公告版位

目前分類:學術研究 (9512)

瀏覽方式: 標題列表 簡短摘要

Bewise Inc. www.tool-tool.com
Reference source from the internet.
模具课程设计是一个重要的专业教学环节,这个数学环节的目的:

(1)帮助学生具体运用和巩固《模具设计与制造》课程及相关的理论知识,了解设计冲压模的一般程序。
(2)是使学生能够熟练地运用有关技术资料,如《冷冲模国家标准》、《模具设计与制造简明手册》、《冷冲压模具结构图册》及其它有关规范等。
(3)训练学生初步设计冷冲压模具的能力,为以后的工作打下初步的基础。

1 冲压模设计的准备工作

根据课程设计目的,设计课题由指导教师用“设计任务书”的形式
下达,课题难度以轻度复杂《如冲孔落料复合模》为宜。设计工作量根据课程设计时间安排情况,由指导教师酌定。

1.1 研究设计任务

学生应充分研究设计任务书,了解产品用途,并进行冲压件的工艺性及尺寸公差等级分析,对于一些冲压件结构不合理或工艺性不好的,必须征询指导教师的意见后进行改进。在初步明确设计要求的基础上,可按以下步骤进行冲压总体方案的论证。

第一步,酝酿冲压工序安排的初步方案,并画出各步的冲压工序草图;
第二步,通过工序安排计算及《冷冲压模具结构图册》等技术资料,验证各步的冲压成型方案是否可行,构画该道工序的模具结构草图。
第三步,构画其它模具的结构草图,进一步推敲上述冲压工序安排方案是否合理可行。
第四步,冲压工序安排方案经指导教师过目后,即可正式绘制各步的冲压工序图,并着手按照“设计任务书”上的要求进行课程设计。

1.2 资料及工具准备

课 程设计开始前必须预先准备好《冷冲模国家标准》、《模具设计与制造简明手册》、《冷冲压模具结构图册》等技术资料,及图板、图纸、绘图仪器等工具。也可将 课程设计全部或部分工作安排在计算机上用Auto CAD等软件来完成,相应地需事前调试设备及软件、准备好打印用纸及墨盒等材料。

1.3 设计步骤

冲压模课程设计按以下几个步骤进行。

(1)拟定冲压工序安排方案、画出冲压工序图、画出待设计模具的排样图(阶段考核比例为15%)
(2)计算冲裁力、确定模具压力中心、计算凹模周界、确定待设计模具的有关结构要素、选用模具典型组合等,初选压力机吨位(25%);
(3)确定压力机吨位(5%);
(4)设计及绘制模具装配图(25%);
(5)设计及绘制模具零件图(25%);
(6)按规定格式编制设计说明书(5%);
(7)课程设计面批后或答辩(建议对总成绩在10%的范围内适度调整)。

1.4 明确考核要求

根 据以上6个阶段应该形成的阶段设计成果实施各阶段的质量及考核,从而形成各阶段的考核成绩。其中课程设计面批或答辩不仅有助与当面指出学生的各类设计错 例,也是课程设计考核的重要手段。最终的考核成绩在6个阶段考核成绩的基础上,由指导教师结合考勤记录及面批或答辩记录对总成绩在10%左右的范围内适度 调整。

2 冲裁模结构设计示范

2.1 排样论证的基本思路

排样论证的目的是为了画出正确的模具排样图。一个较佳的排样方案必须兼顾冲压件的公差等级、冲压件的生产批量、模具结构和材料利用率等方面的因素。

1) 保证冲压件的尺寸精度
图1所示冲压件,材料为10钢板,料厚1mm,其未注公差尺寸精度等级为IT12,属一般冲裁模能达到的公差等级,不需采用精冲或整修等特殊冲裁方式。从该冲压件的形状来看,完全可以实现少、无废料排样法。但该冲压件的尺度精度等级决定了应采用有废料排样法。


图1 冲压件及排样图

2) 考虑冲压件的生产批量

该 冲压件的月生产批量为3000件,属于中等批量的生产类型,因此不考虑多排、或一模多件的方案(该方案较适宜大批量生产,约几十万件以上);也不考虑采 用简易冲裁模常用的单、直排方案,根据成批生产的特点,再结合该冲压的形状特点,以单斜排、一模一件、级进排样方案为宜。

3) 提高原材料利用率

在 绘制排样图的过程中,应注意提高冲压原材料的利用率。但提高原材料的利用率,不能以大幅提高冲裁模结构的复杂程度为代价。图2所示是垫圈冲压件 及其冲裁排样图。如果单纯为了提高原材料的利用率而采用三排或三排以上、一模多件的冲载方案,虽然确实有助于提高原材料的利用率,但模具制造成本却随之大 幅提高,其结果往往得不偿失。

排样图上搭边值设计是否合理,直接影响到原材料的利用率和模具制造的难易程度。总是采用最小许用搭边值 [amin]、[a1min]往往人为地提 高了模具的制造难度,而在通常情况下却并不能提高原材料的利用率。以一条长1000mm的料条为例,若对图2所示的垫圈冲压件以[amin]=0.8mm 进行排样,可排(1000-0.8)/(34+0.8)=28.7个,实际为28个;若以a=1.5mm进行排样,则可排(1000-1.5)/(34+ 1.5)=28.1个。可见每个步距上省下0.7mm长的料,最终整张条料上并不能多排一个工件,两者的利用率是完全相同的。除使用卷料进行冲压外,一般 搭边值均应在[amin]的基础上圆整(料宽尺寸也须圆整),以降低模具制造难度。


图2 垫圈冲压件及冲裁排样图

4) 模具结构论证

在保证产品尺寸公差等级的前提下,应尽量简化模具结构复杂程度,降低模具制造费用,这是设计模具的铁则。图2所示的垫圈冲压件,因外形比较简单,且壁厚较大,所以采用复合模冲裁排样方案就比采用级进模冲裁的方案好。

倒装复合模的结构比顺装复合模简单,所以应优先考虑采用倒装复合模。最终能否采用复合模冲裁方案以及采用何种复合模结构的关键是验算冲压件的最小壁厚。经验算垫圈冲压件的最小壁厚,可用倒装复合模冲裁方案。

2.2 选择压力机及确定压力中心示范

根 据图2复合模冲裁排样图,经计算模具工艺总力P∑=10.32(tf),可初步选择J23-16F压力机。记录有关技术参数供今后校核用。最大封闭高 度:205mm;封闭高度调节量:45mm;工作台尺寸前后:300mm、左右:450mm;垫板尺寸厚度:40mm;孔径:Φ210mm;模柄孔尺寸直 径:Φ40mm;模柄孔深度:60mm。

计算压力中心的方法教材上已有详尽的介绍。要计算出压力中心的精确位置既繁锁又无必要。除了少数 几种情况,例如:精密冲裁模具、多工位自动级进模 和一些造价昂贵的模具为保险起见需要精确计算外,一般情况下,可以根据对称原理把压力中心大致定在条料宽向的中心线和送料方向上最远的两个凸模(有侧刃 时,侧刃也算作凸模)距离的中线的交合点”O”上,只要这个0点与实际压力中心之间的偏距小于模柄半径(已知模柄直径为Φ40mm),就能达到模具平稳工 作要求;而一旦0点与实际压力中心之间的偏距超出模柄半径的范围,就要调整各凹模洞口在凹模板上的位置,使实际压力中心进入模柄半径范围内。

2.3 冷冲模国家标准的使用

根 据图2复合模冲裁排样图,结合模具制造工艺,圆形模板比矩形模板加工简便,因此本模具就采用圆形模板。首先要计算圆形凹模板的轮廓尺寸:厚度H =K·b1=0.4×38=15.2mm;直径D=L1+2l1=34+2×22=78mm。查阅GB2858.4-81,根据”就近就高”的原则初定凹 模周界:H×D=16×Φ80。

1. 确定模具的主要结构要素

根据垫圈产品图排样方案论证结果,已确定本模具采用倒装式复合模结构。在此基础上,尚须确定如下结构要素。

(1) 确定送料方式

模 具相对于模架是采用从前往后的纵向送料方式,还是采用从右往左的横向送料方式,这主要取决于凹模的周界尺寸。如L(送料方向的凹模长度)<B (垂直于送料方向的凹模宽度)时,采用纵向送料方式;L>B时,则采用横向送料方式;L=B时,纵向或横向均可。就本例的圆形凹模板而言,其送料方式应采 用纵向送料。另外采用何种送料方式,还得考虑压力机本身是开式还是闭式而定。

(2) 确定卸料形式

模具是采用弹压卸料 板,还是采用固定卸料板,取决于卸料力的大小,其中材料料厚是主要考虑因素。由于弹压卸料模具操作时比固定卸料模具方便,操作 者可以看见条料在模具中的送进动作,且弹压卸料板卸料时对条料施加的是柔性力,不会损伤工件表面,因此实际设计中尽量采弹压卸料板,而只有在弹压卸料板卸 料力不足时,才改用固定卸料板。随着模具用弹性元件弹力的增强(如采用矩形弹簧),弹压卸料板的卸料力大大增强。根据目前情况,当材料料厚约在2mm以下 时采用弹压卸料板,大于2mm时采用固定卸料板较为贴近实际。本模具所冲材料的料厚为1mm,因此可采用弹压卸料板。

(3) 模架形式

如 采用纵向送料方式,适宜采用中间导柱导套模架(对角导柱导套模架也可);横向送料适宜采用对角导柱导套模架:而后侧导柱导套模架有利于送料(纵 横向均可且送料较顺畅),但工作时受力均衡性和对称性比中间导柱导套模架及对角导柱导套模架差一些;四角导柱导套模架则常用于大型模具;而精密模具还须采 用滚珠导柱导套。本模具采用中间导柱导套模架,一是对纵向送料方式较适宜,二是中间导柱导套模架工作时受力比较均衡、对称。

2. 典型组合选择示范

计 算凹模周界及确定模具的主要结构是为了选用合适的模具结构典型组合。根据本模具采用纵向送料方式、弹压卸料板、倒装复合模、中间导柱导套模架及 凹模周界为H×D=16×Ф80,可从《冷冲模国家标准》查到复合模圆形厚凹模典型组合(GB2873.3-81)。各模具零件的标准外形尺寸H×D如 下:

(1)上垫板(GB2858.6-81) 4×Ф80 1块;
(2)固定板(GB2858.5-81) 12×Ф80 1块;
(3)凹模(GB2858.4-81) (22×Ф80)调整至18×Ф80 1块;
(4)卸料板(GB2858.5-81) 10×Ф80 1块;
(5)固定板(GB2858.5-81) 14×Ф80 1块;
(6)下垫板(GB2858.6-81) 4×Ф80 1块;

本典型组合推荐使用3只M8的紧固螺钉、2只Ф8的圆柱销、3只杆部直径为Ф8的台肩式卸料螺钉、凸凹模的推荐长度为42mm、配用模架闭合高度在140~165mm之间。

有了模具结构的典型图,模具设计就大为简化。只要根据排样图中凸模或凸凹模的位置,分别把各个凸模或凸凹模画入典型组合可,并相应地在凹模板或凸凹模上开制相应的凹模洞口及在其它零件上画出漏料孔、打料系统等,就可得到一张完整又正确的装配图。

3. 非标准模具的对照设计

有 些矩形凹模板根据计算结果会很难选到一个合适的标准凹模板。例如某狭长冲压件,其凹模周界的计算值:H×L×B=20×60×125, 与之最为接近的标准凹模板尺寸为:H×L×B=20×125×125,仍相差悬殊。解决的办法是根据H×L×B=20×125×125的标准凹模板找到模 具的典型组合,同样根据该典型组合构画装配图,只是把模具内的所有模板的L尺寸全部换成非标准尺寸60mm,而尺寸H及B保持不变,进行必要的有限非标准 设计。

2.4 绘制模具装配图示范

有了模具结构典型组合图,就可以着手绘制模具装配图。我们一般应根据模具结构典型组合图绘制模具结构草图,这样无论在布置图面、还是考虑结构细节等问题上都将带来许多便利之处。

1. 图面布置规范

为了绘制一张美观、正确的模具装配图,必须掌握模具装配图面的布置规范。图3所示是模具装配图的图面布置示意图,可参考使用。

图纸的左上角1处是档案编号。如果这份图纸将来要归档,就在该处编上档案号(且档案号是倒写的),以便存档。不能随意在此处填写其它内容。


图3 图面布置示意图
1-档案编号处 2-布置主视图 3-布置俯视图 4-布置产品图 5-布置排样图
6-技术要求说明处 7-明细表 8—标题栏

2 处通常布置模具结构主视图。在画主视图前,应先估算整个主视图大致的长与宽,然后 选用合适的比例作图。主视图画好后其四周一般与其它图或外框线之间应保持有约50~60mm的空白,不要画得“顶天立地”,也不要画得“缩成一团”,这就 需要选择一合适的比例。推荐尽量采用1:1的比例,如不合适,再考虑选用其它《机械制图国家标准》上推荐的比例。

3处布置模具结构俯视图。应画拿走上模部分后的结构形状,其重点是为了反映下模部分所安装的工作零件的情况。俯视图与边框、主视图、标题栏或明细表之间也应保持约50~60mm的空白。

4处布置冲压产品图。并在冲压产品图的右方或下方标注冲压件的名称、材料及料厚等参数。对于不能在一道工序内完成的产品,装配图上应将该道工序图画出,并且还要标注本道工序有关的尺寸。

5处布置排样图。排样图上的送料方向与模具结构图上的送料方向必须一致,以使其他读图人员一目了然。

6处主要技术要求。如模具的闭合高度、标准模架及代号及装配要求和所用的冲压设备型号等。

7处布置明细表及标题栏。结合图4标题栏及明细表填写示例,应注意的要点如下。

(1)明细表至少应有序号、图号、零件名称、数量、材料、标准代号和备注等栏目;
(2)在填写零件名称一栏时,应使名称的首尾两字对齐,中间的字则均匀插入;
(3)在填写图号一栏时,应给出所有零件图的图号。数字序号一般应与序号一样以主视图画面为中心依顺时针旋转的方向为序依次编定。由于模具装配图一般算作图号00,因此明细表中的零件图号应从01开始计数。没有零件图的零件则没有图号。
(4)备注一栏主要标标准件规格、热处理、外购或外加工等说明。一般不另注其它内容。


图4 标题栏及明细表填写示例

8处布置标题栏。作为课程设计,标题栏主要填写的内容有模具名称、作图比例及签名等内容。其余内容可不填。


图5 倒装复合模
1-下模座 2、3-导柱 4-卸料螺钉 5-下垫板 6-凹模固定板 7-凸凹模
8-弹压橡皮 9-卸料板 10-挡料顶 11-推块 12、27-冲孔凸模 13-冲孔凸模固定板
14-开制三叉通孔的垫板 15、25、33-圆柱销 16-上模座 17、18-导套 19-模柄
20-防转销 21-打杆 22-三叉打板 23-上垫板 24-顶杆 26-凹模 28-内六角螺钉
29-活动挡料销 30-半圆头螺钉 31-扭簧 32-内六角螺钉

2. 装配图的绘制要求

图5 所示是垫圈冲孔落料复合模的装配图,在绘制模具装配图时,初学者的主要问题是图面紊乱无条理、结构表达不清、剖面选择不合理等,还有作图质量 差如引出线”重叠交叉”、螺销钉作图比例失真,漏线条等错误屡见不鲜。上述问题除平时练习过少外,更主要的是缺乏作图技巧所致。一旦掌握了必要的技巧,这 些错误是可以避免的。结合范例,下面简要地叙述绘制模具装配图的具体要求。

要说清这个问题,先要了解为什么要绘制模具装配图。绘制模具装 配图最主要的是要反映模具的基本构造,表达零件之间的相互装配关系。从这个目的出 发,一张模具装配图所必须达到的最起码要求一是模具装配图中各个零件(或部件)不能遗漏。不论哪个模具零件,装配图中均应有所表达;二是模具装配图中各个 零件位置及与其它零件间的装配关系应明确。下面简要叙述装配图的作图技巧。

(1)装配图的作图状态

冲裁模装配图可以画成敞开状态,上模部分和下模部分敞开10~15mm,具有读图直观的优点。对于初学者则建议画合模的工作状态,这有助于校核各模具零件之间的相关关系。

(2)剖面的选择

图5 所示模具的上模部分剖面的选择应重点所映凸模的固定,凹模洞口的形状、各模板之间的装配关系(即螺钉、销钉的安装情况),模柄与上模座间的安 装关系及由打杆、打板、顶杆和推块等组成的打料系统的装配关系等。上述需重点突出的地方应尽可能地采用全剖或半剖,而除此之外的一些装配关系则可不剖而用 虚线画出或省去不画,在其它图上(如俯视图)另作表达即可。

模具下模部分剖面的选择应重点反映凸凹模的安装关系、凸凹模的洞口形状、各模板间的安装关系(即螺钉、销钉如何安装)、漏料孔的形状等,这些地方应尽可能考虑全剖,其它一些非重点之处则尽量简化。

图5 中上模部分全剖了凸模的固定,凹模洞口形状及螺销钉的安装情况(并在左面布置销钉、右面布置紧固螺钉及另一销钉显得错落有致),对于模柄与上 模座的联接情况进行了局部剖(并顺便画出防转销钉显得构图极为巧妙),而对打料系统的装配关系也尽量全剖,使其他读图者一目了然。

下模部分对凸凹模的固定,凸凹模洞口及漏料孔的形状,卸料板与卸料螺钉的联接情况,紧固螺钉与圆柱销的结构情况都进行了全剖。而对活动挡料钉的安装情况则采取了用虚线表达的方式。这样的布置需要设计者经过一番精心的运筹后才能获得。

(3)序号引出线的画法

在 画序号引出线前应先数出模具中零件的个数,然后再作统筹安排。在图5的模具装配图中,在画序号引出线前,数出整副模具中有33个零件,因此设计 者考虑左方布置18个序号,右方再布置15个序号。根据上述布置,然后用相等间距画出33个短横线,最后从模具内引画零件到短横线之间的序号引出线。按照 “数出零件数目→布置序号位置→画短横线→引画序号引出线”的作图步骤,可使所有序号引出线布置整齐、间距相等,避免了初学者画序号引出线常出现的”重叠 交叉”现象。

3. 关于螺钉、销钉的画法

画螺钉应注意以下几点:

(1)螺钉各部分尺寸必须画正确。螺钉的近似画法是:如螺纹部分直径为D,则螺钉头部直径画成1.5D,内六角螺钉的头部沉头深度应为D+1~3mm;销钉与螺钉联用时,销钉直径应选用与螺钉直径相同或小一号(即如选用M8的螺钉,销钉则应选Ф8或Ф6)。

