dass in Asien „weißes Kupfer“ (Neusilber) zwischen 1700 und 1400 v. Chr. verwendet wurde. Nickel wurde erstmals 1751 von Axel Frederic Cronstedt rein dargestellt. Er nannte das Metall 1754 Nickel, abgeleitet von schwedisch kopparnickel (Kupfernickel), dem aus dem Erzgebirge stammenden Wort für Rotnickelkies. So nannten Bergleute das Erz, das aussah wie Kupfererz, aus dem sich aber kein Kupfer gewinnen ließ, als sei es von Berggeistern („Nickeln“) behext. Eine ähnliche Etymologie findet sich bei Cobalt.

Die erste Münze aus reinem Nickel wurde 1881 geprägt.

Vorkommen [Bearbeiten]

Nickel

Nickel

Nickel kommt gediegen nur in Eisenmeteoriten und im Erdkern vor. Es ist relativ weit, meist aber in geringen Konzentrationen verbreitet. Sein Massenanteil an der Erdhülle beträgt ca. 0,01 %. Wichtige Nickelerze sind: Garnierit (Mg,Ni)3(OH))4[Si2O5], Gelbnickelkies NiS und Rotnickelkies NiAs. Der größte Teil der Nickelproduktion wird aus nickelhaltigen Erzen, v. a. Nickelmagnetkies, der Chalkopyrit CuFeS2, Pentlandit (Ni,Fe)9S8 und Spuren von Edelmetallen enthält. Um das Nickel wirtschaftlich abbauen zu können, muss der Nickelgehalt des Erzes mindestens 0,5 % betragen. Die wichtigsten Vorkommen sind in Kanada (Sudbury-Becken), Russland (Norilsk und Halbinsel Kola), Australien und Kuba. Ein häufiger Begleiter des Nickels ist Cobalt.

Produktion [Bearbeiten]

Land Tausend Tonnen % der Weltproduktion
Russland 300,7 23,4
Australien 218,0 17,0
Kanada 162,8 12,7
Neukaledonien 111,9 8,7
Indonesien 103,5 8
5 Länder total 896,9 69,8
Welt 1 284,2 100,0

[1]

Gewinnung und Darstellung [Bearbeiten]

Darstellung des Kupfer-Nickel-Feinsteins [Bearbeiten]

Der überwiegende Teil des Nickels wird aus nickel- und kupferhaltigen Eisenerzen wie Nickelmagnetkies gewonnen. Um die Gewinnung wirtschaftlich zu machen, muss das Nickel erstmal durch Flotation auf ca. 5 % Nickelgehalt angereichert werden. Danach wird das Erz ähnlich wie bei der Kupferherstellung geröstet. Dabei wird das Erz zunächst vorgeröstet, um einen Teil des Eisensulfids in Eisenoxid umzuwandeln. Anschließend werden Silikate und Koks dazugegeben, um das Eisenoxid als Eisensilikat zu verschlacken. Gleichzeitig bildet sich der Kupfer-Nickel-Rohstein aus Nickel-, Kupfer und Eisensulfid. Da dieser spezifisch schwerer als die Eisensilicat-Schlacke ist, können die beiden Phasen getrennt abgestochen werden.

Anschließend wird der Rohstein in einen Konverter gefüllt und Siliciumdioxid dazugegeben. Es wird Sauerstoff eingeblasen. Dadurch wird das restliche Eisensulfid zu Eisenoxid geröstet und danach verschlackt. Es entsteht der Kupfer-Nickel-Feinstein, der zu ca. 80 % aus Kupfer und Nickel, zu ca. 20 % aus Schwefel besteht.

Gewinnung von Rohnickel [Bearbeiten]

Zur Gewinnung des Rohnickels muss das Nickel vom Kupfer abgetrennt werden. Dazu verschmilzt man den Feinstein mit Natriumsulfid Na2S. Dabei bildet sich nur zwischen Kupfer- und Natriumsulfid ein leicht schmelzendes Doppelsulfid. Es bilden sich zwei einfach zu trennende Phasen aus Kupfer-Natrium-Doppelsulfid (flüssig) und Nickelsulfid. Nach der Abtrennung wird das Nickelsulfid zu Nickeloxid geröstet und danach mit Koks zu Nickel reduziert.

Gewinnung von Rein- und Reinstnickel [Bearbeiten]

Um Reinnickel zu gewinnen, wird das Rohnickel elektrolytisch raffiniert. Dazu wird in einer Elektrolysezelle das Rohnickel als Anode, ein Nickelfeinblech als Kathode geschaltet. Als Elektrolyt dient eine Nickelsalzlösung. Während der Elektrolyse gehen an der Anode Nickel und alle unedleren Bestandteile in Lösung. Alle edleren Bestandteile bleiben fest und fallen als Anodenschlamm unter die Elektrode. Dieser dient als wichtige Quelle für die Herstellung von Edelmetallen, wie Gold oder Platin. An der Kathode werden Nickelionen aus der Lösung zu Nickel reduziert, alle unedleren Bestandteile bleiben in Lösung. Die Reinheit von Elektrolytnickel beträgt ca. 99,9 %.

Für die Gewinnung von Reinstnickel mit einer Reinheit von 99,99 % gibt es als Spezialverfahren das Mond-Verfahren, benannt nach Ludwig Mond, der 1890 Nickeltetracarbonyl entdeckte. Dieses Verfahren beruht auf der Bildung und Zersetzung des Nickeltetracarbonyls. Dazu wird feinverteiltes Rohnickelpulver bei 80 °C in einen Kohlenmonoxidstrom gebracht. Dabei bildet sich gasförmiges Nickeltetracarbonyl. Dieses wird von Flugstaub befreit und in eine 180 °C heiße Zersetzungskammer geleitet. Darin befinden sich kleine Nickelkugeln. An diesen zersetzt sich das Nickeltetracarbonyl wieder zu Nickel und Kohlenmonoxid. Es entsteht dadurch sehr reines Nickel.

\mathrm{Ni_{(s)} + 4 \ CO_{(g)} \ \rightleftharpoons \ Ni(CO)_{4(g)}}

Eigenschaften [Bearbeiten]

physikalische Eigenschaften [Bearbeiten]

Nickel ist ein silbrig-weißes Metall. Es ist hart, schmiedbar, duktil und lässt sich ausgezeichnet polieren. Nickel ist wie Eisen und Cobalt ferromagnetisch. Seine Curie-Temperatur beträgt 354 °C. Es gibt zwei Nickel-Modifikationen. α-Nickel liegt in einer hexagonal-dichtesten, β-Nickel in einer kubisch-dichtesten Kugelpackung vor, wobei β-Nickel die stabilere Modifikation ist. Die Dichte des Nickels beträgt 8,9 g/cm³, seine Härte 3,8 nach Mohs.

chemische Eigenschaften [Bearbeiten]

Nickel ist bei Raumtemperatur gegen Luft und Wasser sehr beständig. Verdünnte Säuren greifen Nickel nur sehr langsam an. Gegenüber konzentrierten, oxidierenden Säuren (Salpetersäure) tritt analog zum Eisen Passivierung ein. Löslich ist Nickel in verdünnter Salpetersäure. Der häufigste Oxidationszustand ist +2, seltener werden +1 und +3 beobachtet. Im Nickeltetracarbonyl hat Nickel die Oxidationszahl 0. Nickel(II)-Salze lösen sich in Wasser unter Bildung von Aquakomplexen mit grünlicher Farbe.

Fein verteiltes Nickel reagiert mit Kohlenmonoxid bei 50 bis 80 °C zu Nickeltetracarbonyl, Ni(CO)4, einer farblosen, sehr giftigen Flüssigkeit. Diese dient als Zwischenprodukt zur Herstellung von reinstem Nickel nach dem Mond-Verfahren. Bei 180–200 °C zerfällt Nickeltetracarboyl wieder in Nickel und Kohlenmonoxid.

Biologische Funktion [Bearbeiten]

Nickel ist ein Spurenelement, das im menschlichen Organismus in sehr geringen Mengen (Tagesbedarf 25–30 µg) benötigt wird. Tatsächlich nehmen wir aber etwa 90–100 µg pro Tag auf – der Bedarf ist daher auf jeden Fall durch normale Mischkost gedeckt. Möglicherweise beeinflusst Nickel auch die Eisenaufnahme und -verwertung. Viele, wenn nicht alle Hydrogenasen enthalten zusätzlich zu Eisen-Schwefel-Clustern auch Nickel. Nickelzentren sind ein charakteristisches Element in Hydrogenasen, deren Funktion es ist, zu oxidieren anstatt Wasserstoff zu erzeugen. Das Nickelzentrum scheint seinen Oxidationszustand zu ändern, und es gibt Hinweise darauf, dass das Nickelzentrum der aktive Teil dieser Enzyme sein könnte.

In der Elektrophysiologie werden Nickel-Ionen dazu verwendet, spannungsaktivierte Calciumkanäle zu blockieren.

Gesundheitliche Probleme [Bearbeiten]

Da viele Menschen eine Nickelallergie haben – Nickel ist der häufigste Auslöser für Kontaktallergien – werden Metalle und Legierungen, die mit der Haut in Kontakt kommen können, in den letzten Jahren seltener vernickelt. Das Einatmen des Staubs und auch die Berührung vernickelter Gegenstände kann zu Allergien und entzündlichen Reaktionen führen. Bei Hautkontakt kann die Nickelkrätze auftreten, eine entzündliche Veränderung der Haut.

Siehe hierzu auch: Was Bakterienzellwände mit Nickelallergien zu tun haben in wissenschaft.de (04.05.2007)


Nickel bzw. seine Verbindungen wirken bereits ab 50 mg toxisch und können zu chronischen Schäden führen. Akute Vergiftungen von höheren Dosen äußern sich durch Übelkeit und Kopfschmerzen.

Des Weiteren wirken Nickelmetall bei inhalativer Aufnahme und seine Verbindungen vermutlich karzinogen.

Wirtschaftliche Bedeutung [Bearbeiten]

Nickel wird als Metall in geringen Mengen benötigt, der größte Teil der Produktion geht in die Produktion von Nickellegierungen. Die Reserven an nach heutigen Gesichtspunkten abbauwürdigen Nickelvorkommen liegen zwischen 70 und 170 Millionen Tonnen. Gegenwärtig werden weltweit jährlich weit mehr als 1 Mill. Tonnen (2006: 1,340 Mill. Tonnen[2]) gefördert.

Verwendung als Metall [Bearbeiten]

Reines Nickelmetall wird in feinverteilter Form als Katalysator bei der Hydrierung ungesättigter Fettsäuren verwendet. Auf Grund seiner chemischen Beständigkeit wird Nickel für Apparate im chemischen Labor und der chemischen Industrie verwendet (z. B. Nickeltiegel für Aufschlüsse). Aus Nickelmetall werden Nickellegierungen mit genau bekanntem Verhältnis (z. B. für Münzen) hergestellt. Nickel dient als Überzugsmetall zum Korrosionsschutz (sog. Vernickeln) von Metallgegenständen.

Verwendung als Legierung [Bearbeiten]

Nickel ist ein bedeutendes Legierungsmetall, das hauptsächlich zur Stahlveredelung verwendet wird. Der größte Teil des Nickels geht dorthin. Es macht Stahl korrosionsbeständig und erhöht seine Härte, Zähigkeit und Duktilität. Mit Nickel hochlegierte Stähle werden bei besonders korrosiven Umgebungen eingesetzt. Der Edelstahl V2A enthält 8 % Nickel neben 18 % Chrom, V4A (Markennamen Cromargan oder Nirosta) 11 % neben 18 % Chrom und 2 % Molybdän.

Weitere bekannte Nickellegierungen sind:

  • Neusilber, eine Kupfer-Nickel-Zink-Legierung mit 10–26 % Nickelanteil, die besonders korrosionsbeständig ist und hauptsächlich für Bestecke und elektrotechnische Geräte verwendet wird.
  • Konstantan, eine Legierung aus 55 % Kupfer und 45 % Nickel, die über einen großen Temperaturbereich einen annähernd konstanten spezifischen elektrischen Widerstand besitzt. Sie wird vor allem für genaue Widerstände verwendet.
  • Monel, ebenfalls eine Kupfer-Nickel-Legierung mit ca. 65 % Nickel, 33 % Kupfer und 2 % Eisen, die sich durch besondere chemische Beständigkeit, u. a. gegen Fluor auszeichnet. Sie wird deshalb für Fluor-Druckgasflaschen verwendet.
  • Raney-Nickel, eine Nickel-Aluminium-Legierung, die ein wichtiger Katalysator für die Hydrierung organischer Verbindungen ist.

Genaueres über Herstellung und Verwendung der Legierungen findet man unter Nickellegierung.

Nachweis [Bearbeiten]

Bis(dimethylglyoximato)nickel(II)

Bis(dimethylglyoximato)nickel(II)

Die Nachweisreaktion für die in Wasser meist mit grüner Farbe löslichen Nickel(II)-salze wird in der quantitativen Analytik gravimetrisch sowie qualitativ im Kationentrenngang mit Dimethylglyoxim-Lösung (Tschugajews Reagens) durchgeführt. Nickelsalze werden zuvor ggf. durch Ammoniumsulfid als grauschwarzes Nickel(II)-sulfid ausgefällt und in Salpetersäure gelöst. Der spezifische Nachweis ist dann durch Reaktion mit Dimethylglyoxim in ammoniakalischer Lösung möglich. Dabei fällt das himbeerrote Bis(dimethylglyoximato)nickel(II) als Komplex aus:

\mathrm{Ni^{2+} + \ 2 \ C_4H_8N_2O_2 \rightarrow Ni(C_4H_7N_2O_2)_2 \downarrow + \ 2 \ H^+}.

Da Nickel aus ammoniakalischer Lösung mit Dimethylglyoxim quantitativ ausfällt, ist dieser Nachweis auch für die quantitative Nickelanalyse verwendbar. Ähnlich anderen Schwermetallen wird Nickel heute meist durch Atomspektroskopie oder Massenspektrometrie nachgewiesen.

Verbindungen [Bearbeiten]

Nickel kommt in Verbindungen hauptsächlich in der Oxidationsstufe +II vor. Die Stufen 0, +I, +III und +IV sind selten und meist instabil. Nickel bildet eine Vielzahl meist farbiger Komplexe.

anorganische Nickelverbindungen [Bearbeiten]

organische Nickelverbindungen [Bearbeiten]

Nickeltetracarbonyl Ni(CO)4 ist eine farblose, sehr giftige Flüssigkeit. Sie ist ein wichtiges Zwischenprodukt im Mond-Verfahren. Nickeltetracarbonyl war die erste entdeckte Metallcarbonyl-Verbindung.

Nickelkomplexe [Bearbeiten]

Nickel und dabei v. a. Nickel(II)-Ionen bildet viele, meist farbige Komplexe. Die Koordinationszahlen 6, 5 oder 4 sind am häufigsten. Bei schwachen, einzähnigen Liganden, beispielsweise Wasser, liegen sie meist als oktaedrische und paramagnetische high-spin Komplexe mit Koordinationszahl 6 vor. Starke Liganden wie Cyanid bilden quadratisch-planare, diamagnetische low-spin-Komplexe. Ebenfalls einen quadratisch-planaren Komplex bildet Dimethylglyoxim, da der Komplex zusätzlich durch Wasserstoffbrücken stabilisiert ist. Letzterer Bis(dimethylglyoximato)nickel(II)-Komplex ist für den naßchemischen Nickelnachweis von Bedeutung. Anionische Nickelkomplexe enden auf "-niccolat".

Quellen [Bearbeiten]

  1. L'état du monde 2005, annuaire économique géopolique mondial
  2. Handelsblatt

Literatur [Bearbeiten]

  • Holleman-Wiberg: Lehrbuch der Anorganischen Chemie, Verlag de Gruyter, Berlin, 101. Auflage (1995) ISBN 3-11-012641-9

Weblinks [Bearbeiten]

Commons: Nickel – Bilder, Videos und Audiodateien
Wiktionary: Nickel – Bedeutungserklärungen, Wortherkunft, Synonyme und Übersetzungen


BW Bewise Inc. Willy Chen willy@tool-tool.com bw@tool-tool.com www.tool-tool.com skype:willy_chen_bw mobile:0937-618-190 Head &Administration Office No.13,Shiang Shang 2nd St., West Chiu Taichung,Taiwan 40356 TEL:+886 4 24710048 / FAX:+886 4 2471 4839 N.Branch 5F,No.460,Fu Shin North Rd.,Taipei,Taiwan S.Branch No.24,Sec.1,Chia Pu East Rd.,Taipao City,Chiayi Hsien,Taiwan

Welcome to BW tool world! We are an experienced tool maker specialized in cutting tools. We focus on what you need and endeavor to research the best cutter to satisfy users demand. Our customers involve wide range of industries, like mold & die, aerospace, electronic, machinery, etc. We are professional expert in cutting field. We would like to solve every problem from you. Please feel free to contact us, its our pleasure to serve for you. BW product including: cutting toolaerospace tool .HSS Cutting toolCarbide end millsCarbide cutting toolNAS Cutting toolCarbide end millAerospace cutting tool、Фрезеры’Carbide drillHigh speed steelMilling cutterCVDD(Chemical Vapor Deposition Diamond )’PCBN (Polycrystalline Cubic Boron Nitride) ’Core drillTapered end millsCVD Diamond Tools Inserts’PCD Edge-Beveling Cutter(Golden Finger’PCD V-Cutter’PCD Wood tools’PCD Cutting tools’PCD Circular Saw Blade’PVDD End Mills’diamond tool ‘Single Crystal Diamond ‘Metric end millsMiniature end millsNAS986’DIN6537’DIN6537’NAS965’NAS907’NAS897’NAS937’DIN1837’DIN338’DIN340’DIN1897’DIN6539’DIN6529’DIN6527’DIN6528’DIN6535HA’DIN1833’ Специальные режущие


beeway 發表在 痞客邦 留言(0) 人氣()

Bewise Inc. www.tool-tool.com Reference source from the internet.

Fra Wikipedia, den frie encyklopædi

Gå til: navigation, søg
28 KoboltNikkelKobber
Udseende

Skinnende metal
Generelt
Navn(e): Nikkel
Kemisk symbol: Ni
Atomnummer: 28
Atommasse: 58.6934(2) g/mol
Grundstofserie: Overgangsmetal
Gruppe: 10
Periode: 4
Blok: d
Elektronkonfiguration: [Ar] 4s2 3d8
Elektroner i hver skal: 2, 8, 16, 2
Kovalent radius: 121 pm
Van der Waals radius: 163 pm
Kemiske egenskaber
Oxidationstrin: 2, 3 (mildt basisk oxid)
Elektronegativitet: 1,91 (Paulings skala)
Fysiske egenskaber
Tilstandsform: Fast
Krystalstruktur: Kubisk fladecentreret
Massefylde: 8,908 g/cm3
Massefylde på væskeform: 7,81 g/cm3
Smeltepunkt: 1455 °C
Kogepunkt: 2913 °C
Smeltevarme: 17,48 kJ/mol
Fordampningsvarme: 377,5 kJ/mol
Varmeledningsevne: (300 K) 90,9 W·m–1K–1
Varmeudvidelseskoeff.: (25°C) 13,4 μm/m·K
Elektrisk resistivitet: (20°C) 69,3 nΩ·m
Magnetiske egenskaber: Ferromagnetisk
Mekaniske egenskaber
Youngs modul: 200 GPa
Forskydningsmodul: 76 GPa
Kompressibilitetsmodul: 280 GPa
Poissons forhold: 0,31
Hårdhed (Mohs' skala): 4,0
Hårdhed (Vickers): 638 MPa
Hårdhed (Brinell): 700 MPa

Nikkel (af kupfernickel; et ældre tysk ord for det nikkelholdige mineral nikkelin) er det 28. grundstof i det periodiske system, og har det kemiske symbol Ni: Under normale temperatur- og trykforhold optræder dette overgangsmetal som et sølvhvidt, skinnende metal med en høj massefylde.

[redigér] Egenskaber

[redigér] Fysiske egenskaber

Nikkel er et hårdt, men formbart metal, med en overflade der kan poleres temmelig glat. Nikkel er magnetisk og et af de fem grundstoffer der er ferromagnetiske. Det optræder meget ofte sammen med kobolt.

[redigér] Kemiske egenskaber

Nikkel er kemisk modstandsdygtigt overfor såvel atmosfærisk luft som vand, og fortyndede syrer angriber kun langsomt metallet. Normalt optræder stoffet i kemiske forbindelser med oxidationstrin +2, og Ni2+-ioner giver vandige opløsninger en grønlig farve. Ind imellem ses nikkel også med oxidationstrin +1, +3 og +4. Ved temperaturer mellem 50 og 80°C reagerer nikkel med kulilte og dannernikkeltetrakarbonyl, en farveløs, stærkt giftig væske; heri har nikkel oxidationtrin 0.

[redigér] Tekniske anvendelser

Nikkel anvendes primært i rustfrit stål og andre mere specialiserede legeringer, men også til magneter, i mønter, som grønt farvestof i glas, og til at galvanisere andre metaller så de får et beskyttende "overtræk" af det korrosionsbestandige nikkel.

I laboratorier bruges nikkel, oftest i form af findelt såkaldt Raney-nikkel, som katalysator i hydreringsprocesser.

[redigér] Forekomst

Nikkel-"briketter" fra Botswana.

Nikkel-"briketter" fra Botswana.

Langt de meste af det nikkel der udvindes, kommer fra to typer malm-aflejringer: I lateritter, hvor det optræder i form af nikkelholdig limonit, (Fe,Ni)O(OH), og garnierit, (Ni,Mg)3Si2O5(OH), samt i magmatiske svovl-aflejringer der primært består af pentlandit: (Ni,Fe)9S8.

Sudbury-regionen i Ontario i Canada står for 30 % af verdensproduktionen af nikkel. Nikkel indgår i metalliske meteoroider, og ifølge én teori stammer nikkelforekomsten ved Sudbury fra en enorm, nikkelholdig meteorit der ramte området i en fjern fortid. I Norilsk i Rusland ligger 40% af verdens aflejringer af nikkel-malm. Andre betydelige forekomster findes i Ny Kaledonien, Australien, Cuba og Indonesien.

Det meste af Jordens indhold af nikkel menes at være "sunket" ind til kernen tidligt i vor klodes historie.

[redigér] Nikkel i biologien

Nikkel spiller en rolle i en lang række biokemiske processer; noget man først opdagede i 1970'erne. Eksempelvis indgår stoffet i Urease; det første protein der blev fremstillet i krystallinsk form. Mennesker har brug for mellem 90 og 100 mikrogram nikkel i den daglige føde.

På den anden side er nikkel samtidig et almindeligt allergifremkaldende stof (allergen): 15% af alle kvinder og 1% af mænd har nikkelallergi — forskellen i kønsfordelinen skyldes formentlig at kvinder almindeligvis bærer flere smykker og oftere er piercet.

[redigér] Historie

Anvendelsen af nikkel kan spores tibage til 3500 år f.kr.: Bronze fra det område der i dag er Syrien indeholdt op mod to procent nikkel, og dertil er der kinesiske skrifter der omtaler brugen af såkaldt "hvidt kobber" i perioden fra mellem 1400 og 1700. Men da nikkelholdige mineraler blev forvekslet med tilsvarende sølvholdige mineraler, er man først i nyere tid nået til en dybere forståelse af dette metal og dets anvendelsesmuligheder.

Mineralet nikkelin (NiAs) blev tidligere kaldt kupfernickel på tysk; et ord der omtrent kan oversættes til "forhekset kobber": Det ligner, men indeholder ikke, kobber. Den svenske kemiker Axel Fredrik Cronstedt søgte efter kobber i nikkelin i 1751, men fandt i stedet et "nyt", hvidt metal som han kaldte nikkel.

De første mønter af nikkel blev præget i Schweiz i 1881.

[redigér] Isotoper af nikkel

Naturligt forekommende nikkel består af isotoperne 58Ni (den mest udbredte med 68,077%), 60Ni, 61Ni, 62Ni og 64Ni. Dertil kender man 18 radioaktive isotoper, hvoraf de mest "sejlivede" er 59Ni med en halveringstid på 76.000 år, og 63Ni med 100,1 års halveringstid. De øvrige isotoper har halveringstider fra nogle få dage og nedefter.

56Ni dannes i store mængder i supernovaer af type Ia; lyset fra disse "stjerne-eksplosioner" aftager efter et mønster der svarer til nikkel-56's henfald til kobolt-56 og siden til jern-56. Nikkel-59 dannes kontinuerligt i universet, og kan derfor bruges til en lang række daterings-opgaver indenfor geologien, for eksempel bestemmelse af hvor længe en meteorit har været på Jorden. Nikkel-60 er et henfaldsprodukt af den nu "uddøde" isotop jern-60. Men da denne isotop havde en ganske lang halveringstid, kan variationer i koncentrationen af nikkel-60 fortælle noget om Solsystemets dannelse og tidlige historie.