(2)画螺钉连接时应注意不要漏线条。以图5中螺钉24为例,螺钉只与尾部的凹模26螺纹连接,而螺钉经过冲孔凸固定板13、上垫板14及上模坐16均应为过孔。

(3)画销钉联接时也要注意不要漏线条。以图5中的销钉15为例,在销钉经过的通孔凸模固定板13与上模座16零件需用销钉进行定位,而上垫板14则无需用销钉15来定位,所以应为过孔。

模具装配图绘制完成后,要审核模具的闭合高度、漏料孔直径、模柄直径及高度、打杆高度、下模座外形尺寸等与压力机有关技术参数间的关系是否正确。本例经审核后确认满足J23-16F压力机参数要求。

3 冲裁模零件设计示范

3.1 图形的绘制方法

图形的绘制方法虽依各人习惯而不尽相同,以下的观点及建议,可供参考。


图6 凸模(材料:T10A)

1. 图形的不绘条件

画 零件图的目的是为了反映零件的构造,为加工该零件提供图示说明。那么哪些零件需要画零件图呢?这可用一句话概括:一切非标准件、或虽是标准件但 仍需进一步加工的零件均需绘制零件图。以图5倒装复合模为例,下模座1虽是标准件,但仍需要上面加工漏料孔、螺钉过孔及销钉孔,因此要画零件图;导柱、导 套及螺销钉等零件是标准件也不需进一步加工,因此可以不画零件图。

2. 零件图的视图布置

为保证绘制零件图正确, 建议按装配位置画零件图,但轴类零件按加工位置(一般轴心线为水平布置)。以图5所示的凸模26为例,装配图上该零件的主 视图反映了厚度方向的结构,俯视图则为原平面内的结构情况,在绘该凸模26的零件图时,建议就按装配图上的状态来布置零件图的视图,实践证明:这样能有效 地避免投影关系绘制的错误。

3. 零件图的绘制步骤

绘制模具装配图后,应对照装配图来拆画零件图。推荐如下步骤。

绘 制所有零件图的图形,尺寸线可先引出,相关尺寸后标注,以图5为例。模具可分为上下两大部分。在画上半部分的零件图时,绘制的顺序一般采用“自 下往上,相关零件优先”的步骤进行。凹模26是工作零件可以首先画出;绘完凹模26的图形后,对照装配图,推块11与凹模26相关,其外形与凹模洞口完全 一致,厚度应比凹模大出0.5mm,根据这一关系马上画出推块11的图形;接下来再画冲孔凸模固定板13的图形画好凸模固定板13以后,再对照模具装配图 画出装在冲孔凸模板13内的冲孔凸模12、冲孔凸模27等与之相关零件的图形……。在画上模部分的零件图时,应注意经过上模座16、上垫板14、冲孔凸模 固定板13及凹模26等模板上的螺销钉孔的位置一致。

在画下模部分的零件图时,一般采用“自上往下,相关零件优先”的步骤进行。先画卸料 板9的图形,然后对照装配图上的装配关系,画活动挡料钉28、 挡料钉10的图形。再画凸凹7的图形……。在画下模的零件图时,也应注意经过卸料板9、凸凹模固定板6、下垫板5、下模座1上的螺丝钉孔的位置及凸凹模 7、下垫板5、下模座1上漏料孔位置的一致。

按照上述步骤,根据装配关系对零件形状的要求,绘制各零件图的图形,能很容易地正确绘制出模具零件的图形,并使之与装配关系完全吻合。

3.2 尺寸标注方法

从 事模具设计的人都有这样的体会:画图容易标注尺寸难。将一张零件图的图形绘制正确和将一张零件图上的所有尺寸标注正确相比要容易得多。然而初学 者中普遍存在一种“重图形、轻尺寸标注”的倾向,一旦进行课程设计,所标注的尺寸或错误百出或紊乱不堪,令人难以读图;甚至出现螺销钉孔错位致使模具无法 装配的严重错误,漏尺寸漏公差值等现象更是比比皆是。究其原因除了平时练习少外,更为重要的是缺乏必要的方法。进行尺寸标注时,建议根据装配图上的装配关 系,用“联系对照”的方法标注尺寸,可有效地提高尺寸标注的正确率,具有较好的合理性。

1. 尺寸的布置方法

对于初学者 出现尺寸标注紊乱、无条件等现象,主要是尺寸“布置”方法不当。要使用所有标注的尺寸在图面上布置合理、条理清晰,必须很好地运筹。图 7所示的冲孔凸模固定板13的零件图中共有近20个尺寸,其中俯视图左侧布置螺销钉及顶杆过孔尺寸;下方布置顶杆过孔孔距尺寸、冲孔凸模12固定孔孔距尺 寸、螺销钉孔的孔距尺寸及模板的外形直径尺寸;上方则布置孔距的角度尺寸。主视图上布置了冲孔凸模 27和12的固定孔形状尺寸、及模板的厚度等尺寸。这种布置方法合理地利用了零件图形周围的空白,既条理分明、又方便了别人读图。

尺寸布 置还要求其它相关零件图相关尺寸的“布置地”尽量一致。如图8所示的上垫板14中的尺寸就参照了图7中布置方法,尽量地作到“同一尺寸在图 纸的同一地点出现”。如Ф9、Ф7、Ф30、Ф56、Ф80、30°、厚度14等尺寸的“布置地”基本上同图7冲孔凸模固定板零件图中的“布置地”相同。 这样的尺寸标注方式极大地便利了读图者。学生要确立“图纸主要是”画给别人看的!”的观念,学习与借鉴本例中的尺寸布置方法。


图7 冲孔凸模固定板(材料:Q235) 图8 开制三叉型孔的上垫板(材料:45)

2. 尺寸标注的思路

要使尺寸标注正确,就要把握尺寸标注的“思路”。前面要求绘制所要零件图的图形而先不标注任何尺寸,就是为了在标注尺寸时能够统筹兼顾,用一种正确的“思路”来正确地标注尺寸。下面以图5倒装复合模为例阐述尺寸标注的“思路”。

(1)标注工作零件的刃口尺寸

根 据模具设计法则,先标注基准件上刃口尺寸(即冲孔凸模和落料上的刃口尺寸),再标注对应件上的刃口尺寸(即凸凹模上的刃口尺寸);但符合模中也可将凸凹 模作为基准件,凸模、凹模作为对应件进行尺寸标注。所有零件图的图形绘好后,先找出本模具的工作零件即凸凹模7、冲孔凸模12和27、落料凹模26,把着 三张图纸对照起来,按照尺寸布置后安排好的“地点”标注刃口尺寸。这样可保证刃口尺寸标注的正确性。

(2)标准想关零件的相关尺寸

相 关尺寸正确,各模具零件才能装配组成一幅模具,必须保证正确。在上模部分,相关尺寸的标注建议按照“自上而下”的顺序进行。先从工作零件凹模 26开始,观察装配图6,与该零件模具相关的零件有内六角螺钉24、销钉25推块11、冲孔凸模13,应从分析着些相关关系入手进行“相关尺寸”的标注。

凹 模26与销钉25成H7/m6配合,故销钉孔直径为Ф8H7。销钉25要通过26、13、14、16等模板,其中与26与16成H7/m6配合,因此上 模座16上销钉孔直径也应为Ф8H7,可立即在上模座16的零件图上标出该尺寸。而销钉通过13、14模板的孔是应有0.5~1mm的间隙,因此13、 14上相应的过孔直径为Ф9,也应在相应的图纸上立即标出。

凹模26与3个M8的内六角螺钉24是螺纹连接,因此凹模26的图纸上对应螺 纹孔应标注为3-M8;螺钉24也同过16、13、14、16等模 板,其中与13、14、16上的过孔也有0.5~1mm的间隙,相应的图纸上应立即标注Ф9,各模板上的螺纹孔距均为Ф9,各模板上的螺纹孔距均为Ф56 一并标出。

凹模26还与推块11相关。从装配关系知:推块11的外形应与凹模洞口一致,只是尺寸比洞口尺寸小,四周有0.2~0.6mm 的间隙,按这一关系 找出推块11的零件图纸,标上推板的外形尺寸。为了保证推块11完全将工件推出凹模26,推块的推料段高度是8.5mm。推块尺寸的标注见图9。


图9 推块(材料:45)

标 注完凹模与凸模相关零件上相关尺寸后,再标注冲孔凸模固定板13上相关零件的相关尺寸……,直至上模中 所有零件的 相关尺寸标注完毕。再举一例进一步说明相关尺寸的标注。装配图中的冲孔凸模27与冲孔凸模固定板13和推块11相关;其中冲孔凸模固定板13相应处为一吊 装固定台阶孔,大孔高度与凸模吊装段等高,即同为3mm,孔径应比凸模台阶直径大出0.5~1mm,是22.5mm;小孔与凸模固定段成H7/m6的配 合,即冲孔凸模固定板13上的小孔直径应为Ф18.5,而推块11上开制的凸模过孔应比凸模刃口部分直径大出0.5~1mm,实际为Ф18.8mm。上述 尺寸应依次同时标注。冲孔凸模27的零件图见图10。


图10 冲孔凸模(材料:T10A)

模具下模部分的相关尺寸标注可按“自上而下”的顺序尽心。先标注弹压卸料板9与挡料钉10、28,弹压卸料板与卸料螺钉4之间的相关尺寸;再标注凸凹模固定板6与凸凹模7、卸料螺钉4、紧固螺钉32、圆柱销33之间的相关尺寸……,直至所有相关尺寸标注完毕。

(3)补全其它尺寸及技术要求

这个阶段可逐张零件进行,先补全其它尺寸,例如轮廓大小尺寸、位置尺寸等;再标注各加工面的粗糙度要求及倒角、圆角的加工情况,最后是选材及热处理,并对本零件进行命名等。

3.3 其它尺寸标注问题

1.复杂型孔的尺寸标注

形 状越复杂,尺寸就越多,由此造成的标注困难是初学者设计冲压模时的主要障碍。图11所示的凸模零件,因洞口形状的尺寸繁多而出现标注困难。有两个解决方 法:一是放大标注法。将凹模零件图适当放大后再标注尺寸;二是移出放大标注法。将复杂的洞口型孔单独移至零件图外面的适合位置,再单独标记繁多的型孔尺 寸,而零件图内仅标注型孔图形的位置尺寸即可。图11中采用了移位标注法。


图11 复杂模洞口的移位标注

判 断冲压件上未注公差尺寸的偏差方向。采用“入体原则”、可先画出该冲压件的假想磨损图。图12所示 工件的假想磨损图用双点划线画出,再根据以下方法进行判断。如该尺寸磨损后变小为负偏差;变大为正偏差;不变则为正负偏差。拒此可确定图2-1中, 26.2,24.2、20.8等尺寸为负偏差;15、12、2及2-Ф5等尺寸为正偏差;而尺寸14.5则为正负偏差。若需判别半径R及角度尺寸的偏差方 向同样可采用此法。


图12 冲压件未注公差尺寸的偏差方向判断

冲 压件未注公差配合尺寸极限偏差一般为IT12~IT14,常用IT14。若该冲压件使 用时与其它工件并无装配关系,则未注公差尺寸的偏差方向及极限偏差可按国际GB/T15055-94圆角半径等的极限偏差分为f(fine精密级)、m (medium 中等级)、c(coarse 粗糙级)、v(very coarse 最粗级)四个公差等级。一般可选用c级。表1、表2、表3级表4分别列出了GB/T15055-94中的有关内容,供设计者参考。

3.其它模板上型孔的配制标注

在进行凹模洞口的刃口尺寸计算时如何处理半径尺寸R?实践中视对R的测量手段以及使用要求而定,如有能精确测定R值的量具,则需对R值进行刃口尺寸的计算;如仅有靠尺等常规测量工具,则对R进行刃口尺寸计算并在凹模图上标注计算结果就无必要,可在凹模图山标注原注R值。

由 于凸模外形、凹模洞口及其它模板上相应的型孔都是在同一台线切割机床上用同一加工程序,根据线切割机床的“间隙自动补偿”功能使起在线切割机床 的割制过程中自动配制一定的间隙而成。因此其它模板上型孔可按上述配制加工的特点进行标注,即简单明晰、又符合模具制作的实际。以图13为例,凸模固定模 板按配制法特点进行标注时,仅需在模板内标注型孔的位置尺寸,而型孔的形状尺寸则在图纸的适当位置加注:“型孔尺寸按凸模的实际尺寸成0.02mm的过盈 配合”即可。

表1 未注公差冲裁尺寸的极限偏差

注:对于0.5及0.5mm以下的尺寸应标注公差。

表2 未注公差冲裁模角度的极限偏差

表3 未注公差成形尺寸的极限偏差

注:对于0.5及0.5mm以下的尺寸应标注公差。

表4 未注公差冲裁圆角半径的极限偏差


图13 凸模固定板型孔的配制标注

BW碧威股份有限公司針對客戶端改善切削方式、提供專業切削CNC數控刀具專業能力、製造客戶需求如:Cutting tool、切削刀具、HSS Cutting toolCarbide end millsCarbide cutting toolNAS Cutting toolCarbide end millAerospace cutting toolCarbide drillHigh speed steelMilling cutterCore drill、鎢鋼銑刀、航太刀具、鎢鋼鑽頭、高速剛、鉸刀、中心鑽頭、Taperd end mills、斜度銑刀、Metric end mills、公制銑刀、Miniature end mills、微小徑銑刀、鎢鋼切削刀具、Pilot reamer、領先鉸刀、Electronics cutter、電子用切削刀具、Step drill、階梯鑽頭、Metal cutting saw、金屬圓鋸片、Double margin drill、領先階梯鑽頭、Gun barrelAngle milling cutter、角度銑刀、Carbide burrs、滾磨刀、Carbide tipped cutter、銲刃刀具、Chamfering tool、倒角銑刀、IC card engraving cutterIC晶片卡刀、Side cutter、側銑刀、NAS toolDIN tool、德國規範切削刀具、Special tool、特殊刀具、Metal slitting sawsShell end mills、滾筒銑刀、Side and face milling cuttersSide chip clearance saws、交叉齒側銑刀、Long end mills、長刃銑刀、Stub roughing end mills、粗齒銑刀、Dovetail milling cutters、鳩尾刀具、Carbide slot drillsCarbide torus cutters、鎢鋼圓鼻銑刀、Angeled carbide end mills、角度鎢鋼銑刀.aerospace toolCarbide torus cutters、短刃平銑刀、Carbide ball-noseed slot drills、鎢鋼球頭銑刀、Mould cutter、模具用刀具、BW微型渦流管槍、Tool manufacturer、刀具製造商等相關切削刀具、以服務客戶改善工廠加工條件、爭加競爭力。歡迎尋購~~~碧威股份有限公司www.tool-tool.com

beeway 發表在 痞客邦 留言(0) 人氣()

Bewise Inc. www.tool-tool.com
Reference source from the internet.
模具课程设计是一个重要的专业教学环节,这个数学环节的目的:

(1)帮助学生具体运用和巩固《模具设计与制造》课程及相关的理论知识,了解设计冲压模的一般程序。
(2)是使学生能够熟练地运用有关技术资料,如《冷冲模国家标准》、《模具设计与制造简明手册》、《冷冲压模具结构图册》及其它有关规范等。
(3)训练学生初步设计冷冲压模具的能力,为以后的工作打下初步的基础。

1 冲压模设计的准备工作

根据课程设计目的,设计课题由指导教师用“设计任务书”的形式
下达,课题难度以轻度复杂《如冲孔落料复合模》为宜。设计工作量根据课程设计时间安排情况,由指导教师酌定。

1.1 研究设计任务

学生应充分研究设计任务书,了解产品用途,并进行冲压件的工艺性及尺寸公差等级分析,对于一些冲压件结构不合理或工艺性不好的,必须征询指导教师的意见后进行改进。在初步明确设计要求的基础上,可按以下步骤进行冲压总体方案的论证。

第一步,酝酿冲压工序安排的初步方案,并画出各步的冲压工序草图;
第二步,通过工序安排计算及《冷冲压模具结构图册》等技术资料,验证各步的冲压成型方案是否可行,构画该道工序的模具结构草图。
第三步,构画其它模具的结构草图,进一步推敲上述冲压工序安排方案是否合理可行。
第四步,冲压工序安排方案经指导教师过目后,即可正式绘制各步的冲压工序图,并着手按照“设计任务书”上的要求进行课程设计。

1.2 资料及工具准备

课 程设计开始前必须预先准备好《冷冲模国家标准》、《模具设计与制造简明手册》、《冷冲压模具结构图册》等技术资料,及图板、图纸、绘图仪器等工具。也可将 课程设计全部或部分工作安排在计算机上用Auto CAD等软件来完成,相应地需事前调试设备及软件、准备好打印用纸及墨盒等材料。

1.3 设计步骤

冲压模课程设计按以下几个步骤进行。

(1)拟定冲压工序安排方案、画出冲压工序图、画出待设计模具的排样图(阶段考核比例为15%)
(2)计算冲裁力、确定模具压力中心、计算凹模周界、确定待设计模具的有关结构要素、选用模具典型组合等,初选压力机吨位(25%);
(3)确定压力机吨位(5%);
(4)设计及绘制模具装配图(25%);
(5)设计及绘制模具零件图(25%);
(6)按规定格式编制设计说明书(5%);
(7)课程设计面批后或答辩(建议对总成绩在10%的范围内适度调整)。

1.4 明确考核要求

根 据以上6个阶段应该形成的阶段设计成果实施各阶段的质量及考核,从而形成各阶段的考核成绩。其中课程设计面批或答辩不仅有助与当面指出学生的各类设计错 例,也是课程设计考核的重要手段。最终的考核成绩在6个阶段考核成绩的基础上,由指导教师结合考勤记录及面批或答辩记录对总成绩在10%左右的范围内适度 调整。

2 冲裁模结构设计示范

2.1 排样论证的基本思路

排样论证的目的是为了画出正确的模具排样图。一个较佳的排样方案必须兼顾冲压件的公差等级、冲压件的生产批量、模具结构和材料利用率等方面的因素。

1) 保证冲压件的尺寸精度
图1所示冲压件,材料为10钢板,料厚1mm,其未注公差尺寸精度等级为IT12,属一般冲裁模能达到的公差等级,不需采用精冲或整修等特殊冲裁方式。从该冲压件的形状来看,完全可以实现少、无废料排样法。但该冲压件的尺度精度等级决定了应采用有废料排样法。