Nikkel-48, som blev opdaget i 1999, er den isotop der har den højeste "andel" af protoner i forhold til neutronerne i atomkernen. 48 er et "heldigt" eller stabilt antal nukleider, så til trods for "overvægten" af protoner er denne kerne påfaldende stabil.


BW Bewise Inc. Willy Chen willy@tool-tool.com bw@tool-tool.com www.tool-tool.com skype:willy_chen_bw mobile:0937-618-190 Head &Administration Office No.13,Shiang Shang 2nd St., West Chiu Taichung,Taiwan 40356 TEL:+886 4 24710048 / FAX:+886 4 2471 4839 N.Branch 5F,No.460,Fu Shin North Rd.,Taipei,Taiwan S.Branch No.24,Sec.1,Chia Pu East Rd.,Taipao City,Chiayi Hsien,Taiwan

Welcome to BW tool world! We are an experienced tool maker specialized in cutting tools. We focus on what you need and endeavor to research the best cutter to satisfy users demand. Our customers involve wide range of industries, like mold & die, aerospace, electronic, machinery, etc. We are professional expert in cutting field. We would like to solve every problem from you. Please feel free to contact us, its our pleasure to serve for you. BW product including: cutting toolaerospace tool .HSS Cutting toolCarbide end millsCarbide cutting toolNAS Cutting toolCarbide end millAerospace cutting tool、Фрезеры’Carbide drillHigh speed steelMilling cutterCVDD(Chemical Vapor Deposition Diamond )’PCBN (Polycrystalline Cubic Boron Nitride) ’Core drillTapered end millsCVD Diamond Tools Inserts’PCD Edge-Beveling Cutter(Golden Finger’PCD V-Cutter’PCD Wood tools’PCD Cutting tools’PCD Circular Saw Blade’PVDD End Mills’diamond tool ‘Single Crystal Diamond ‘Metric end millsMiniature end millsNAS986’DIN6537’DIN6537’NAS965’NAS907’NAS897’NAS937’DIN1837’DIN338’DIN340’DIN1897’DIN6539’DIN6529’DIN6527’DIN6528’DIN6535HA’DIN1833’ Специальные режущие инструменты

Пустотелое сверло DIN212’DIN850’DIN335’DIN334’DIN347’Pilot reamerFraises’Fresas con mango’ PCD (Polycrystalline diamond) ‘Frese’Electronics cutterStep drillMetal cutting sawDouble margin drillGun barrelAngle milling cutterCarbide burrsCarbide tipped cutterChamfering toolIC card engraving cutterSide cutterNAS toolDIN toolSpecial toolMetal slitting sawsShell end millsSide and face milling cuttersSide chip clearance sawsLong end millsStub roughing end millsDovetail milling cuttersCarbide slot drillsCarbide torus cuttersAngel carbide end millsCarbide torus cuttersCarbide ball-nosed slot drillsMould cutterTool manufacturer.

Bewise Inc. www.tool-tool.com

beeway 發表在 痞客邦 留言(0) 人氣()

Bewise Inc. www.tool-tool.com Reference source from the internet.

Nikl
Atomové číslo 28
Relativní atomová hmotnost 58.6934(2) amu
Elektronová konfigurace [Ar] 3d8 4s2
Skupenství Pevné
Oxidační čísla Ni1-, Ni1+, Ni2+, Ni3+, Ni4+,
Teplota tání 1 455 °C, (1 728 K)
Teplota varu 2 913 °C, (3 186 K)
Elektronegativita (Pauling) 1,91
Počet přírodních izotopů 5
Hustota 8,908 g/cm3
Hustota při teplotě tání 7,81 g/cm3
Tvrdost 4
Registrační číslo CAS 7440-02-0
Vzhled čistý kovový nikl
Specifické teplo 0,107 kJ/mol
Atomový poloměr 1,24 Å
Iontový poloměr Ni2+ 0,69 Å
Iontový poloměr Ni3+ 0,56 Å nebo 0,60 Å (nízkospinové a vysokospinové uspořádání)
Iontový poloměr Ni4+ 0,48 Å
Teplo tání 17,2 kJ/mol
Výparné teplo 375 kJ/mol
Slučovací teplo 429 kJ/mol
Elektrický odpor při 20°C 6,84 μΩ

Nikl, chemická značka Ni (lat. Niccolum) je bílý, feromagnetický, kujný a tažný kov. Vyznačuje se vysokou elektrickou vodivostí. Slouží jako součást různých slitin a k povrchové ochraně jiných kovů před korozí. Vzhledem k jeho toxicitě je jeho praktické využití postupně omezováno.

[editovat] Základní fyzikálně - chemické vlastnosti

Typický kovový ferromagnetický prvek stříbrobílý, silně lesklý kov. Nikl se dá výborně leštit, je velmi tažný a dá se kovat, svářet a válcovat na plech nebo vytahovat v dráty. Nikl vede špatně elektrický proud a teplo a ještě hůře je vedou jeho slitiny. Patří mezi přechodné prvky, které mají valenční elektrony v d-sféře. Ve sloučeninách se vyskytuje především v mocenství Ni+2, existují i sloučeniny Ni+1, zatímco látky obsahující Ni+3 jsou nestálé a působí silně oxidačně.

Ve zředěných minerálních kyselinách se nikl rozpouští, ale hůře než železo. V koncentrovaných kyselinách se rozpouští ještě o něco hůře a koncentrovanou kyselinou dusičnou se pouze pasivuje. Nepůsobí na něj suché halogenovodíky. Za normální teploty je vůči působení vzduchu i vody nikl poměrně stálý a používá se proto často k povrchové ochraně jiných kovů, především železa. V jemně rozptýleném stavu je nikl pyroforický (je samozápalný na vzduchu). Při zahřívání v čistém kyslíku shoří nikl za jiskření a i s jinými prvky se za vyšší teploty slučuje (chlor, brom, fosfor, arsen, antimon, hliník, bor, křemík, síra...). Je také značně stálý vůči působení alkálií a používá se proto k výrobě zařízení pro práci s alkalickými hydroxidy neboli louhy.

Kovový nikl rozkládá při mírném žáru amoniak na dusík a vodík. Nikl má schopnost pohlcovat velká množství vodíku a to zejména za zvýšené teploty. Proto se houbovitý nikl využívá jako katalyzátor při hydrogenacích.

[editovat] Historický vývoj

Předměty ze slitin niklu se podařilo nalézt v Číně a jejich stáří je více než 2 000 let. Nikl byl objeven roku 1751 německým chemikem baronem Axelem Frederikem Cronstedtem při pokusech o izolaci mědi z rudy. Nový prvek pojmenoval podle jeho výskytu v rudě nikelinu. V hornické mluvě bylo tehdy slovo nikl hanlivým výrazem pro rudu, ve které horníci očekávali, že bude obsahovat měď, ale při jejím zpracovávání odolávala veškerému úsilí při jejím získávání. Ještě určitou dobu po objevu niklu zastávali někteří chemici názor, že nikelin je měděná ruda. Teprve Torbern Bergman roku 1775 popsal přesněji povahu niklu (jeho podobnost s železem) a připravil nikl v čistém stavu.

[editovat] Výskyt

Nikelin - NiAs

Nikelin - NiAs
Pentlandit - (Ni, Fe)9S8

Pentlandit - (Ni, Fe)9S8
Garnierit - (Ni, Mg)3Si2O5(OH)

Garnierit - (Ni, Mg)3Si2O5(OH)
Těžiště niklu v Sudbury v kanadě

Těžiště niklu v Sudbury v kanadě

Jako relativně lehký prvek je nikl v přírodě poměrně hojně zastoupen. V zemské kůře jeho průměrný obsah činí kolem 100 mg/kg, čemuž odpovídá 99 ppm (parts per milion = počet částic na 1 milion částic) a ve výskytu na zemi se řadí na 7. místo. V mořské vodě se jeho koncentrace pohybuje na úrovni 5,4 mikrogramu v jednom litru. Předpokládá se, že ve vesmíru připadá na jeden atom niklu přibližně 700 000 atomů vodíku.

S ryzím niklem se v přírodě setkáme pouze vzácně, a to v meteoritech, dopadajících na Zemi z kosmického prostoru. Obvykle se vyskytuje jako oxid ve směsi s železem v rudách je lateritech, pod které patří limonit (Fe, Ni)O(OH) a garnierit (Ni, Mg)3Si2O5(OH) nebo jako sulfid nikelnato-železitý – pentlandit (Ni, Fe)9S8. K nejdůležitějším rudám niklu patří millerit NiS, nikelin NiAs, breithauptit NiSb, chloantit NiAs2, gersdorfit NiAsS, smaltin (Ni, Co, Fe)As2 a ullmanit NiSbS. Geologové předpokládají, že velká část niklu přítomného na Zemi je soustředěna v oblasti jejího středu – v zemském jádře a kůře FeNiCo.

Největším současně těženým nalezištěm niklových rud, odkud pochází 1/4 světové produkce niklu, je kanadský Sudbury, které bylo objeveno roku 1883 při výstavbě trati pro Kanadskou pacifickou železnici a nachází se v provincii Ontario. Předpokládá se, že původem těchto rud je obrovský meteorický zásah Země v dávných geologických dobách. Další oblasti s bohatým výskytem niklových rud jsou např. Rusko, Nová Kaledonie, Austrálie, Kuba a Indonésie.

[editovat] Výroba

Nejdůležitější rudy niklu jsou novokaledonský garnierit (Ni, Mg)3Si2O5(OH) a kanadský pyrrhotin, což je zvětralý křemičitan hořečnato-nikelnatý proměnlivého složení s velkým množstvím síry, který obsahuje průměrně 3 % niklu. Při obou výrobách probíhá získávání niklu přes tyto dva kroky.

2 Ni3S2 + 7 O2 → 6 NiO + 4 SO2
NiO + C → Ni + CO
  • Při výrobě niklu z garnieritu se využívá mimořádná afinita niklu k síře. Ruda se taví se sloučeninami snadno odštěpujícími síru a tím vzniká Ni3S2 a nečistoty přechází jako křemičitany do strusky. V konvertoru se částečným vypražením, opakovaným tavením s přísadou křemene odstraní železo a zbude tak čistý Ni3S2. Následným pražením se z sulfidu získá oxid nikelnatý NiO. K oxidu nikelnatému se přidá dřevěné uhlí a směs se žíhá, tím se získá práškový nikl nebo se k oxidu nikelnatému a dřevěnému uhlí přidá ještě voda a mouka (jako pojidla), ve formě se vytvarují krychle a při žíhání vzniká nikl v podobě krychlí.
  • Při výrobě niklu z pyrrhotinu se nejprve pražením snižuje obsah síry v této rudě. Díky vysokému obsahu mědi v rudě se získá směs sulfidu niklu a mědi. Redukcí této směsi se dá získat slitina mědi a niklu. Tato slitina nemá praktický význam, a proto je nutné sulfid mědi a niklu od sebe oddělit. To se provádí oxfordským způsobem. Sulfidy niklu a mědi se taví v šachtové peci s hydrogensíranem sodným a koksem. Při tavení se suflid niklu usazuje na dnu, zatímco sulfid mědi se drží na povrchu taveniny. Po vychladnutí se oddělí horní vrstva od spodní a odstraní se další nečistoty. Po pražení s koksem se získá surový nikl, který obsahuje 95 % niklu a 1-2 % mědi. Surový nikl se buď elektrolyticky rafinuje nebo se zpracovává na čistý nikl karbonylovým způsobem.
  • Karbonylový způsob je založen na přípravě tetrakarbonylu niklu Ni(CO)4 a jeho následném rozkladu. Při této výrobě se může vycházet ze surového niklu získaného oxfordským způsobem, která probíhá při teplotě 50°C a působením oxidu uhelnatého za obyčejného tlaku, což je tzv. Mondův proces. Karbonyl niklu se dá získat přímo ze sulfidu niklu působením oxidu uhelnatého při tlaku 200 atmosfér a teploty 200-250°C. Rozklad karbonylu probíhá za teploty 200°C a normálního tlaku. Tímto způsobem se získá velmi čistý nikl 99,95 %.
  • K přečišťování niklu se také používá elektrolytická rafinace. Hlavně u surového niklu, který obsahuje platinu, protože z anodového kalu, který přitom odpadá, může být platina a kovy, které ji doprovází snadno získány. Nikl získaný tímto způsobem je z 99,99 % čistý.

[editovat] Využití

[editovat] Antikorozní ochrana

chemické nádobí z čistého niklu
chemické nádobí z čistého niklu

Díky poměrně velmi dobré stálosti kovového niklu vůči atmosférickým vlivům i vodě se často nanáší velmi tenká niklová vrstva na povrchy méně odolných kovů, nejčastěji železa. Nanášení se provádí elektrolyticky obvykle z alkalického prostředí, kde je nikl přítomen jako kyanidový komplex a na pokovovaný předmět je vložen záporný elektrický potenciál, působí tedy jako katoda. Běžně se takto upravují jednoduché pracovní nástroje jako šroubováky nebo klíče, ale také některé chirurgické nástroje a pomůcky se niklují.

Značné odolnosti kovového niklu se využívá při výrobě chemického nádobí, které je možno vystavit účinkům alkalických tavenin jako je hydroxid sodný nebo uhličitan draselný bez výraznějšího poškození. V kyselém prostředí je však nutno použít mnohem dražších kelímků z platiny nebo slitin platiny s rhodiem nebo iridiem.

[editovat] Slitiny

Mince z slitiny niklu

Mince z slitiny niklu

Ocelářský průmysl je rozhodně největším světovým spotřebitel niklu. Společně se železem, chromem a manganem patří mezi základními kovy, které slouží pro legování ocelí. Je třeba mít na zřeteli, že se ve světě vyrábí tisíce typů ocelí, které se značně liší svým složením, způsobem zpracování a následně pak svými vlastnostmi jako je tvrdost, pevnost, kujnost, chemická odolnost a další. V řadě z nich je kromě výše uvedených prvků přítomno i menší množství dalších kovů (molybden, wolfram, kobalt a další).

Nikl je součástí velmi odolných slitin jako např. Monelův kov o složení 68% Ni a 32 % Cu se stopami manganu a železa, používaný pro výrobu lodních šroubů ale i kuchyňského vybavení. Slitiny Alnico se skládají z železa, kobaltu, niklu, hliníku a mědi slouží pro výrobu velmi silných permanentních magnetů.

Nikl patří již dlouhou dobu mezi tzv. mincovní kovy, používané k ražení mincí, obvykle ve slitinách s mědí. V České republice jsou těchto slitin vyráběny především mince o nominální hodnotě 1, 2 a 5 Kč. V USA a Kanadě se pro minci o hodnotě 5 centů používá označení nickel, do češtiny překládané jako niklák. V Evropské unii se tento fakt týká minci s nominální hodnotou 1 a 2 eura. Tyto mince se vyrábí ze slitiny, která se nazývá nové stříbro neboli argentan či nejčastěji alpaka. Tato slitina se do Evropy dostala z Činy v 18. století, ale mince se z ní začaly razit ve velkém až po 2. světové válce. Alpaka obsahuje 10-20 % niklu, 40-70 % mědi a 5-40 % zinku. Slitina je stříbrobílá, chemicky odolná a dá se dobře leštit.

Významné místo patří slitinám niklu ve výrobě šperků. V současné době poměrně populární bílé zlato je obvykle právě slitinou zlata, niklu, mědi a zinku. Nevýhodou těchto materiálů je skutečnost, že řada lidí trpí na slitiny niklu alergií a nemůže šperky z těchto slitin dlouhodobě nosit.

Zvláštní „slitina“ niklu a stříbra slouží často jako materiál pro elektrických kontaktů v silně namáhaných silnoproudých spínačích, které musí vykazovat vysokou úroveň spolehlivosti. Jde o směs o složení přibližně 90% Ag + 10% Ni.Protože oba kovy se při tomto poměru v tavenině nemísí, vyrábí se slitina poměrně komplikovaným spékáním práškového materiálu za vysokých teplot a tlaků. Výslednému materiálu potom stříbro dodává vynikající elektrickou vodivost a nikl zase výhodné mechanické vlastnosti - tvrdost a odolnost proti otěru. Nikl se využívá také ve slitinách s tvarovou pamětí jako slitina NiTi.

K dalším významným slitinám niklu patří konstantan, což je slitina 40 % niklu a 60 % mědi, která má konstantní velký elektrický odpor. Nikelin je slitina 31 % niklu, 56 % mědi, 13 % zinku a má také velký konstantní elektrický odpor. Manganin je slitina 4 % niklu, 12 % manganu a 84 % chromu, která se používá na zhotovování přesných elektrických odporů. Chromnikl neboli nichrom je slitina 60 % niklu a 40 % chromu a využívá se na vinutí elektrických pecí.

[editovat] Galvanické články

Galvanické niklové články s možností opětného dobíjení

Galvanické niklové články s možností opětného dobíjení

Značná část celosvětově vyrobeného niklu končí v současné době jako surovina pro elektrické články s možností mnohonásobného dobíjení. Nikl-hydridové baterie slouží jako zdroj elektrické energie v řadě mobilních telefonů, přenosných svítilen a dalších.

Pro zdroje s vyšší elektrickou kapacitou se používají spíše nikl - kadmiové galvanické elektrické články typu NiCd. Vykazují velmi dobré elektrické vlastnosti (kapacita x hmotnost) a lze i je zpětně dobíjet. Slouží často jako zdroj elektrického proudu v automobilech a dalších dopravních prostředcích. Na rozdíl od klasických olověných akumulátorů se v nich jako elektrolyt používá roztok alkalického hydroxidu. Reakci, při které dochází ke vzniku elektrického proudu lze vyjádřit jako:

2 NiO(OH) + Cd + 2 H2O ↔ 2 Ni(OH)2 + Cd(OH)2

Vzhledem k prokázané toxicitě kadmia se však výroba těchto baterií postupně omezuje.

[editovat] Katalyzátory

Raneyův nikl

Raneyův nikl

Jemně rozptýlený elementární nikl - Raneyův nikl -je velmi účinným hydrogenačním katalyzátorem, který působí reakci dvojné vazby mezi uhlíkovými atomy s vodíkem za vzniku vazby jednoduché. Schematicky:

R2C=CR2 + H2 → HR2C–CR2H

Této reakce se využívá v potravinářství k výrově ztužených tuků z rostlinných olejů. Běžné rostlinné oleje jsou chemicky estery nenasycených mastných kyselin s několika dvojnými vazbami v molekule. Převedením části těchto dvojných vazeb na vazby jednoduché vzniká rostlinný tuk, který má za normální teploty tuhou konzistenci.

[editovat] Sloučeniny

Nikl tvoří sloučeniny v oxidačních stavech od Ni-1 do Ni+4, přičemž v záporných stavech se jedná o organokovové sloučeniny a v kladných je nejstabilnější Ni+2 a vyšší stavy se běžně nevyskytují, neboť se na vzduchu i ve vodě rozkládají.

[editovat] Anorganické sloučeniny

Ve svých stabilních sloučeninách se nikl vyskytuje převážně jako kladně dvojmocný Ni+2. Nikelnaté soli běžných anorganických kyselin jsou v hydratované podobě zelené krystalické látky dobře rozpustné ve vodě, v bezvodém stavu jsou obvykle jinak zbarveny. Výjimkou je špatně rozpustný uhličitan nikelnatý NiCO3 a černý silně nerozpustný sulfid nikelnatý NiS. Vyšší oxidační stavy se běžně nevyskytují, protože se tyto sloučeniny na vzduchu i ve vodě rozkládají. Stabilní jsou pouze v inertních atmosférách a proto nemají velký význam.

Uhličitan nikelnatý

Uhličitan nikelnatý
Chlorid nikelnatý

Chlorid nikelnatý
Síran nikelnatý

Síran nikelnatý
  • Hydroxid nikelnatý Ni(OH)2 je jablkově zelená látka, nerozpustná ve vodě a hydroxidech, rozpustná v kyselinách a amoniakálních roztocích. Připravuje se srážením roztoků nikelnaté soli roztokem alkalického hydroxidu.
  • Sulfid nikelnatý NiS je černý prášek velmi nerozpustný ve vodě a hydroxidech, v čerstvém stavu rozpustná v kyselinách po odstátí nerozpustná. V přírodě se vyskytuje jako nerost millerit. Připravuje se srážením roztoků nikelnatých solí alkalickým sulfidem.
  • Bromid nikelnatý NiBr2 je v hydratované podobě zelená krystalická látka, dobře rozpustná ve vodě. Připravuje se spalováním niklu v bromu.
  • Jodid nikelnatý NiI2 je v hydratované podobě zelená krystalická látka, dobře rozpustná ve vodě. Připravuje se spalováním niklu v jodu.
  • Kyanid nikelnatý Ni(CN)2 je v bezvodém stavu hnědožlutý prášek, v hydratovaném stavu jablkově zelená práškovitá látka, nerozpustná ve vodě. V roztoku tvoří komplexní sloučeniny (viz. níže) kyanonikelnatano. Kyanid nikelnatý se připravuje srážením nikelnaté soli roztokem soli alkalického kyanidu.
  • Síran nikelnatý NiSO4 se v hydratované podobě hexahydrátu vylučuje ve dvou modifikacích, první je stálá mezi 31,5°C a 53,3°C a má modrozelenou barvu a druhá je stálá nad 53,3°C a má zelenou barvu. Za obyčejné teploty krystaluje heptahydrát v smaragdově zelených krystalech a označuje se jako nikelnatá skalice. V přírodě se vyskytuje jako nerost morenosit. V roztoku tvoří se sírany alkalických kovů podvojné sloučeniny. Síran nikelnatý se připravuje rozpouštěním oxidu nikelnatého nabo uhličitanu nikelnatého ve zředěné kyselině sírové.

[editovat] Komplexní sloučeniny

Nikl vytváří přednostně komplexní sloučeniny s dusíkatými ligandy, avšak ve vodném roztoku je běžný hexaaquanikelnatý kation [Ni(H2O)6]2+, v amoniakálním roztoku lze nahradit některé nebo všechny molekuly vody molekulami amoniaku a tím vzniká hexaaminnikelnatý kation [Ni(NH3)6]2+. V oxidačním stavu Ni+3 jsou některé komplexy stabilní na vzduchu, ale ve vodě se hned rozkládají. Komplexy Ni+4 jsou velmi výjimečně stabilní na vzduchu a ve vodě se všechny bez výjimky rozkládají.

Nikl vytváří nejvíce komplexů v oktaedrickém a čtvercovém liga

beeway 發表在 痞客邦 留言(0) 人氣()

Bewise Inc. www.tool-tool.com Reference source from the internet.

Cobalt - Níquel - Coure
Ni
Pd

General
Nom, símbol, nombre Níquel, Ni, 28
Sèrie química Metall de transició
Grup, període, bloc 10, 4 , d
Densitat, duresa Mohs 8908 kg/m3, 4,0
Aparença Llustrós, metàl·lic
Aparença del Níquel
Propietats atòmiques
Pes atòmic 58,6934 uma
Radi mitjà 135 pm
Radi atòmic calculat 149 pm
Radi covalent 121 pm
Radi de Van der Waals 163 pm
Configuració electrònica [Ar]3d84s2
Estats d'oxidació (òxid) 2,3 (lleument bàsic)
Estructura cristal·lina Cúbica centrada en les cares
Propietats físiques
Estat de la matèria Sòlid (ferromagnètic)
Punt de fusió 1728 K
Punt d'ebullició 3186 K
Entalpia de vaporització 370,4 kJ/mol
Entalpia de fusió 17,47 kJ/mol
Pressió de vapor 237 Pa a 1726 K
Velocitat del so 4970 m/s a 293,15 K
Informació diversa
Electronegativitat 1,91 (Pauling)
Calor específica 440 J/(kg·K)
Conductivitat elèctrica 14,3 x 106 m-1·ohm-1
Conductivitat tèrmica 90,7 W/(m·K)
1er potencial d'ionització 737,1 kJ/mol
2on potencial d'ionització 1753 kJ/mol
3er potencial d'ionització 3395 kJ/mol
4t potencial d'ionització 5300 kJ/mol
Isòtops més estables
iso. AN Període de semidesintegració CD ED MeV PD
56Ni Sintètic 6,077 dies ε 2,136 56Co
58Ni 68,077% Ni és estable amb 30 neutrons
59Ni Sintètic 76000 anys ε 1,072 59Co
60Ni 26,233% Ni és estable amb 32 neutrons
61Ni 1,14% Ni és estable amb 33 neutrons
62Ni 3,634% Ni és estable amb 34 neutrons
63Ni Sintètic 100,1 anys β- 2,137 63Cu
64Ni 0,926% Ni és estable amb 36 neutrons
Valors en el SI d'unitats i en CNPT (0º C i 1 atm),
excepte quan s'indica el contrari.

El níquel és un element químic de nombre atòmic 28 i símbol Ni situat en el grup 10 de la taula periòdica dels elements.

[edita] Característiques principals

És un metall de transició de color blanc platejat, conductor de l'electricitat i de la calor, és dúctil i mal·leable pel que es pot laminar, polir i forjar fàcilment, i presenta cert ferromagnetisme. Es troba en distints minerals, en meteorits (aliat amb ferro) i, en principi, hi ha níquel en l'interior de la Terra.

És resistent a la corrosió i se sol utilitzar com a recobriment, per mitjà de electrodeposició. El metall i algun dels seus aliatges, com el metall Monel, s'utilitzen per a manejar el fluor i alguns fluorurs pel fet que reacciona amb dificultat amb aquests productes.

El seu estat d'oxidació més normal és +2. Pot presentar-ne altres, s'han observat estats d'oxidació 0, +1 i +3 en complexos, però són molt poc característics.

[edita] Aplicacions

Aproximadament el 65% del níquel consumit s'empra en la fabricació d'acer inoxidable austenític i un altre 12% en superaliatges de níquel. El restant 23% es repartix entre altres aliatges, bateríes recarregables, catàlisi, encunyació de moneda, recobriments metàl·lics i fosa:

[edita] Rol biològic

Moltes hidrogenases, encara que no totes, contenen níquel, especialment en aquelles la funció de les quals és oxidar l'hidrogen. Sembla ser que el níquel pateix canvis en el seu estat d'oxidació el que indicaria que el nucli de níquel és la part activa de l'enzim.

El níquel està també present en l'enzim metil com a reductasa i en bacteris metanogènics.

[edita] Història

L'ús del níquel es remunta aproximadament al segle IV aC generalment junt amb el coure ja que apareix ben sovint en els minerals d'aquest metall; bronzes originaris de l'actual Síria tenen continguts de níquel superiors al 2%. Manuscrits xinesos suggerixen que el «coure blanc» s'utilitzava a Orient cap a 1400-1700 aC, no obstant la facilitat de confondre les menes de níquel amb les de plata indueix a pensar que en realitat l'ús del níquel va ser posterior, cap al segle IV aC.

Els minerals que contenen níquel, com la niquelina, s'han emprat per a pintar el vidre. El 1751 Axel Frederik Cronstedt, intentant extraure coure de la niquelina, va obtindre un metall blanc que va anomenar níquel, ja que els miners de Hartz atribuïen al «vell Nick» (el diable) el que alguns minerals de coure no pogueren ser treballats i el metall responsable d'això va resultar ser el descobert per Cronstedt en la niquelina, o kupfernickel, diable del coure, com s'anomenava i s'anomena encara al mineral.

La primera moneda de níquel pur s'encunyà el 1881.

[edita] Abundància i obtenció

El níquel apareix en forma de metall en els meteors junt amb el ferro (formant els aliatges kamacita i taenita) i es creu que es troba en el nucli de la Terra també amb el ferro. Combinat es troba en minerals diversos com garnierita, millerita, pentlandita i pirrotina.

Les mines de Nova Caledònia (Austràlia) i Canadà produeixen avui en dia el 70% del níquel consumit. Altres productors són Cuba, Puerto Rico, Rússia i Xina.

[edita] Isòtops

En la naturalesa es troben 5 isòtops estables: Ni-58, Ni-60, Ni-61, Ni-62 i Ni-64, sent el més lleuger el més abundant (68,077%). S'han caracteritzat a més 18 isòtops radioactius dels que els més estables són el Ni-59, el Ni-63 i el Ni-56 amb períodes de semidesintegració de 76.000 anys, 100,1 anys i 6,077 dies respectivament. Els altres radioisòtops, amb masses atòmiques des de 52 uma (Ni-52) a 74 uma (Ni-74), tenen períodes de semidesintegració inferiors a 60 hores i la majoria no arriben els 30 segons. El níquel té a més un estat metaestable.

El Ni-56 es produeix en grans quantitats en supernoves de tipus II corresponent la forma de la corba de llum a la desintegració del Ni-56 en Co-56 i aquest en Fe-56.

El Ni-59 és un isòtop de llarga vida obtingut per cosmogènesis. Aquest isòtop ha trobat diverses aplicacions en la datació radiomètrica de meteorits i en la determinació de l'abundància de pols extraterrestre en gels i sediments. El Ni-60 és fill del Fe-60 (període de semidesintegració d'1,5 milions d'anys) la persistència del qual en el Sistema Solar en concentracions prou altes ha pogut causar variacions observables en la composició isotòpica del Ni-60, d'aquesta manera, l'anàlisi de l'abundància de Ni-60 en materials extraterrestres pot proporcionar informació sobre l'origen del sistema solar i la seua història primordial.

[edita] Precaucions

L'exposició al níquel metall i els seus compostos solubles no ha de superar els 0,05 mg/cm³ mesurats en nivells de níquel equivalent per a una exposició laboral de 8 hores diàries i 40 setmanals. Els vapors i la pols de sulfur de níquel es sospita que poden ser cancerigens.

El carbonil de níquel (Ni(CO)4), generat durant el procés d'obtenció del metall, és un gas extremadament tòxic.

Les persones sensibilitzades poden manifestar al·lèrgies al níquel. La quantitat de níquel admissible en productes que puguin entrar en contacte amb la pell està regulada per la Unió Europea; tot i així, la revista Nature va publicar el 2002 un article en què investigadors afirmaven haver trobat en monedes d'1 i 2 euros nivells superiors als permesos, es creu que a causa d'una reacció galvànica.


BW Bewise Inc. Willy Chen willy@tool-tool.com bw@tool-tool.com www.tool-tool.com skype:willy_chen_bw mobile:0937-618-190 Head &Administration Office No.13,Shiang Shang 2nd St., West Chiu Taichung,Taiwan 40356 TEL:+886 4 24710048 / FAX:+886 4 2471 4839 N.Branch 5F,No.460,Fu Shin North Rd.,Taipei,Taiwan S.Branch No.24,Sec.1,Chia Pu East Rd.,Taipao City,Chiayi Hsien,Taiwan

Welcome to BW tool world! We are an experienced tool maker specialized in cutting tools. We focus on what you need and endeavor to research the best cutter to satisfy users demand. Our customers involve wide range of industries, like mold & die, aerospace, electronic, machinery, etc. We are professional expert in cutting field. We would like to solve every problem from you. Please feel free to contact us, its our pleasure to serve for you. BW product including: cutting toolaerospace tool .HSS Cutting toolCarbide end millsCarbide cutting toolNAS Cutting toolCarbide end millAerospace cutting tool、Фрезеры’Carbide drillHigh speed steelMilling cutterCVDD(Chemical Vapor Deposition Diamond )’PCBN (Polycrystalline Cubic Boron Nitride) ’Core drillTapered end millsCVD Diamond Tools Inserts’PCD Edge-Beveling Cutter(Golden Finger’PCD V-Cutter’PCD Wood tools’PCD Cutting tools’PCD Circular Saw Blade’PVDD End Mills’diamond tool ‘Single Crystal Diamond ‘Metric end millsMiniature end millsNAS986’DIN6537’DIN6537’NAS965’NAS907’NAS897’NAS937’DIN1837’DIN338’DIN340’DIN1897’DIN6539’DIN6529’DIN6527’DIN6528’DIN6535HA’DIN1833’ Специальные режущие инструменты

Пустотелое сверло DIN212’DIN850’DIN335’DIN334’DIN347’Pilot reamerFraises’Fresas con mango’ PCD (Polycrystalline diamond) ‘Frese’Electronics cutterStep drillMetal cutting sawDouble margin drillGun barrelAngle milling cutterCarbide burrsCarbide tipped cutterChamfering toolIC card engraving cutterSide cutterNAS toolDIN toolSpecial toolMetal slitting sawsShell end millsSide and face milling cuttersSide chip clearance sawsLong end millsStub roughing end millsDovetail milling cuttersCarbide slot drillsCarbide torus cuttersAngel carbide end millsCarbide torus cuttersCarbide ball-nosed slot drillsMould cutterTool manufacturer.

Bewise Inc. www.tool-tool.com

beeway 發表在 痞客邦 留言(0) 人氣()

Bewise Inc. www.tool-tool.com Reference source from the internet.

Sa Wikipedije, slobodne enciklopedije

Nikl (Ni, latinski - niccolum) je metal VIIIB grupe. Ima 14 izotopa čije se atomske mase nalaze između 53-67, od kojih je postojano 5 (58,60,61,62,64).


Rasprostranjenost [uredi]

Zastupljen je u zemljinoj kori u količini od 80 ppm (eng. parts per million) u obliku minerala garnierita i pantlandita.

Godine 1751 otkrio ga je Axel Fredrik Cronstedt.

Nikl gradi niz kompleksnih jedinjenja kao na primjer nikolcen


Biološki značaj [uredi]

Nikl je mikroelementi prisutan u mnogim enzimima. Dnevno bi ga trebalo minimalno unositi u količini 0,3 miligrama.

Osobine [uredi]

Nikl je srebrnobijele boje blistav metal otporan na koroziju. Koristi se za prevlačenje drugih metala radi zaštite. Legure nikla i bakra se koriste za izradu kovanog novca, pribora za jelo. Nikl se takođe dodaje čeliku i drugim legurama da bi povećao njihovu otpornost na koroziju.


BW Bewise Inc. Willy Chen willy@tool-tool.com bw@tool-tool.com www.tool-tool.com skype:willy_chen_bw mobile:0937-618-190 Head &Administration Office No.13,Shiang Shang 2nd St., West Chiu Taichung,Taiwan 40356 TEL:+886 4 24710048 / FAX:+886 4 2471 4839 N.Branch 5F,No.460,Fu Shin North Rd.,Taipei,Taiwan S.Branch No.24,Sec.1,Chia Pu East Rd.,Taipao City,Chiayi Hsien,Taiwan

Welcome to BW tool world! We are an experienced tool maker specialized in cutting tools. We focus on what you need and endeavor to research the best cutter to satisfy users demand. Our customers involve wide range of industries, like mold & die, aerospace, electronic, machinery, etc. We are professional expert in cutting field. We would like to solve every problem from you. Please feel free to contact us, its our pleasure to serve for you. BW product including: cutting toolaerospace tool .HSS Cutting toolCarbide end millsCarbide cutting toolNAS Cutting toolCarbide end millAerospace cutting tool、Фрезеры’Carbide drillHigh speed steelMilling cutterCVDD(Chemical Vapor Deposition Diamond )’PCBN (Polycrystalline Cubic Boron Nitride) ’Core drillTapered end millsCVD Diamond Tools Inserts’PCD Edge-Beveling Cutter(Golden Finger’PCD V-Cutter’PCD Wood tools’PCD Cutting tools’PCD Circular Saw Blade’PVDD End Mills’diamond tool ‘Single Crystal Diamond ‘Metric end millsMiniature end millsNAS986’DIN6537’DIN6537’NAS965’NAS907’NAS897’NAS937’DIN1837’DIN338’DIN340’DIN1897’DIN6539’DIN6529’DIN6527’DIN6528’DIN6535HA’DIN1833’ Специальные режущие инструменты

Пустотелое сверло DIN212’DIN850’DIN335’DIN334’DIN347’Pilot reamerFraises’Fresas con mango’ PCD (Polycrystalline diamond) ‘Frese’Electronics cutterStep drillMetal cutting sawDouble margin drillGun barrelAngle milling cutterCarbide burrsCarbide tipped cutterChamfering toolIC card engraving cutterSide cutterNAS toolDIN toolSpecial toolMetal slitting sawsShell end millsSide and face milling cuttersSide chip clearance sawsLong end millsStub roughing end millsDovetail milling cuttersCarbide slot drillsCarbide torus cuttersAngel carbide end millsCarbide torus cuttersCarbide ball-nosed slot drillsMould cutterTool manufacturer.

Bewise Inc. www.tool-tool.com

beeway 發表在 痞客邦 留言(0) 人氣()

Bewise Inc. www.tool-tool.com Reference source from the internet.
自 六十年代末第一代TiC化学技术气相沉积(CVD)涂层硬质合金刀片问世以来,涂层技术对硬质合金刀具的发展起到 了巨大的促进作用。八十年代初,TiN物理气相沉积(PVD)涂层高速钢刀具的出现,被誉为高速钢刀具性能的革命性变革。几十年来,涂层技术已经在切削刀 具提高性能的工艺中得到极为广泛的应用。本文拟从以下三个方面介绍涂...
自六十年代末第一代TiC化学技术气相沉积(CVD)涂层硬质合金刀片问世以来,涂层技术对硬质合金刀具的发展起到了巨大的促进作用。八十年代初,TiN物理气相沉积(PVD)涂层高速钢刀具的出现,被誉为高速钢刀具性能的革命性变革。几十年来,涂层技术已经在切削刀具提高性能的工艺中得到极为广泛的应用。本文拟从以下三个方面介绍涂层技术的进步并展望2000年以后的发展动向:(1)刀具涂层技术的应用; (2)涂层技术的新发展; (3)CVD与PVD两种技术在刀具涂层中的相互补充。

1 刀具涂层技术的应用

目前,机械加工企业大都已经或正在认识到刀具采用涂层技术是提高切削效率、降低加工成本的有效途径。随着涂层技术装备的改进,涂层费用已比初期下降1/2-1/3,因此,涂层技术的应用将使刀具品种不断增多,涂层刀具在刀具总量中所占的比例也将不断扩大。

从涂层刀具(涂层硬质合金和涂层高速钢刀具)在全部使用刀具中所占比例来看,工厂规模不同,该项比例的大小也不同。国外 规模较大、管理较好的工厂,每月所耗刀具涂层费用大于5万美元,涂层刀具占其全部使用(或销售)刀具的85%;规模较小的工厂每月所耗刀具涂层费用则在5 万美元以下,涂层刀具占其全部刀具的55%。目前,我国只有几个大型硬质合金厂有CVD涂层设备,而且涂层刀片所占比例不大。在PVD涂层高速钢刀具方 面,国内主要用于套装麻花钻及齿轮刀具的涂层处理,估计涂层套装麻花钻已占全磨制麻花钻总量的50%左右。以江苏丹阳飞达、天工两个大型工具集团为例,每年麻花钻涂层费用均超过500万元人民 币,约有20台PVD设备供麻花钻涂层使用。国内主要齿轮刀具厂均拥有PVD设备,为本厂产品涂层服务,加上齿轮制造厂自身在邻近涂层厂涂层的刀具,齿轮 刀具中涂层刀具的比例已大于60%。近年来,齿轮刀具刃磨后进行重涂以提高切削效率的概念已逐渐被齿轮加工业认可,因此,今后齿轮刀具的涂层量必将进一步 增加。

随着涂层技术的推广应用,在工业集中地区建立涂层中心(或涂层工厂)的工作已得到很大发展,在工业发达国家已有上百个涂层中心在运转,每个涂层中心均拥有数台PVD及CVD设备。如Balzers、Multi-Arc这两 家著名的刀具涂层设备制造公司(生产PVD设备)在世界各地建立了很多涂层中心,两家公司在涂层中心的收入比他们销售涂层设备的收入更丰厚。目前,国内虽 已有不少涂层工厂,如仅江苏丹阳地区就有6家涂层工厂,但技术水平和规模均达不到涂层高品质刀具的要求。因此,当务之急是在国内建立具有开发能力和高技术 水平的涂层中心,其涂层业务也应从刀具扩展至模具、机械零件及高档饰品。

2 涂层技术的新发展

纵 观CVD、PVD技术的发展过程,可以发现几个共性规律。当第一代CVD TiC涂层硬质合金刀片及PVD TiN涂层刀具进入市场后,首先要解决的问题是设计制造出稳定可靠的批量涂层刀具的技术装备,并逐步加以完善,以满足市场需求;其次是开发新一代涂层成 分,进一步提高涂层刀具的切削效率;第三阶段是研制多层涂层及控制技术,使刀具表层具有多种涂层材料的综合物理机械性能,从而满足加工不同金属的需求。

人们开始研究新的涂层时,均把目光投向过渡族元素碳、氮化物,因为它们均具有较高的硬度,表1所列为耐磨化合物的部分物理机械性能。采用CVD、 PVD技术制备这些涂层并不困难,关键是涂层质量能否发挥出其自身应有的性能及在切削过程中所起的抗磨损作用。

表1 几种材料的物理机械性能
材料熔点
(°C)密度
(g/cm³)硬度
(HV)弹性模量
(kN/mm²)线胀系数
(10-6/K)抗高温
氧化性能TiC30674.9328004708.0一般TiN29505.4021005909.4一般TiB232254.5030005607.8一般ZrN29827.3216005107.2较好CrN16506.121100400 一般Al2O320473.9821004008.4很好硬质合金  1700
~1800 4.5~5.6差高速钢15007.8900 12很差

刀具磨损机理研究表明,在高速切削时,刃尖温度最高可达900°C,此时刀具的磨损不仅是机械摩擦磨损(刀具后面磨损的主要形式),还有粘结磨损、扩散磨损及氧化磨损(刀具刃口磨损及月牙洼磨损的主要形式),因此,可将切削过程视为一个微区的物理化学变化过程。

碳化钛是一种高硬度耐磨化合物,有着良好的抗摩擦磨损性能;氮化钛的硬度稍低,但却有较高的化学稳定性,并可大大减少刀具与被加工工件之间的摩擦系数。从涂层工艺性考虑,两者均为理想的涂层材料,但无论碳化钛或氮化钛,单一的涂层均很难满足高速切削对刀具涂层的综合要求。

碳氮化钛(TiCN)是在单一的TiC晶格中,氮原子?(N)占据原来碳原子(C)在点阵中的位置而形成的复合化合物,TiCxNy中碳氮原子的比例有两种比较理想的模式,即TiC0.5N0.5和TiC0.3N0.7。由于TiCN具有 TiC和TiN的综合性能,其硬度(特别是高温硬度)高于 TiC和TiN,因此是一种较理想的刀具涂层材料。

在抗氧化磨损和抗扩散磨损性能上,没有任何材料能与氧化铝(Al2O3)相比。但由于氧化铝与基体材料的物理、化学性能相差太大,单一的氧化铝涂层无法制成理想的涂层刀具。多层涂层及相关技术的出现,使涂层既可提高与基体材料的结合强度,同时又能具有多种材料的综合性能。

到目前为止,硬质合金刀片的CVD涂层大致可分为四大系列:TiC/TiN、 TiC/TiCN/TiN、TiC/Al2O3和TiC/Al2O3/TiN。前两类适用于普通半精及精切加工,后两类适用于高速及重负荷切削。

涂层成分能否在涂层刀具上发挥其应有性能,在很大程度上取决于涂层工艺的技术水平,因为涂层与基体的结合强度、涂层及界面组织结构、择优取向、 各单层厚度及总厚度等是决定涂层刀具性能的重要因素,而这些因素都与涂层工艺直接相关。各厂家所制备的相同涂层系列的刀具,除了刀片材料、几何参数外,在切削性能上的差异主要是由于所采用的涂层工艺及控制技术不同而造成的。因此,在改进CVD工艺及控制技术方面,还有不少问题尚待解决。

上述选择涂层材料的原则同样适用于PVD涂层, 由于Al2O3(a相)涂层的PVD技术还未完全突破,因此含有Al2O3的 涂层系列尚无法用PVD工艺进行大批量涂层,而另外两种复合涂层系列近年来已在PVD涂层中得到应用。从技术上讲,制备由上百层(每层厚度为 50~1000nm)组成的多层涂层,在PVD工艺中容易实现。单层厚度为 20~50nm时,这种涂层的耐磨性最佳。目前,TiN/TiCN、 TiC/TiCN/TiN、TiN/ZrN等多层涂层通过PVD工艺已在硬质合金刀具和部分高速钢刀具涂层中加以应用,使用寿命比单一的TiN PVD涂层提高一倍以上。其中,ZrN涂层刀具特别适合加工不锈钢等材料。

TiAlN是唯一含有铝的PVD涂层,在切削过程中铝氧化而形成Al2O3,从而起到抗氧化和抗扩散磨损作用,但其抗氧化性能比单一的Al2O3涂层稍差,因为TiAlN中形成的Al2O3在切削过程中边生成边磨掉。但在高速切削时,其效果优于不含铝的TiCN涂层。图1、2所示为CVD及PVD 涂层刀具中各种涂层成分所占的大致比例。

点击查看完整图片 点击查看完整图片

TiAlN/Al2O3多层PVD涂层已在实验室中研究成功,目前已可制备有400层(总厚度5µm)的多层涂层硬质合金刀具,这种 刀具的涂层硬度达4000HV,其切削性能优于TiC/Al2O3/TiN涂层刀具。可以预期,进一步研究PVD工艺技术,扩大多种多层涂层在不同刀具上的应用,必将取得更大的技术经济效益。其它硬质材料如TiB2、HfN、TiNB等均可作为涂层物质,但由于其物理机械性能与前述涂层系列相比无明显优势,因此在实际生产中应用很少。此外,CrN PVD涂层由于其韧性和耐磨性比较突出,特别适合用于各类模具的涂层处理。

金 刚石涂层是近几年研究成功的新型刀具涂层材料,这种涂层刀具特别适用于加工非黑色金属及纤维材料。金刚石涂层的硬质合金刀片及整体硬质合金多刃 刀具在加工印刷线路板和硅铝合金等方面已取得很大成功,工具寿命比未涂层硬质合金刀具提高数十倍。制备金刚石涂层的技术有CVD、PVD及PCVD多种, 无论何种技术,只要能在刀具各几何面上均匀涂镀金刚石薄膜,有足够的结合强度,工艺控制稳定性能满足批量生产要求,就可在金刚石涂层刀具的工业化应用中取 得良好的效益。那种把CVD制备的金刚石厚膜片焊接在硬质合金刀片刃部的方法,取代不了金刚石涂层技术在刀具中应用的地位。目前,金刚石涂层硬质合金立铣刀已有f2-12共94种规格,金刚石涂层硬质合金麻花钻已有100余种尺寸,金刚石涂层可转位刀片已有180余种规格,此外还有各种涂层的成型刀具。总之,今后金刚石涂层硬质合金刀具的品种规格及应用范围均将进一步扩大。

3 CVD、PVD技术在刀具涂层中的相互补充

自八十年代初TiN PCD涂层高速钢刀具投入工业应用以来,人们一直在探索能否用PVD代替CVD工艺对硬质合金刀片进行涂层。由于PVD工艺温度低,不会降低硬质合金刀片自身的强度,刀片刃部可磨得十分锋利,从而可降低机床的功率消耗。

尽管PVD有CVD难以比拟的优点,也可进行除a-Al2O3以外的多种硬质涂层,但实践表明,一般车削(部分铣削)刀片的TiC/Al2O3或TiC/Al2O3/TiN CVD涂层性能仍优于PVD涂层,这里除CVD可进行a-Al2O3涂 层外,涂层与基体的结合强度比PVD涂层高也是其性能优于PVD涂层的一个重要因素。涂层硬质合金刀片的划痕试验表明,PVD涂层的临界载荷一般为30- 40N,而CVD涂层的临界载荷可大于90N;CVD涂层的厚度可达7-10µm,而PVD涂层厚度必须控制在3-5µm,否则涂层易产生剥落现象。此 外,硬质合金刀片CVD工业化涂层成本低于PVD,这也是CVD工艺应用更为广泛的原因之一。

点击查看完整图片

今 后,CVD和PVD两种工艺技术在刀具涂层中仍将并存和相互补充,并因其自身的优点而在刀具涂层比例中占有各自的份额。一般说来,高速钢等钢制工具、锋利 的硬质合金精切刀片和硬质合金整体多刃刀具(如立铣刀、麻花钻等)采用PVD工艺涂层比较理想;其余大部分硬质合金刀片均可采用CVD工艺涂层。而且, CVD涂层技术也在不断发展,目前,除采用中温CVD(降低涂层温度)以减小硬质合金强度的降低幅度外,还可采用计算机精确控制单层涂层厚度,避免涂层形 成柱状晶,以满足精切硬质合金刀片的涂层要求。图3所示为工业发达国家对目前工厂所用刀具情况的调查结果。由图可见,CVD、 PVD涂层在刀具中的应用比例为54.1%,尚有42%的刀具可采用涂层技术改善其性能。而且 CVD、PVD两种技术也可相互结合,取长补短,如目前已开发成功的PCVD涂层技术在进行金刚石涂层中已取得了较好效果。


BW Bewise Inc. Willy Chen willy@tool-tool.com bw@tool-tool.com www.tool-tool.com skype:willy_chen_bw mobile:0937-618-190 Head &Administration Office No.13,Shiang Shang 2nd St., West Chiu Taichung,Taiwan 40356 TEL:+886 4 24710048 / FAX:+886 4 2471 4839 N.Branch 5F,No.460,Fu Shin North Rd.,Taipei,Taiwan S.Branch No.24,Sec.1,Chia Pu East Rd.,Taipao City,Chiayi Hsien,Taiwan

Welcome to BW tool world! We are an experienced tool maker specialized in cutting tools. We focus on what you need and endeavor to research the best cutter to satisfy users demand. Our customers involve wide range of industries, like mold & die, aerospace, electronic, machinery, etc. We are professional expert in cutting field. We would like to solve every problem from you. Please feel free to contact us, its our pleasure to serve for you. BW product including: cutting toolaerospace tool .HSS Cutting toolCarbide end millsCarbide cutting toolNAS Cutting toolCarbide end millAerospace cutting tool、Фрезеры’Carbide drillHigh speed steelMilling cutterCVDD(Chemical Vapor Deposition Diamond )’PCBN (Polycrystalline Cubic Boron Nitride) ’Core drillTapered end millsCVD Diamond Tools Inserts’PCD Edge-Beveling Cutter(Golden Finger’PCD V-Cutter’PCD Wood tools’PCD Cutting tools’PCD Circular Saw Blade’PVDD End Mills’diamond tool ‘Single Crystal Diamond ‘Metric end millsMiniature end millsNAS986’DIN6537’DIN6537’NAS965’NAS907’NAS897’NAS937’DIN1837’DIN338’DIN340’DIN1897’DIN6539’DIN6529’DIN6527’DIN6528’DIN6535HA’DIN1833’ Специальные режущие инструменты

Пустотелое сверло DIN212’DIN850’DIN335’DIN334’DIN347’Pilot reamerFraises’Fresas con mango’ PCD (Polycrystalline diamond) ‘Frese’Electronics cutterStep drillMetal cutting sawDouble margin drillGun barrelAngle milling cutterCarbide burrsCarbide tipped cutterChamfering toolIC card engraving cutterSide cutterNAS toolDIN toolSpecial toolMetal slitting sawsShell end millsSide and face milling cuttersSide chip clearance sawsLong end millsStub roughing end millsDovetail milling cuttersCarbide slot drillsCarbide torus cuttersAngel carbide end millsCarbide torus cuttersCarbide ball-nosed slot drillsMould cutterTool manufacturer.