图1 冲压件及排样图

2) 考虑冲压件的生产批量

该 冲压件的月生产批量为3000件,属于中等批量的生产类型,因此不考虑多排、或一模多件的方案(该方案较适宜大批量生产,约几十万件以上);也不考虑采 用简易冲裁模常用的单、直排方案,根据成批生产的特点,再结合该冲压的形状特点,以单斜排、一模一件、级进排样方案为宜。

3) 提高原材料利用率

在 绘制排样图的过程中,应注意提高冲压原材料的利用率。但提高原材料的利用率,不能以大幅提高冲裁模结构的复杂程度为代价。图2所示是垫圈冲压件 及其冲裁排样图。如果单纯为了提高原材料的利用率而采用三排或三排以上、一模多件的冲载方案,虽然确实有助于提高原材料的利用率,但模具制造成本却随之大 幅提高,其结果往往得不偿失。

排样图上搭边值设计是否合理,直接影响到原材料的利用率和模具制造的难易程度。总是采用最小许用搭边值 [amin]、[a1min]往往人为地提 高了模具的制造难度,而在通常情况下却并不能提高原材料的利用率。以一条长1000mm的料条为例,若对图2所示的垫圈冲压件以[amin]=0.8mm 进行排样,可排(1000-0.8)/(34+0.8)=28.7个,实际为28个;若以a=1.5mm进行排样,则可排(1000-1.5)/(34+ 1.5)=28.1个。可见每个步距上省下0.7mm长的料,最终整张条料上并不能多排一个工件,两者的利用率是完全相同的。除使用卷料进行冲压外,一般 搭边值均应在[amin]的基础上圆整(料宽尺寸也须圆整),以降低模具制造难度。


图2 垫圈冲压件及冲裁排样图

4) 模具结构论证

在保证产品尺寸公差等级的前提下,应尽量简化模具结构复杂程度,降低模具制造费用,这是设计模具的铁则。图2所示的垫圈冲压件,因外形比较简单,且壁厚较大,所以采用复合模冲裁排样方案就比采用级进模冲裁的方案好。

倒装复合模的结构比顺装复合模简单,所以应优先考虑采用倒装复合模。最终能否采用复合模冲裁方案以及采用何种复合模结构的关键是验算冲压件的最小壁厚。经验算垫圈冲压件的最小壁厚,可用倒装复合模冲裁方案。

2.2 选择压力机及确定压力中心示范

根 据图2复合模冲裁排样图,经计算模具工艺总力P∑=10.32(tf),可初步选择J23-16F压力机。记录有关技术参数供今后校核用。最大封闭高 度:205mm;封闭高度调节量:45mm;工作台尺寸前后:300mm、左右:450mm;垫板尺寸厚度:40mm;孔径:Φ210mm;模柄孔尺寸直 径:Φ40mm;模柄孔深度:60mm。

计算压力中心的方法教材上已有详尽的介绍。要计算出压力中心的精确位置既繁锁又无必要。除了少数 几种情况,例如:精密冲裁模具、多工位自动级进模 和一些造价昂贵的模具为保险起见需要精确计算外,一般情况下,可以根据对称原理把压力中心大致定在条料宽向的中心线和送料方向上最远的两个凸模(有侧刃 时,侧刃也算作凸模)距离的中线的交合点”O”上,只要这个0点与实际压力中心之间的偏距小于模柄半径(已知模柄直径为Φ40mm),就能达到模具平稳工 作要求;而一旦0点与实际压力中心之间的偏距超出模柄半径的范围,就要调整各凹模洞口在凹模板上的位置,使实际压力中心进入模柄半径范围内。

2.3 冷冲模国家标准的使用

根 据图2复合模冲裁排样图,结合模具制造工艺,圆形模板比矩形模板加工简便,因此本模具就采用圆形模板。首先要计算圆形凹模板的轮廓尺寸:厚度H =K·b1=0.4×38=15.2mm;直径D=L1+2l1=34+2×22=78mm。查阅GB2858.4-81,根据”就近就高”的原则初定凹 模周界:H×D=16×Φ80。

1. 确定模具的主要结构要素

根据垫圈产品图排样方案论证结果,已确定本模具采用倒装式复合模结构。在此基础上,尚须确定如下结构要素。

(1) 确定送料方式

模 具相对于模架是采用从前往后的纵向送料方式,还是采用从右往左的横向送料方式,这主要取决于凹模的周界尺寸。如L(送料方向的凹模长度)<B (垂直于送料方向的凹模宽度)时,采用纵向送料方式;L>B时,则采用横向送料方式;L=B时,纵向或横向均可。就本例的圆形凹模板而言,其送料方式应采 用纵向送料。另外采用何种送料方式,还得考虑压力机本身是开式还是闭式而定。

(2) 确定卸料形式

模具是采用弹压卸料 板,还是采用固定卸料板,取决于卸料力的大小,其中材料料厚是主要考虑因素。由于弹压卸料模具操作时比固定卸料模具方便,操作 者可以看见条料在模具中的送进动作,且弹压卸料板卸料时对条料施加的是柔性力,不会损伤工件表面,因此实际设计中尽量采弹压卸料板,而只有在弹压卸料板卸 料力不足时,才改用固定卸料板。随着模具用弹性元件弹力的增强(如采用矩形弹簧),弹压卸料板的卸料力大大增强。根据目前情况,当材料料厚约在2mm以下 时采用弹压卸料板,大于2mm时采用固定卸料板较为贴近实际。本模具所冲材料的料厚为1mm,因此可采用弹压卸料板。

(3) 模架形式

如 采用纵向送料方式,适宜采用中间导柱导套模架(对角导柱导套模架也可);横向送料适宜采用对角导柱导套模架:而后侧导柱导套模架有利于送料(纵 横向均可且送料较顺畅),但工作时受力均衡性和对称性比中间导柱导套模架及对角导柱导套模架差一些;四角导柱导套模架则常用于大型模具;而精密模具还须采 用滚珠导柱导套。本模具采用中间导柱导套模架,一是对纵向送料方式较适宜,二是中间导柱导套模架工作时受力比较均衡、对称。

2. 典型组合选择示范

计 算凹模周界及确定模具的主要结构是为了选用合适的模具结构典型组合。根据本模具采用纵向送料方式、弹压卸料板、倒装复合模、中间导柱导套模架及 凹模周界为H×D=16×Ф80,可从《冷冲模国家标准》查到复合模圆形厚凹模典型组合(GB2873.3-81)。各模具零件的标准外形尺寸H×D如 下:

(1)上垫板(GB2858.6-81) 4×Ф80 1块;
(2)固定板(GB2858.5-81) 12×Ф80 1块;
(3)凹模(GB2858.4-81) (22×Ф80)调整至18×Ф80 1块;
(4)卸料板(GB2858.5-81) 10×Ф80 1块;
(5)固定板(GB2858.5-81) 14×Ф80 1块;
(6)下垫板(GB2858.6-81) 4×Ф80 1块;

本典型组合推荐使用3只M8的紧固螺钉、2只Ф8的圆柱销、3只杆部直径为Ф8的台肩式卸料螺钉、凸凹模的推荐长度为42mm、配用模架闭合高度在140~165mm之间。

有了模具结构的典型图,模具设计就大为简化。只要根据排样图中凸模或凸凹模的位置,分别把各个凸模或凸凹模画入典型组合可,并相应地在凹模板或凸凹模上开制相应的凹模洞口及在其它零件上画出漏料孔、打料系统等,就可得到一张完整又正确的装配图。

3. 非标准模具的对照设计

有 些矩形凹模板根据计算结果会很难选到一个合适的标准凹模板。例如某狭长冲压件,其凹模周界的计算值:H×L×B=20×60×125, 与之最为接近的标准凹模板尺寸为:H×L×B=20×125×125,仍相差悬殊。解决的办法是根据H×L×B=20×125×125的标准凹模板找到模 具的典型组合,同样根据该典型组合构画装配图,只是把模具内的所有模板的L尺寸全部换成非标准尺寸60mm,而尺寸H及B保持不变,进行必要的有限非标准 设计。

2.4 绘制模具装配图示范

有了模具结构典型组合图,就可以着手绘制模具装配图。我们一般应根据模具结构典型组合图绘制模具结构草图,这样无论在布置图面、还是考虑结构细节等问题上都将带来许多便利之处。

1. 图面布置规范

为了绘制一张美观、正确的模具装配图,必须掌握模具装配图面的布置规范。图3所示是模具装配图的图面布置示意图,可参考使用。

图纸的左上角1处是档案编号。如果这份图纸将来要归档,就在该处编上档案号(且档案号是倒写的),以便存档。不能随意在此处填写其它内容。


图3 图面布置示意图
1-档案编号处 2-布置主视图 3-布置俯视图 4-布置产品图 5-布置排样图
6-技术要求说明处 7-明细表 8—标题栏

2 处通常布置模具结构主视图。在画主视图前,应先估算整个主视图大致的长与宽,然后 选用合适的比例作图。主视图画好后其四周一般与其它图或外框线之间应保持有约50~60mm的空白,不要画得“顶天立地”,也不要画得“缩成一团”,这就 需要选择一合适的比例。推荐尽量采用1:1的比例,如不合适,再考虑选用其它《机械制图国家标准》上推荐的比例。

3处布置模具结构俯视图。应画拿走上模部分后的结构形状,其重点是为了反映下模部分所安装的工作零件的情况。俯视图与边框、主视图、标题栏或明细表之间也应保持约50~60mm的空白。

4处布置冲压产品图。并在冲压产品图的右方或下方标注冲压件的名称、材料及料厚等参数。对于不能在一道工序内完成的产品,装配图上应将该道工序图画出,并且还要标注本道工序有关的尺寸。

5处布置排样图。排样图上的送料方向与模具结构图上的送料方向必须一致,以使其他读图人员一目了然。

6处主要技术要求。如模具的闭合高度、标准模架及代号及装配要求和所用的冲压设备型号等。

7处布置明细表及标题栏。结合图4标题栏及明细表填写示例,应注意的要点如下。

(1)明细表至少应有序号、图号、零件名称、数量、材料、标准代号和备注等栏目;
(2)在填写零件名称一栏时,应使名称的首尾两字对齐,中间的字则均匀插入;
(3)在填写图号一栏时,应给出所有零件图的图号。数字序号一般应与序号一样以主视图画面为中心依顺时针旋转的方向为序依次编定。由于模具装配图一般算作图号00,因此明细表中的零件图号应从01开始计数。没有零件图的零件则没有图号。
(4)备注一栏主要标标准件规格、热处理、外购或外加工等说明。一般不另注其它内容。


图4 标题栏及明细表填写示例

8处布置标题栏。作为课程设计,标题栏主要填写的内容有模具名称、作图比例及签名等内容。其余内容可不填。


图5 倒装复合模
1-下模座 2、3-导柱 4-卸料螺钉 5-下垫板 6-凹模固定板 7-凸凹模
8-弹压橡皮 9-卸料板 10-挡料顶 11-推块 12、27-冲孔凸模 13-冲孔凸模固定板
14-开制三叉通孔的垫板 15、25、33-圆柱销 16-上模座 17、18-导套 19-模柄
20-防转销 21-打杆 22-三叉打板 23-上垫板 24-顶杆 26-凹模 28-内六角螺钉
29-活动挡料销 30-半圆头螺钉 31-扭簧 32-内六角螺钉

2. 装配图的绘制要求

图5 所示是垫圈冲孔落料复合模的装配图,在绘制模具装配图时,初学者的主要问题是图面紊乱无条理、结构表达不清、剖面选择不合理等,还有作图质量 差如引出线”重叠交叉”、螺销钉作图比例失真,漏线条等错误屡见不鲜。上述问题除平时练习过少外,更主要的是缺乏作图技巧所致。一旦掌握了必要的技巧,这 些错误是可以避免的。结合范例,下面简要地叙述绘制模具装配图的具体要求。

要说清这个问题,先要了解为什么要绘制模具装配图。绘制模具装 配图最主要的是要反映模具的基本构造,表达零件之间的相互装配关系。从这个目的出 发,一张模具装配图所必须达到的最起码要求一是模具装配图中各个零件(或部件)不能遗漏。不论哪个模具零件,装配图中均应有所表达;二是模具装配图中各个 零件位置及与其它零件间的装配关系应明确。下面简要叙述装配图的作图技巧。

(1)装配图的作图状态

冲裁模装配图可以画成敞开状态,上模部分和下模部分敞开10~15mm,具有读图直观的优点。对于初学者则建议画合模的工作状态,这有助于校核各模具零件之间的相关关系。

(2)剖面的选择

图5 所示模具的上模部分剖面的选择应重点所映凸模的固定,凹模洞口的形状、各模板之间的装配关系(即螺钉、销钉的安装情况),模柄与上模座间的安 装关系及由打杆、打板、顶杆和推块等组成的打料系统的装配关系等。上述需重点突出的地方应尽可能地采用全剖或半剖,而除此之外的一些装配关系则可不剖而用 虚线画出或省去不画,在其它图上(如俯视图)另作表达即可。

模具下模部分剖面的选择应重点反映凸凹模的安装关系、凸凹模的洞口形状、各模板间的安装关系(即螺钉、销钉如何安装)、漏料孔的形状等,这些地方应尽可能考虑全剖,其它一些非重点之处则尽量简化。

图5 中上模部分全剖了凸模的固定,凹模洞口形状及螺销钉的安装情况(并在左面布置销钉、右面布置紧固螺钉及另一销钉显得错落有致),对于模柄与上 模座的联接情况进行了局部剖(并顺便画出防转销钉显得构图极为巧妙),而对打料系统的装配关系也尽量全剖,使其他读图者一目了然。

下模部分对凸凹模的固定,凸凹模洞口及漏料孔的形状,卸料板与卸料螺钉的联接情况,紧固螺钉与圆柱销的结构情况都进行了全剖。而对活动挡料钉的安装情况则采取了用虚线表达的方式。这样的布置需要设计者经过一番精心的运筹后才能获得。

(3)序号引出线的画法

在 画序号引出线前应先数出模具中零件的个数,然后再作统筹安排。在图5的模具装配图中,在画序号引出线前,数出整副模具中有33个零件,因此设计 者考虑左方布置18个序号,右方再布置15个序号。根据上述布置,然后用相等间距画出33个短横线,最后从模具内引画零件到短横线之间的序号引出线。按照 “数出零件数目→布置序号位置→画短横线→引画序号引出线”的作图步骤,可使所有序号引出线布置整齐、间距相等,避免了初学者画序号引出线常出现的”重叠 交叉”现象。

3. 关于螺钉、销钉的画法

画螺钉应注意以下几点:

(1)螺钉各部分尺寸必须画正确。螺钉的近似画法是:如螺纹部分直径为D,则螺钉头部直径画成1.5D,内六角螺钉的头部沉头深度应为D+1~3mm;销钉与螺钉联用时,销钉直径应选用与螺钉直径相同或小一号(即如选用M8的螺钉,销钉则应选Ф8或Ф6)。

(2)画螺钉连接时应注意不要漏线条。以图5中螺钉24为例,螺钉只与尾部的凹模26螺纹连接,而螺钉经过冲孔凸固定板13、上垫板14及上模坐16均应为过孔。

(3)画销钉联接时也要注意不要漏线条。以图5中的销钉15为例,在销钉经过的通孔凸模固定板13与上模座16零件需用销钉进行定位,而上垫板14则无需用销钉15来定位,所以应为过孔。

模具装配图绘制完成后,要审核模具的闭合高度、漏料孔直径、模柄直径及高度、打杆高度、下模座外形尺寸等与压力机有关技术参数间的关系是否正确。本例经审核后确认满足J23-16F压力机参数要求。

3 冲裁模零件设计示范

3.1 图形的绘制方法

图形的绘制方法虽依各人习惯而不尽相同,以下的观点及建议,可供参考。


图6 凸模(材料:T10A)

1. 图形的不绘条件

画 零件图的目的是为了反映零件的构造,为加工该零件提供图示说明。那么哪些零件需要画零件图呢?这可用一句话概括:一切非标准件、或虽是标准件但 仍需进一步加工的零件均需绘制零件图。以图5倒装复合模为例,下模座1虽是标准件,但仍需要上面加工漏料孔、螺钉过孔及销钉孔,因此要画零件图;导柱、导 套及螺销钉等零件是标准件也不需进一步加工,因此可以不画零件图。

2. 零件图的视图布置

为保证绘制零件图正确, 建议按装配位置画零件图,但轴类零件按加工位置(一般轴心线为水平布置)。以图5所示的凸模26为例,装配图上该零件的主 视图反映了厚度方向的结构,俯视图则为原平面内的结构情况,在绘该凸模26的零件图时,建议就按装配图上的状态来布置零件图的视图,实践证明:这样能有效 地避免投影关系绘制的错误。

3. 零件图的绘制步骤

绘制模具装配图后,应对照装配图来拆画零件图。推荐如下步骤。

绘 制所有零件图的图形,尺寸线可先引出,相关尺寸后标注,以图5为例。模具可分为上下两大部分。在画上半部分的零件图时,绘制的顺序一般采用“自 下往上,相关零件优先”的步骤进行。凹模26是工作零件可以首先画出;绘完凹模26的图形后,对照装配图,推块11与凹模26相关,其外形与凹模洞口完全 一致,厚度应比凹模大出0.5mm,根据这一关系马上画出推块11的图形;接下来再画冲孔凸模固定板13的图形画好凸模固定板13以后,再对照模具装配图 画出装在冲孔凸模板13内的冲孔凸模12、冲孔凸模27等与之相关零件的图形……。在画上模部分的零件图时,应注意经过上模座16、上垫板14、冲孔凸模 固定板13及凹模26等模板上的螺销钉孔的位置一致。

在画下模部分的零件图时,一般采用“自上往下,相关零件优先”的步骤进行。先画卸料 板9的图形,然后对照装配图上的装配关系,画活动挡料钉28、 挡料钉10的图形。再画凸凹7的图形……。在画下模的零件图时,也应注意经过卸料板9、凸凹模固定板6、下垫板5、下模座1上的螺丝钉孔的位置及凸凹模 7、下垫板5、下模座1上漏料孔位置的一致。

按照上述步骤,根据装配关系对零件形状的要求,绘制各零件图的图形,能很容易地正确绘制出模具零件的图形,并使之与装配关系完全吻合。

3.2 尺寸标注方法

从 事模具设计的人都有这样的体会:画图容易标注尺寸难。将一张零件图的图形绘制正确和将一张零件图上的所有尺寸标注正确相比要容易得多。然而初学 者中普遍存在一种“重图形、轻尺寸标注”的倾向,一旦进行课程设计,所标注的尺寸或错误百出或紊乱不堪,令人难以读图;甚至出现螺销钉孔错位致使模具无法 装配的严重错误,漏尺寸漏公差值等现象更是比比皆是。究其原因除了平时练习少外,更为重要的是缺乏必要的方法。进行尺寸标注时,建议根据装配图上的装配关 系,用“联系对照”的方法标注尺寸,可有效地提高尺寸标注的正确率,具有较好的合理性。