Bewise Inc. www.tool-tool.com

beeway 發表在 痞客邦 留言(0) 人氣()

Bewise Inc. www.tool-tool.com Reference source from the internet.

  高速加工机床及其刀具技术的最新发展使得在模具和零件制造领域实现“以切代磨” 成为可能,用超硬刀具高速切削淬硬模具钢等难加工材料已得到越来越广泛的应用。 由于模具或零件的高速切削加工可免除磨削或抛光等后续工序,因此精加工时如何保证工件最终表面质量同时将加工成本控制在可接受范围之内是研究人员关注的重 要问题。本文在调查的基础上分析了用于高速铣削淬硬模具钢的整体硬质合金涂层立铣刀的切削性能和经济性,并给出了部分应用实例。

1. 引言

   高速切削加工(high-speed cutting, HSC)是先进制造技术的一个重要组成部分,其主要优点是可实现加工的高效率和高品质。近年来高速切削加工技术在世界主要经济发达国家(如德、英、美、 意、日等)发展迅猛,这些国家生产的高速切削加工机床及辅、配、软、硬件几乎每年都以一个新台阶的速度更新换代,目前所能达到的性能指标已是令人瞠目。 Micron、Jobs、Haas、Fpt、Dmg等世界著名机床公司近年来大力发展的快速更换主轴头技术使同一台机床能适应多种负载和速度要求(即所谓 粗精加工同机“一次过”),在工件的定位、安装、传输等环节可节约大量的非加工时间。

  机床主轴的高速旋转以及进给速度、加速度的相应 提高,一方面可直接缩短加工时间,另一方面还因高速切削具有激振频率特别高、工作平稳、振动小的优势而有利于提高加工表面质量,即高速切削加工可作为模具 和结构零件的最终加工,通过“以切代磨”或“以切代放电”来提高加工效率和加工质量(即勿需进行费时低效的后续磨削工序、模具电极电火花加工);工件还可 先淬火后切削,直接将硬度高达65HRC的材料高速切削加工至最终尺寸。

近年来我国(尤其华南地区) 制造业发展迅速,模具和汽车、摩托车制造业发达,拥有高速切削机床的企业不断增多。然而,与高速切削机床和刀具技术的快速发展 相比,这些企业在高速切削工艺、检测及应用软件等方面的技术还比较落后,与硬件不能配套,致使不少厂家进口的先进设备根本没有发挥其应有作用。一方面,主 轴转速可达数万转的高速机床却一直只在几千转水平运行,具有高速精加工的条件却只用于粗加工和半精加工,可切削高硬材料的机床和刀具却只用来切削普通材 料;另一方面,因工件材料与刀具、工艺配伍不当造成加工成本高昂甚至质量事故也时有发生。为了推广高速切削加工技术的发展,帮助企业合理应用高速切削加工 设备与技术,很有必要对高速切削加工的工艺性与经济性问题进行深入探讨。

2. 常用可淬硬模具钢及高速切削用立铣刀

2.1常用塑胶模具钢和热作钢

   市场上常见的模具淬硬钢多用于制造塑胶模和锻造、压铸型腔模,主要供应商有瑞典一胜百(ASSAB)、香港龙记(LUNG KEE)、德国撒斯特(SAARSTAHIL)、日本大同(DAIDO)等公司。表1列出了部分塑胶模具钢和热作钢的品名与性能。传统的模具钢加工方法是 先铣削后淬硬再磨抛,而用高速切削加工则可粗铣后淬硬再精铣,甚至可实现粗精铣同机一次完成。

表1 几种常用塑胶模具钢和热作钢

商品名?D?D标准?D?D特性与用途?D?D表面硬度
ASSAB S136;S316H?D?DAISI 420ESR?D?D防酸不锈蚀,耐磨性高,热处理尺寸变化小;适合于PVC、PP、EP、PC、PMMA塑胶模具,高温回火后可作高抛光度镜面塑胶模?D?D低温回火HRC50~55,高温回火HRC34~38
SAARSTAHL(SSE) GS2344EFS;GS2344ESR?D?DAISI H13?D?D优良的红硬性、高温冲击强度、高温耐磨性和抗热冲击龟裂性,可作挤压、压铸、热锻和高温冲裁工具?D?D180~300℃淬硬至HRC52
LKM2311;LKM2312?D?DAISI P20?D?D硬度均匀,加工性能良好,芯部韧性好,可作高级预硬塑胶模?D?DHRC53~36
DAIDO NAK80?D?DAISI P21 modified ESR?D?D变形小,易研磨抛光,长期使用可维持高精度,可用作高硬度高镜面模具?D?D供货时HRC37~41,可淬硬至约HRC60

2.2 高速切削淬硬钢常用立铣刀

  本文主要讨论用于高速切削的整体硬质合金PVD涂层立铣刀(可切削硬化钢的其它刀具如CBN和陶瓷刀具等不是本文研究重点)。

(1)刀具涂层:能用于高速切削淬硬钢的刀具涂层主要有(Ti,Al)N或(Ti,C)N,刀具基体为超细颗粒硬质合金。
(2)铣刀主要形式:用于高速切削淬硬钢的整体立铣刀主要形式有常规2刃和多刃球头刀、长颈球头刀、2刃锥面球头刀、2刃带圆弧头平底刀、长颈带圆弧头平底刀、2刃直角平底刀和多刃直角平底刀等。

介绍高速立铣刀的切削性能和工艺参数。对这些刀具均推荐采用干切削(空气冷却)和顺铣工艺。

① 直径0.2~6mm 2刃直角平底立铣刀:常用于切沟槽。工件硬度小于HRC45时,轴向切深不大于0.1D(刀径D小于2mm)~0.2D(D大于2mm);工件硬度大于 HRC45时,对应于刀径D小于0.5mm、小于2mm和2mm以上,轴向切深分别不大于0.02D、0.05D和0.1D。
②直径1~6mm 4刃直角平底立铣刀:常用于侧面精加工。工件硬度小于HRC45时,轴向切深不大于1.5D,径向切深不大于0.1D(刀径D小于3mm)~0.2D(刀径D大于4mm);工件硬度大于HRC45时,轴向切深不大于刀径D,径向切深不大于0.05D。
③R0.1~3mm 2刃球头立铣刀:常用于曲面精加工。轴向切深不大于0.1R,径向切深0.2~0.4R。

  高速加工时,上述刀具的切削速度和进给速度随工件硬度和刀径不同而变化:随着工件硬度增大,刀具的转速尤其是进给速度降低;随着刀径增大,刀具的转速降低但线速度相对较高,进给速度也相应增大(参见表2)。

表2 推荐切削条件

2刃球头立铣刀:
工件硬度<45HRC时:R1-R2-R3:转速(r/min):35000-25000-20000;进给量(mm/min):1200-1800-2200
工件硬度45~55HRC时:R1-R2-R3:转速(r/min):25000-17000-13000;进给量(mm/min):800-900-1000
2刃直角平底立铣刀:
工件硬度<45HRC时:直径0.5mm-2mm-6mm:转速(r/min):40000-10000-3500;进给量(mm/min):240-400-400
工件硬度45~55HRC时:直径0.5mm-2mm-6mm:转速(r/min):30000-8000-2700;进给量(mm/min):120-120-120
4刃直角平底立铣刀:
工件硬度<45HRC时:直径1mm-3mm-6mm:转速(r/min):12000-5300-3200;进给量(mm/min):100-200-360
工件硬度45~55HRC时:直径1mm-3mm-6mm:转速(r/min):8900-3200-2000;进给量(mm/min):45-85-150

4. 淬硬钢高速铣削的经济性

   目前不同厂商生产的(Ti,Al)N涂层硬质合金立铣刀其切削性能有较大差异,市场价格也有很大不同(与其它涂层刀具相比,其价格都比较贵)。直径 2mm以下的小直径立铣刀售价为100~400元/支,直径4~φ8mm立铣刀售价约为200~700元/支。通常随着刀具直径的增大,铣刀价格也升高 (铣刀最大直径可达20mm)。

  刀径较大的(Ti,Al)N涂层硬质合金立铣刀高速加工淬硬材料时其强度基本可满足要求,但用小直径 刀具高速加工窄槽时铣刀则易断易损。由于(Ti,Al)N涂层硬质合金立铣刀磨损后一般不能进行重磨,因此刀具成本较高;在用于某些模具加工时,刀具成本 甚至占到模具总制造成本的12%左右。

  用高速铣削法加工模具可能带来的优点有:节省加工时间,减少加工工序,提高生产率,降低加工成本,改善加工质量。

   据分析,用传统方法加工型腔模具的成本分布大致为:粗加工占12%,半精加工和精加工各占25%,后续手工修磨占16%,调试占22%。而采用高速铣削 法,可大大提高精加工效率,取消或者减少后续手工修磨工序;如果采用粗精加工同机“一次过”工艺,甚至粗加工和半精加工时间也可大大缩短(比电火花加工快 得多)。

  加工实例:

①用Mikron(米克朗)公司HSM400加工中心采用“粗、精加工一次过工艺”加工修枝剪锻 模(HRC52),总耗时194分钟(型腔内外粗铣66分钟,球头刀型腔内外半精铣10分钟,球头和平底刀30000r/min高速精铣94分钟,后续修 整24分钟),最终加工表面粗糙度Ra0.5μm。
②HSM400加工中心采用“粗、精加工一次过工艺”加工注塑模(HRC54),总加工时间为 468分钟。粗加工采用4~6刃粗铣刀(直径2~8mm),转速20000~8000r/min,进给速度1500~2600mm/min;半精铣和精铣 用2刃球头刀(直径0.8~1.5mm),转速36000r/min,进给速度1000~1600mm/min。
③表3给出的是MMC(三菱)KOBELCO(神钢)的小直径超硬涂层立铣刀使用实例。

表3 MITSUBISHI MSTAR小直径超硬涂层立铣刀使用实例
刀具?D?D工件?D?D工艺特性?D?D切削条件?D?D加工效果
2 刃球头刀(R1.5mm)?D?D热锻模,材料SKD61(HRC47)?D?D切深0.05~0.1mm的半精加工、精加工?D?D切速: 94m/min,进给:0.1mm/tooth,回转速度:10000r/min,进给速度:2000mm/min,干切削?D?D每把刀具的寿命从原先 可切200m增至近600m
4刃直角立铣刀(直径6mm)?D?D塑料模,S55C?D?D模具型腔侧面精加工,切深0.6×6mm?D?D切 速:50m/min,进给:0.04mm/tooth,回转速度:2650r/min,进给速度:212mm/min,干切削?D?D加工50m后,后刀 面磨损高度从原先的0.25mm减小到0.15mm

5.结语

  迅速发展的高速切削加工机床和刀具技术使淬硬模具的 “粗、精加工同机一次过”工艺的应用成为可能,切削加工可作为淬硬模具和结构零件的最终加工,实现“以切代磨抛”或“以切代放电”。因此应用高速铣削加工 模具可能带来节省加工时间、减少加工工序、提高生产率、降低加工成本、改善加工质量等诸多好处。

  目前可用于高速加工淬硬模具钢的立铣 刀主要是超细颗粒硬质合金(Ti,Al)N涂层立铣刀。由于这类刀具价格比较高,而且因其不可重磨、性脆和使用中对受热均匀的要求较高等,其加工工艺与经 济适应性尚需深入探讨研究,以充分发挥高速铣削的优势。同时,各企业也应根据自身具体情况制定适宜的高速加工技术应用策略。3. 加工淬硬钢用高速立铣刀的工艺性

BW Bewise Inc. Willy Chen willy@tool-tool.com bw@tool-tool.com www.tool-tool.com skype:willy_chen_bw mobile:0937-618-190 Head &Administration Office No.13,Shiang Shang 2nd St., West Chiu Taichung,Taiwan 40356 TEL:+886 4 24710048 / FAX:+886 4 2471 4839 N.Branch 5F,No.460,Fu Shin North Rd.,Taipei,Taiwan S.Branch No.24,Sec.1,Chia Pu East Rd.,Taipao City,Chiayi Hsien,Taiwan

Welcome to BW tool world! We are an experienced tool maker specialized in cutting tools. We focus on what you need and endeavor to research the best cutter to satisfy users demand. Our customers involve wide range of industries, like mold & die, aerospace, electronic, machinery, etc. We are professional expert in cutting field. We would like to solve every problem from you. Please feel free to contact us, its our pleasure to serve for you. BW product including: cutting toolaerospace tool .HSS Cutting toolCarbide end millsCarbide cutting toolNAS Cutting toolCarbide end millAerospace cutting tool、Фрезеры’Carbide drillHigh speed steelMilling cutterCVDD(Chemical Vapor Deposition Diamond )’PCBN (Polycrystalline Cubic Boron Nitride) ’Core drillTapered end millsCVD Diamond Tools Inserts’PCD Edge-Beveling Cutter(Golden Finger’PCD V-Cutter’PCD Wood tools’PCD Cutting tools’PCD Circular Saw Blade’PVDD End Mills’diamond tool ‘Single Crystal Diamond ‘Metric end millsMiniature end millsNAS986’DIN6537’DIN6537’NAS965’NAS907’NAS897’NAS937’DIN1837’DIN338’DIN340’DIN1897’DIN6539’DIN6529’DIN6527’DIN6528’DIN6535HA’DIN1833’ Специальные режущие инструменты

Пустотелое сверло DIN212’DIN850’DIN335’DIN334’DIN347’Pilot reamerFraises’Fresas con mango’ PCD (Polycrystalline diamond) ‘Frese’Electronics cutterStep drillMetal cutting sawDouble margin drillGun barrelAngle milling cutterCarbide burrsCarbide tipped cutterChamfering toolIC card engraving cutterSide cutterNAS toolDIN toolSpecial toolMetal slitting sawsShell end millsSide and face milling cuttersSide chip clearance sawsLong end millsStub roughing end millsDovetail milling cuttersCarbide slot drillsCarbide torus cuttersAngel carbide end millsCarbide torus cuttersCarbide ball-nosed slot drillsMould cutterTool manufacturer.

Bewise Inc. www.tool-tool.com

beeway 發表在 痞客邦 留言(0) 人氣()

Bewise Inc. www.tool-tool.com Reference source from the internet.

计算机数值控制 (Computerized Numerical Control, CNC) 用计算机控制加工功能,实现数值控制。

2)轴(Axis)机床的部件可以沿着其作直线移动或回转运动的基准方向。

3)机床坐标系( Machine Coordinate Systern )固定于机床上,以机床零点为基准的笛卡尔坐标系。

4)机床坐标原点( Machine Coordinate Origin )机床坐标系的原点。

5)工件坐标系( Workpiece Coordinate System )固定于工件上的笛卡尔坐标系。

6)工件坐标原点( Wrok-piexe Coordinate Origin)工件坐标系原点。

7)机床零点( Machine zero )由机床制造商规定的机床原点。

8)参考位置( Reference Position )机床启动用的沿着坐标轴上的一个固定点,它可以用机床坐标原点为参考基准。

9)绝对尺寸(Absolute Dimension)/绝对坐标值(Absolute Coordinates)距一坐标系原点的直线距离或角度。

10)增量尺寸( Incremental Dimension ) /增量坐标值(Incremental Coordinates)在一序列点的增量中,各点距前一点的距离或角度值。

11)最小输人增量(Least Input Increment) 在加工程序中可以输人的最小增量单位。

12)命令增量(Least command Increment)从数值控制装置发出的命令坐标轴移动的最小增量单位。

13)插补 (InterPolation)在所需的路径或轮廓线上的两个已知点间根据某一数学函数(例如:直线,圆弧或高阶函数)确定其多个中间点的位置坐标值的运算过程。

14)直线插补(Llne Interpolation)这是一种插补方式,在此方式中,两点间的插补沿着直线的点群来逼近,沿此直线控制刀具的运动。

15)圆弧插补(Circula : Interpolation)这是一种插补方式,在此方式中,根据两端点间的插补数字信息,计算出逼近实际圆弧的点群,控制刀具沿这些点运动,加工出圆弧曲线。

16)顺时针圆弧(Clockwise Arc)刀具参考点围绕轨迹中心,按负角度方向旋转所形成的轨迹.方向旋转所形成的轨迹.

17)逆时针圆弧(Counterclockwise Arc)刀具参考点围绕轨迹中心,按正角度方向旋转所形成的轨迹。

18)手工零件编程(Manual Part Prograrnmiog)手工进行零件加工程序的编制。

19)计算机零件编程(Cornputer Part prograrnrnlng)用计算机和适当的通用处理程序以及后置处理程序准备零件程序得到加工程序。

20)绝对编程(Absolute Prograrnming)用表示绝对尺寸的控制字进行编程。

21)增量编程(Increment programming)用表示增量尺寸的控制字进行编程。22、

22)宇符(Character)用于表示一组织或控制数据的一组元素符号。

23)控制字符(Control Character)出现于特定的信息文本中,表示某一控制功能的字符。

24)地址(Address)一个控制字开始的字符或一组字符,用以辨认其后的数据。

25)程序段格式(Block Format)字、字符和数据在一个程序段中的安排。

26)指令码(Instruction Code) /机器码(Machine Code)计算机指令代码,机器语言,用来表示指令集中的指令的代码。

27)程序号(Program Number)以号码识别加工程序时,在每一程序的前端指定的编号

28)程序名(Prograo Name)以名称识别加工程序时,为每一程序指定的名称。

29)指令方式(Command Mode)指令的工作方式。

30)程序段(Block)程序中为了实现某种操作的一组指令的集合.

31)零件程序(P art Program)在自动加工中,为了使自动操作有效按某种语言或某种格式书写的顺序指令集。零件程序是写在输人介质上的加工程序,也可以是为计算机准备的输人,经处理后得到加工程序。

32)加工程序(Machine Program)在自动加工控制系统中,按自动控制语言和格式书写的顺序指令集。这些指令记录在适当的输人介质上,完全能实现直接的操作。

33)程序结束(End of Program)指出工件加工结束的辅助功能

34)数据结束(End of Data)程序段的所有命令执行完后,使主轴功能和其他功能(例如冷却功能)均被删除的辅助功能。

35)程序暂停(Progrom Stop)程序段的所有命令执行完后,删除主轴功能和其他功能,并终止其后的数据处理的辅助功能.

36)准备功能(Preparatory Functton)使机床或控制系统建立加工功能方式的命令.

37)辅助功能(MiscellaneouS Function)控制机床或系统的开关功能的一种命令。

38)刀具功能(Tool Funetion)依据相应的格式规范,识别或调人刀具。

39)进给功能(Feed Function)定义进给速度技术规范的命令。

40)主轴速度功能(Spindle Speed Function)定义主轴速度技术规范的命令。

41)进给保持(Feed Hold)在加工程序执行期问,暂时中断进给的功能。

42)刀具轨迹(Tool Path)切削刀具上规定点所走过的轨迹。

43)零点偏置(Zero Offset)数控系统的一种特征.它容许数控测量系统的原点在指定范围内相对于机床零点移动,但其永久零点则存在数控系统中。

44)刀具偏置(Tool Offset)在一个加工程序的全部或指定部分,施加于机床坐标轴上的相对位移.该轴的位移方向由偏置值的正负来确定.

45)刀具长度偏置(Tool Length Offset)在刀具长度方向卜的偏晋

46)刀具半径偏置(Tool Radlus OffseO)刀具在两个坐标方向的刀具偏置。

47)刀具半径补偿(Cutter Compensation)垂直于刀具轨迹的位移,用来修正实际的刀具半径与编程的刀具半径的差异

48)刀具轨迹进给速度(Tool Path Feedrate)刀具上的基准点沿着刀具轨迹相对于工件移动时的速度,其单位通常用每分钟或每转的移动量来表示。

49)固定循环(Fixed Cycle , Canned Cycle)预先设定的一些操作命令,根据这些操作命令使机床坐标袖运动,主袖工作,从而完成固定的加工动作。例如,钻孔、铿削、攻丝以及这些加工的复合动作。

50)子程序(Subprogram)加工程序的一部分,子程序可由适当的加工控制命令调用而生效

51)工序单(Planning sheet)在编制零件的加工工序前为其准备的零件加工过程表。

52)执行程序(Executlve Program)在 CNC 系统中,建立运行能力的指令集合

53)倍率(Override)使操作者在加工期间能够修改速度的编程值(例如,进给率、主轴转速等)的手工控制功能。

54)伺服机构(Servo-Mwchanisnt)这是一种伺服系统,其中被控量为机械位置或机械位置对时间的导数.

55)误差(Error)计算值、观察值或实际值与真值、给定值或理论值之差

56)分辨率(Resolution)两个相邻的离散量之间可以分辨的最小间隔.

BW Bewise Inc. Willy Chen willy@tool-tool.com bw@tool-tool.com www.tool-tool.com skype:willy_chen_bw mobile:0937-618-190 Head &Administration Office No.13,Shiang Shang 2nd St., West Chiu Taichung,Taiwan 40356 TEL:+886 4 24710048 / FAX:+886 4 2471 4839 N.Branch 5F,No.460,Fu Shin North Rd.,Taipei,Taiwan S.Branch No.24,Sec.1,Chia Pu East Rd.,Taipao City,Chiayi Hsien,Taiwan

Welcome to BW tool world! We are an experienced tool maker specialized in cutting tools. We focus on what you need and endeavor to research the best cutter to satisfy users demand. Our customers involve wide range of industries, like mold & die, aerospace, electronic, machinery, etc. We are professional expert in cutting field. We would like to solve every problem from you. Please feel free to contact us, its our pleasure to serve for you. BW product including: cutting toolaerospace tool .HSS Cutting toolCarbide end millsCarbide cutting toolNAS Cutting toolCarbide end millAerospace cutting tool、Фрезеры’Carbide drillHigh speed steelMilling cutterCVDD(Chemical Vapor Deposition Diamond )’PCBN (Polycrystalline Cubic Boron Nitride) ’Core drillTapered end millsCVD Diamond Tools Inserts’PCD Edge-Beveling Cutter(Golden Finger’PCD V-Cutter’PCD Wood tools’PCD Cutting tools’PCD Circular Saw Blade’PVDD End Mills’diamond tool ‘Single Crystal Diamond ‘Metric end millsMiniature end millsNAS986’DIN6537’DIN6537’NAS965’NAS907’NAS897’NAS937’DIN1837’DIN338’DIN340’DIN1897’DIN6539’DIN6529’DIN6527’DIN6528’DIN6535HA’DIN1833’ Специальные режущие инструменты

Пустотелое сверло DIN212’DIN850’DIN335’DIN334’DIN347’Pilot reamerFraises’Fresas con mango’ PCD (Polycrystalline diamond) ‘Frese’Electronics cutterStep drillMetal cutting sawDouble margin drillGun barrelAngle milling cutterCarbide burrsCarbide tipped cutterChamfering toolIC card engraving cutterSide cutterNAS toolDIN toolSpecial toolMetal slitting sawsShell end millsSide and face milling cuttersSide chip clearance sawsLong end millsStub roughing end millsDovetail milling cuttersCarbide slot drillsCarbide torus cuttersAngel carbide end millsCarbide torus cuttersCarbide ball-nosed slot drillsMould cutterTool manufacturer.