1. 尺寸的布置方法

对于初学者 出现尺寸标注紊乱、无条件等现象,主要是尺寸“布置”方法不当。要使用所有标注的尺寸在图面上布置合理、条理清晰,必须很好地运筹。图 7所示的冲孔凸模固定板13的零件图中共有近20个尺寸,其中俯视图左侧布置螺销钉及顶杆过孔尺寸;下方布置顶杆过孔孔距尺寸、冲孔凸模12固定孔孔距尺 寸、螺销钉孔的孔距尺寸及模板的外形直径尺寸;上方则布置孔距的角度尺寸。主视图上布置了冲孔凸模 27和12的固定孔形状尺寸、及模板的厚度等尺寸。这种布置方法合理地利用了零件图形周围的空白,既条理分明、又方便了别人读图。

尺寸布 置还要求其它相关零件图相关尺寸的“布置地”尽量一致。如图8所示的上垫板14中的尺寸就参照了图7中布置方法,尽量地作到“同一尺寸在图 纸的同一地点出现”。如Ф9、Ф7、Ф30、Ф56、Ф80、30°、厚度14等尺寸的“布置地”基本上同图7冲孔凸模固定板零件图中的“布置地”相同。 这样的尺寸标注方式极大地便利了读图者。学生要确立“图纸主要是”画给别人看的!”的观念,学习与借鉴本例中的尺寸布置方法。


图7 冲孔凸模固定板(材料:Q235) 图8 开制三叉型孔的上垫板(材料:45)

2. 尺寸标注的思路

要使尺寸标注正确,就要把握尺寸标注的“思路”。前面要求绘制所要零件图的图形而先不标注任何尺寸,就是为了在标注尺寸时能够统筹兼顾,用一种正确的“思路”来正确地标注尺寸。下面以图5倒装复合模为例阐述尺寸标注的“思路”。

(1)标注工作零件的刃口尺寸

根 据模具设计法则,先标注基准件上刃口尺寸(即冲孔凸模和落料上的刃口尺寸),再标注对应件上的刃口尺寸(即凸凹模上的刃口尺寸);但符合模中也可将凸凹 模作为基准件,凸模、凹模作为对应件进行尺寸标注。所有零件图的图形绘好后,先找出本模具的工作零件即凸凹模7、冲孔凸模12和27、落料凹模26,把着 三张图纸对照起来,按照尺寸布置后安排好的“地点”标注刃口尺寸。这样可保证刃口尺寸标注的正确性。

(2)标准想关零件的相关尺寸

相 关尺寸正确,各模具零件才能装配组成一幅模具,必须保证正确。在上模部分,相关尺寸的标注建议按照“自上而下”的顺序进行。先从工作零件凹模 26开始,观察装配图6,与该零件模具相关的零件有内六角螺钉24、销钉25推块11、冲孔凸模13,应从分析着些相关关系入手进行“相关尺寸”的标注。

凹 模26与销钉25成H7/m6配合,故销钉孔直径为Ф8H7。销钉25要通过26、13、14、16等模板,其中与26与16成H7/m6配合,因此上 模座16上销钉孔直径也应为Ф8H7,可立即在上模座16的零件图上标出该尺寸。而销钉通过13、14模板的孔是应有0.5~1mm的间隙,因此13、 14上相应的过孔直径为Ф9,也应在相应的图纸上立即标出。

凹模26与3个M8的内六角螺钉24是螺纹连接,因此凹模26的图纸上对应螺 纹孔应标注为3-M8;螺钉24也同过16、13、14、16等模 板,其中与13、14、16上的过孔也有0.5~1mm的间隙,相应的图纸上应立即标注Ф9,各模板上的螺纹孔距均为Ф9,各模板上的螺纹孔距均为Ф56 一并标出。

凹模26还与推块11相关。从装配关系知:推块11的外形应与凹模洞口一致,只是尺寸比洞口尺寸小,四周有0.2~0.6mm 的间隙,按这一关系 找出推块11的零件图纸,标上推板的外形尺寸。为了保证推块11完全将工件推出凹模26,推块的推料段高度是8.5mm。推块尺寸的标注见图9。


图9 推块(材料:45)

标 注完凹模与凸模相关零件上相关尺寸后,再标注冲孔凸模固定板13上相关零件的相关尺寸……,直至上模中 所有零件的 相关尺寸标注完毕。再举一例进一步说明相关尺寸的标注。装配图中的冲孔凸模27与冲孔凸模固定板13和推块11相关;其中冲孔凸模固定板13相应处为一吊 装固定台阶孔,大孔高度与凸模吊装段等高,即同为3mm,孔径应比凸模台阶直径大出0.5~1mm,是22.5mm;小孔与凸模固定段成H7/m6的配 合,即冲孔凸模固定板13上的小孔直径应为Ф18.5,而推块11上开制的凸模过孔应比凸模刃口部分直径大出0.5~1mm,实际为Ф18.8mm。上述 尺寸应依次同时标注。冲孔凸模27的零件图见图10。


图10 冲孔凸模(材料:T10A)

模具下模部分的相关尺寸标注可按“自上而下”的顺序尽心。先标注弹压卸料板9与挡料钉10、28,弹压卸料板与卸料螺钉4之间的相关尺寸;再标注凸凹模固定板6与凸凹模7、卸料螺钉4、紧固螺钉32、圆柱销33之间的相关尺寸……,直至所有相关尺寸标注完毕。

(3)补全其它尺寸及技术要求

这个阶段可逐张零件进行,先补全其它尺寸,例如轮廓大小尺寸、位置尺寸等;再标注各加工面的粗糙度要求及倒角、圆角的加工情况,最后是选材及热处理,并对本零件进行命名等。

3.3 其它尺寸标注问题

1.复杂型孔的尺寸标注

形 状越复杂,尺寸就越多,由此造成的标注困难是初学者设计冲压模时的主要障碍。图11所示的凸模零件,因洞口形状的尺寸繁多而出现标注困难。有两个解决方 法:一是放大标注法。将凹模零件图适当放大后再标注尺寸;二是移出放大标注法。将复杂的洞口型孔单独移至零件图外面的适合位置,再单独标记繁多的型孔尺 寸,而零件图内仅标注型孔图形的位置尺寸即可。图11中采用了移位标注法。


图11 复杂模洞口的移位标注

判 断冲压件上未注公差尺寸的偏差方向。采用“入体原则”、可先画出该冲压件的假想磨损图。图12所示 工件的假想磨损图用双点划线画出,再根据以下方法进行判断。如该尺寸磨损后变小为负偏差;变大为正偏差;不变则为正负偏差。拒此可确定图2-1中, 26.2,24.2、20.8等尺寸为负偏差;15、12、2及2-Ф5等尺寸为正偏差;而尺寸14.5则为正负偏差。若需判别半径R及角度尺寸的偏差方 向同样可采用此法。


图12 冲压件未注公差尺寸的偏差方向判断

冲 压件未注公差配合尺寸极限偏差一般为IT12~IT14,常用IT14。若该冲压件使 用时与其它工件并无装配关系,则未注公差尺寸的偏差方向及极限偏差可按国际GB/T15055-94圆角半径等的极限偏差分为f(fine精密级)、m (medium 中等级)、c(coarse 粗糙级)、v(very coarse 最粗级)四个公差等级。一般可选用c级。表1、表2、表3级表4分别列出了GB/T15055-94中的有关内容,供设计者参考。

3.其它模板上型孔的配制标注

在进行凹模洞口的刃口尺寸计算时如何处理半径尺寸R?实践中视对R的测量手段以及使用要求而定,如有能精确测定R值的量具,则需对R值进行刃口尺寸的计算;如仅有靠尺等常规测量工具,则对R进行刃口尺寸计算并在凹模图上标注计算结果就无必要,可在凹模图山标注原注R值。

由 于凸模外形、凹模洞口及其它模板上相应的型孔都是在同一台线切割机床上用同一加工程序,根据线切割机床的“间隙自动补偿”功能使起在线切割机床 的割制过程中自动配制一定的间隙而成。因此其它模板上型孔可按上述配制加工的特点进行标注,即简单明晰、又符合模具制作的实际。以图13为例,凸模固定模 板按配制法特点进行标注时,仅需在模板内标注型孔的位置尺寸,而型孔的形状尺寸则在图纸的适当位置加注:“型孔尺寸按凸模的实际尺寸成0.02mm的过盈 配合”即可。

表1 未注公差冲裁尺寸的极限偏差

注:对于0.5及0.5mm以下的尺寸应标注公差。

表2 未注公差冲裁模角度的极限偏差

表3 未注公差成形尺寸的极限偏差

注:对于0.5及0.5mm以下的尺寸应标注公差。

表4 未注公差冲裁圆角半径的极限偏差


图13 凸模固定板型孔的配制标注

BW碧威股份有限公司針對客戶端改善切削方式、提供專業切削CNC數控刀具專業能力、製造客戶需求如:Cutting tool、切削刀具、HSS Cutting toolCarbide end millsCarbide cutting toolNAS Cutting toolCarbide end millAerospace cutting toolCarbide drillHigh speed steelMilling cutterCore drill、鎢鋼銑刀、航太刀具、鎢鋼鑽頭、高速剛、鉸刀、中心鑽頭、Taperd end mills、斜度銑刀、Metric end mills、公制銑刀、Miniature end mills、微小徑銑刀、鎢鋼切削刀具、Pilot reamer、領先鉸刀、Electronics cutter、電子用切削刀具、Step drill、階梯鑽頭、Metal cutting saw、金屬圓鋸片、Double margin drill、領先階梯鑽頭、Gun barrelAngle milling cutter、角度銑刀、Carbide burrs、滾磨刀、Carbide tipped cutter、銲刃刀具、Chamfering tool、倒角銑刀、IC card engraving cutterIC晶片卡刀、Side cutter、側銑刀、NAS toolDIN tool、德國規範切削刀具、Special tool、特殊刀具、Metal slitting sawsShell end mills、滾筒銑刀、Side and face milling cuttersSide chip clearance saws、交叉齒側銑刀、Long end mills、長刃銑刀、Stub roughing end mills、粗齒銑刀、Dovetail milling cutters、鳩尾刀具、Carbide slot drillsCarbide torus cutters、鎢鋼圓鼻銑刀、Angeled carbide end mills、角度鎢鋼銑刀.aerospace toolCarbide torus cutters、短刃平銑刀、Carbide ball-noseed slot drills、鎢鋼球頭銑刀、Mould cutter、模具用刀具、BW微型渦流管槍、Tool manufacturer、刀具製造商等相關切削刀具、以服務客戶改善工廠加工條件、爭加競爭力。歡迎尋購~~~碧威股份有限公司www.tool-tool.com

beeway 發表在 痞客邦 留言(0) 人氣()

Bewise Inc. www.tool-tool.com
Reference source from the internet.
传统的抗磨损涂层产品,如TiN或 TiCN,在涂层刀具的应用领域已经达到了其技术极限,同时对于一些特殊的加工方式而言,很多较为先进的涂层材料也将很快接近其极限值。

CemeCon率先发现了这一点并开始为新的加工方式提供新的解决方案—— Supernitrides. 我们知道氮涂层材料,除了其相对较为昂贵的生产成本以外,
还 有一个重要的特征,即尽管它们的机械性能很好,却仍然容易受到腐蚀。而作为氧涂层,正好相反,他们具有很高的化学稳定性却抗磨损能力极低。现在 CemeCon公司成功地举出了反例,这就是Supernitrides. 这种氧和氮的单结构的组合产品完全吸取了二者的优点而抛弃了它们的不足。

这 种新的涂层材料至少可以将其铝含量提高到80mol-%ALN。而传统的涂层材料,其摩尔含量最高仅为65%ALN。用户可能会猜想铝含量的提高必然会带 来机械性能的降低。而事实证明,这种现象在Supernitrides产品上并没有发生。相反,SupernitrideR2C3的磨损要比传统的 AlTiN涂层材料减少30-50%。这便直接导致了工具使用寿命的增长。同时,由于它在升温的过程中具有极高的强度,从而使较高的切削速度得到了保证, 这样便可以将更多的材料纳入到干式加工的范围中来。


游离态/柱状结构

这 种新材料的生产工艺名为 : H.I.PTM(高电离化脉冲技术)。H.I.PTM 技术可生成极其致密的脉冲等离子,以便沉积晶体高温结构材料。该工艺技术通过CemeCon新一代的CC800?涂层系统实现,该系统已经在许多工业生产 实例中运行。新的CC800?/9sinOx系统独到之处不仅在于其革新性的脉冲技术,还在于其真空仓内配置的新的装置可以实现对致密的等离子的引导,从 而将涂层区域完全集中在工件上。通过采用独创的H.I.PTM技术,CemeCon公司事实上目前可以实现所有材料,包括电绝缘材料的沉积生产。


纳米组分/纳米组分

H.I.PTM 技术的最大优点在于其等离子电离率的显著提高,性能的优化(即便是对于绝缘涂层来说),并可生成具 有高质量表面的纳米复合材料,且始终保持有相当高的沉积率。通过H.I.PTM技术,我们可以利用CemeCon的涂层系统进行全新涂层材料的沉积并使涂 层工具范围的扩大和性能的相应提高成为可能。


该图用于解释新的sinOx技术的可能性:非电导性(Ti,Al)N材料的X射线衍射光谱显示,该
材料由立方和六方相构成。该涂层突出的特点在于其极佳的抗氧化性能和化学稳定性。其Al
含量至少可以达到80 摩尔-% ALN且不会出现如其它涂层在超过常规铝含量时通常有的可观察颗粒现象。

CemeCon技术服务部门领导人Bernd Hermeler先生说:“我们将把Supernitrides 涂层产品和脉冲技术完全扩充到我们现有的模块式设备和工艺中去。脉冲技术具有完全的兼容性,换句话说,我们现有的所有的涂层工艺 都可以采用新的sinOx技术。”


金属稳定性TiN-AlN的相位图。采用交流PVD技术,铝含量约为65mol-%的涂层材料在失去导电率
时会出现一道间隙,而现在可以通过新的sinOx(H.I.PTM)技术加以克服。


通过动力屏障可以防止金属稳定涂层向平衡状态的转换。

CemeCon 公司在推出Supernitrides新涂层品种的同时还提供成 套的工程技术支持。旋转工具部门的Manfred Welgand先生说:“这就是为什么依赖CemeCon强大的工程支持,用户可以享受到Supernitrides的全部潜能。因为用户得到的不仅仅是 一种涂层产品,还包括其身后成套的技术支持。 除此之外,用户还完全可以依赖我们的开发队伍开发适合其自己工厂的个性化或更宽应用领域的涂层产品。”

CemeCon 公司率先将氮材料优越的机械性能和氧化涂层的化学稳定性结合起来并成功地创造出了一种卓越的涂层产品:Supernitrides与传统涂层相比,它具有 更高的硬度和致密度,其优越的物理性能在干式或硬加工及高速加工应用场合获得了很好的效果。极高的含铝量赋予了涂层极高的强度。

在本实验中:CemeCon公司的Supernitrides R2C3涂层和目前最优质的AlTilN涂层进行比较采用整体硬质合金铣刀(φ 10 毫米) 对1.2379 (× 155 CrMoV12)成型工具进行铣削加工。

详细数据:

vc = 20m/min fz = 0.03mm
ap = 15mm ae = 1mm
同向铣削,干加工

结果:Supernitrides R2C3 涂层刀具的磨损量减少30%-50%。

BW碧威股份有限公司針對客戶端改善切削方式、提供專業切削CNC數控刀具專業能力、製造客戶需求如:Cutting tool、切削刀具、HSS Cutting toolCarbide end millsCarbide cutting toolNAS Cutting toolCarbide end millAerospace cutting toolCarbide drillHigh speed steelMilling cutterCore drill、鎢鋼銑刀、航太刀具、鎢鋼鑽頭、高速剛、鉸刀、中心鑽頭、Taperd end mills、斜度銑刀、Metric end mills、公制銑刀、Miniature end mills、微小徑銑刀、鎢鋼切削刀具、Pilot reamer、領先鉸刀、Electronics cutter、電子用切削刀具、Step drill、階梯鑽頭、Metal cutting saw、金屬圓鋸片、Double margin drill、領先階梯鑽頭、Gun barrelAngle milling cutter、角度銑刀、Carbide burrs、滾磨刀、Carbide tipped cutter、銲刃刀具、Chamfering tool、倒角銑刀、IC card engraving cutterIC晶片卡刀、Side cutter、側銑刀、NAS toolDIN tool、德國規範切削刀具、Special tool、特殊刀具、Metal slitting sawsShell end mills、滾筒銑刀、Side and face milling cuttersSide chip clearance saws、交叉齒側銑刀、Long end mills、長刃銑刀、Stub roughing end mills、粗齒銑刀、Dovetail milling cutters、鳩尾刀具、Carbide slot drillsCarbide torus cutters、鎢鋼圓鼻銑刀、Angeled carbide end mills、角度鎢鋼銑刀.aerospace toolCarbide torus cutters、短刃平銑刀、Carbide ball-noseed slot drills、鎢鋼球頭銑刀、Mould cutter、模具用刀具、BW微型渦流管槍、Tool manufacturer、刀具製造商等相關切削刀具、以服務客戶改善工廠加工條件、爭加競爭力。歡迎尋購~~~碧威股份有限公司www.tool-tool.com

beeway 發表在 痞客邦 留言(0) 人氣()

Bewise Inc. www.tool-tool.com
Reference source from the internet.
机加工厂厂主和管理者面临着许多挑战,而其中最麻烦的一个是加工中心无法生产精密零件。

加工件不合格的原因之一可能是机床的空间精度有问题。这方面的实例是在加工厂加工体积足够大而占据机床的最大加工范围的大型工件时。机床可以在加工范围一定的区域内保持公差,但是当机床在这个区域以外的范围进行切削时,大型零件上这个范围附近的特
征无法按要求的公差加工。当小尺寸零件定位在(占据大部分或全部加工范围的)墓碑式夹具相应部分时,会发生同样的问题。这些零件的加工精度比夹在墓碑式夹具其他部分的零件精度要低。为什么会发生这种现象?

罪魁祸首是机床空间精度不够,而如果没有将零件夹在机床加工空间最大范围处,此“祸首”是不会让人发现的。每台机床都有一个在其中可以安装零件并进行有效切削的加工空间。在一台三坐标机床上,加工空间是由刀具借助三个坐标轴运动可以触及的总区域组成的。

另 一个理解空间精度的方式是在一个立方体中取两点。理论上,这两点彼此具有完美的位置关系。它们可以在X轴彼此精确相距1000 mm,Y轴相距500 mm,Z轴相距300 mm。在X、Y、Z中第一个位置坐标为0,0,0,而第二个位置是由上述数值定义的。如果机床可以在相对于第一点毫无偏差的情况下运动到第二点,则其空间 定位是完美的,理论上,机床可以达到的任何点都在加工空间内具有一个真实位置。

(位于新泽西州Franklin Lakes市的)(美国)三井精机(Mitsui Seiki)总裁Scott Walker说:“但是,实际情况是,如果你从X、Y、Z零点开始驱动刀具到此规定位置,由于丝杠或直线电机或者所采用的其他驱动装置存在位置误差,刀具 不会精准地走到这个位置。”他解释说,之所以发生这个问题,是因为在任何组件中都带有妨碍自己到达此位置的固有不精确性。机床几何结构是沿机床导轨系统移 动一定物质的函数。该物质需要在没有倾斜、摇摆及起伏的情况下以直线方向移动,因为随着物质沿机床的导轨系统进一步前进,任何偏差都会被放大。


卧式加工中心的加工空间可以想象成空间中的一个箱形或立方体区域。该区
域定义了机床进行有效切削的范围,但是因为机床结构方面存在的不完美性,
精度在这个空间内在每个点上可能会不一致。

Walker 先生补充说:“你要确保机床的动态空间精度至少比零件公差小50~80%。在 高精密加工中,大多数人要求小80%。例如,如果我必须加工一个零件公差为千分之几英寸的零件,诸如飞机齿轮箱,那么机床的定位精度必须在0.0002英 寸以内。这样,对于所有其他影响零件质量的东西诸如热变形等我可以有0.0008英寸的公差。”

固有精度

Walker先生说空间精度必须在购买机床前就建于机床中。事实上,空间精度与零件应用场合相关,因此必须依据特定情况而定制,如对于加工异常重的工件就必须如此。

为 了减少影响机床空间精度的倾斜、摇摆和起伏度,Walker先生认为机床的导轨必须进行手动刮研。为了检查手动刮研的精度,要采用一种叫做自准直仪的光 学设备来分析倾斜和摇摆度。通过观察这种望远镜式装置,可以检测自准直仪测视线中交叉线存在的未对准现象。交叉线上下运动表示导轨表面存在倾斜误差,而左 右移动则表示存在摇摆误差。起伏误差是用一个精密气泡水准仪测量的。一般地,自准直仪沿导轨表面每步移动100 mm,测量每个间隔的倾斜和摇摆误差。然后沿导轨系统移动气泡水准仪以相同的间隔测量起伏误差。这种表面必须进行手动刮研,从而将上述值降低到合格公差范 围内。


对于一台要实现较高空间精度的机床,导轨系统必须建造成直线轴运动 — 具有最小的倾
斜、摇摆和起伏性。这些误差必须在机床出厂前于装配过程中加以检测和修正。

此 外,如果在装配过程中布放了非常重的机床部件,例如,当 在机床床身上放置一个4吨重的立柱时,立柱会压弯床身。为了保证立柱轨迹为直线,要在导轨系统中形成微小的弯曲以对这种变形进行补偿。这样,当往机床上加 立柱时,立柱的重量会压缩坐标轴,并保证它以平坦或直线方式运行。

如果X、Y、Z轴可以降低倾斜、摇摆和起伏度,则可以对其重量和彼此的影响加以补偿;现在坐标轴轨迹为直线,那么直线度可以以弧秒的方式加以测量。精度非常高的机床拥有直线度小于2弧秒的弧秒级导轨,这种精度被看作是优异精度。

一旦一台典型三坐标机床上的三个坐标轴都以直线运行,则最后要进行的调整是实现这些坐标轴之间良好的垂直度。如果机床具有精确的垂直度和直线度,则当刀具在空间运行时,它在确定的区域内将具有优异的真实定位。简而言之,机床的空间精度将很高。

Walker 先生说,定位重复性和空间精度是彼此相关的。但是,重复性描述的是机床可以沿某坐标轴在空间内返回到某单个点的能力,而加工精度则涉及许多牵 涉在一起的点。Walker先生解释说:“早期当丝杠没有像今天那样进行预载时,重复性是机床制造领域的一个重要问题。”因此,他得出结论,如今重复性对 机床买家不再具有像以前那样重大的关系。

精密性能标准

除了应用国家研究所提出的标准来帮助最终用户定义特定机床特征或者功能外,Walker先生说制造厂家还应用自己的标准来测量机床的精度。例如,某些制造厂家有用圆柱直角规测量机床垂直度的标准。同样,他们将陶瓷方尺布置在工作台上检查托盘绕主轴旋转时的平整度。

制 造厂家要测量自己在生产计划中设定的一组公差,从而可以就机床的真实定位给出一定的数值。例如,他们可能声明机床可以在一个1米见方的空间内实 现20 mm或更好的定位精度,或者机床可以在一个1,000mm见方的空间内实现75mm或更好的定位精度。Walker先生说:“真实的位置是很难测量的,因 为它可以是离开主轴而定位的任何一点,诸如钻头顶尖,该位置不会相对于在空间中某处规定的X、Y、Z位置产生超出20 mm的偏差。”

Walker 先生说,机床通常设计和制造成在其具有最高精度的加工空间内存在一个“最有效点”。他说:“你无法拥有完美的垂直度和精确的圆度能力,因为机 床是为一个或多个应用场合而设计的。”如果关键公差被约束在机床加工空间的特定部分,则必须给加工范围内该部分中机床的精度进行特别的关注。

Walker 先生说,在讨论五坐标机床时,情况变得比较复杂。例如,市场上有大量五坐标耳轴式机床。但是,某些这样的机床其五坐标加工能力在10弧秒以 内,而其他则在0.5弧秒以内。他说:“五坐标机床存在的问题是坐标轴轨道问题,这是两个回转轴之间的坐标轴旋转轨道。滞后也是电机反向要关心的一个问 题,因为必须在电机中加入大量能量来驱动它,然后当电机必须减速和反向时,你必须将所有这些能量都抵消掉,这样做需要时间。因此就会产生伺服滞后,并且影 响机床加工范围内的真实动态定位能力。”

为了解决这个问题,Walker先生坚决主张必须对安装的机床部件进行手动刮研,并且必须通过调谐伺服系统和操纵速度及位置数据而控制滞后现象,以便空间内移动的机床质量可以平滑运动并可以对其进行良好控制。

尽管机床制造厂家采用软件来补偿因主轴热膨胀而产生的机床非精确性,但这种软件却无法用于补偿加工范围内坐标轴运动的不精确性,因为这些不精确性可能依据被加工的零件不同而变化。

机床和零件的测量

尽管机床空间精度的测量非常困难,但Walker先生还是介绍了完成该任务的两种方式。

Optodyne 公司(位于加利福尼亚州Compton市)的Charles Wang博士已经开发了一种测量机床空间精度的方法。Wang博士说,空间标定的过程必须在ASME B5.54 以及 ISO230-6空间机床性能测量标准中规定。但是,机床用户一直不情愿进行空间标定,因为遵循这些步骤,必须将机床停止生产2或3天。Optodyne 用于空间标定和补偿的激光矢量技术将空间标定时间降低到了2或3小时,因此它成为测量机床性能这方面能力的一个诱人选项。


尽管机床空间精度的标定不容易,但采用滚珠杆和其他计量技术却使
得它不是如此复杂。

(位于伊利诺斯州Hoffman Estates市的)雷尼绍(Renishaw)公司也已经开发了测量机床空间精度的设备。标定产品部的业务经理Clive Warren列出了三种可以给用户提供精确机床测量的设备。一种是用于综合评价机床、三坐标测量仪以及其他(位置精度非常关键的)系统之精度的ML10 “金标准”激光测量系统。另一种是用于在常规基础上快速检查CNC机床性能的QC10滚珠杆系统。最后一种是机床检查规。Warren先生说,所有这些系 统都为便携式,而滚珠杆和机床检查规的价格适中,采用自动方式,大、小型车间均可以方便地使用。

覆盖整个范围

为了在加工中心的整个加工范围中精确加工零件,机床必须具有足够的空间精度。买家可以确保机床具有足够空间精度的最简便的方式是,试切在加工范围内定位的样件,看公差是否满足要求。 BW碧威股份有限公司針對客戶端改善切削方式、提供專業切削CNC數控刀具專業能力、製造客戶需求如:Cutting tool、切削刀具、HSS Cutting toolCarbide end millsCarbide cutting toolNAS Cutting toolCarbide end millAerospace cutting toolCarbide drillHigh speed steelMilling cutterCore drill、鎢鋼銑刀、航太刀具、鎢鋼鑽頭、高速剛、鉸刀、中心鑽頭、Taperd end mills、斜度銑刀、Metric end mills、公制銑刀、Miniature end mills、微小徑銑刀、鎢鋼切削刀具、Pilot reamer、領先鉸刀、Electronics cutter、電子用切削刀具、Step drill、階梯鑽頭、Metal cutting saw、金屬圓鋸片、Double margin drill、領先階梯鑽頭、Gun barrelAngle milling cutter、角度銑刀、Carbide burrs、滾磨刀、Carbide tipped cutter、銲刃刀具、Chamfering tool、倒角銑刀、IC card engraving cutterIC晶片卡刀、Side cutter、側銑刀、NAS toolDIN tool、德國規範切削刀具、Special tool、特殊刀具、Metal slitting sawsShell end mills、滾筒銑刀、Side and face milling cuttersSide chip clearance saws、交叉齒側銑刀、Long end mills、長刃銑刀、Stub roughing end mills、粗齒銑刀、Dovetail milling cutters、鳩尾刀具、Carbide slot drillsCarbide torus cutters、鎢鋼圓鼻銑刀、Angeled carbide end mills、角度鎢鋼銑刀.aerospace toolCarbide torus cutters、短刃平銑刀、Carbide ball-noseed slot drills、鎢鋼球頭銑刀、Mould cutter、模具用刀具、BW微型渦流管槍、Tool manufacturer、刀具製造商等相關切削刀具、以服務客戶改善工廠加工條件、爭加競爭力。歡迎尋購~~~碧威股份有限公司www.tool-tool.com

beeway 發表在 痞客邦 留言(0) 人氣()

Bewise Inc. www.tool-tool.com
Reference source from the internet.
本文针对金刚石膜(CVD)在切削刀具中的应用,讨论了金刚石膜焊接复合刀具对刀体材料要求和制造方法。根据金刚石良合刀具制造工艺及使用要求,对真空自活性钎焊所用钎料的化学成分的选择进行了分析,提出了确定活性针料化学成分的原则及常用针料的化学成分。

0.前 言

金刚石膜具有硬度高、耐磨损,摩擦系数小,导热性好等特点,是制造切削有色金属和非金属材料刀具
的 理想材料。人造金刚石膜的刀具分为两种类型:金刚石膜涂层刀具,金刚石膜焊接刀具。粘结力较弱是金刚石涂层刀具最突出的问题。粘结力较弱的原因有两个:一 是化学气相沉积(CVD)附口过程中,产生很大的热应力;二是基体材料存在着许多降低接头强度的因素。近年来,利用生长基体金属同金刚石膜的热膨胀系数相 差较大粘附强度低,在基体上沉积金刚石膜,随着基体的冷却,金刚石膜自动脱落,得到独立的金刚石厚膜。文献采用等离子体时流CVD法在Mo基体上沉积金刚 石膜,获得独立的金刚石厚膜(0.3-1.3mm)。利用这种膜与刀体材料焊接帘(备切削刀具兼有单晶金刚石刀具和金刚石薄膜涂层刀具的优点,是一种应用 前景极为广阔的新型刀具。

1.金刚石厚膜焊接刀具的制造方法

1-1金刚石厚膜的成型
由于金刚石厚膜硬度高,耐磨 性好、而且不导电。所以常见的机械切削、线切割、超声波加工等工艺方法均不适用于金刚石厚膜的切割加工,常用的方法是激光切割。激光切割不仅能将金刚石厚 膜切割成所需要的形状和尺寸,还能直接切出刀具的后角和修正厚膜表面。一般金刚石车刀的前角以0°为标准,根据需要可在+5°的范围内选取。在强调车刀的 耐磨性和尖刀强度的情况下。也可以采用负前角(-20°左右)。负后角一般以5°为标准,根据使用条件可在 2.5~10°范围内选取。由前刀面和后刀面构成的锲角在85°以上,可得到高精度的刀尖。

1-2刀体材料的性能和焊接

作 为刀体材料尽管在切削加工中不与被切削体直接接触,但由于基体要对金刚石膜起支撑作用,因此要求其具有较高的刚性,热膨胀系数与金刚石膜相近以及良好的焊 接性等。目前常用刀具材料有硬质合金(YG3、YG6、YG8等)、陶瓷(Si3N4、A12O3等)、CBN、高速钢等,硬质合金是最有发展前途且目前 研究最多的刀体材料。硬质合金是理想的基本材料,它的硬度高,又因其为烧结体,红硬性更好,室温下硬度一般在HRA83~93之间;500 ℃以下硬度保持不变。抗压强度最高可达到6000MPa,一般为3400~5600MPa;室温抗弯强度在750~2500MPa之间,弹性模量高,通常 为(4~7)×105MPa;室温下刚性较好,无明显塑变,对金刚石膜可起很好的刚性支撑作用。

金刚石厚膜与刀体材料的连接主要有方法两 种:金刚石表面金属化钎焊法和活性钎料焊法。前者是利用表面处理技术(如离子束溅射等),在金刚石表面镀覆金属(如Ti、Cr等),使其表面具有金属或类 金属的性能。金属化的金刚石膜表面对Ag-Cu基针料具有良好的可焊性,可采用金属间针焊工艺焊接。这种方法需进行金刚石膜表面金属化处理,增加了制备难 度。活性钎料焊接法则是在针料中加入适量的能与金刚石膜表面碳原子反应生成碳化物的元素,利用针焊过程中碳化物形成元素对金刚石膜待焊表面的活化作用,使 针料润湿金刚石膜实现其钎焊过程。

1-3 刀体与基体金属的连接

将得到的金刚石厚膜硬质合金复合刀片连接到基体金属上, 其连接方法大致有以下几种:⑴钎焊 ⑵机械加固 ⑶树脂粘接剂连接 ⑷热装压入。其中,钎焊的办法使用最多。钎焊金刚石厚膜/硬质合金复合刀片使用的钎料就强度来说,一般使用铜基针料、银基针料等。但考虑到防止氧化的焊接 裂纹以减少金刚石向石墨转化的趋势,尽可能的使用低熔点的钎料为好,主要是使用硬质合金针焊专用的银基针料。为了更好地保护金刚石不向石墨转化,最好也是 在真空或惰性气氛条件下针焊。

1-4 金刚石厚膜刀具的刃磨

金刚石厚膜刀具的刃磨方法主要有机械磨削(包括金刚石砂轮磨 削和金刚石粉研磨)。热金属盘研膳,激光束、离子束加工和等离子体刻蚀等。用金刚石粉研磨效率低,金刚石砂轮磨削效率高,并可采用不同粒度的砂轮进行粗加 工,是金刚石厚膜刀具获得较好的表面光洁度。热金属盘研磨是在高温条件下,利用铁族元素与金刚石反应使金刚石石墨化的原理除去金刚石。用此种方法研磨表面 粗糙度可达镜面水平。用激光对厚膜表面进行光整加工,加工效率很高但加工表面质量不高,只适合于粗加工和半精加工。

2、活性钎料成分选择

活性钎料钎焊法钎焊金刚石与硬质合金所用的活性钎料,除要考虑钎料对金刚石膜与硬质合金的润湿条件,还必须考虑接头应力和真空加热条件下钎料成分的状态对钎焊过程的影响。

2-1 钎料中的基本成分

金 刚石膜和硬质合金都是高硬度高钢性的材料,两种材料的线膨胀系数也有一定的差别,两者钎焊界面会产生很大的内应力,可能造成金刚石膜开裂和连接界面分离。 因此钎料的成分必须在保证强度的条件下,应具有一定的变形能力。Ag-Cu合金不但有较好的强度及对硬质合金能很好的湿润,同时Ag-Cu面心立方的晶格 结构使其固浴体合金具有很好的塑性。所以,Ag-Cu合金是金刚石膜与硬质合金钎焊首选的基体成分。

2-2 钎料中的活性成分

金 刚石膜与一般金属及其合金之间有很高的界面能,致使金刚石膜不能被一般低溶点合金所浸润,润湿性较差。因此必须在钎料中加入一些强碳化物形成元素作为活性 金属,以改善金刚石膜与硬质合金之间的润湿性。但添加强碳化物形成元素也存在一定的局限性,一方面加入过多的碳化物形成元素就有可能使金刚石膜与钎料间形 成过厚的脆性化合物层,影响结合性能。另一方面为了控制钎料的熔点必须对钎料中的强碳化物形成元素友谊顶的要求,如Ti、Cr、Zr、V、B、 Mo、W等,这些元素的溶点分别为:1672℃、1863℃、1865℃、1929℃、2300℃、2623℃、3387℃。相比较而言,Ti、Cr、 Zr、V更适合一些。这些元素少量的加入Ag-Cu基钎料中,一般钎焊温度可控制在850℃左右,工艺性能较好。.