Bewise Inc. www.tool-tool.com

beeway 發表在 痞客邦 留言(0) 人氣()

Bewise Inc. www.tool-tool.com Reference source from the internet.

一、选择题:(以下四个备选答案中其中一个为正确答案,请将其代号填入括号内)

1.图样中螺纹的底径线用( C )绘制。

(A)粗实线 (B)细点划线 (C)细实线 (D)虚线

2.装配图的读图方法,首先看( B ),了解部件的名称。

.(A)零件图 (B)明细表 (C)标题栏 (D)技术文件

3.公差代号H7的孔和代号( C )的轴组成过渡配合。

(A )f6 (B) g6 (C) m6 (D) u6

4.尺寸?48F6中,“6”代表( B )

(A)尺寸公差带代号 (B)公差等级代号 (C)基本偏差代号 (D)配合代号

5.牌号为45的钢的含碳量为百分之( C )。

(A)45  (B)4.5  (C)0.45  (D)0.045

6.轴类零件的调质处理热处理工序应安排在( B )。

(A)粗加工前 (B)粗加工后,精加工前 (C)精加工后 (D)渗碳后

7.下列钢号中,(A )钢的综合力学性能最好。

(A)45 (B)T10 (C)20 (D)08

8.常温下材料的硬度应在( A )以上。

(A)HRC60 (B)HRC50 (C)HRC80 (D)HRC100

9.三星齿轮的作用是( D )。

(A)改变传动比 (B)提高传动精度 (C)齿轮间联接 (D)改变丝杠转向

10.一对相互啮合的齿轮,其模数、( B )必须相等才能正常传动。

(A)齿数比 (B)齿形角 (C)分度圆直径 (D)齿数

11.数控车床中,目前数控装置的脉冲当量,一般为( B )。

(A)0.01 (B)0.001 (C)0.0001 (D)0.1

12. MC是指( D )的缩写。

(A)自动化工厂 (B) 计算机数控系统 (C)柔性制造系统 (D)数控加工中心

13.工艺基准除了测量基准、装配基准以外,还包括( A  )。

(A)定位基准  (B)粗基准  (C)精基准 (D)设计基准

14.零件加工时选择的定位粗基准可以使用( A )。

(A)一次 (B)二次 (C)三次  (D)四次及以上

15.工艺系统的组成部分不包括( C )。

(A)机床 (B)夹具 (C)量具  (D)刀具

16.车床上的卡盘、中心架等属于( A )夹具。

(A)通用 (B)专用 (C)组合 (D)标准

17.工件的定位精度主要靠( A )来保证。

(A)定位元件 (B)辅助元件 (C)夹紧元件 (D)其他元件

18.切削用量中( A )对刀具磨损的影响最大。

(A)切削速度 (B)进给量 (C)进给速度 (D)背吃刀量

19.刀具上切屑流过的表面称为( A )。

(A)前刀面 (B)后刀面 (C)副后刀面 (D)侧面

20.为了减少径向力,车细长轴时,车刀主偏角应取( C )。

(A)30°~45° (B)50°~60° (C)80°~90° (D)15°~20°

21.既可车外圆又可车端面和倒角的车刀,其主偏角应采用( B )。

(A)30° (B)45° (C)60° (D)90°

22.标准麻花钻的顶角φ的大小为( C )。

(A)90? (B)100? (C)118? (D)120?

23.车削右旋螺纹时主轴正转,车刀由右向左进给,车削左旋螺纹时应该使

主轴( A )进给。

(A)倒转,车刀由右向左 (B)倒转,车刀由左向右

(C)正转,车刀由左向右 (D)正转,车刀由右向左

24螺纹加工中加工精度主要由机床精度保证的几何参数为( D )。

(A)大径 (B)中径 (C)小径 (D)导程

25.数控机床有不同的运动方式,需要考虑工件与刀具相对运动关系及坐标方向,采用( B )的原则编写程序。

(A)刀具不动,工件移动 (B)工件固定不动,刀具移动

(C)根据实际情况而定 (D)铣削加工时刀具固定不动,工件移动;车削加工时刀具移动,工件不动



27.数控机床面板上JOG是指( B )。

(A)快进 (B)点动 (C)自动 (D)暂停

28. 数控车床的开机操作步骤应该是( B )。

(A )开电源,开急停开关,开CNC系统电源 (B) 开电源,开CNC系统电源,开急停开关 (C) 开CNC系统电源,开电源,开急停开关 (D)都不对

29.以下( A )指令,在使用时应按下面板“暂停”开关,才能实现程序暂停。

(A) M01 (B) M00 (C) M02 (D)M06

30.机床照明灯应选( C )V供电。

(A)220 (B)110 (C)36 (D)80

31.图样中所标注的尺寸,为机件的( B )完工尺寸。

(A)第一道工序(B)第二道工序(C)最后一道工序(D)中间检查工序

33.公差为0.01的? 10轴与公差为0.01的? 100 轴相比加工精度( B )。

(A)?10高 ( B) ?100高 ( C)差不多 (D )无法判断

34.如图所示,尺寸?20的公差等于( A )。

(A)0.021 (B) –0.021 (C) 0 (D) 19.979

35.含碳量小于( A )钢称为低碳钢。

(A)0.25% (B)0.15% (C)0.6% (D)2.11%

36.调质处理是指( D )和高温回火相结合的一种工艺。

(A)完全退火 (B)去应力退火 (C)正火 (D)淬火

37.以下材料中,耐磨性最好的是( D )。

(A)纯铜 (B)铸铁 (C)中碳钢 (D)高碳钢

38.加大前角能使车刀锋利、减少切屑变形、减轻切屑与前刀面的摩擦,从而( A )切削力。

(A)降低 (B)减少 (C)增大 (D)升高

39.为了减少刀具磨损,刀具前角应( D )。

(A)小些 (B)较小些 (C)大些 (D)较大些

40.刀具角度中对断屑影响较大的是( C )。

(A)前角 (B)后角(C)主偏角 (D)副偏角

41.以下不属于啮合传动的是( B )。

(A)链传动 (B)带传动 (C)齿轮传动 (D)螺旋传动

42.液压系统的工作压力取决于( D )。

(A)泵的额定压力 (B)泵的流量 (C)压力表 (D)外负载

43.滚珠丝杠螺母副中负载滚珠总圈数一般为( B )。

(A)小于2圈 (B)2~4圈 (C)4~6圈 (D)大于6圈

44.只有在( B )和定位基准精度很高时,重复定位才允许采用。

(A)设计基准 (B)定位元件 (C)测量基准 (D)夹紧元件

45.工件定位时,作为定位基准的点和线,往往是由某些具体表面体现的,这个表面称为( D )。

(A)安装基准面 (B)测量基准面(C)设计基准面 (D)定位基准面

46.工件的( C )个自由度都得到限制,工件在夹具中只有唯一的位置,这种定位称为完全定位。

(A)4 (B)5 (C)6 (D)7

47.平头支撑钉适用于( B )平面的定位。

(A)未加工 (B)已加工 (C)未加工过的侧面 (D)都可以

48.工件以两孔一面为定位基面,采用一面两圆柱销为定位元件,这种定位属于( C )定位。

(A)完全 (B)部分(C)重复 (D)欠定位

49.( A )是计算机床功率,选择切削用量的主要依据。

(A)主切削力 (B)径向力 (C)轴向力 (D)周向力

50.以下不属于三爪卡盘的特点是( B )。

(A) 找正方便 (B)夹紧力大 (C)装夹效率高 (D)自动定心好

51.车通孔时,内孔车刀刀尖应装得( A )刀杆中心线。

(A)高于 (B)低于 (C)等高于 (D)都可以

52.若偏心距较大而复杂的曲轴,可用( D )来装夹工件。

(A)两顶尖 (B)偏心套 (C)两顶尖和偏心套 (D)偏心卡盘和专用卡盘

53.车普通螺纹,车刀的刀尖角应等于( D )度。

(A)30 (B)55 (C)45 (D)60

54 .车孔精度可达( C )。

(A)IT4-IT5 (B)IT5-IT6 (C)IT7-IT8 (D)IT8-IT9



58.安装刀具时,刀具的刃必须( C )主轴旋转中心。

(A)高于 (B)低于 (C)等高于 (D)都可以

59.刀具路径轨迹模拟时,必须在( C )方式下进行。

(A)点动 ( B)快点 (C)自动 ( D)手摇脉冲

60.在自动加工过程中,出现紧急情况,可按( D )键中断加工。

(A)复位 (B)急停 (C)进给保持 ( D)三者均可



1.画螺纹连接图时,剖切面通过螺栓、螺母、垫圈等轴线时,这些零件均按( A )绘制。

(A)不剖 (B)半剖 (C)全剖 (D)剖面

2.在视图表示球体形状时,只需在尺寸标注时,加注( C )符号,用一个视图就可以表达清晰。

(A)R (B) Φ (C)SΦ (D)O

3.用游标卡尺测量8.08mm的尺寸,选用读数值i为( B )的游标卡尺较适当。

(A)i=0.1 (B) i=0.02 (C) i=0.05 (D) i=0.015

4.配合代号H6/f5应理解为( B )配合。(A)基孔制间隙 (B) 基轴制间隙 .(C)基孔制过渡 (D) 基轴制过渡

5.牌号为35的钢的含碳量为百分之( C )。

(A)35  (B)3.5 (C)0.35  (D)0.035

6轴类零件的淬火热处理工序应安排在( B )。

(A)粗加工前 (B)粗加工后,精加工前 (C)精加工后 (D)渗碳后

7.下列钢号中,( C )钢的塑性、焊接性最好。

(A)5 (B)T10 (C)20 (D)65

8. 精加工脆性材料,应选用( A )的车刀。

(A) YG3 (B)YG6 (C)YG8 (D)YG5

9.切削时,工件转1转时车刀相对工件的位移量又叫做( B )。

(A)切削速度 (B)进给量 (C)切削深度 (D)转速

10.精车外圆时,刃倾角应取( B )。

(A)负值 (B)正值 (C)零 (D)都可以

11.传动螺纹一般都采用( C )。

(A)普通螺纹 (B)管螺纹 (C)梯形螺纹 (D)矩形螺纹

12.一对相互啮合的齿轮,其齿形角、( B )必须相等才能正常传动。

(A)齿数比 (B) 模数 (C)分度圆直径 (D)齿数

13.CNC是指( B )的缩写。

(A)自动化工厂 (B) 计算机数控系统

(C)柔性制造系统 (D)数控加工中心

14.工艺基准除了测量基准、定位基准以外,还包括( A  )。

(A)装配基准  (B)粗基准  (C)精基准  (D)设计基准

15.工件以两孔一面为定位基准,采用一面两圆柱销为定位元件,这种定位属于( A )定位。

(A)完全 (B)部分 (C)重复 (D)永久

16.夹具中的( A )装置,用于保证工件在夹具中的正确位置。

(A)定位元件 (B)辅助元件 (C)夹紧元件 (D)其他元件

17.V形铁是以( A )为定位基面的定位元件。

(A)外圆柱面 (B)内圆柱面 (C).内锥面 (D)外锥面

18.切削用量中( D )对刀具磨损的影响最小。

(A)切削速度 (B)进给量 (C)进给速度 (D)背吃刀量

19. 粗加工时的后角与精加工时的后角相比,应( B )

(A)较大 (B)较小 (C)相等 (D)都可以

20.车刀角度中,控制刀屑流向的是( C )。

(A)前角 (B)主偏角 (C).刃倾角 (D)后角

21.精车时加工余量较小,为提高生产率,应选用较大的( C )

(A)进给量 (B)切削深度 (C).切削速度 .(D)进给速度

22.粗加工较长轴类零件时,为了提高工件装夹刚性,其定位基准可采用轴的( C )。

(A)外圆表面 (B)两端面 (C).一侧端面和外圆表面 (D)内孔

23.闭环控制系统的位置检测装置安装装在( C )。

(A)传动丝杠上 (B)伺服电机轴端 (C)机床移动部件上 (D)数控装置

24.影响已加工表面的表面粗糙度大小的刀具几何角度主要是( D )。

(A) 前角 (B)后角 (C).主偏角 (D)副偏角

25.为了保持恒切削速度,在由外向内车削端面时,如进给速度不变,主轴

转速应该( C )。

(A)不变 (B)由快变慢 (C)由慢变快 (D)先由慢变快再由快变慢



27.数控机床面板上AUTO是指( C )。

(A)快进 (B)点动 (C)自动 (D)暂停

28. 程序的修改步骤,应该是将光标移至要修改处,输入新的内容,然后按( C ) 键即可。

(A)插入 (B)删除 (C) 替代 (D)复位

29. 在Z轴方向对刀时,一般采用在端面车一刀,然后保持刀具Z轴坐标不动,按( B )按钮。即将刀具的位置确认为编程坐标系零点。

(A)回零 (B)置零 (C)空运转 (D)暂停

30.发生电火灾时,应选用( B )灭火。

(A)水 (B)砂 (C)普通灭火机 (D)冷却液



5.含碳量在( A )钢称为低碳钢。

(A)0.25%~0.6% (B)0.15%~0.6% (C)0.6%~0.8% (D)0.6%~2.11%

6.将淬硬钢再加热到一定温度,保温一定时间,然后冷却到室温的热处理过程为( B )。

(A)退火 (B)回火 (C)正火 (D)淬火

7.以下材料中,耐热性最好的是( C )。

(A)碳素工具钢 (B)合金工具钢 (C)硬质合金 (D)高速钢

8.车削时,走刀次数决定于( A )。

(A)切削深度 (B)进给量 (C)进给速度 (D)主轴转速

9.车不锈钢选择切削用量时,应选择( C )。

(A)较大的V,f (B)较小的V,f

(C)较大的V,较小的f (D)较小的V,较大的f

10.在特定的条件下抑制切削时的振动可采用较小的( B )。

(A)前角 (B)后角 (C)主偏角 (D)刃倾角

11.以下( D )情况不属于普通螺旋传动。

(A)螺母不动,丝杠回转并作直线运动(B)丝杠回转,螺母作直线运动

(C)丝杠不动,螺母回转并作直线运动(D)螺母回转,丝杠作直线运动

12.液压泵的最大工作压力应( C )其公称压力。

(A) 大于 (B)小于 (C)小于或等于 (D)等于

13.以下不属于数控机床主传动特点是( C )。

(A)采用调速电机 (B)变速范围大(C)传动路线长(D)变速迅速  

14.工件在装夹中,由于设计基准与( C )不重合而产生的误差,称为基准不重合误差。

(A)工艺 (B)装配 (C)定位 (D)夹紧

15.轴在长V形铁上定位,限制了( B )个自由度。

(A)2 (B) 4 (C)3 (D)6

16.垫圈放在磁力工作台上磨端面,属于( B )定位。

(A)完全 (B)部分(C)重复 (D)欠定位

17.设计夹具时,定位元件的公差约等于工件公差的( C )。

(A)1/2左右 (B)2倍 (C)1/3左右 (D)3倍

18.加工长轴端孔时,一端用卡盘夹得较长,另一端用中心架装夹时,限制了( B )个自由度。

(A)3 (B)4 (C)5 (D)6

19.精车时,为了减少工件表面粗糙度,车刀的刃倾角应取( A )值。

(A)正(B)负 (C)零 (D)都可以

20.用一顶一夹装夹工件时,若后顶尖轴线不在车床主轴轴线上,会产生( B)。

(A)振动 (B)锥度 (C)表面粗糙度不高 (D)同轴度差

21.铰孔是( C )加工孔的主要方法之一。

(A)粗 (B)半精 (C)精 (D)精细

22.工件材料相同时,车削温度上升基本相同,其热变形伸长量主要取决于( A )。

(A)工件的长度 (B)材料的热膨胀系数(C)刀具磨损 (D)其他

23.用螺纹千分尺可测量外螺纹的( C )。

(A)大径 (B)小径 (C)中径 (D)螺距

24 . 铰孔精度一般可达( C )。

(A)IT4-IT5 (B)IT5-IT6 (C)IT7-IT9 (D)IT9-IT10

28.若程序中主轴转速为S1000,当主轴转速修调开关打在80时,主轴实际转速为( A )。

(A)800 (B)S8000 (C)S80 (D)S1000

29.数控车床X轴对刀时,若工件直径车一刀后,测得直径值为20.030mm,应通过面板输入X值为( A )。

(A)X20.030 (B)X-20.030 (C)X10.015 (D)X-10.015

30.机床“快动”方式下,机床移动速度F应由( C )确定。

(A)程序指定 ( B)面板上进给速度修调按钮 (C)机床系统内定 ( D)都不是

BW Bewise Inc. Willy Chen willy@tool-tool.com bw@tool-tool.com www.tool-tool.com skype:willy_chen_bw mobile:0937-618-190 Head &Administration Office No.13,Shiang Shang 2nd St., West Chiu Taichung,Taiwan 40356 TEL:+886 4 24710048 / FAX:+886 4 2471 4839 N.Branch 5F,No.460,Fu Shin North Rd.,Taipei,Taiwan S.Branch No.24,Sec.1,Chia Pu East Rd.,Taipao City,Chiayi Hsien,Taiwan

Welcome to BW tool world! We are an experienced tool maker specialized in cutting tools. We focus on what you need and endeavor to research the best cutter to satisfy users demand. Our customers involve wide range of industries, like mold & die, aerospace, electronic, machinery, etc. We are professional expert in cutting field. We would like to solve every problem from you. Please feel free to contact us, its our pleasure to serve for you. BW product including: cutting toolaerospace tool .HSS Cutting toolCarbide end millsCarbide cutting toolNAS Cutting toolCarbide end millAerospace cutting tool、Фрезеры’Carbide drillHigh speed steelMilling cutterCVDD(Chemical Vapor Deposition Diamond )’PCBN (Polycrystalline Cubic Boron Nitride) ’Core drillTapered end millsCVD Diamond Tools Inserts’PCD Edge-Beveling Cutter(Golden Finger’PCD V-Cutter’PCD Wood tools’PCD Cutting tools’PCD Circular Saw Blade’PVDD End Mills’diamond tool ‘Single Crystal Diamond ‘Metric end millsMiniature end millsNAS986’DIN6537’DIN6537’NAS965’NAS907’NAS897’NAS937’DIN1837’DIN338’DIN340’DIN1897’DIN6539’DIN6529’DIN6527’DIN6528’DIN6535HA’DIN1833’ Специальные режущие инструменты

Пустотелое сверло DIN212’DIN850’DIN335’DIN334’DIN347’Pilot reamerFraises’Fresas con mango’ PCD (Polycrystalline diamond) ‘Frese’Electronics cutterStep drillMetal cutting sawDouble margin drillGun barrelAngle milling cutterCarbide burrsCarbide tipped cutterChamfering toolIC card engraving cutterSide cutterNAS toolDIN toolSpecial toolMetal slitting sawsShell end millsSide and face milling cuttersSide chip clearance sawsLong end millsStub roughing end millsDovetail milling cuttersCarbide slot drillsCarbide torus cuttersAngel carbide end millsCarbide torus cuttersCarbide ball-nosed slot drillsMould cutterTool manufacturer.

Bewise Inc. www.tool-tool.com

beeway 發表在 痞客邦 留言(0) 人氣()

Bewise Inc. www.tool-tool.com Reference source from the internet.

数控机床是一种高效的自动化机床,具有高性价比。由于它价格昂贵,结构复杂,所涉及到的知识面很广,一旦出现故障维修困难,常带来较大的经济损失。本文根据生产中经常遇到实际问题介绍几种常用控制故障维修方法及应用实例,希望能对数控机床操作者有所启发。

1.直接法

维修人员通过故障发生时的各种光、声、味等异常现象的观察,认真察看系统的各个部分将故障范围缩小到一个模块或一块印刷线路板。通过目测故障线路板,仔细 检查有无熔断丝熔断、元器件烧坏、开裂现象,从而判定有无过流、过压或短路。用手触摸元器件有无松动,以检查一些虚焊、断裂问题。

应用案例: 配置有发那科系统FANUC 0i Mate C的数控车床加工过程中,突然出现主轴停机。首先检查主电源插座是否断电,如果完好检查保险。打开电器柜检查发现电机主电路保险管烧坏,更换新保险。分析 原因,由于主轴电机功率较小,加工时切削用量较大,电机过载不能正常工作导致。更换新保险故障消除,机床恢复正常。

2.交换法

交换法就是在分析出故障大致起因的情况下,利用备用的印刷线路板、模板、集成电路芯片或元件替换有疑点的部分,从而把故障范围缩小到印刷线路板或芯片一级。

应用案例: 一台工业型数控铣床,配置华中世纪星系统H N C-21M系统,故障现象为Y轴在加工过程中突然不动且无报警,此后不论在手动还是自动、MDI方式下Y轴均无动作,但X轴和Z轴正常。先确定机械部分无故障后把故障定位在电气部分。

分析与Y 轴控制有关数控装置、伺服驱动器和伺服电机三者中任何一个出现故障均会出现此故障。由于X轴与Y轴的伺服驱动器一样,因此采用交换法,将Y轴伺服驱动器与 确认无故障的X轴伺服驱动器互换,发现Y轴故障消失,X轴不动。此时可断定原Y轴驱动器损坏。更换新的驱动器故障消除,机床恢复正常。

3.原理分析法

根据CNC组成原理,从逻辑上分析各点的逻辑电平和特征参数,从系统各部件的工作原理着手进行分析和判断,确定故障部位的维修方法。这种方法的运用,要求维修人员对整个系统或每个部件的工作原理都有清楚的、较深入的了解,才可能对故障部位进行定位。

应用案例1:西门子系统SINUMERIK 810D数控装置,在加工螺纹时出现乱牙现象。根据数控系统位置控制的基本原理,可以确定故障出在旋转编码器上,而且很有可能是反馈信号丢失,这样,一旦 数控装置给出进给量的指令位置,反馈的实际位置始终不正确,位置误差始终不能消除,导致螺纹插补出现问题,拆下脉冲编码器进行检查,发现编码器里灯丝已 断,导致无反馈输入信号。更换编码器后,故障排除。

应用案例2:配置有华中世纪星系统HNC - 21M的数控铣床一直处于急停状态,不能复位。整个电气回路的接线图如图2所示,从图上可以清晰地看出可能引起急停回路不闭合的原因有:(1)急停回路断路;(2)限位开关损坏;(3)急停按钮损坏。

如果机床一直处于急停状态,首先检查急停回路中KA继电器是否吸合,继电器如果吸合而系统仍然处于急停状态,可以判断出故障不是出自电气回路方面。这时可 以从别的原因查找,如果继电器没有吸合,可以判断出故障是因为急停回路断路引起,这时可以利用万用表对整个急停回路逐步进行检查,检查急停按钮的常闭触 点,并确认急停按钮或者行程开关是否损坏。

急停按钮是急停回路中的一部分,急停按钮的损坏,可以造成整个急停回路的断路,检查超程限位开关的常闭触点,若未装手持单元或手持单元上无急停按钮,XS8接口中的4、17脚应短接。逐步测量,最终确认故障在Z轴行程开关不能复位所致。

4.参数检查法

数控系统发现故障时应及时核对系统参数,系统参数的变化会直接影响到机床的性能,甚至使机床不能正常工作,出现故障,参数通常存放在磁泡存储器或由电池保 持的CMOSRAM中,一旦外界干扰或电池电压不足,会使系统参数丢失或发生变化而引起混乱现象,通过核对,修正参数,就能排除故障。

应用案例: 华中世纪星系统HNC-21数控装置,在加工直径时尺寸不对,导致加工失败。查找原因,首先看程序中尺寸是否正确,如果没有错误,检验初始参数设定。修改 参数前,必须理解参数的功能和熟悉原始设定值,不正确的参数设置与修改,可能造成严重的后果。首先按F10切换参数选项,按F3切换到参数索引,再按F3 输入口令。口令正确后便可以按F1选择轴参数,选择轴0确定后,检查外部脉冲当量分子和外部脉冲分母的数值。通过查找机床参数,机床为10000线编码器 的伺服电机,丝杠为6mm,齿轮减速比为2:3,那么电机每转一圈,机床运动6mm。6×2/3=4mm,根据公式外部脉冲当量分子(μm)/外部脉冲当 量分母=电机每转一圈机床移动距离/10000,即4000个内部脉冲当量,4000/10000=2/5,轴0的外部脉冲当量分子该为2,分母该为5。 参数修改后必须重新启动数控装置,新参数才能生效。