另外,在钎料中胸口少量的IN、SN等低熔点金属能有效地降低钎料的熔点,但过多则会产生脆化性化合物。同时金刚石膜与刀体材料的焊接是在真空状态下进行的,钎料中应避免含有MN、ZN等蒸汽压较高的易发挥元素。

上 面分别从钎料的熔点、润湿性、蒸汽压、热膨胀,焊后是否生成脆性化合物等方面考虑了钎料中元素的选择。对活性钎料成分的选择需要综合考虑,钎焊金刚石厚膜 所添加的强碳化物形成元素多种多样。目前国内外尚未见到商品金刚石焊料,一般由应用单位自行配制。有下列一些,Cu-10%Ti,Cu-15% Sn-3%Ti,Ag-15%Ti,Cu-30%Ag-5%Ti,Cu-15%Sn-2%Cr,Cu-1%V,Cu-Au,Ag-30%Cu-4%Ti, Ag-26.5%Cu-3%Ti等钎料成分可供选择。

3.结 论

1.金刚石厚膜与硬质合金片之间采用钎焊的方法能有效地解决粘结力较弱的问题。
2.金刚石厚膜与硬质合金片的钎焊中,采用自反应活性针料进行针焊,工艺方法简单成本低。
3.金刚石厚膜自反应活性钎焊钎料,可在Ag-Cu合金针料中添加适量的Ti,Zr和Cr等碳化物形成元素进行制备。
BW 碧威股份有限公司針對客戶端改善切削方式、提供專業切削CNC數控刀具專業能力、製造客戶需求如:Cutting tool、切削刀具、HSS Cutting tool、Carbide end mills、Carbide cutting tool、NAS Cutting tool、Carbide end mill、Aerospace cutting tool、Carbide drill、High speed steel、Milling cutter、Core drill、鎢鋼銑刀、航太刀具、鎢鋼鑽頭、高速剛、鉸刀、中心鑽頭、Taperd end mills、斜度銑刀、Metric end mills、公制銑刀、Miniature end mills、微小徑銑刀、鎢鋼切削刀具、Pilot reamer、領先鉸刀、Electronics cutter、電子用切削刀具、Step drill、階梯鑽頭、Metal cutting saw、金屬圓鋸片、Double margin drill、領先階梯鑽頭、Gun barrel、Angle milling cutter、角度銑刀、Carbide burrs、滾磨刀、Carbide tipped cutter、銲刃刀具、Chamfering tool、倒角銑刀、IC card engraving cutter、IC晶片卡刀、Side cutter、側銑刀、NAS tool、DIN tool、德國規範切削刀具、Special tool、特殊刀具、Metal slitting saws、Shell end mills、滾筒銑刀、Side and face milling cutters、Side chip clearance saws、交叉齒側銑刀、Long end mills、長刃銑刀、Stub roughing end mills、粗齒銑刀、Dovetail milling cutters、鳩尾刀具、Carbide slot drills、Carbide torus cutters、鎢鋼圓鼻銑刀、Angeled carbide end mills、角度鎢鋼銑刀.aerospace tool、Carbide torus cutters、短刃平銑刀、Carbide ball-noseed slot drills、鎢鋼球頭銑刀、Mould cutter、模具用刀具、BW微型渦流管槍、Tool manufacturer、刀具製造商等相關切削刀具、以服務客戶改善工廠加工條件、爭加競爭力。歡迎尋購~~~碧威股份有限公司www.tool- tool.com

beeway 發表在 痞客邦 留言(0) 人氣()

Bewise Inc. www.tool-tool.com
Reference source from the internet.
摘 要:本文研究了应用ICP-AES 分析技术测定稀土元素的方法。考察了各种共存元素对La、Ce、Pr、Nd 和Sm 元素多条谱线的影响情况。选择了合适的分析谱线,确定了仪器工作参数和分析条件。进行了样品加标回收试验和精密度试验,回收率在92%~106%之间,相 对标准偏差小于5%。
关键词:稀土硅铁合金 稀土硅铁镁合金 镧 铈 镨 钕 钐 ICP-AES

1 前言

稀土硅铁合金和稀土硅铁镁合金在球铁冶炼过程中广泛使用,其含量及用量对生产影响较大,加入量有
严格规定。各种稀土元素对生产和产品性能影响不同,因此,单一稀土元素分析已成为材料研究和生产中必不可少的项目。

稀 土元素由于化学性质相似,很难相互分离和分别测定,传统化学分析是测定混合稀土总量。混合稀土单一分量测定,最常用的方法是X 射线荧光光谱法,但这种分析技术灵敏度不高,基体干扰严重。ICP-AES法由于灵敏、基体干扰小,目前已成为稀土元素光谱分析重要手段。高纯稀土氧化物 中杂质稀土元素分析报道最多,土壤、肥料、植物、金属与合金也有报道。

我们采用法国产JY70P 型电感耦合等离子体发射光谱仪,开展了稀土硅铁合金和稀土硅铁镁合金中稀土单一分量分析方法研究。

2 试验部分

2.1 仪器及工作条件

法国产JY70P 联合型电感耦合等离子体发射光谱仪仪器工作条件: 冷却气14L/min;护套气0.3L/min;载气0.425L/min;溶液提升量:1.2mL/min.;功率0.97 kW;观测高度为感应线圈上方15mm。

2.2 试剂及标准溶液

实验中使用的硝酸、氢氟酸、高氯酸、盐酸均为分析纯试剂,水为蒸馏水。
各元素标准溶液均采用国家标准物质。

2.3 样品溶液的制备

准 确称取0.1000g样品(预先过120目筛)于铂金或聚四氟乙烯烧杯中,加少量水湿润后,加入5mL硝酸,再滴加3~5mL氢氟酸。低温加热溶解试样, 待试样溶解完全后,加入5mL 高氯酸,继续加热至冒烟。溶液体积蒸发至1mL 左右取下冷却,加入10mL 盐酸(1+1)溶盐。冷却至室温后,转移到100mL容量瓶中,用蒸馏水稀释至刻度,摇匀待测。

2.4 混合标准溶液的制备

称 取0.0300g 高纯铁数份于100mL 玻璃烧杯中,加入5mL 硝酸和5mL 高氯酸,低温溶解。待试样溶解完全后,加热冒高氯酸烟,蒸发溶液体积至1mL 左右取下,稍冷后加入10mL 盐酸(1+1)溶盐。冷却至室温后,转移到100mL 容量瓶中,吸取适量各元素纯标准溶液,按表1组成,配制成混合标准溶液系列。

表1 混合标准溶液 (μg/mL)

3 结果与讨论

3.1 试样溶解

采用硝酸和氢氟酸分解稀土硅铁合金、稀土硅铁镁合金试样,溶液中剩余氢氟酸采用高氯酸高温加热冒烟赶氟。采用本方法溶解试样,样品分解完全,溶液清亮。

3.2 分析谱线的选择

根据被测试样组成、被测元素及共存元素含量初步选择谱线(见表2),并对各条谱线光谱干扰情况进行了实际考察。

表2 分析谱线及可能干扰元素

3.2.1 基体影响及消除

试 样经高氯酸冒烟处理后,主量元素之一硅生成氟化物挥发了,因此,溶液中铁为基体,只要考虑铁对被测元素的影响。结果表明;除Pr422.535nm 谱线外,铁量小于500μg/mL 时,对La333.749nm 线、Ce413.765nm 线、Nd430.358nm 线的影响很小,其干扰可忽略。其它分析线不受影响。大部分谱线基线强度不随铁量变化,采用高纯铁配制标准溶液系列,对含铁量进行大致匹配后进行试样分析, 可以得到正确结果。本方法铁匹配量为300μg/mL。

3.2.2 共存元素的影响

溶液中除被测元素外,还含有锰、镁、 钙、钛等共存元素。配制上述元素纯标准溶液,分别在表2所列分析波长附近进行谱线扫描,将各种谱线轮廓图重叠 比较,发现Mn100μg/mL,Mg100μg/mL、CaTi50μg/mL、Al10μg/mL 不干扰La333.749nm 线和La398.852nm 线测定,也不干扰Nd406.109nm、Nd430.358nm 和Nd415.608nm 谱线测定,Pr422.293nm 谱线也不受干扰。Nd401.225nm 线受Ca 和Ti 线尾翼重叠干扰,其它元素对它不干扰。Ca、Ti 对Sm422.434nm 谱线的影响可忽略不计,其它元素对此线不干扰。

3.2.3 被测元素之间相互影响及消除

配制 稀土元素单一标准溶液,其含量分别为La、Ce、Pr、Nd、Sm100μg/mL、Ce150μg/ mL、Pr15μg/ mL、Sm10μg/mL,在各元素谱线波长附近分别作光谱扫描图,通过比较谱线轮廓图,认为La333.749nm谱线和La398.852nm 谱线受其它元素干扰影响较小,一般不影响0.5ug/mL 以上La 的测定。实际样品中,由于稀土元素组成较固定,且含量远低于试验量,因此,实际干扰影响更小。

Sm442.434nm 谱线受Ce 干扰,含铈高时会影响含量在1ug/mL 以下Sm 的测定。

La 和Sm 100μg/mL、Ce 150μg/mL 不干扰Nd430.358nm 谱线测定;Pr100μg/mL 有光谱干扰,但溶液中含镨量不会这么高,而且测定时可采用含镨的溶液代替空白液作低标消除影响。

Nd415.608nm 线:La 100μg/mL、Sm10μg/mL、和Pr15μg/mL 不干扰测定,Sm、Ce、Pr100μg/mL对该谱线有干扰。

Nd406.109nm 谱线:Sm、Pr100μg/mL 溶液对该谱线有部分重叠干扰,影响1μg/mL 含量Nd 的测定。

Ce100μg/ml、Sm10μg/mL 和Pr15μg/mL 不干扰0.1μg/mL 以上Nd 量的测定。

Nd401.225nm 线受铈元素干扰, 含铈量150μg/mL 时产生严重干扰、无法测定钕量。

对Pr422.293nm 谱线,La 100μg/mL 不干扰镨量测定;Ce 和Nd100μg/mL 有尾翼重叠干扰;Sm100μg/mL、Nd 使谱线背景增大;Sm10μg/mL 基本不干扰Pr 的测定。

对Pr417.939nm 谱线,Ce、Sm、Nd100μg/mL 有直接和部分重叠干扰,特别是Nd 产生严重干扰,该线应舍弃。

Ce412.765nm 谱线,受La100μg/mL、Pr、Nd、Sm 影响较小;Sm10μg/mL 不干扰铈的测定。

综 合考虑铁基体、共存元素之间干扰情况,选择了干扰小、且易消除的谱线作为分析谱线见表3。试样中La、Ce、Pr、Sm 和Nd 组成比例较固定,所测定稀土元素含量高时,以含稀土元素的低标溶液代替空白溶液作曲线,可消除稀土元素之间的影响,采用基体匹配后,铁基体和其它共存元素 不干扰测定。

表3 析谱线

3.3 ICP 仪器工作参数

我 们以等效背景浓度值为考察指标,逐个改变功率、冷却气流量、载气流量和观测高度,观察各种参数变化对测定的影响,通过多次试验、折衷选择适用于多元素同 时测定的工作参数,以保证大多数元素特别是灵敏度差的元素能有较好的检出能力。功率0.97kW;观测高度为感应线圈上方15mm;冷却气流量 14L/min;载气流量0.425μg/mL.

3.4 方法检出限

表4 方法检出限(3σ) (μg/mL)

3.5 精密度试验

采用含不同稀土量的稀土硅铁合金、稀土硅铁镁合金标准样品,按试样分解方法处理,在同样的分析条件下,分别进行6 次测定,计算出平均值和相对标准偏差见表5。结果表明:五种元素测量精密度均比较好,RSD 小于5%。

表5 精密度试验结果 (%)

3.6 加标回收试验

按样品处理方法分解 稀土硅铁合金、稀土硅铁镁合金标准样品,在标准样品溶液中加入适量的稀土元素,测定各元素含量,计算回收率,结果见表6。各元素回收率在92%-106%之间。

表6 加标回收试验

3.7 标准样品分析

采用本方法对稀土硅铁合金和稀土硅铁镁合金标准样品进行了测定。由于市售标准样品中无稀土元素分量值,我们将测定结果与混合稀土总量标准值进行了对照。

表7 标准样品分析结果对照 (n=6) (%)

4 结束语

本文提出了应用ICP-AES 法测定稀土硅铁合金、稀土硅铁镁合金中单一稀土分量方法,通过选择分析谱线、基体匹配等方法消除了共存元素之间相互影响,不需进行化学分离,可直接测定混合稀土元素中镧、铈、镨、钕、钐单一分量。方法简便, 适用于材料日常检验。

参考文献
1 GB/T4138-1993 《稀土镁硅铁合金》
2 万家亮. 现代光谱分析手册. 上海:华中师范大学出版社
3 李虬玉. 球墨铸铁中镧、铈、镨、钕、钐的ICP-AES 法测定. 汽车科技. 1995 年 第 6 期 40~42
BW碧威股份有限公司針對客戶端改善切削方式、提供專業切削CNC數控刀具專業能力、製造客戶需求如:Cutting tool、切削刀具、HSS Cutting toolCarbide end millsCarbide cutting toolNAS Cutting toolCarbide end millAerospace cutting toolCarbide drillHigh speed steelMilling cutterCore drill、鎢鋼銑刀、航太刀具、鎢鋼鑽頭、高速剛、鉸刀、中心鑽頭、Taperd end mills、斜度銑刀、Metric end mills、公制銑刀、Miniature end mills、微小徑銑刀、鎢鋼切削刀具、Pilot reamer、領先鉸刀、Electronics cutter、電子用切削刀具、Step drill、階梯鑽頭、Metal cutting saw、金屬圓鋸片、Double margin drill、領先階梯鑽頭、Gun barrelAngle milling cutter、角度銑刀、Carbide burrs、滾磨刀、Carbide tipped cutter、銲刃刀具、Chamfering tool、倒角銑刀、IC card engraving cutterIC晶片卡刀、Side cutter、側銑刀、NAS toolDIN tool、德國規範切削刀具、Special tool、特殊刀具、Metal slitting sawsShell end mills、滾筒銑刀、Side and face milling cuttersSide chip clearance saws、交叉齒側銑刀、Long end mills、長刃銑刀、Stub roughing end mills、粗齒銑刀、Dovetail milling cutters、鳩尾刀具、Carbide slot drillsCarbide torus cutters、鎢鋼圓鼻銑刀、Angeled carbide end mills、角度鎢鋼銑刀.aerospace toolCarbide torus cutters、短刃平銑刀、Carbide ball-noseed slot drills、鎢鋼球頭銑刀、Mould cutter、模具用刀具、BW微型渦流管槍、Tool manufacturer、刀具製造商等相關切削刀具、以服務客戶改善工廠加工條件、爭加競爭力。歡迎尋購~~~碧威股份有限公司www.tool-tool.com

beeway 發表在 痞客邦 留言(0) 人氣()

Bewise Inc. www.tool-tool.com
Reference source from the internet.
说来也怪,一把能够切削金属的刀具会是脆弱的,稍不留神往工作台上一放竟然折断了。但是,这个说法适合于在小零件(如医疗元件)上加工孔、槽等特征所使用的非常小的钻头和端铣刀。为了有效地加以使用,这些刀具在使用过程各自需要考虑周到,而“小心呵护”是首要的考虑。

Niagara Cutter (纽约州阿姆赫斯特)是提供一系列微型刀具的刀具公司之一,Niagara公司的工程经理Den
nis Noland称,使用φ0.005英寸端铣刀时,“只要手触摸的方式不对,就会把它弄断。”

然而,训练有素的车间可以相当顺利地使用这些刀具,柔和的操作必须从切口以外持续到切口以内。言下之意,连轻微的碰撞也必须避免。例如,必须使用无接触式刀具测量并严格控制径向跳动和振动。

Noland 称,“TIR(总指示器读数)变得非常关键。”主轴和刀夹中心必须达到严格的同心度。在其它场合下,TIR测量0.0005英寸似乎是多余的,可是在刀具 本身直径只有0.020英寸的情况下,即使这样小的径向偏差也变得非常大了。最大容许径向跳动最多不过0.0002英寸,甚至可能只有它的一半。

同心度要求如此苛刻,确实需要高质量的刀夹,但不一定需要专用刀夹。这些小直径刀具通常有1/8英寸的柄,因此可以使用标准刀夹。套筒夹头可能有效,热压配合也许更好。

欲速不达
下一个考虑是速度。即使主轴在其它用途中转速相当快,比方说12,000 rpm,也会把小直径刀具限制在令人痛苦的最低切削速度。例如,0.020英寸的刀具可以装在这样的主轴上,但切削速度顶大不过63sfm(19m/min)。

Mike Tibbet 是Kyocera Tycom微型刀具制造公司的高级开发工程师。他说,小型铣刀和钻头达到高速度的一个方法是为了这些微小的刀具而采用一个附加高速主轴。附加主轴的转矩要 求小,因此可以是气动的。为了加工比较硬的金属,也可以采用电动附加主轴。Tibbet一般推荐主轴速度80,000 rpm。

他说,主轴径向跳动以及机床总刚度和紧密度,都属于加工车间为其生产设备考虑微型刀具时应该着眼的特征之列。另一个需要考虑的重要方面是冷却液过滤以及加工车间一般能够保持的冷却液清洁程度。冷却液的细小微粒可以对微型工具产生较大的影响。

Tibbet 还建议微型刀具的忠实用户使用变焦透镜照相机进行过程监视,因为微型工具在切削时不会发出听得见的声音,而且切削过程是肉眼看不到 的,所以这些刀具对故障排查很成问题。一旦因失误引起刀具折断,相同的错误也许注定要不断地发生。但是如果使用一个放大倍数可观的照相机,就可以像采用标 准规格的刀具似的,对加工过程进行观察。Tibbet称,“这种观念的意思是,只要放大到足够的程度,微型工具就不再是微型工具了。”

言过其实

如果说每个刀具属性都可以按比例缩小,那可真是言过其实。Niagara公司Noland谨慎地指出,涂层是增强现代化切削刀具性能的一个要素,但是通常无法应用于微型刀具。
他说:“我们一般不给这些刀具附加涂层,除非用户专门提出要求。”

原因与几何尺寸有关,在标准规格的刀具上,PVD涂层的厚度是可以忽略的,但是当刀具直径只有 0.010英寸时,PVD涂层的厚度就太大了,它使刀刃变成了圆弧。弧形刀刃易于摩擦零件表面,因此在这样的比例下涂层很可能有碍于刀具的性能,而不是有帮助。

术语:钻深孔

Kyocera Tycom公司Mike Tibbet称,应用小直径刀具加工深孔的能力正在改进,在一个应用中,该公司开发了φ0.020英寸钻头,在钛合金上钻0.750英寸深的孔。


该微型钻头的直径仅有0.002英寸

他说,发热对这样的用途来说是一个挑战。在微加工中,发热致使切屑不断开的现象(大多数加工过程试图利用的一种效应)一般是无法实现的,因为切屑不够大。热量进入刀具而不是由切屑带走,而且切削工艺不得不顾及这一点。

微钻削加工的解决办法是久经考验的钻孔技巧——啄式钻孔,频繁地将钻头从孔中抽出并让它停顿1秒钟左右,也就是刚好加冷却液使钻头冷却下来。

术语:铣深槽

不是每个小直径刀具都用来加工小零件,有些用来加工较大零件的小特征,比如在模具上铣深槽,不然的话这些槽大概需要通过EDM加工。

刀具制造商OSG Tap & Die (伊利诺斯州格伦代尔高地)制造专门适合于这个用途的端铣刀。据工程经理David Kwon所说,协调刀具的刚度与排屑间隙的关系是这类刀具的首要难题,他说,特殊微细晶粒硬质合金是使这种刀具得以制造的部分原因。


这个OSG样件铣出了2mm宽、12mm深的槽

微 小槽铣刀的长度/直径比在增加,刀具发生挠曲变形的危险也在增大。为此,Kwon建 议在铣深槽时按顺序使用一组铣刀。例如,可以用三个不同长度的铣刀加工一个特别深的槽。比较短而不易弯曲的刀具可以进行切削力较大、速度较快的粗切,然 后,只有最深的一段槽需要使用比较精细的切削参数,这样作对预防最长的刀具发生挠变是必要的。 BW碧威股份有限公司針對客戶端改善切削方式、提供專業切削CNC數控刀具專業能力、製造客戶需求如:Cutting tool、切削刀具、HSS Cutting toolCarbide end millsCarbide cutting toolNAS Cutting toolCarbide end millAerospace cutting toolCarbide drillHigh speed steelMilling cutterCore drill、鎢鋼銑刀、航太刀具、鎢鋼鑽頭、高速剛、鉸刀、中心鑽頭、Taperd end mills、斜度銑刀、Metric end mills、公制銑刀、Miniature end mills、微小徑銑刀、鎢鋼切削刀具、Pilot reamer、領先鉸刀、Electronics cutter、電子用切削刀具、Step drill、階梯鑽頭、Metal cutting saw、金屬圓鋸片、Double margin drill、領先階梯鑽頭、Gun barrelAngle milling cutter、角度銑刀、Carbide burrs、滾磨刀、Carbide tipped cutter、銲刃刀具、Chamfering tool、倒角銑刀、IC card engraving cutterIC晶片卡刀、Side cutter、側銑刀、NAS toolDIN tool、德國規範切削刀具、Special tool、特殊刀具、Metal slitting sawsShell end mills、滾筒銑刀、Side and face milling cuttersSide chip clearance saws、交叉齒側銑刀、Long end mills、長刃銑刀、Stub roughing end mills、粗齒銑刀、Dovetail milling cutters、鳩尾刀具、Carbide slot drillsCarbide torus cutters、鎢鋼圓鼻銑刀、Angeled carbide end mills、角度鎢鋼銑刀.aerospace toolCarbide torus cutters、短刃平銑刀、Carbide ball-noseed slot drills、鎢鋼球頭銑刀、Mould cutter、模具用刀具、BW微型渦流管槍、Tool manufacturer、刀具製造商等相關切削刀具、以服務客戶改善工廠加工條件、爭加競爭力。歡迎尋購~~~碧威股份有限公司www.tool-tool.com

beeway 發表在 痞客邦 留言(0) 人氣()

Bewise Inc. www.tool-tool.com
Reference source from the internet.
摘要:本文对半固态触变注射成型镁合金AZ91D 的组织与性能进行了分析,结果表明,该成形法所生产的镁合金产品的组织及力学性能均优于压铸产品,从而为应用半固态触变注射成型法进行镁合金汽车零部件的生产奠定基础。
关键词:触变注射成型 镁合金 组织 力学性能

1 引言

近年来,随着对绿色、环保等方面要求的提高,镁合金以其重量轻、比强度高、比
刚 度高、减震性好、耐电磁屏蔽、易回收等特点从众多金属材料中脱颖而出,广泛的应用于航空、航天、电子和汽车等行业。目前,镁合金应用的两大热点产业是电子 业和汽车业。一方面,用于“3C” (Computer、Communication、Consumption Electronics Products)产品的壳体,有逐渐取代可回收性较差的塑料壳体的趋势;另一方面,作为实际应用中最轻的结构金属,镁合金能够满足交通运输业日益严格的 节能和尾气排放要求,从而生产出重量轻、耗油少、环保的新一代交通工具。

国内外广泛采用的镁合金成形方法为压铸法。压铸镁合金产品具有尺 寸稳定性好、生产率高等优点,但也具有夹杂多、气孔多、成形后难热处理、尺寸近净成形差等不足。采用压铸法制造的零件很难满足诸如用于“ 3C”产品中所广泛使用的薄壁壳体类零件以及用于汽车工业中的高性能镁合金零部件的要求。

同压铸法相比,半固态方法制造的产品具有铸造缺 陷少,产品的力学性能、尺寸精度、表面和内在质量高等优点,此外还有节约能源、安全性好、近净成形性好等优点。目前世界上已经成功工业化的镁合金半固态成 型技术是触变注射成型技术[1]。长春华禹镁业有限公司是我国最早引进此项技术的厂家,本文利用该公司的触变注射成型机制备试样,对触变注射成型镁合金的 组织及力学性能进行了分析,从而为公司下一步进行汽车用高性能镁合金的研究开发作适当的技术储备。

2 半固态触变注射成型技术的原理及工艺过程

2.1 半固态触变注射成型技术的原理

在 普通铸造过程中,初晶以枝晶方式长大,当固相率达到0.2 左右时,枝晶就形成连续网络骨架,失去宏观流动性。半固态成形是在液态金属从液相到固相冷却过程中进行强烈搅拌,使普通铸造成形时易于形成的树枝晶网络骨 架被打碎而保留分散的颗粒状组织形态,悬浮于剩余液相中。这种颗粒状非枝晶的显微组织,在固相率达0.5~0.6 时仍具有一定的流变性,从而可利用常规的成形工艺如压铸、挤压,模锻等实现金属的成形[2~4]。

半固态触变注射成形法是近些年来开发的 一种新工艺,源于美国DOW化学公司,美国THIXOMAT公司将其商业化。该工艺是将塑料的注塑成形原理与半固态金属成形工艺相结合,集半固态金属浆料 的制备、输送、成形等过程于一体,该法较好地解决了半固态金属浆料的保存输送、成形控制困难等问题。 2.2 半固态触变注射成型技术的工艺过程

注 射成形法主要工艺过程如下:被制成颗粒的镁合金原料(由枝晶镁合金铸锭制成,其组织仍为枝晶组织)从料斗中加入;在套筒中的镁合金原料通过电加热转变成 半固体状态,在螺杆的剪切作用下,在套筒中半固体金属浆料形成了近乎于球形状的固体颗粒,在注射缸的作用下,以相当于塑料注塑机的十倍速率压射到模具内成 形。触变注射成形机的基本结构如图1-1 所示。


图1 触变注射成形机原理图

3 试验设备及方法

3.1 触变注射成形试样的制备

本 论文采用日本制钢所的JLM-450MG 型触变注射成型机制备了标准力学性能试样,在不同制备条件下,考察了目前最广泛使用的镁合金AZ91D 组织与性能的变化以及耐腐蚀性能。该成型机的外观如图2 所示,试样模具由日本制钢所提供,所制备的测试试样如图3 所示,成形过程中模具温度为180℃。

图3 中由左至右依次为标准冲击试样,标准蠕变试样,标准拉伸试样和硬度试样,在论文只采用标准拉伸试样进行试验,分别考察不同工艺条件下,半固态镁合金组织与性能的变化。


图2 JLM 450-MG 触变成型机 图3 注射成型的半固态镁合金试样

快速腐蚀条件如下:腐蚀介质为0.5%NaCl 或0.1molNaCl 溶液;试验温度:室温(静态)或35±1℃;腐蚀时间:5 昼夜。

4 结果与讨论

4.1 半固态触变注射成型镁合金的组织分析

图4 中组织是取自不同工艺参数制备标准拉伸试棒的中部,其工艺参数的区别主要表现在料筒温度的差别,在图4 中由工艺(a)至工艺(d)料筒温度逐步升高。


图4 触变注射成型AZ91D 组织

由 图4 可见,在不同工艺参数条件下,半固态镁合金组织的变化不大,主要差别表现在缺陷的数量和大小方面。可见,料筒温度对半固态镁合金成型性具有决定性的影响, 在料筒温度较低的条件下,半固态浆料的流变性不足,成型性能不足,提高料筒温度可以明显的提高半固态浆料的流变性能,但会明显降低固相率,在工艺d 的条件下,除晶粒细小外,其组织已经接近普通压铸合金组织。因此,在实际产品制备中必须控制好料筒温度和组织这两方面的因素,才有可能获得高质量的产品。

图5 为半固态镁合金组织的扫描电镜照片。由图5a 可见,半固态镁合金试棒的组织细小、均匀,图5b 为放大的晶界相,对晶界相的定点能谱分析表明,其晶界相的主要组成为Mg 和Al,并含有少量的Zn,其定点能谱分析结果如图6 所示。对半固态镁合金进行线扫描的结果表明,Al 和Zn 主要分布在晶界上,在晶内分布较少,Mg 则主要分布在晶内,在晶界处Mg 含量明显减少,如图7 所示。以上结果表明半固态触变注射成型镁合金的组织形态及分布基本与压铸组织相同。


(a) 半固态镁合金组织 (b) 半固态镁合金的晶界相
图5 半固态镁合金组织的扫描电镜照片


图6 半固态镁合金晶界相分析


图7 半固态镁合金线扫描结果

4.2 半固态触变注射成型AZ91D 的力学性能分析

4.2.1 触变注射成型AZ91D 的力学性能

图8 中示出了50 根试棒(图4 工艺d 条件下)中随机抽取5 根试棒的力-位移曲线、力-变形曲线以及力学性能的测量数据。由此可见,半固态触变注射成形试棒已达到了很高的强度,其平均断裂强度可达到270MPa 以上,平均屈服强度可达150MPa 左右(由于镁合金试棒在拉伸过程中没有明显的屈服点,故而以σp0.2 估算屈服强度)。


图8 半固态镁合金的力学性能[6]

4.2.2 盐水快速腐蚀对触变注射成型AZ91D 性能的影响

镁合金的抗腐蚀性能是衡量镁合金性能的一个重要指标,本文采用快速腐蚀试验考察了经快速腐蚀后触变成型镁合金试棒组织与性能的变化。所采用试棒与前述力学性能试棒相同。

图9 示出了经5 昼夜快速腐蚀后AZ91D 镁合金试棒的力学性能。可见,腐蚀后镁合金试棒力学性能明显下降,平均断裂强度下降到220MP 左右,屈服强度下降至120MPa 左右。腐蚀试验结果表明,尽管半固态组织细小、致密,但是其抗腐蚀性能仍然相当差,做为重要结构部件和装饰性壳体类零部件时,仍须采用适当的表面处理工 艺,否则将无法满足使用要求。


图9 快速腐蚀后触变注射成型AZ91D 的力学性能[6]

5 结论

近 年来,世界各国高度重视镁合金的研究与开发,将镁资源作为21 世纪的重要战略物资,加强了镁合金在汽车、计算机、通讯及航空航天领域的应用开发研究。美、日、欧等发达国家目前已经投入大量人力和物力,实施多项大型联 合研究发展计划,研究汽车用镁合金零部件,这些研究开发计划加快了国外应用镁合金零部件的步伐。我国是一个摩托车生产、消费大国和出口大国,也是一个潜在 的汽车生产和消费大国。然而,目前我国的镁合金成型技术还相对落后,镁合金零部件的力学性能及耐腐蚀性能较低是制约汽车用镁合金零部件在我国应用的一个重 要因素。

本论文通过对触变注射成型AZ91D 镁合金试棒的显微组织、力学性能分析和快速腐蚀试验,得出如下结论:应用触变注射成型技术可得到组织细小、致密,力学性能相对较高的镁合金部件。其综合力 学性能优于目前广泛采用的压铸镁合金部件。但是应该看到,触变注射成型设备的高昂费用及所必须支付的专利许可费用,加之成型用原材料——镁粒的成本较高, 整体投资比较大。因而该技术尤其适用于那些具有较高要求和高附加值产品的加工。

参考文献
1 Frederick. P. S., Bradley N. L. and Erickson S. C. Injection molding magnesium alloys[J]. Advanced Mater & Process, 1988, 134(4): 53~58
2 LIU Dan(刘 丹).铝合金液相线铸造制浆及半固态加工工艺及理论研究[D].Shenyang: Northeastern University,1999.
3 Nickodemus G H,Wang C M,Tims M L,etal.Rheology of materials for semi- solid metalworking applications[A]. Proc of the 5th Int Confon Semi-solid Processing of Alloys and Compositions[C].Colorado,1998.29-34.
4 Quak C J and Kool W H.Properties of semisolid aluminum matrix composites[J].Mater.Sci.Eng,1994, 183A: 247-252
5 李博文.镁合金产品的新制造技术--触变成形. 日本制钢所技术资料
6 崔晓鹏,修长军,王金山等.镁合金半固态触变注射成型技术及其与压铸工艺的比较. 汽车工艺与材料, 2003, (1)
BW碧威股份有限公司針對客戶端改善切削方式、提供專業切削CNC數控刀具專業能力、製造客戶需求如:Cutting tool、切削刀具、HSS Cutting toolCarbide end millsCarbide cutting toolNAS Cutting toolCarbide end millAerospace cutting toolCarbide drillHigh speed steelMilling cutterCore drill、鎢鋼銑刀、航太刀具、鎢鋼鑽頭、高速剛、鉸刀、中心鑽頭、Taperd end mills、斜度銑刀、Metric end mills、公制銑刀、Miniature end mills、微小徑銑刀、鎢鋼切削刀具、Pilot reamer、領先鉸刀、Electronics cutter、電子用切削刀具、Step drill、階梯鑽頭、Metal cutting saw、金屬圓鋸片、Double margin drill、領先階梯鑽頭、Gun barrelAngle milling cutter、角度銑刀、Carbide burrs、滾磨刀、Carbide tipped cutter、銲刃刀具、Chamfering tool、倒角銑刀、IC card engraving cutterIC晶片卡刀、Side cutter、側銑刀、NAS toolDIN tool、德國規範切削刀具、Special tool、特殊刀具、Metal slitting sawsShell end mills、滾筒銑刀、Side and face milling cuttersSide chip clearance saws、交叉齒側銑刀、Long end mills、長刃銑刀、Stub roughing end mills、粗齒銑刀、Dovetail milling cutters、鳩尾刀具、Carbide slot drillsCarbide torus cutters、鎢鋼圓鼻銑刀、Angeled carbide end mills、角度鎢鋼銑刀.aerospace toolCarbide torus cutters、短刃平銑刀、Carbide ball-noseed slot drills、鎢鋼球頭銑刀、Mould cutter、模具用刀具、BW微型渦流管槍、Tool manufacturer、刀具製造商等相關切削刀具、以服務客戶改善工廠加工條件、爭加競爭力。歡迎尋購~~~碧威股份有限公司www.tool-tool.com

beeway 發表在 痞客邦 留言(0) 人氣()

Bewise Inc. www.tool-tool.com
Reference source from the internet.
[摘 要] 研究应用ICP-AES 分析技术测定钛铁中钛元素的方法。考察了铁基体及共存元素对被测元素分析谱线干扰情况,考察了基体及共存元素对被测元素的影响,确定了分析谱线,并对 ICP 工作参数进行了优化选择,精密度和准确度实验表明,方法的相对标准偏差小于5%,回收率为99%~102%之间。采用本方法对标准样品进行测定,测定值与 推荐值相一致。
关键词:ICP-AES 钛铁 钛

钛铁中钛在国家标准中是采用氧化—还原滴定法来测定的。它是采用氢氟酸
、 硫酸、硝酸和盐酸溶样后,在二氧化碳或氮气气氛中用金属铝将钛还原为三价,用硫酸铁铵滴定钛,借此进行钛的测定。该方法干扰较为严重,首先必须进行干扰元 素分离,并且在滴定过程中空气可将三价钛氧化为四价钛,所以滴定必须在与空气隔绝装置中进行。一般需要氮气滴定保护装置,并且化学分析方法操作繁琐,分析 流程长。

为了解决这一问题,本人采用ICP-AES 分析技术开展了钛铁中主量元素钛的分析方法研究。本方法可直接进行钛元素的测定,效果良好。

1 试验

1.1 仪器及工作参数

法国JY 公司生产的70P 型电感耦合等离子发射光谱仪。

仪器工作条件:冷却气流量12 L/min;载气流量0.25L/min;反射功率(读数) 600;溶液提升量1.4mL/min;观测高度为感应线圈上方15mm。

1.2 试剂及标准溶液

硝酸(1+1) 分析纯
浓硫酸 分析纯
氢氟酸 分析纯
纯铁粉 (纯度99.98%)。
钇标准溶液:20ug/mL 由GSBG62032-90 钇标准物质稀释。
钛标准溶液:1mg/mL 由GSBG62014-90 钛标准物质。

1.3 样品溶液的制备

准 确称取0.1000g 样品于50mL 钢铁量瓶中,加入10 mL 硝酸(1+1),1 mL 氢氟酸,低温加热溶解,样品溶解后加5 mL 浓硫酸冒烟,取下,冷却至室温,加水溶盐,煮沸,取下冷却至室温后用水稀释至刻度,摇匀,吸取5 mL 试液于100 mL 钢铁量瓶中,加10.00 毫升钇标准溶液(20 μg/mL)用蒸馏水稀释至刻度,摇匀待测。

1.4 混合标准溶液的系列

移取适量钛标准溶液,按表1 所示,配制成混合标准溶液系列。

表1 混合标准溶液系列 (μg/mL)

2 结果与讨论

2.1 分析谱线选择及铁基体影响考察

分别对浓度为0、2、3mg/mL 的纯铁溶液、纯钛溶液及以纯铁打底的标准混合溶液进行扫描,结果表明,铁的存在对Ti334.904 谱线有干扰,对Ti334.941 谱线强度无影响,但为了使基体一致,我们还是进行了基体匹配。

2.2 共存元素之间相互影响

采用单一元素溶液在被测元素分析线处扫描,考察了Si、Mn、Al、Cu、P 对Ti 334.941 分析谱线的光谱干扰情况。试验结果表明:溶液中硅、锰、铝、铜、磷共存量在100ug/mL 对1ug/mL 钛的测定均不产生干扰。