5.利用机床参数维修数控机床

无论哪个公司的CNC系统都有大量的参数,这些参数设置正确与否直接影响到数控机床的正常使用和性能的发挥。然而在机床使用一段时间后,有些参数需要适当的调整或重新设置,否则会影响机床的使用性能。

应用案例:一台工业型数控车床,配备了华中世纪星系统H N C-21T数控装置,在加工零件时Z轴方向尺寸不对。在排除了程序错误后,断定此故障是由于机床定位精度有问题,接着检查反向间隙正常后,确定丝杠有螺距 误差。由于螺距误差可用参数补偿,因此采用修改机床参数的方法来修复。修复过程如下:

(1)在测量前开机进入系统,依次按“F3参数”键、再按“F3输入权限”键进入下一子菜单,按F1数控厂家参数,输入数控厂家权限口令,初始口令为 “HIG”,回车再按“F1参数索引”键,再按“F 4轴补偿参数”键如图3所示,移动光标选择“轴2”回车,即进入系统Z轴补偿参数界面,将系统的反向间隙、螺距补偿参数全部设置为零。按“Esc”键,界 面出现对话框“是否保存修改参数?”,按“Y”键后保存修改后的参数。按“F10”键回到主界面,再按“Alt+X”退出系统,再重新进入系统。

(2)已知Z轴的行程为500mm,补偿间隔为50mm,移动轴内部当量为1μm,参考点位置为0,利用步距规及百分表或激光干涉仪测量各补偿点的数据(测量时先回参考点),其中工作台向负向移动时各测量点数据如下:

- 5 0 0 . 1 4 , - 4 5 0 . 1 1 , -4 0 0 . 1,- 3 5 0 . 0 8,- 3 0 0 . 0 5,-250.06,-200.04,-150.02,-100.01,-50.005,0

工作台向正向移动时各测量点数据如下:

- 5 0 0 . 2 0 , - 4 5 0 . 1 8 , -400.15,-350.12,-300.10,-250.10,-200.07,-150.06,-100.04,-50.05,0.03

(3)根据公式:“螺距误差补偿值=机床指令位置-机床实际位置”,计算螺距误差补偿值。工作台向负向移动是各测量点(各测量点的位置由负到正排列)的螺距误差补偿值为(单位:μm):

140,110,100,80,50,60,40,20,10,5,0

工作台向正向移动时各测量点(各测量点的位置由负到正排列)的螺距误差补偿值为(单位:μm):

200,180,150,120,100,100,70,60,40,50,-30

(4)将补偿参数填入系统。进行双向螺距误差补偿时,反向间隙为0,螺补类型为2,补偿点数为11,参考点偏差为10,补偿间隔为50000,偏差值的填写应先输入正向数据,后输负向数据,偏差值0为200,偏差值1为180,镲偏差值21为0。

(5)退出系统重新进入,试车工件,故障现象消失。
数控维修还有许多检测方法和维修手段,在数控机床中,大部分的故障都有资料可查,但也有一些故障,提供的报警信息较含糊,甚至根本无报警或者无规律,我们 应该根据实际情况现场分析,检查时特别需要机械、电气、液压等方面的综合知识,把问题判断准确,用最有效、最省事的方法把故障排除。


BW Bewise Inc. Willy Chen willy@tool-tool.com bw@tool-tool.com www.tool-tool.com skype:willy_chen_bw mobile:0937-618-190 Head &Administration Office No.13,Shiang Shang 2nd St., West Chiu Taichung,Taiwan 40356 TEL:+886 4 24710048 / FAX:+886 4 2471 4839 N.Branch 5F,No.460,Fu Shin North Rd.,Taipei,Taiwan S.Branch No.24,Sec.1,Chia Pu East Rd.,Taipao City,Chiayi Hsien,Taiwan

Welcome to BW tool world! We are an experienced tool maker specialized in cutting tools. We focus on what you need and endeavor to research the best cutter to satisfy users demand. Our customers involve wide range of industries, like mold & die, aerospace, electronic, machinery, etc. We are professional expert in cutting field. We would like to solve every problem from you. Please feel free to contact us, its our pleasure to serve for you. BW product including: cutting toolaerospace tool .HSS Cutting toolCarbide end millsCarbide cutting toolNAS Cutting toolCarbide end millAerospace cutting tool、Фрезеры’Carbide drillHigh speed steelMilling cutterCVDD(Chemical Vapor Deposition Diamond )’PCBN (Polycrystalline Cubic Boron Nitride) ’Core drillTapered end millsCVD Diamond Tools Inserts’PCD Edge-Beveling Cutter(Golden Finger’PCD V-Cutter’PCD Wood tools’PCD Cutting tools’PCD Circular Saw Blade’PVDD End Mills’diamond tool ‘Single Crystal Diamond ‘Metric end millsMiniature end millsNAS986’DIN6537’DIN6537’NAS965’NAS907’NAS897’NAS937’DIN1837’DIN338’DIN340’DIN1897’DIN6539’DIN6529’DIN6527’DIN6528’DIN6535HA’DIN1833’ Специальные режущие инструменты

Пустотелое сверло DIN212’DIN850’DIN335’DIN334’DIN347’Pilot reamerFraises’Fresas con mango’ PCD (Polycrystalline diamond) ‘Frese’Electronics cutterStep drillMetal cutting sawDouble margin drillGun barrelAngle milling cutterCarbide burrsCarbide tipped cutterChamfering toolIC card engraving cutterSide cutterNAS toolDIN toolSpecial toolMetal slitting sawsShell end millsSide and face milling cuttersSide chip clearance sawsLong end millsStub roughing end millsDovetail milling cuttersCarbide slot drillsCarbide torus cuttersAngel carbide end millsCarbide torus cuttersCarbide ball-nosed slot drillsMould cutterTool manufacturer.

Bewise Inc. www.tool-tool.com

beeway 發表在 痞客邦 留言(0) 人氣()

Bewise Inc. www.tool-tool.com Reference source from the internet.

1、主辅在转动时若有一定的径向圆跳动,则工件加工后会产生结合度的误差。
是 否
2、步进电机在输入一个脉冲时所转过的角度称为步距角。(是)
是 否
3、基准不重合误差由前后设计基准不同而引起。(否)
是 否
4、如果后置设置的参数如上,程序尾中宏指令的编写是$G90 $DCMP_OFF Z200.0
$SPN_OFF@COOL_OFF@$PRO_STOP则产生程序的结尾处应该是(D)。
A. G90 G40 Z200.0 M05;
M30;
B. G90 Z200.0 M09;
M05;
M30;
C. G90 Z200.0 M09*
M30*
D.G90 G40 Z200.0 M05*
M09*
M30*
5、对称度要求较高的台阶面,通常采用换面法加工。
是 否
6、铣削直角沟槽时,若三面刃铣刀轴向摆差较大,铣出的槽宽会小于铣刀宽度。
是 否
7、粗磨的工序余量为( D )mm。
A .2.l B l. l
C. 0.79 D. 0.3
8、分度盘(孔盘)的作用是解决非整转数的分度。(是)
是 否
9、为消除粗加工的内应力,精加工常在( D )进行。
A.回火处理后 B.回火处理前
C.淬火处理后 D.退火处理后
10、机床空气干燥器必须( A )检查。
A.每半年 B.每两年
C.每月 D.每三年
11、在精加工和半精加工时一般要留加工余量,下列半精加工余量中( B )相对更为合理。
A.10mm B.0.5mm
C. 0.01mm D.0 005mm
12、用于主轴旋转速度控制的代码是( C )
A .T B. G C.S
13、切削力可分解为主切削力Fc、切深抗力Fp和进给抗力Ff,其中消耗功率最大的力是
( B )。
A.进给抗力Ff B.主切削力Fc
C.切深抗力Fp D.不确定
14、钢材淬火后获得的组织大部分为( C )。
A.洛氏体 B.奥氏体
C.马氏体 D.索氏体
15、测量孔的深度时,应选用圆规。(否)
是 否
16、在加工中心上加工箱体类零件时,工序安排的原则之一是( A )
A.当既有面又有孔时,应先铣面,再加工孔
B.在孔系加工时应先加工小孔,再加工大孔
C.在孔系加工时,一般应对一孔粗、精加工完成后,再对其它孔按顺序进行
粗、精加工
D.对跨距较小的同轴孔,应尽可能采用调头加工的方法
17、用盘铣刀在轴类工件表面切痕对刀,其切痕是椭圆形的。
是 否
18、( B )表示主轴停转的指令。
A .G50 B. M05
C. G66 D. M62
19、顺铣时,作用在工件上的力在进给方向的分力与进给方向相反,因此丝杠轴向间隙对顺
铣无明显影响。
是 否
20、( )表示主轴定向停止的指令。
A. M19 B. M18
C. G19 D. M20
2l、曲面加工常用( D )。
A.键槽刀 B.锥形刀
C.盘形刀 D.球形刀 ,
22、若液压系统压力表出现小于3. 9MPa,则解决的方法是( C )
A.加油 B.调节压力点螺钉
C.调节压力阀 D.清洗
23、由于角度铣刀的刀齿强度较差,容屑槽较小,因此应选择较小的每齿进给量。(是)
是 否
24、在额定转速以上,主轴电动机应工作于( A )。
A.恒功率方式 B.恒转矩方式
C.同步控制方式 D.恒转速控制方式
25、在运算指令中,形式为 # i = # j MOD # k代表的意义是( D )。
A.四次方根 B.微分
C.导数 D.取余
26、主轴正转,刀具以进给速度向下运动钻孔,到达孔底位置后,快速退回,这一钻孔指令
是( A )
A .G8l B .G82
C. G83 D .G84
27、下列对数控机床两轴加工解释正确的是( D )。
A.数控机床坐标系只有两个坐标轴
B.数控机床坐标系有两个可以单独移动的坐标轴
C.数控机床坐标系的两个轴可以联动,而主轴固定
D.数控机床坐标系的任意两个轴都可以实现联动
28、纯钢( )。
A.又称铍青钢 B.还有l0%的锌
C.牌号有T1、T2、T3 D.较硬的基体和耐磨的质点
29、当加工程序需使用几把刀时,因为每把刀长度总会有所不同,因而需用( A )。
A.刀具长度补偿 B.刀具半径补偿
C.刀具左补偿 D.刀其右补偿
30、为改善低碳钢加工性能应采用( C )。
A.淬火或回火 B.退火或调质
C.正火 D.调质或回火
3l、当工件基准面与工作台面平行时,应在( B )铣削平行面。
A.立铣上用周铣法 B.卧铣上用周铣法
C.卧铣上用端铣法
32、下列叙述中,除( D )外,均不适于在数控铣床上进行加工。
A.轮廓形状特别复杂或难于控制尺寸的回转体零件
B.箱体零件
C.精度要求高的回转体类零件
D.一般螺纹杆类零件;
33、插补运算的任务是确定刀具的( C )。
A.速度 B.加速度
C.运动轨迹 D.运动距离
34、数控机床的加工动作是由( D )规定的
A.输入装置 B.步进电机
C.伺服系统 D.加工程序
35、基准不重合误差由前后( A )不同而引起。
A.工序基准 B.加工误差
C.工艺误差 D.计算误差
36、主轴噪声增加的原因分析主要包括( B )
A.伺服电动机是否有故障
B.庄轴载荷是否过大
C.主轴定向是否准确
D.变压器有无问题
37、在程序中利用变量进行赋值及处理,使程序具有特殊功能,这种程序叫做小程序。(否)
是 否
38、装夹切断加工工件时,应使切断处尽量靠近夹紧点。
是 否
39、标注球面时,应在符号前加J。( 否 )
是 否
40、铸造内应力是灰铸铁在( )摄氏度从塑性向弹性状态转变时,由于壁厚不均、冷却收
缩不匀而造成的。
A. 620-400 B. 700
C. 180-380 D .120-350
41、刀齿齿背是( A )的铣刀称为铲齿铣刀。
A.阿基米德螺旋线 B.直线
C.折线
42、加工内廓凳零件时,( A )j。
A.要留有精加工余量
B.为保证顺铣,刀具要沿内廓表面顺时针运动
C.有用留有精加工余量
D.为保证顺铣,刀具要沿工件表面左右滑动
43、在运算指令中,形式为 #iI = # i AND #k代表的意义是( )。
A.分数 B.小数
C.倒数 D.逻辑数
44、六点定位原理是在夹其中用定位零件将工件的( A )个自由度都限制,则该元件在空间
的位置就完全确定了。
A. 6 B .4
C .12 D. 16
45、工件应在夹紧后定位。(否)
是 否
46、选用可倾虎钳装夹工件,铣削与基准面夹角为a的斜面,当基准面坚固耐用预加工表面
平行时,虎钳转角θ=( )。
A. -90 B. 90-a
C. 180 -а或а
47、可转位铣刀属于( B )铣刀。
A.整体 B.机械夹固式
C.镶齿
48、选择铣削加工的主轴转速的依据( C )
A.一般依赖于机床的特点和用户的经验
B.工件材料与刀具材料
C.机床本身、工件材料、刀具材料、工件的加工精度和表面租糙度
D.由加工时间定额决定
49、成形铣刀为了保证刃磨后齿形不变,一般都采用尖齿结构。
是 否
50、在批量生产中,检验键槽宽度是否合格,通常应选用( )检验。
A.塞规 B.游标卡尺
C.内径千分尺
51、特级质量钢的含磷量等于0. 11%。(否)
是否
52、若工件材料为退火15钢,经铣削加工后要求表面粗糙度达到,若要满足此加工要求,
需要( )。
A. 采用高速铣削
B.采用硬质合金刀具
C.铣削前先热处理,增加材料硬度
D.采用高速钢刀具精加工即可
53、在机床通电后,无须检查各开关按钮和键是否正常。(否)
是 否
54、具有三维/二维零件尺寸关联和约束功能的软件是( C )
A.AUTOCAD B. MASTERCAM
C.CAXA制造工程师XP D. Pro/E
55、增大锯片铣刀与工件的接触角,减小垂直分力,可减少和防止产生打刀现象.
是否
56、数控加工过程中,一旦出现紧急情况应( B )。
A.迅速关机床电器柜开关
B.迅速按下机床操作面板急停按钮
C.迅速拉下机床总电源
D.迅速请工程师前来处理
57、在变量赋值方方法l中,引数(自变量)J对应的变量是( D )
A. #201 B.#31
C. #21 D#5
58、成组夹具是为单位工件生产定制的。(否)
是 否
59、调质处理是( B )。
A.钢件经淬火后再进行退火处理
B.钢件经淬火后再进行高温回火处理
C.钢件经淬火后再进行低温回火处理
D.将铜件加温后保持一定时间,然后置于空气中冷却,
60、减少毛坯误差的办法是增加毛坯的余量。(否)
是 否

BW Bewise Inc. Willy Chen willy@tool-tool.com bw@tool-tool.com www.tool-tool.com skype:willy_chen_bw mobile:0937-618-190 Head &Administration Office No.13,Shiang Shang 2nd St., West Chiu Taichung,Taiwan 40356 TEL:+886 4 24710048 / FAX:+886 4 2471 4839 N.Branch 5F,No.460,Fu Shin North Rd.,Taipei,Taiwan S.Branch No.24,Sec.1,Chia Pu East Rd.,Taipao City,Chiayi Hsien,Taiwan

Welcome to BW tool world! We are an experienced tool maker specialized in cutting tools. We focus on what you need and endeavor to research the best cutter to satisfy users demand. Our customers involve wide range of industries, like mold & die, aerospace, electronic, machinery, etc. We are professional expert in cutting field. We would like to solve every problem from you. Please feel free to contact us, its our pleasure to serve for you. BW product including: cutting toolaerospace tool .HSS Cutting toolCarbide end millsCarbide cutting toolNAS Cutting toolCarbide end millAerospace cutting tool、Фрезеры’Carbide drillHigh speed steelMilling cutterCVDD(Chemical Vapor Deposition Diamond )’PCBN (Polycrystalline Cubic Boron Nitride) ’Core drillTapered end millsCVD Diamond Tools Inserts’PCD Edge-Beveling Cutter(Golden Finger’PCD V-Cutter’PCD Wood tools’PCD Cutting tools’PCD Circular Saw Blade’PVDD End Mills’diamond tool ‘Single Crystal Diamond ‘Metric end millsMiniature end millsNAS986’DIN6537’DIN6537’NAS965’NAS907’NAS897’NAS937’DIN1837’DIN338’DIN340’DIN1897’DIN6539’DIN6529’DIN6527’DIN6528’DIN6535HA’DIN1833’ Специальные режущие инструменты

Пустотелое сверло DIN212’DIN850’DIN335’DIN334’DIN347’Pilot reamerFraises’Fresas con mango’ PCD (Polycrystalline diamond) ‘Frese’Electronics cutterStep drillMetal cutting sawDouble margin drillGun barrelAngle milling cutterCarbide burrsCarbide tipped cutterChamfering toolIC card engraving cutterSide cutterNAS toolDIN toolSpecial toolMetal slitting sawsShell end millsSide and face milling cuttersSide chip clearance sawsLong end millsStub roughing end millsDovetail milling cuttersCarbide slot drillsCarbide torus cuttersAngel carbide end millsCarbide torus cuttersCarbide ball-nosed slot drillsMould cutterTool manufacturer.

Bewise Inc. www.tool-tool.com

beeway 發表在 痞客邦 留言(0) 人氣()

Bewise Inc. www.tool-tool.com Reference source from the internet.

من ويكيبيديا، الموسوعة الحرة

اذهب إلى: تصفح, بحث
28 كوبالتنيكلنحاس
-

Ni

Pd
صفات عامة
الإسم, الرقم, الرمز نيكل, Ni, 28
سلاسل كيميائية فلز انتقاليs
المجموعة, الدورة, المستوى الفرعي d ، 4 ، 10
المظهر معدني، ذو بريق
كتلة ذرية 58.6934(2) g/mol
شكل إلكتروني [Ar] 3d8 4s2
عدد الإلكترونات لكل مستوى 2, 8, 16, 2
خواص فيزيائية
الحالة صلب
كثافة عندح.غ. 8.908 ج/سم³
كثافة السائل عند m.p. 7.81 ج/سم³
نقطة الإنصهار 1728 ك
1455 م °
2651 ف °
نقطة الغليان 3186 ك
2913 م °
5275 ف °
حرارة الإنصهار kJ/mol 17.48
حرارة التبخر kJ/mol 377.5
السعة الحرارية (25 26.07 C (م) ° ( J/(mol·K
ضغط البخار
P/Pa 1 10 100 1 k 10 k 100 k
at T/K 1783 1950 2154 2410 2741 3184
الخواص الذرية
البنية البللورية وجه مكعّب موسطن
حالة التأكسد 2, 3
(أكسيد خفيف القاعدية)
سالبية كهربية 1.91 (مقياس باولنج)
طاقة التأين
(المزيد)
1st: 737.1 kJ/mol
2nd: 1753.0 kJ/mol
3rd: 3395 kJ/mol
نصف قطر ذري 135 pm
نصف قطر ذري (حسابيا) 149 pm
نصف القطر التساهمي 121 pm
نصف قطر فان دير فال 163 pm
متفرقة
الترتيب المغناطيسي حديدي المغنطة
مقاومة كهربية 20 °C 69.3 nΩ·m
توصيل حراري (300 K ك ) 90.9
(W/(m·K)
تمدد حراري (25 °C) 13.4 µm/(m·K)
سرعة الصوت (قضيب رفيع) (ح.غ.) 4900 م/ث
معامل يونج 200 GPa
معامل القص 76 GPa
معاير الحجم 180 GPa
نسبة بواسون 0.31
صلابة موس 4.0
رقم فيكرز للصلادة 638 MPa
رقم برينل للصلادة 700 MPa
رقم التسجيل 7440-02-0
النظائر المهمة
المقالة الرئيسية: نظائر الالنيكل
نظ ت.ط. عمر النصف طر.إ. طا.إ. MeV ن.إ.
56Ni syn 6.075 d ε - 56Co
γ 0.158, 0.811 -
58Ni 68.077% Ni يكون ثابت وله 30 نيوترون
59Ni syn 76000 y ε - 59Co
60Ni 26.233% Ni يكون ثابت وله 32 نيوترون
61Ni 1.14% Ni يكون ثابت وله 33 نيوترون
62Ni 3.634% Ni يكون ثابت وله 34 نيوترون
63Ni syn 100.1 y β- 0.0669 63Cu
64Ni 0.926% Ni يكون ثابت وله 36 نيوترون
المراجع
تم الاسترجاع من


BW Bewise Inc. Willy Chen willy@tool-tool.com bw@tool-tool.com www.tool-tool.com skype:willy_chen_bw mobile:0937-618-190 Head &Administration Office No.13,Shiang Shang 2nd St., West Chiu Taichung,Taiwan 40356 TEL:+886 4 24710048 / FAX:+886 4 2471 4839 N.Branch 5F,No.460,Fu Shin North Rd.,Taipei,Taiwan S.Branch No.24,Sec.1,Chia Pu East Rd.,Taipao City,Chiayi Hsien,Taiwan

Welcome to BW tool world! We are an experienced tool maker specialized in cutting tools. We focus on what you need and endeavor to research the best cutter to satisfy users demand. Our customers involve wide range of industries, like mold & die, aerospace, electronic, machinery, etc. We are professional expert in cutting field. We would like to solve every problem from you. Please feel free to contact us, its our pleasure to serve for you. BW product including: cutting toolaerospace tool .HSS Cutting toolCarbide end millsCarbide cutting toolNAS Cutting toolCarbide end millAerospace cutting tool、Фрезеры’Carbide drillHigh speed steelMilling cutterCVDD(Chemical Vapor Deposition Diamond )’PCBN (Polycrystalline Cubic Boron Nitride) ’Core drillTapered end millsCVD Diamond Tools Inserts’PCD Edge-Beveling Cutter(Golden Finger’PCD V-Cutter’PCD Wood tools’PCD Cutting tools’PCD Circular Saw Blade’PVDD End Mills’diamond tool ‘Single Crystal Diamond ‘Metric end millsMiniature end millsNAS986’DIN6537’DIN6537’NAS965’NAS907’NAS897’NAS937’DIN1837’DIN338’DIN340’DIN1897’DIN6539’DIN6529’DIN6527’DIN6528’DIN6535HA’DIN1833’ Специальные режущие инструменты

Пустотелое сверло DIN212’DIN850’DIN335’DIN334’DIN347’Pilot reamerFraises’Fresas con mango’ PCD (Polycrystalline diamond) ‘Frese’Electronics cutterStep drillMetal cutting sawDouble margin drillGun barrelAngle milling cutterCarbide burrsCarbide tipped cutterChamfering toolIC card engraving cutterSide cutterNAS toolDIN toolSpecial toolMetal slitting sawsShell end millsSide and face milling cuttersSide chip clearance sawsLong end millsStub roughing end millsDovetail milling cuttersCarbide slot drillsCarbide torus cuttersAngel carbide end millsCarbide torus cuttersCarbide ball-nosed slot drillsMould cutterTool manufacturer.

Bewise Inc. www.tool-tool.com

beeway 發表在 痞客邦 留言(0) 人氣()

Bewise Inc. www.tool-tool.com Reference source from the internet.

vanuit Wikipedia, die vrye ensiklopedie.

Spring na: navigasie, soek
28 kobaltnikkelkoper
-

Ni

Pd

Algemeen
Naam, Simbool, Getal nikkel, Ni, 28
Chemiese reeks oorgangsmetale
Groep, Periode, Blok 10, 4, d
Voorkoms glansende metaal
Atoommassa 58.6934(2) g/mol
Elektronkonfigurasie [Ar] 3d8 4s2
Elektrone per skil 2, 8, 16, 2
Fisiese Eienskappe
Toestand vastestof
Digtheid (naby k.t.) 8.908 g/cm³
Vloeistof digtheid teen s.p. 7.81 g/cm³
Smeltpunt 1728 K
(1455 °C)
Kookpunt 3186 K
(2913 °C)
Smeltingswarmte 17.48 kJ/mol
Verdampingswarmte 377.5 kJ/mol
Warmtekapasiteit (25 °C) 26.07 J/(mol·K)
Dampdruk
P/Pa 1 10 100 1 k 10 k 100 k
teen T/K 1783 1950 2154 2410 2741 3184
Atoomeienskappe
Kristalstruktuur kubies vlakgesentreerd
Oksidasietoestande 2, 3
(swak basis oksied)
Elektronegatiwiteit 1.91 (Skaal van Pauling)
Ionisasie energieë
(meer)
1ste: 737.1 kJ/mol
2de: 1753.0 kJ/mol
3rde: 3395 kJ/mol
Atoomradius 135 pm
Atoomradius (ber.) 149 pm
Kovalente radius 121 pm
Van der Waals radius 163 pm
Diverse
Magnetiese rangskikking ferromagneties
Elektriese weerstand (20 °C) 69.3 nΩ·m
Termiese geleidingsvermoë (300 K) 90.9 W/(m·K)
Termiese uitsetting (25 °C) 13.4 µm/(m·K)
Spoed van klank (dun staaf) (k.t.) 4900 m/s
Young se modulus 200 GPa
Skuifmodulus 76 GPa
Massamodulus 180 GPa
Poissonverhouding 0.31
Mohs se hardheid 4.0
Vickers hardheid 638 MPa
Brinell hardheid 700 MPa
CAS-registernommer 7440-02-0
Vernaamste isotope
Hoofartikel: Isotope van nikkel
iso NV halfleeftyd VM VE (MeV) VP
56Ni sin 6.075 d ε - 56Co
γ 0.158, 0.811 -
58Ni 68.077% Ni is stabiel met 30 neutrone
59Ni sin 76000 j ε - 59Co
60Ni 26.233% Ni is stabiel met 32 neutrone
61Ni 1.14% Ni is stabiel met 33 neutrone
62Ni 3.634% Ni is stabiel met 34 neutrone
63Ni sin 100.1 j β- 0.0669 63Cu
64Ni 0.926% Ni is stabiel met 36 neutrone
Verwysings

Nikkel is 'n metaalagtige chemiese element in die periodieke tabel met die simbool Ni en atoomgetal van 28.

[wysig] Kenmerkende eienskappe

Nikkel is 'n silwerwit metaal wat 'n hoë glans aanneem wanneer dit gepoleer word. Dit behoort tot die ystergroep, is hard en smee- en pletbaar. Dit kom gewoonlik in verbinding met swael in milleriet, met arseen in die mineraal nikkoliet en met arseen sowel as swael in nikkelglans.

Vanweë sy duursaamheid in lug en sy weerstand tot oksidasie word Nikkel word gebruik vir kleiner muntstukke, die platering van yster en geelkoper ens., vir die vervaardiging van chemise apparatuur en in sekere legerings. Dit is magtenies en word dikwels saam met kobalt gevind. Beide hierdie materiale kom ook in meteorietiese yster voor. Die hoof gebruike van Nikkel is in legerings.

Die mees algemene oksidasietoestand van nikkel is +2, maar 0, +1 en +3 Nikkelkomplekse word ook aangetref.

[wysig] Aanwendings

Ongeveer 65 persent van die Nikkel wat in die Westerse Wêreld verbruik word, is in die vorm van austenietiese vlekvrye staal. 'n Verdere 12 persent word gebruik in superlegerings. Die oorblywende 23% van die verbruik word verdeel tussen legeringstaal, herlaaibare batterye, kataliste en ander chemikalieë, munte, gietery produkte en platering. Die grootste verbruiker van nikkel is Japan wat ongeveer 169 600 ton per jaar verbruik (2005).

Gebruike sluit in:


[wysig] Geskiedenis

Die gebruik van nikkel dateer reeds uit antieke tye en kan so ver as die jaar 3500 v.C. teruggespoor word. Bronse uit die hedendaagse Sirië het 'n nikkel inhoud van soveel as twee persent gehad. Daar bestaan verder ook Sjinese geskrifte wat aan die hand doen dat wit koper in die Ooste gebruik is tussen 1400 en 1700 v.C. Omdat die ertse van nikkel egter maklik verwar is met die ertse van silwer is dit nie moontlik om met sekerheid te kan sê tot watter mate dit in die antieke tye doelbewus gebruik is nie.

Minerale wat nikkel bevat (bv. kupfernikkel of vals koper) het waarde gehad in die groen kleur wat dit aan glas verleen het. In 1751 het Baron Axel Frederick Cronstedt probeer om koper uit kupfernikkel (nou nikkoliet genoem) te onttrek en het in plaas daarvan 'n wit metaal verkry wat hy nikkel genoem het.

Die eerste nikkel muntstuk van die suiwer metaal is in 1881 vervaardig.

[wysig] Biologiese rol

Baie maar nie alle hidrogenase bevat nikkel saam met yster-sulfaat komplekse. Nikkelkerne is 'n algemene element va hidrogenase waarvan die doel is om te oksideer eerder as om waterstof vry te stel. Die nikkelkern kom voor asof dit veranderinge in oksidasietoestand ondergaan en bewys is al voorgelê dat die nikkelkern dalk die aktiewe dele van hierdie ensieme is.

'n Nikkel-tetrapirrool koensiem, Co-F430, is teenwoordig in die metiel CoM reduktase en in metanogeniese bakterieë. Die tetrapirrool is 'n intermediêre struktuur tussen profirien en korrien. Veranderings in redokstoestand tesame met verandering in nikkel koördinasie, is onlangse waargeneem.

Daar is ook 'n nikkelbevattende koolstofmonoksied dehidrogenase. Min is bekend oor die struktuur van die nikkelkompleks. Uit onlangse studies op kuikens en rotte wil dit voorkom asof nikkel 'n noodsaaklike rol in korrekte lewerfunksie speel.

[wysig] Verspreiding

Die meerderheid nikkel wat gemyn word is afkomstig van twee soorte ertsneerslae. Die eerste is lateriete waar die hoofsaaklikste ertsminerale limoniet: (Fe,Ni)O(OH) en garnieriet ('n hidreerde nikkel silikaat): (Ni,Mg)3Si2O5(OH). Die tweede is magmatiese sulfiedneerslae waar die hoofertsmineraal pentlandiet: (Ni,Fe))9S8 is.

Die Sudbury omgewing van Ontario, Kanada vervaardig omtrent 30 persent van die wêreld se nikkelvoorsiening. Die Sudbury neerslag is geleë in 'n gebied waar daar bewyse is van 'n massiewe meteorietimpak tydens die vroeëre geologiese geskiedenis van die Aarde. Ander neerslae kan elders in Kanada gevind word asook in Rusland, New Caledonia, Australië, Kuba en Indonesië. Die neerslae in tropiese gebiede is tipies lateriete wat ontstaan het as gevolg van die intense verwering van vulkaniese rotse en die daaropvolgende konsentrasie van die nikkel bevattende oksied en silikaat minerale.

Op grond van geofisiese bewyse word daar gespekuleer dat die meeste nikkel op Aarde in die Aardkors gekonsentreer is.

[wysig] Ontginning en suiwering

Nikkel kan deur middel van ekstraktiewe metallurgie ontgin word. Oksiehidroksied ertse word hidrometallurgies behandel en sulfiedertse word pirometallurgies of hidrometallurgies behandel. Sulfiederts konsentrate word vervaardig deur van die skuimflotasie gebruik te maak.

Nikkel word vanuit sy ertse ontgin deur van konvensionele rooster en reduksieprosesse gebruik te maak wat 'n metaal van >95% suiwerheid oplewer. Finale suiwering tot >99.99% word bereik deur die Nikkel met koolstofmonoksied te laat reageer om Nikkelkarboniel te vorm. Die produk gas word in 'n groot verhitte kamer ingelaat waar derduisende klein nikkelsfere voortdurend in beweging gehou word. Die Nikkelkarboniel ontbind en slaan suiwer nikkel op die nikkelsfere neer. Die koolstofmonoksied wat vrygestel word, word dan weer hersirkuleer.

Die grootste nikkelprodusent is Rusland waar daar jaarliks ongeveer 267 000 ton nikkel ontgin word. Australië en Kanada is die tweede en derde grootste vervaardigers met 207 en 189.3 duisend ton per jaar respektiewelik.

[wysig] Verbindings

  • Kamasiet is 'n legering van yster en nikkel wat natuurlik voorkom. Gewoonlik in die verhoudings 90:10 tot 95:5, daar kan egter ander onsuiwerhede soos kobalt en koolstof ook teenwoordig wees. Kamasiet kom voor in nikkel-yster legerings.

[wysig] Isotope

Nikkel in die natuur bestaan uit 5 stabiele isotope; 58-Ni, 60-Ni, 61-Ni, 62-Ni en 64-Ni met 58-Ni wat die meeste voorkom (68.077%). 18 radio-isotope is al geëien met die mees stabiele daarvan 59-Ni met 'n halfleeftyd van 76 000 jaar, 63-Ni met 'n halfleeftyd van 100.1 jaar en 56-Ni met 'n halfleeftyd van 6.077 dae. Al die oorblywende radio-aktiewe isotope het halfleeftye van minder as 60 uur en die oorgrote meerderheid daarvan het halfleeftye van minder as 30 sekondes. Hierdie element het ook 1 meta-toestand.

Nikkel-56 word in groot hoeveelhede in tipe Ia Supernovas gevorm. Die vorm van die ligkurwe van hierdie supernovas stem ooreen met die verval van nikkel-56 na kobalt-56 en daarna na yster-56.

Nikkel-59 is 'n langlewende kosmogeniese radionuklied met 'n halfleeftyd van 76 000 jaar. 59Ni vind baie toepassings in isotoopgeologie. 59Ni is al gebruik om die die aardouderdom van meteoriete te bepaal en om die natuurlike verspreiding van elemente in buiteruimse stof, ys en sediment te bepaal. Nikkel-60 is die dogterproduk van die uitgestorwe radionuklied 60Fe (halfleeftyd = 1.5 Miljoer jaar). Omdat die uitgestorwe radionuklied 60Fe so 'n lang halfleeftyd het, sou die teenwoordigheid daarvan in die materiale van die sonnestelsel teen konsentrasies wat hoog genoeg is, waarneembare variasies in die isotoopsamestelling van 60Ni gehad het. Die natuurlike verspreiding van 60Ni in buiteruimse materiaal mag dus dalk heelwat insig verskaf tot die ontstaan van die sonnestelsel en die vroeëre geskiedenis daarvan.

Die isotope van Nikkel wissel in atoommassa van 48 ame (48Ni) tot 78 ame (78Ni). Nikkel-78 se halfleeftyd was onlangs gemeet as 110 millisekondes en daar word geglo dat dit 'n belangrike isotoop is betrokke by supernova nukleosintese van elemente swaarder as yster.[1]

[wysig] Voorsorgmaatreëls

Blootstelling aan nikkelmetaal en oplosbare verbindings daarvan behoort nie 0.05 mg/cm³ in nikkelekwivalente per 40 uur week te oorskry nie. Daar word vermoed dat Nikkelsulfied-damp en -stof kankerwekkend kan wees asook 'n verskeidenheid ander nikkelverbindings.

Nikkelkarboniel, [Ni(CO)4], is 'n uiters giftige gas. Die toksisiteit van metaalkarboniele is 'n funksie van die giftigheid van 'n metaal asook die karboniel se vermoë om baie giftige koolstofmonoksiedgas af te gee. Dit is ook plofbaar in lug.

Sensitiewe indiwidue mag allergiese reaksies toon wanneer die metaal met hul vel in aanraking kom. Die hoeveelheid nikkel in produkte wat met die menslike vel in aanraking kom word deur die Europese Unie gereguleer.

[wysig] Verwysings

[wysig] Notas

  • Produksie en verbruiksyfers is afkomstig van, The Economist: Pocket World in Figures 2005, Profile Books (2005), ISBN 1-86197-799-9

[wysig] Eksterne skakel


BW Bewise Inc. Willy Chen willy@tool-tool.com bw@tool-tool.com www.tool-tool.com skype:willy_chen_bw mobile:0937-618-190 Head &Administration Office No.13,Shiang Shang 2nd St., West Chiu Taichung,Taiwan 40356 TEL:+886 4 24710048 / FAX:+886 4 2471 4839 N.Branch 5F,No.460,Fu Shin North Rd.,Taipei,Taiwan S.Branch No.24,Sec.1,Chia Pu East Rd.,Taipao City,Chiayi Hsien,Taiwan

Welcome to BW tool world! We are an experienced tool maker specialized in cutting tools. We focus on what you need and endeavor to research the best cutter to satisfy users demand. Our customers involve wide range of industries, like mold & die, aerospace, electronic, machinery, etc. We are professional expert in cutting field. We would like to solve every problem from you. Please feel free to contact us, its our pleasure to serve for you. BW product including: cutting toolaerospace tool .HSS Cutting toolCarbide end millsCarbide cutting toolNAS Cutting toolCarbide end millAerospace cutting tool、Фрезеры’Carbide drillHigh speed steelMilling cutterCVDD(Chemical Vapor Deposition Diamond )’PCBN (Polycrystalline Cubic Boron Nitride) ’Core drillTapered end millsCVD Diamond Tools Inserts’PCD Edge-Beveling Cutter(Golden Finger’PCD V-Cutter’PCD Wood tools’PCD Cutting tools’PCD Circular Saw Blade’PVDD End Mills’diamond tool ‘Single Crystal Diamond ‘Metric end millsMiniature end millsNAS986’DIN6537’DIN6537’NAS965’NAS907’NAS897’NAS937’DIN1837’DIN338’DIN340’DIN1897’DIN6539’DIN6529’DIN6527’DIN6528’DIN6535HA’DIN1833’ Специальные режущие инструменты

Пустотелое сверло DIN212’DIN850’DIN335’DIN334’DIN347’Pilot reamerFraises’Fresas con mango’ PCD (Polycrystalline diamond) ‘Frese’Electronics cutterStep drillMetal cutting sawDouble margin drillGun barrelAngle milling cutterCarbide burrsCarbide tipped cutterChamfering toolIC card engraving cutterSide cutterNAS toolDIN toolSpecial toolMetal slitting sawsShell end millsSide and face milling cuttersSide chip clearance sawsLong end millsStub roughing end millsDovetail milling cuttersCarbide slot drillsCarbide torus cuttersAngel carbide end millsCarbide torus cuttersCarbide ball-nosed slot drillsMould cutterTool manufacturer.

Bewise Inc. www.tool-tool.com

beeway 發表在 痞客邦 留言(0) 人氣()

Bewise Inc. www.tool-tool.com Reference source from the internet.

平ベルトの使用にあたり、寿命を計算したいのですが、算出の仕方がわからず困っております。
メーカーに問い合わせをしても、特性値を頂けるだけでした。
計算式、もしくは資料をご存知の方おられませんでしょうか?

ちなみに、用途は、ビール券のような紙の搬送です。
下側に2本の平ベルトがあり、上側はフリーのローラーをバネで圧接して搬送します。
平ベルトの厚さは0.7mmで、10%伸ばした状態で取り付けており、ベルト速度は250mm/sです。



似たような経験がありますが、確かにメーカは明確なデータはだしてくれませんでした。でっ!どうしてもとお願いして出してもらったんですが、今となっては実績寿命よりはるかに少ない値でした。(1/3以下)
平ベルトの種類にもよると思いますが、伝達時のスリップが無きよう設計さえしていればもともと長寿命のベルトです。むしろプーリの蛇走による片当たりや紙との摩耗の方が気になりますね。そう言う意味でも正確なデータは出しにくいでしょう。

私のやった方法でのアドバイスですが
・加減速時もふくめベルトのスリップが無いように設計すること(これはメーカでも計算してくれます)スリップがあると早期切断します。
・ベルトの片当たりがないこと(縁が摩耗してほつれてきます)
・紙との摩耗は要注意です。ベルト表面の材質を慎重に検討すること(これもメーカで納入実績データなどもっています)
・周囲環境を考慮すること(水分・粉塵)
でメーカに相談するときは各検討項目それぞれに分けて質問した方が比較的明確な回答を得ることができます。

あとは耐久テストですが、もし早期切断するような設計の場合は早期に兆候が出てくることが多いです。
初期の現象をこまめにチェックし兆候を把握すれば比較的短期間でテストをまとめられます。

組立時の張力管理も大切です(張りすぎて切断or張り足らなくてスリップ→切断)が結構あるという恥ずかしい当社事例もあります。

アドバイスありがとうございます。
1/3以下ですか・・。メーカーは安全をみますね。
やはり試験の必要がありそうですね。

アドバイスの内容につきまして、
現在、プーリーを太鼓状?にしておりましてベルトの蛇行はありません。
ベルトは協力会社より紙搬送で実績あるものを勧められ、使用しています。
張力もベルトメーカーの推奨範囲内にしております。
ベルトの張力管理は、プーリー軸が2軸のみの軸間固定なので問題ないと思われます。
周囲環境について、湿度は問題ないと思いますが、粉塵とくると・・紙搬送ですから紙粉による影響は出そうです。でも取り除く機構を付加することは出来そうにありません。

あと、スリップですが、実際に搬送速度を計測してみたところ、プーリーとベルト間で34%の滑っているようです。
スリップが無いようにとのことですが、ゼロに近づけるにはどのようにすればよいのでしょうか。
張力を今より強くするのは逆効果になりそうですし、プーリーの材質を変えて摩擦抵抗を増やすという手段が考えられますが、他に考えらえる点がございましたらご伝授願います。



ベルトの設計計算っていうと
許容張力とかそういったものしか載ってないですよね
メーカーのカタログは・・・
条件さえ満たせばかなりもつ気がしますけど

バンドー化学(今もその名前かどうか・・・)
ってとこの総合カタログには参考値として寿命が記載されていた気がしますので
算出方法を問い合わせてみてはどうでしょうか?
おそらくは実際に耐久試験をしてみて出した数値ではないかと思います
計算で出すのは難しい(不可能?)のかもしれません

ベルトメーカーさんにも、「使用形態によりますので加速試験等を行ってください。」と言われました。
やはり計算で出すのは難しいのでしょうか・・。
厳しい条件ではないので長期の使用に問題ないと思うのですが、今回、ユーザーから寿命の提示を求められたもので・・・。

バンドーさんのカタログに確かに参考値として記載されておりました。
使用しているベルトはバンドーさんの物ではありませんが、同等に近いベルトがあったので問い合わせてみます。
ありがとうございました。

BW Bewise Inc. Willy Chen willy@tool-tool.com bw@tool-tool.com www.tool-tool.com skype:willy_chen_bw mobile:0937-618-190 Head &Administration Office No.13,Shiang Shang 2nd St., West Chiu Taichung,Taiwan 40356 TEL:+886 4 24710048 / FAX:+886 4 2471 4839 N.Branch 5F,No.460,Fu Shin North Rd.,Taipei,Taiwan S.Branch No.24,Sec.1,Chia Pu East Rd.,Taipao City,Chiayi Hsien,Taiwan

Welcome to BW tool world! We are an experienced tool maker specialized in cutting tools. We focus on what you need and endeavor to research the best cutter to satisfy users demand. Our customers involve wide range of industries, like mold & die, aerospace, electronic, machinery, etc. We are professional expert in cutting field. We would like to solve every problem from you. Please feel free to contact us, its our pleasure to serve for you. BW product including: cutting toolaerospace tool .HSS Cutting toolCarbide end millsCarbide cutting toolNAS Cutting toolCarbide end millAerospace cutting tool、Фрезеры’Carbide drillHigh speed steelMilling cutterCVDD(Chemical Vapor Deposition Diamond )’PCBN (Polycrystalline Cubic Boron Nitride) ’Core drillTapered end millsCVD Diamond Tools Inserts’PCD Edge-Beveling Cutter(Golden Finger’PCD V-Cutter’PCD Wood tools’PCD Cutting tools’PCD Circular Saw Blade’PVDD End Mills’diamond tool ‘Single Crystal Diamond ‘Metric end millsMiniature end millsNAS986’DIN6537’DIN6537’NAS965’NAS907’NAS897’NAS937’DIN1837’DIN338’DIN340’DIN1897’DIN6539’DIN6529’DIN6527’DIN6528’DIN6535HA’DIN1833’ Специальные режущие инструменты

Пустотелое сверло DIN212’DIN850’DIN335’DIN334’DIN347’Pilot reamerFraises’Fresas con mango’ PCD (Polycrystalline diamond) ‘Frese’Electronics cutterStep drillMetal cutting sawDouble margin drillGun barrelAngle milling cutterCarbide burrsCarbide tipped cutterChamfering toolIC card engraving cutterSide cutterNAS toolDIN toolSpecial toolMetal slitting sawsShell end millsSide and face milling cuttersSide chip clearance sawsLong end millsStub roughing end millsDovetail milling cuttersCarbide slot drillsCarbide torus cuttersAngel carbide end millsCarbide torus cuttersCarbide ball-nosed slot drillsMould cutterTool manufacturer.

Bewise Inc. www.tool-tool.com

beeway 發表在 痞客邦 留言(0) 人氣()

是化學元素之一,化學符號Ni原子序數為28,具磁性,屬過渡金屬

鎳由科朗斯達德(Axel Cronstedt)在1751年瑞典發現。跟一樣,鎳的外語名字(nickel)帶有迷信色彩,解作「小妖精」(可參考英文魔鬼的別稱"Old Nick")。nickel原為德文Kupfernickel(銅妖)的簡稱,鎳礦看似銅礦,卻無法冶煉出銅來,從前被看作是魔鬼搞的惡作劇。

鎳多用於鑄幣,首個純鎳幣於1881年出廠。

[編輯] 世界10大鎳生產國

年產量(千公噸)

國名 1977 1982 1987 1992
俄羅斯 144.3 165.2 272.0 215.0
加拿大 235.4 88.6 189.0 192.1
新喀里多尼亞 109.1 60.1 56.9 113.1
印尼 14.0 45.9 57.8 78.1
澳洲 85.8 87.6 74.6 64.0
中國 - 12.0 25.0 37.0
古巴 37.0 36.1 33.8 32.2
南非 23.0 22.0 34.3 28.4
多明尼加 24.2 5.4 32.5 25.0
波札那 12.1 17.8 25.9 23.5
十國小計 685.0 540.6 801.8 808.4
全球總計 772.8 621.6 892.5 921.9


BW Bewise Inc. Willy Chen willy@tool-tool.com bw@tool-tool.com www.tool-tool.com skype:willy_chen_bw mobile:0937-618-190 Head &Administration Office No.13,Shiang Shang 2nd St., West Chiu Taichung,Taiwan 40356 TEL:+886 4 24710048 / FAX:+886 4 2471 4839 N.Branch 5F,No.460,Fu Shin North Rd.,Taipei,Taiwan S.Branch No.24,Sec.1,Chia Pu East Rd.,Taipao City,Chiayi Hsien,Taiwan

Welcome to BW tool world! We are an experienced tool maker specialized in cutting tools. We focus on what you need and endeavor to research the best cutter to satisfy users demand. Our customers involve wide range of industries, like mold & die, aerospace, electronic, machinery, etc. We are professional expert in cutting field. We would like to solve every problem from you. Please feel free to contact us, its our pleasure to serve for you. BW product including: cutting toolaerospace tool .HSS Cutting toolCarbide end millsCarbide cutting toolNAS Cutting toolCarbide end millAerospace cutting tool、Фрезеры’Carbide drillHigh speed steelMilling cutterCVDD(Chemical Vapor Deposition Diamond )’PCBN (Polycrystalline Cubic Boron Nitride) ’Core drillTapered end millsCVD Diamond Tools Inserts’PCD Edge-Beveling Cutter(Golden Finger’PCD V-Cutter’PCD Wood tools’PCD Cutting tools’PCD Circular Saw Blade’PVDD End Mills’diamond tool ‘Single Crystal Diamond ‘Metric end millsMiniature end millsNAS986’DIN6537’DIN6537’NAS965’NAS907’NAS897’NAS937’DIN1837’DIN338’DIN340’DIN1897’DIN6539’DIN6529’DIN6527’DIN6528’DIN6535HA’DIN1833’DIN212’DIN850’DIN335’DIN334’DIN347’Специальные режущие инструменты Пустотелое сверло ‘Pilot reamerFraises’Fresas con mango’ PCD (Polycrystalline diamond) ‘Frese’Electronics cutterStep drillMetal cutting sawDouble margin drillGun barrelAngle milling cutterCarbide burrsCarbide tipped cutterChamfering toolIC card engraving cutterSide cutterNAS toolDIN toolSpecial toolMetal slitting sawsShell end millsSide and face milling cuttersSide chip clearance sawsLong end millsStub roughing end millsDovetail milling cuttersCarbide slot drillsCarbide torus cuttersAngel carbide end millsCarbide torus cuttersCarbide ball-nosed slot drillsMould cutterTool manufacturer.

Bewise Inc. www.tool-tool.com

beeway 發表在 痞客邦 留言(0) 人氣()

Bewise Inc. www.tool-tool.com Reference source from the internet.

Bách khoa toàn thư mở Wikipedia

Bước tới: menu, tìm kiếm

Silic là tên một nguyên tố hóa học trong bảng tuần hoàn nguyên tố có ký hiệu Sisố nguyên tử bằng 14.

Nó là nguyên tố phổ biến sau ôxy trong vỏ Trái Đất (25,7 %), cứng, có màu xám sẫm - ánh xanh kim loại, là á kim có hóa trị +4.

14 nhômsilicphốtpho
C

Si

Ge

Tổng quát
Tên, Ký hiệu, Số silic, Si, 14
Phân loại á kim
Nhóm, Chu kỳ, Khối 14, 3, p
Khối lượng riêng, Độ cứng 2330 kg/m³, 6,5
Bề ngoài màu xám sẫm ánh xanh
Tính chất nguyên tử
Khối lượng nguyên tử 28,0855 đ.v.
Bán kính nguyên tử (calc.) 110 (111) pm
Bán kính cộng hoá trị 111 pm
Bán kính van der Waals 200 pm
Cấu hình electron [Ne]3s23p2
e- trên mức năng lượng 2, 8, 4
Trạng thái ôxi hóa (Ôxít) 4 (lưỡng tính)
Cấu trúc tinh thể Lập phương
Tính chất vật lý
Trạng thái vật chất rắn
Điểm nóng chảy 1.687 K (2.577 °F)
Điểm sôi 3.173 K (5.252 °F)
Trạng thái trật tự từ không từ tính
Thể tích phân tử 12,06 ×10-6 m³/mol
Nhiệt bay hơi 384,22 kJ/mol
Nhiệt nóng chảy 50,55 kJ/mol
Áp suất hơi 4,77 Pa tại 1.683 K
Vận tốc âm thanh ? m/s tại ? K
Linh tinh
Độ âm điện 1,9 (thang Pauling)
Nhiệt dung riêng 700 J/(kg·K)
Độ dẫn điện ? /Ω·m
Độ dẫn nhiệt 148 W/(m·K)
Năng lượng ion hóa
  1. 786,5 kJ/mol
  2. 1.577,1 kJ/mol
  3. 3.231,6 kJ/mol
  4. 4.355,5 kJ/mol
  5. 16.091 kJ/mol
  6. 19.805 kJ/mol
  7. 23.780 kJ/mol
  8. 29.287 kJ/mol
  9. 33.878 kJ/mol
  10. 38.726 kJ/mol
  11. 45.962 kJ/mol
  12. 50.502 kJ/mol
  13. 235.196 kJ/mol
  14. 257.923 kJ/mol
Chất đồng vị ổn định nhất

Bài chính: Đồng vị silic

iso TN t½ DM DE MeV DP
28Si 92,23% Ổn định có 14 neutron
29Si 4,67% Ổn định có 15 neutron
30Si 3,1% Ổn định có 16 neutron
32Si tổng hợp 132 năm β 0,221 32P
Đơn vị SISTP được dùng trừ khi có ghi chú.


[sửa] Thuộc tính

Trong dạng tinh thể, silic có màu xám sẫm ánh kim. Mặc dù là một nguyên tố tương đối trơ, silic vẫn có phản ứng với các halogen và các chất kiềm loãng, nhưng phần lớn axít (trừ tổ hợp axít nitricaxít flohiđríc) không tác dụng với nó. Silic nguyên tố truyền khoảng hơn 95% các bước sóng hồng ngoại. Tinh thể silic nguyên chất hiếm tìm thấy trong tự nhiên, thông thường nó nằm trong dạng silica (SiO2). Các tinh thể silic nguyên chất tìm thấy trong tạp chất của vàng hay dung nham núi lửa. Nó có hệ số kháng nhiệt âm.

Silic hoạt động hóa học kém hơn cacbon là nguyên tố tương tự nó về mặt hóa học. Nó có trong đất sét, fenspat, granit, thạch anhcát, chủ yếu trong dạng điôxít silic (hay silica) và các silicat (Các hợp chất chứa silic, ôxy và kim loại trong dạng R-SiO3).

[sửa] Lịch sử

Silic (tên Latinh: silex, silicis có nghĩa là đá lửa) lần đầu tiên được nhận ra bởi Antoine Lavoisier năm 1787, và sau đó đã bị Humphry Davy vào năm 1800 cho là hợp chất. Năm 1811 Gay LussacThénard có lẽ đã điều chế ra silic vô định hình không nguyên chất khi nung nóng kali với tetraflorua silic SiF4. Năm 1824 Berzelius điều chế silic vô định hình sử dụng phương pháp giống như của Lussac. Berzelius cũng đã làm tinh khiết sản phẩm bằng cách rửa nó nhiều lần.

Vì silic là nguyên tố quan trọng trong các thiết bị bán dẫn và công nghệ cao, nên khu vực công nghệ cao ở California được đặt tên là Silicon Valley (Thung lũng Silicon), tức đặt tên theo nguyên tố này.

[sửa] Ứng dụng

Silic là nguyên tố rất có ích, là cực kỳ cần thiết trong nhiều ngành công nghiệp. Điôxít silic trong dạng cát và đất sét là thành phần quan trọng trong chế tạo bê tônggạch cũng như trong sản xuất xi măng Portland. Silic là nguyên tố rất quan trọng cho thực vật và động vật. Silica dạng nhị nguyên tử phân lập từ nước để tạo ra lớp vỏ bảo vệ tế bào. Các ứng dụng khác có:

  • Gốm/men sứ - Là vật liệu chịu lửa sử dụng trong sản xuất các vật liệu chịu lửa và các silicat của nó được sử dụng trong sản xuất men sứ và đồ gốm.
  • Thép - Silic là thành phần quan trọng trong một số loại thép.
  • Đồng thau - Phần lớn đồng thau được sản xuất có chứa hợp kim của đồng với silic.
  • Thủy tinh - Silica từ cát là thành phần cơ bản của thủy tinh. Thủy tinh có thể sản xuất thành nhiều chủng loại đồ vật với những thuộc tính lý học khác nhau. Silica được sử dụng như vật liệu cơ bản trong sản xuất kính cửa sổ, đồ chứa (chai lọ), và sứ cách điện cũng như nhiều đồ vật có ích khác.
  • Giấy nhám - Cacbua silic là một trong những vật liệu mài mòn quan trọng nhất.
  • Vật liệu bán dẫn - Silic siêu tinh khiết có thể trộn thêm asen, bo, gali hay phốtpho sđể làm silic dẫn điện tốt hơn trong các transistor, pin mặt trời hay các thiết bị bán dẫn khác được sử dụng trong công nghiệp điện tử và các ứng dụng kỹ thuật cao (hi-tech) khác.
  • Trong các photonic - Silic được sử dụng trong các laser để sản xuất ánh sáng đơn sắc có bước sóng 456 nm.
  • Vật liệu y tế - Silicon là hợp chất dẻo chứa các liên kết silic-ôxy và silic-cacbon; chúng được sử dụng trong các ứng dụng như nâng ngực nhân tạo và lăng kính tiếp giáp (kính úp tròng).
  • LCD và pin mặt trời - Silic ngậm nước vô định hình có hứa hẹn trong các ứng dụng như điện tử chẳng hạn chế tạo màn hình tinh thể lỏng (LCD) với giá thành thấp và màn rộng. Nó cũng được sử dụng để chế tạo pin mặt trời.
  • Xây dựng - Silica là thành phần quan trọng nhất trong gạch vì tính hoạt hóa thấp của nó.

[sửa] Sự phổ biến

Silic là thành phần cơ bản của các loại aerolit là một loại của các thiên thạch và của các tektit là dạng tự nhiên của thủy tinh.

Theo khối lượng, silic chiếm 25,7% vỏ Trái Đất, là nguyên tố phổ biến thứ hai sau ôxy. Silic nguyên tố không tìm thấy trong tự nhiên. Nó thường xuất hiện trong các ôxít và silicat. Cát, amêtít, mã não (agate), thạch anh, đá tinh thể, đá lửa, jatpe, và opan là những dạng tự nhiên của silic dưới dạng ôxít. Granit, amiăng, fenspat, đất sét, hoócblen, mica là những dạng khoáng chất silicat.

[sửa] Sản xuất

Silic được sản xuất công nghiệp bằng cách nung nóng silica siêu sạch trong lò luyện bằng hồ quang với các điện cực cacbon. Ở nhiệt độ trên 1900 °C, cacbon khử silica thành silic theo phản ứng

SiO2 + C → Si + CO2

Silic lỏng được thu hồi ở đáy lò, sau đó nó được tháo ra và làm nguội. Silic sản xuất theo công nghệ này gọi là silic loại luyện kim và nó ít nhất đạt 99% tinh khiết. Năm 2000, silic loại này có giá khoảng $ 0,56 trên một pao ($1,23/kg). [1].

[sửa] Làm tinh khiết

Việc sử dụng silic trong các thiết bị bán dẫn đòi hỏi phải có độ tinh khiết cao hơn so với sản xuất bằng phương pháp trên. Có một số phương pháp làm tinh khiết silic được sử dụng để sản xuất silic có độ tinh khiết cao.

[sửa] Phương pháp vật lý

Các kỹ thuật làm tinh khiết silic đầu tiên dựa trên cơ sở thực tế là nếu silic nóng chảy và sau đó đông đặc lại thì những phần cuối khi đông đặc bao giờ cũng chứa nhiều tạp chất. Các phương pháp sớm nhất để làm tinh khiết silic, lần đầu tiên được miêu tả năm 1919 và sử dụng trong một số hữu hạn nền tảng để sản xuất các thành phần của rađa trong Đại chiến thế giới lần thứ hai, bao gồm việc đập vỡ silic phẩm chất công nghiệp và hòa tan từng phần bột silic trong axít. Khi bị đập vỡ, silic bị làm vỡ để những khu vực có nhiều tạp chất yếu hơn sẽ nằm ra phía ngoài của các hạt silic được tạo ra, chúng sẽ bị axít hòa tan, để lại sản phẩm tinh khiết hơn.

Trong khu vực nung chảy, phương pháp đầu tiên làm tinh khiết silic được sử dụng rộng rãi trong công nghiệp, các thỏi silic phẩm cấp công nghiệp được nung nóng tại một đầu. Sau đó, nguồn nhiệt chuyển động rất chậm dọc theo chiều dài của thỏi, giữ cho chỉ một đoạn ngắn của thỏi nóng chảy và silic được làm nguội và tái đông đặc ở phía sau nó. Vì phần lớn các tạp chất có xu hướng nằm trong phần nóng chảy hơn là trong phần tái đông đặc, nên khi quá trình này kết thúc, phần lớn tạp chất của thỏi sẽ chuyển về đầu nóng chảy sau cùng. Đầu này sau đó bị cắt bỏ, và quy trình này được lặp lại nếu muốn có silic với phẩm cấp cao hơn.

[sửa] Phương pháp hóa học

Ngày nay, silic được làm sạch bằng cách chuyển nó thành các hợp chất silic để dễ dàng làm tinh khiết hơn là làm tinh khiết trực tiếp silic, và sau đó chuyển hợp chất của nó trở lại thành silic nguyên chất. Triclorosilan là hợp chất của silic được sử dụng rộng rãi nhất như chất trung gian, mặc dầu tetraclorua silicsilan cũng được sử dụng. Khi các khí này được thổi qua silic ở nhiệt độ cao, chúng phân hủy để tạo ra silic có độ tinh khiết cao.

Trong công nghệ Siemens, các thỏi silic có độ tinh khiết cao được đưa vào triclorosilan ở nhiệt độ 1150 °C. Khí triclorosilan phân hủy và lắng đọng silic bổ sung trên thỏi, làm to nó theo phản ứng sau:

2HSiCl3 → Si + 2HCl + SiCl4

Silic sản xuất từ phương pháp này và các công nghệ tương tự gọi là silic đa tinh thể. Silic đa tinh thể thông thường có tạp chất ở mức 1 phần tỷ hoặc thấp hơn.

Cùng thời gian đó, DuPont đã sản xuất silic siêu sạch bằng cách cho tetrachorua silic phản ứng với hơi kẽm nguyên chất ở nhiệt độ 950 °C, theo phản ứng:

SiCl4 + 2Zn → Si + 2ZnCl2

Tuy nhiên, kỹ thuật này đã vấp phải những vấn đề thực tế (chẳng hạn như sản phẩm phụ clorua kẽm đông đặc lại và dính vào sản phẩm) và cuối cùng nó đã bị bỏ đi để sử dụng chỉ mỗi công nghệ Siemens.

[sửa] Tinh thể hóa

Công nghệ Czochralski thông thường được sử dụng để sản xuất các tinh thể silic đơn có độ tinh khiết cao để sử dụng trong các thiết bị bán dẫn bằng silic ở trạng thái rắn.

[sửa] Đồng vị

Silic có chín đồng vị, với số Z từ 25 đến 33. Si28 (đồng vị phổ biến nhất, 92,23%), Si29 (4,67%) và Si30 (3,1%) là ổn định; Si32 là đồng vị phóng xạ sản xuất bằng phân rã agon. Chu kỳ bán rã của nó, được xác định là khoảng 276 năm, và nó phân rã bằng bức xạ beta thành P32 (có chu kỳ bán rã 14,28 năm) và sau đó thành S32.

[sửa] Cảnh báo

Các bệnh nghiêm trọng về phổi được biết đến như bệnh nhiễm silic (silicosis) thường gặp ở những người thợ mỏ, cắt đá và những người phải làm việc trong môi trường nhiều bụi silic.

[sửa] Tham khảo

[sửa] Liên kết ngoài


BW Bewise Inc. Willy Chen willy@tool-tool.com bw@tool-tool.com www.tool-tool.com skype:willy_chen_bw mobile:0937-618-190 Head &Administration Office No.13,Shiang Shang 2nd St., West Chiu Taichung,Taiwan 40356 TEL:+886 4 24710048 / FAX:+886 4 2471 4839 N.Branch 5F,No.460,Fu Shin North Rd.,Taipei,Taiwan S.Branch No.24,Sec.1,Chia Pu East Rd.,Taipao City,Chiayi Hsien,Taiwan

Welcome to BW tool world! We are an experienced tool maker specialized in cutting tools. We focus on what you need and endeavor to research the best cutter to satisfy users demand. Our customers involve wide range of industries, like mold & die, aerospace, electronic, machinery, etc. We are professional expert in cutting field. We would like to solve every problem from you. Please feel free to contact us, its our pleasure to serve for you. BW product including: cutting toolaerospace tool .HSS Cutting toolCarbide end millsCarbide cutting toolNAS Cutting toolCarbide end millAerospace cutting tool、Фрезеры’Carbide drillHigh speed steelMilling cutterCVDD(Chemical Vapor Deposition Diamond )’PCBN (Polycrystalline Cubic Boron Nitride) ’Core drillTapered end millsCVD Diamond Tools Inserts’PCD Edge-Beveling Cutter(Golden Finger’PCD V-Cutter’PCD Wood tools’PCD Cutting tools’PCD Circular Saw Blade’PVDD End Mills’diamond tool ‘Single Crystal Diamond ‘Metric end millsMiniature end millsNAS986’DIN6537’DIN6537’NAS965’NAS907’NAS897’NAS937’DIN1837’DIN338’DIN340’DIN1897’DIN6539’DIN6529’DIN6527’DIN6528’DIN6535HA’DIN1833’DIN212’DIN850’DIN335’DIN334’DIN347’Специальные режущие инструменты Пустотелое сверло ‘Pilot reamerFraises’Fresas con mango’ PCD (Polycrystalline diamond) ‘Frese’Electronics cutterStep drillMetal cutting sawDouble margin drillGun barrelAngle milling cutterCarbide burrsCarbide tipped cutterChamfering toolIC card engraving cutterSide cutterNAS toolDIN toolSpecial toolMetal slitting sawsShell end millsSide and face milling cuttersSide chip clearance sawsLong end millsStub roughing end millsDovetail milling cuttersCarbide slot drillsCarbide torus cuttersAngel carbide end millsCarbide torus cuttersCarbide ball-nosed slot drillsMould cutterTool manufacturer.

Bewise Inc. www.tool-tool.com

beeway 發表在 痞客邦 留言(0) 人氣()

Bewise Inc. www.tool-tool.com Reference source from the internet.

Vikipediya, ochiq ensiklopediya

Jump to: navigation, Qidir
Kremniy(Si)
Atom raqami 14
Koʻrinishi Amorf holatda -
jigarrang kukun,
kristall holatda — toʻq kul rang,
yaltiroq
Atom xossasi
Atom massasi
(molyar massasi)
28.0855 m. a. b. (g/mol)
Atom radiusi 132 pm
Ionlashish energiyasi
(birinchi elektron)
786.0(8.15) kJ/mol (eV)
Elektron konfiguratsiyasi [Ne] 3s2 3p2
Kimyoviy xossalari
Kovalentlik radiusi 111 pm
Ion radiusi 42 (+4e) 271 (-4e) pm
Elektrmanfiylik
(Poling boʻyicha)
1.90
Elektrod potensiali 0
Oksidlanish darajasi 4, −4
Termodinamik xossalari
Zichlik 2.33 g/sm³
Solishtirma issiqlik sigʻimi 19.8 J/(K·mol)
Issiqlik oʻtkazuvchanlik 149 Vt/(m·K)
Erish harorati 1688 K
Erish issiqligi 50.6 kJ/mol
Qaynash harorati 2623 K
Qaynash issiqligi 383 kJ/mol
Molyar hajm 12.1 sm³/mol
Kristall panjarasi
Panjara tuzilishi geksagonal
Panjara davri 5.430 Å
Panjara/atom nisbati n/a
Debay harorati 625.00 K
Kremniy

- unsurlar davriy jadvalining 14 unsuri, metallmas.


BW Bewise Inc. Willy Chen willy@tool-tool.com bw@tool-tool.com www.tool-tool.com skype:willy_chen_bw mobile:0937-618-190 Head &Administration Office No.13,Shiang Shang 2nd St., West Chiu Taichung,Taiwan 40356 TEL:+886 4 24710048 / FAX:+886 4 2471 4839 N.Branch 5F,No.460,Fu Shin North Rd.,Taipei,Taiwan S.Branch No.24,Sec.1,Chia Pu East Rd.,Taipao City,Chiayi Hsien,Taiwan

Welcome to BW tool world! We are an experienced tool maker specialized in cutting tools. We focus on what you need and endeavor to research the best cutter to satisfy users demand. Our customers involve wide range of industries, like mold & die, aerospace, electronic, machinery, etc. We are professional expert in cutting field. We would like to solve every problem from you. Please feel free to contact us, its our pleasure to serve for you. BW product including: cutting toolaerospace tool .HSS Cutting toolCarbide end millsCarbide cutting toolNAS Cutting toolCarbide end millAerospace cutting tool、Фрезеры’Carbide drillHigh speed steelMilling cutterCVDD(Chemical Vapor Deposition Diamond )’PCBN (Polycrystalline Cubic Boron Nitride) ’Core drillTapered end millsCVD Diamond Tools Inserts’PCD Edge-Beveling Cutter(Golden Finger’PCD V-Cutter’PCD Wood tools’PCD Cutting tools’PCD Circular Saw Blade’PVDD End Mills’diamond tool ‘Single Crystal Diamond ‘Metric end millsMiniature end millsNAS986’DIN6537’DIN6537’NAS965’NAS907’NAS897’NAS937’DIN1837’DIN338’DIN340’DIN1897’DIN6539’DIN6529’DIN6527’DIN6528’DIN6535HA’DIN1833’DIN212’DIN850’DIN335’DIN334’DIN347’Специальные режущие инструменты Пустотелое сверло ‘Pilot reamerFraises’Fresas con mango’ PCD (Polycrystalline diamond) ‘Frese’Electronics cutterStep drillMetal cutting sawDouble margin drillGun barrelAngle milling cutterCarbide burrsCarbide tipped cutterChamfering toolIC card engraving cutterSide cutterNAS toolDIN toolSpecial toolMetal slitting sawsShell end millsSide and face milling cuttersSide chip clearance sawsLong end millsStub roughing end millsDovetail milling cuttersCarbide slot drillsCarbide torus cuttersAngel carbide end millsCarbide torus cuttersCarbide ball-nosed slot drillsMould cutterTool manufacturer.

Bewise Inc. www.tool-tool.com

beeway 發表在 痞客邦 留言(0) 人氣()

[ред.] Одержання

Аморфний силіцій можна одержати нагріванням діоксиду силіцію з магнієм

  • SiO2 + 2Mg = Si + 2MgO

При обробці продуктів реакції хлоридною кислотою оксид магнію розчиняється, а порошок силіцію залишається у чистому вигляді. Аморфний силіцій добре розчиняється в розплавленому цинку і алюмінію, а при їх охолодженні виділяється в кристалічному стані. Кристали силіцію можна легко відділити від цинку або алюмінію розчиненням останніх в хлоридній кислоті, з якою силіцій не реагує.

У техніці силіцій одержують відновленням діоксиду силіцію вугіллям при дуже високій температуірі в електропечах:

  • SiO2 + 2C = Si + 2CO↑

Для потреб чорної металургії силіцій одержують звичайно у вигляді його сплаву з залізом під назвою феросиліцію прожарюванням в електропечах суміші залізної руди з діоксидом силіцію і коксом.

Чистий силіцій добувають звичайно так: суміш діоксиду силіцію і коксу при дуже високій температурі обробляють хлором і одержують тетрахлорид силіцію SiCl4 (рідина з температурою кипіння 57,6°С). Останній старанно очищають перегонкою, а потім відновлюють парами дуже чистого цинку при 950°С. Хімічні реакції, що відбуваються при цьому, можна зобразити такими рівняннями:

  • SiO2 + 2С = Si + 2CO↑
  • Si + 2Cl2 = SiCl4
  • SiCl4 + 2Zn = Si + 2ZnCl2

[ред.] Застосування

Силіцій застосовується головним чином для виробництва різних сплавів. Так, залізо з добавкою 4% силіцію має здатність швидко намагнічуватись і розмагнічуватись. З нього виготовляють електричні трансформатори. Сталь з вмістом 15—20% силіцію є кислотостійкою і йде на виготовлення хімічної апаратури. Сплав міді з 4—5% силіцію застосовується у машинобудуванні. Силіцій широко застосовують як напівпровідниковий матеріал в електронній та радіотехнічній промисловості. Але для цього він повинен бути найвищої чистоти.

Серед штучно одержуваних сполук силіцію, які застосовуються в практиці, слід відмітити карбід силіцію, або карборунд SiC, який одержують прожарюванням в електропечах діоксиду силіцію з надлишком коксу:

  • SiO2 + 3C = SiC + 2CO↑

Карборунд за своєю твердістю мало в чому поступається перед алмазом, його використовують як абразивний матеріал для виготовлення точильних та шліфувальних кругів, брусків тощо.

[ред.] Біологічна роль

[ред.] Дивись також


BW Bewise Inc. Willy Chen willy@tool-tool.com bw@tool-tool.com www.tool-tool.com skype:willy_chen_bw mobile:0937-618-190 Head &Administration Office No.13,Shiang Shang 2nd St., West Chiu Taichung,Taiwan 40356 TEL:+886 4 24710048 / FAX:+886 4 2471 4839 N.Branch 5F,No.460,Fu Shin North Rd.,Taipei,Taiwan S.Branch No.24,Sec.1,Chia Pu East Rd.,Taipao City,Chiayi Hsien,Taiwan

Welcome to BW tool world! We are an experienced tool maker specialized in cutting tools. We focus on what you need and endeavor to research the best cutter to satisfy users demand. Our customers involve wide range of industries, like mold & die, aerospace, electronic, machinery, etc. We are professional expert in cutting field. We would like to solve every problem from you. Please feel free to contact us, its our pleasure to serve for you. BW product including: cutting toolaerospace tool .HSS Cutting toolCarbide end millsCarbide cutting toolNAS Cutting toolCarbide end millAerospace cutting tool、Фрезеры’Carbide drillHigh speed steelMilling cutterCVDD(Chemical Vapor Deposition Diamond )’PCBN (Polycrystalline Cubic Boron Nitride) ’Core drillTapered end millsCVD Diamond Tools Inserts’PCD Edge-Beveling Cutter(Golden Finger’PCD V-Cutter’PCD Wood tools’PCD Cutting tools’PCD Circular Saw Blade’PVDD End Mills’diamond tool ‘Single Crystal Diamond ‘Metric end millsMiniature end millsNAS986’DIN6537’DIN6537’NAS965’NAS907’NAS897’NAS937’DIN1837’DIN338’DIN340’DIN1897’DIN6539’DIN6529’DIN6527’DIN6528’DIN6535HA’DIN1833’DIN212’DIN850’DIN335’DIN334’DIN347’Специальные режущие инструменты Пустотелое сверло ‘Pilot reamerFraises’Fresas con mango’ PCD (Polycrystalline diamond) ‘Frese’Electronics cutterStep drillMetal cutting sawDouble margin drillGun barrelAngle milling cutterCarbide burrsCarbide tipped cutterChamfering toolIC card engraving cutterSide cutterNAS toolDIN toolSpecial toolMetal slitting sawsShell end millsSide and face milling cuttersSide chip clearance sawsLong end millsStub roughing end millsDovetail milling cuttersCarbide slot drillsCarbide torus cuttersAngel carbide end millsCarbide torus cuttersCarbide ball-nosed slot drillsMould cutterTool manufacturer.

Bewise Inc. www.tool-tool.com

beeway 發表在 痞客邦 留言(0) 人氣()