2.3 ICP 工作参数选择

高频功率、载气流量、观测高度及冷却气流量是ICP 的主要参数,直接影响元素测定,不同的元素要求的工作参数也不同,必须逐一试验加以选择。

2.3.1 功率选择试验

固定冷却气流量、载气流量、观测高度、提升量,仅改变反射功率,以空白液为低标,混合标准溶液3 为高标,测得β值见表2。

表2 功率对测定的影响

2.3.2 冷却气流量选择试验

固定反射功率、载气流量、观测高度、提升量,仅改变冷却气流量,以空白液为低标,混合标准溶液3 为高标,测得β值见表3。

表3 冷却气流量对测定的影响

2.3.3 载气流量选择试验

固定反射功率、冷却气流量、观测高度、提升量,仅改变载气流量,以空白液为低标,混合标准标液3 为高标,测得β值见表4。

表4 载气流量对测定的影响

通过试验我们选择的仪器主要工作参数为:反射功率(读数)600;载气流量0.25L/min;冷却气流量为12 L/min;观测高度:15mm。

2.4 方法精密度试验

按样品处理方法分解钛铁标准样品,按相同的测试条件,对同一试样分别进行六次测定,计算出测定结果的平均值及相对标准偏差(见表5)。试验结果表明:各分析谱线测定精密度均较好,相对标准偏差小于5%

表5 精密度试验

2.5 加标回收试验

按样品处理方法分解钛铁标准样品。在试液中加入适量的钛标准溶液,测定钛元素含量,计算回收率,钛元素回收率在99%~102%之间。数据见表6。

表6 回收试验

2.6 样品分析结果对照

采用本方法对钛铁标准样品进行了测定,将本方法测定结果平均值与标准推荐值进行了对照,考察了本方法的测定准确度。试验结果表明:本方法测定值与标准样品标准推荐值相一致,分析误差符合化学标准分析方法允许差要求。数据见表7。

表7 准确度试验

3 结论

钛铁试样经硝酸、氢氟酸溶解,硫酸冒烟后,可采用ICP-AES 分析技术测定其主量元素钛含量。本文在试验基础上优化了工作条件,建立了钛铁中钛的ICP-AESf 分析方法。方法简便快速、分析数据可靠,能满足钛元素测定误差要求。

参考文献
1 钢铁及铁合金化学分析方法标准汇编(上). 北京:中国标准出版社,
2 实用冶金分析. 沈阳:辽宁科学技术出版社 BW碧威股份有限公司針對客戶端改善切削方式、提供專業切削CNC數控刀具專業能力、製造客戶需求如:Cutting tool、切削刀具、HSS Cutting toolCarbide end millsCarbide cutting toolNAS Cutting toolCarbide end millAerospace cutting toolCarbide drillHigh speed steelMilling cutterCore drill、鎢鋼銑刀、航太刀具、鎢鋼鑽頭、高速剛、鉸刀、中心鑽頭、Taperd end mills、斜度銑刀、Metric end mills、公制銑刀、Miniature end mills、微小徑銑刀、鎢鋼切削刀具、Pilot reamer、領先鉸刀、Electronics cutter、電子用切削刀具、Step drill、階梯鑽頭、Metal cutting saw、金屬圓鋸片、Double margin drill、領先階梯鑽頭、Gun barrelAngle milling cutter、角度銑刀、Carbide burrs、滾磨刀、Carbide tipped cutter、銲刃刀具、Chamfering tool、倒角銑刀、IC card engraving cutterIC晶片卡刀、Side cutter、側銑刀、NAS toolDIN tool、德國規範切削刀具、Special tool、特殊刀具、Metal slitting sawsShell end mills、滾筒銑刀、Side and face milling cuttersSide chip clearance saws、交叉齒側銑刀、Long end mills、長刃銑刀、Stub roughing end mills、粗齒銑刀、Dovetail milling cutters、鳩尾刀具、Carbide slot drillsCarbide torus cutters、鎢鋼圓鼻銑刀、Angeled carbide end mills、角度鎢鋼銑刀.aerospace toolCarbide torus cutters、短刃平銑刀、Carbide ball-noseed slot drills、鎢鋼球頭銑刀、Mould cutter、模具用刀具、BW微型渦流管槍、Tool manufacturer、刀具製造商等相關切削刀具、以服務客戶改善工廠加工條件、爭加競爭力。歡迎尋購~~~碧威股份有限公司www.tool-tool.com

beeway 發表在 痞客邦 留言(0) 人氣()

Bewise Inc. www.tool-tool.com
Reference source from the internet.
钨钢纵切薄刀具有极高的耐磨性,切割瓦楞纸板的使用寿命是普通高速钢薄刀的十几倍,正确使用能提高切割质量,延长刀片的使用寿命,反之则容易导致刀片破碎。生产中,刀片的破碎是纸箱厂家备感头痛的事情。下面谈谈生产操作中的注重事项:

由于钨钢薄刀硬度高、脆性大,在搬运、保管及安装使用时须轻拿轻放,水平放置,切勿与任何硬物发生碰撞。

精度低、速度慢的薄刀纵切不要使用钨钢薄刀,因为这样会使刀片缩短寿命。

装刀:装刀前务必检查刀盘运转端面跳动量是否正常(0.1mm)以内,刀盘平整度是否符合标准。
注 意刀盘和刀片上是否有异物,刀片、刀盘擦净后将刀装入刀盘。确认刀片、刀盘无异物且配合间隙正确后对角紧固压盘螺栓,受力均匀,松紧适度,切忌强硬装配、 击打刀片、刀片与下刀座发生干涩摩擦,否则将造成刀片破裂。建议在刀片与压盘间加装纸质垫圈,以缓冲刀片与压盘之间的强硬配合。

磨刀:正 确调整刀片与砂轮间隙,如间隙有误则磨刀时发生扭曲导致刀片破裂。安装砂轮后,检查砂轮座螺栓是否松动,砂轮端面跳动量过大则磨刀时发生冲击导致刀片破 裂。砂轮磨刀角度应与刀片刃口角度大致相当。磨刀器定块、动块行程间隙大小决定磨刀时的稳定效果,要求行程间隙在3-5mm之间。磨刀时应调慢砂轮进刀速 度,空气压力在2kg左右,切忌砂轮冲击刃口。每次研磨量不宜过大,建议每个班次专人手动研磨,凭手感轻轻修磨锋利即可。磨刀时间长短则根据刀片锋利程度 和纸板切割质量而定,切忌频繁磨刀和刀片刃口出现锯齿仍继续使用。

调刀:调整刀距前将刀托松开移位后方可进行,调完刀距后将刀调整在刀托分纸槽中间位置,切忌刀片、刀托产生摩擦。调整中切忌工具、设备部件及其它硬物碰撞刀片。

维 护保养:每天检查薄刀刃口,按需轻微修磨。定时检查薄刀刀面,及时去除污垢。停机检查刀片是否有缺陷,同时清理刀托分纸槽内纸屑,以免夹刀。及时观察刀盘 运输情况,当端面跳动量过大时应立即停机维护,以免造成损失。使用设备前检查紧固螺栓及锁紧块,确保设备运输正常。计算机调刀的设备在工作时切忌刀片与下 刀座发生干摩擦,否则将造成刀片破裂。操作人员在与薄刀接触时,切忌站在刀片正前方,务必保持安全距离,时刻注意安全,防止刀片破裂伤人。

飞出以上要求及注意事项,务请操作者严格遵守,以免造成不必要的损失和伤害。
BW 碧威股份有限公司針對客戶端改善切削方式、提供專業切削CNC數控刀具專業能力、製造客戶需求如:Cutting tool、切削刀具、HSS Cutting tool、Carbide end mills、Carbide cutting tool、NAS Cutting tool、Carbide end mill、Aerospace cutting tool、Carbide drill、High speed steel、Milling cutter、Core drill、鎢鋼銑刀、航太刀具、鎢鋼鑽頭、高速剛、鉸刀、中心鑽頭、Taperd end mills、斜度銑刀、Metric end mills、公制銑刀、Miniature end mills、微小徑銑刀、鎢鋼切削刀具、Pilot reamer、領先鉸刀、Electronics cutter、電子用切削刀具、Step drill、階梯鑽頭、Metal cutting saw、金屬圓鋸片、Double margin drill、領先階梯鑽頭、Gun barrel、Angle milling cutter、角度銑刀、Carbide burrs、滾磨刀、Carbide tipped cutter、銲刃刀具、Chamfering tool、倒角銑刀、IC card engraving cutter、IC晶片卡刀、Side cutter、側銑刀、NAS tool、DIN tool、德國規範切削刀具、Special tool、特殊刀具、Metal slitting saws、Shell end mills、滾筒銑刀、Side and face milling cutters、Side chip clearance saws、交叉齒側銑刀、Long end mills、長刃銑刀、Stub roughing end mills、粗齒銑刀、Dovetail milling cutters、鳩尾刀具、Carbide slot drills、Carbide torus cutters、鎢鋼圓鼻銑刀、Angeled carbide end mills、角度鎢鋼銑刀.aerospace tool、Carbide torus cutters、短刃平銑刀、Carbide ball-noseed slot drills、鎢鋼球頭銑刀、Mould cutter、模具用刀具、BW微型渦流管槍、Tool manufacturer、刀具製造商等相關切削刀具、以服務客戶改善工廠加工條件、爭加競爭力。歡迎尋購~~~碧威股份有限公司www.tool- tool.com

beeway 發表在 痞客邦 留言(0) 人氣()

Bewise Inc. www.tool-tool.com
Reference source from the internet.
随 着汽车、航空和航天技术的飞速发展,对材料性能及加工技术的要求日益提高。新型材料如碳纤维增强塑料、颗粒增强金属基复合材料(PRMMC)及陶瓷材料得 到广泛应用。这些材料具有强度高、耐磨性好、热膨胀系数小等特性,这决定了对它们进行机加工时刀具的寿命非常短。开发新型耐磨且稳定的超硬切削刀具是许多 高校、科研院所和企业研究的课题。

金刚石集力学、光学、热学、声学、光学等众多优异性能于一身,具有极高的硬度,摩擦系数小,导热
性高,热膨胀系数和化学惰性低,是制造刀具的理想材料。本文对近年来金刚石刀具制造方法的发展作一概述。

1.金刚石刀具的应用范围

(1)难加工有色金属材料的加工

加 工铜、锌、铝等有色金属及其合金时,材料易粘附刀具,加工困难。利用金刚石摩擦系数低、与有色金属亲和力小的特点,金刚石刀具可有效防止金属与刀具发生粘 结。此外,由于金刚石弹性模量大,切削时刃部变形小,对所切削的有色金属挤压变形小,可使切削过程在小变形下完成,从而可以提高加工表面质量。(2)难加 工非金属材料的加工

加工含有大量高硬度质点的难加工非金属材料,如玻璃纤维增强塑料、填硅材料、硬质碳纤维/环氧树脂复合材料时,材料的硬质点使刀具磨损严重,用硬质合金刀具难以加工,而金刚石刀具硬度高、耐磨性好,因此加工效率高。

(3)超精密加工

随 着现代集成技术的问世,机加工向高精度方向发展,对刀具性能提出了相当高的要求。由于金刚石摩擦系数小、热膨胀系数低、导热率高,能切下极薄的切屑,切屑 容易流出,与其它物质的亲和力小,不易产生积屑瘤,发热量小,导热率高,可以避免热量对刀刃和工件的影响,因此刀刃不易钝化,切削变形小,可以获得较高质 量的表面。

2.金刚石刀具的制造方法

目前金刚石的主要加工方法有以下四种:薄膜涂层刀具、厚膜金刚石焊接刀具、金刚石烧结体刀具和单晶金刚石刀具。

2.1 薄膜涂层刀具

薄膜涂层刀具是在刚性及高温特性好的集体材料上通过化学气相沉积法(CVD)沉积金刚石薄膜制成的刀具。

由 于Si3N4系陶瓷、WC-Co系硬质合金以及金属W的热膨胀系与金刚石接近,制膜时产生的热应力小,因此可作为刀体的基体材料。WC-Co系硬质合金 中,粘结相Co的存在易使金刚石薄膜与基体之间形成石墨而降低附着强度,在沉积前需进行预处理以消除Co的影响(一般通过酸腐蚀去Co)。

化学气相沉积法是采用一定的方法把含有C源的气体激活,在极低的气体压强下,使碳原子在一定区域沉积下来,碳原子在凝聚、沉积过程中形成金刚石相。目前用于沉积金刚石的CVD法主要包括:微波、热灯丝、直流电弧喷射法等。

金 刚石薄膜的优点是可应用于各种几何形状复杂的刀具,如带有切屑的刀片、端铣刀、铰刀及钻头;可以用来切削许多非金属材料,切削时切削力小、变形小、工作平 稳、磨损慢、工件不易变形,适用于工件材质好、公差小的精加工。主要缺点是金刚石薄膜与基体的粘接力较差,金刚石薄膜刀具不具有重磨性。

2.2 金刚石厚膜焊接刀具

金刚石厚膜焊接刀具的制作过程一般包括:大面积的金刚石膜的制备;将金刚石膜切成刀具需要的形状尺寸;金刚石厚膜与刀具基体材料的焊接;金刚石厚膜刀具切削刃的研磨与抛光。(1)金刚石厚膜的制备与切割

常 用的制备金刚石厚膜的工艺方法是直流等离子体射流CVD法。将金刚石沉积到WC-Co合金(表面进行镜面加工)上,在基体的冷却过程中,金刚石膜自动脱 落。此方法沉积速度快(最高可达930μm/h),晶格之间结合比较紧密,但是生长表面比较粗糙。金刚石膜硬度高、耐磨、不导电决定了它的切割方法是激光 切割(切割可在空气、氧气和氩气的环境中进行)。采用激光切割不仅能将金刚石厚膜切割成所需要的形状和尺寸,还可以切出刀具的后角,具有切缝窄、高效等优 点。

(1)金刚石厚膜刀具的焊接

金刚石与一般的金属及其合金之间具有很高的界面能,致使金刚石不能被一般的低熔点合金所浸润,可焊性极差。目前主要通过在铜银合金焊料中添加强碳化物形成元素或通过对金刚石表面进行金属化处理来提高金刚石与金属之间的可焊性。

①活性钎料法

焊 料一般用含Ti的铜银合金,不加助熔剂在惰性气体或真空中焊接。常用的钎料成分Ag=68.8wt%,Cu=26.7wt%,Ti=4.5wt %,常用的制备方法是电弧熔炼法和粉末冶金法。Ti作为活性元素在焊接过程中与C反映生成TiC,可提高金刚石与焊料的润湿性和粘结强度。加热温度一般为 850℃,保温10分钟,缓冷以减小内应力。

②表面金属化后焊接

金刚石表面的金属化是通过表面处理技术在金刚石表面镀覆 金属,使其表面具有金属或类金属的性能。一般是在金刚石的表面镀Ti,Ti与C反应生成 TiC,TiC与Ag-Cu合金钎料有较好的润湿性和结合强度。目前常用的镀钛方法有:真空物理气相沉积(PVD,主要包括真空蒸发镀、真空溅射镀、真空 离子镀等),化学气相镀和粉末覆盖烧结。PVD法单次镀覆量低,镀覆过程中金刚石的温度低于500℃,镀层与金刚石之间是物理附着、无化学冶金。CVD法 Ti与金刚石发生化学反应形成强力冶金结合,反应温度高,损害金刚石。

(2)厚膜金刚石刀具的刃磨

金刚石厚膜刀具的加工方法有:机械磨削,热金属盘研磨,离子束、激光束和等离子体刻蚀等。

2.3 金刚石烧结体刀具

将 金刚石厚膜用滚压研磨破坏的方法加工成平均粒度为32~37μm的金刚石晶粒或直接利用高温高压法制得金刚石晶粒,把晶粒粉末堆放到WC- 16wt%Co合金上,然后用Ta箔将其隔离,在5.5GPa、1500℃条件下烧结60分钟,制成金刚石烧结体,用此烧结体制成的车刀具有很高的耐磨 性。

2.4 单晶金刚石刀具

单晶金刚石刀具通常是将金刚石单晶固定在小刀头上,小刀头用螺钉或压板固定在车刀刀杆上。金 刚石在小刀头上的固定方法主要有:机械加固法(将金刚石底面和加压面磨平,用压板加压固定在小刀头上);粉末冶金法(将金刚石放在合金粉末中,经加压在真 空中烧结,使金刚石固定在小刀头上);粘结和钎焊法(使用无机粘结剂或其它粘结剂固定金刚石)。由于金刚石与基体的热膨胀系数相差悬殊,金刚石易松动,脱 落。

3.结语

目前在金刚石的产业化中还存在一些关键问题函待解决,如高速大面积的金刚石厚膜沉积工艺、控制金刚石膜的晶 界密度和缺陷密度、金刚石膜的低温生长,金刚石薄膜与基体结合力弱等。金刚石刀具优异的性能和广泛的发展前途吸引国内外无数的专家进行研究,有些已经取得 了突破性进展,相信不久的将来金刚石刀具将广泛应用到现代加工中。

BW碧威股份有限公司針對客戶端改善切削方式、提供專業切削CNC數控 刀具專業能力、製造客戶需求如:Cutting tool、切削刀具、HSS Cutting tool、Carbide end mills、Carbide cutting tool、NAS Cutting tool、Carbide end mill、Aerospace cutting tool、Carbide drill、High speed steel、Milling cutter、Core drill、鎢鋼銑刀、航太刀具、鎢鋼鑽頭、高速剛、鉸刀、中心鑽頭、Taperd end mills、斜度銑刀、Metric end mills、公制銑刀、Miniature end mills、微小徑銑刀、鎢鋼切削刀具、Pilot reamer、領先鉸刀、Electronics cutter、電子用切削刀具、Step drill、階梯鑽頭、Metal cutting saw、金屬圓鋸片、Double margin drill、領先階梯鑽頭、Gun barrel、Angle milling cutter、角度銑刀、Carbide burrs、滾磨刀、Carbide tipped cutter、銲刃刀具、Chamfering tool、倒角銑刀、IC card engraving cutter、IC晶片卡刀、Side cutter、側銑刀、NAS tool、DIN tool、德國規範切削刀具、Special tool、特殊刀具、Metal slitting saws、Shell end mills、滾筒銑刀、Side and face milling cutters、Side chip clearance saws、交叉齒側銑刀、Long end mills、長刃銑刀、Stub roughing end mills、粗齒銑刀、Dovetail milling cutters、鳩尾刀具、Carbide slot drills、Carbide torus cutters、鎢鋼圓鼻銑刀、Angeled carbide end mills、角度鎢鋼銑刀.aerospace tool、Carbide torus cutters、短刃平銑刀、Carbide ball-noseed slot drills、鎢鋼球頭銑刀、Mould cutter、模具用刀具、BW微型渦流管槍、Tool manufacturer、刀具製造商等相關切削刀具、以服務客戶改善工廠加工條件、爭加競爭力。歡迎尋購~~~碧威股份有限公司www.tool- tool.com

beeway 發表在 痞客邦 留言(0) 人氣()

Bewise Inc. www.tool-tool.com

Reference source from the internet.

拉刀是一种高精度、高效率的多齿刀具,可用于加工各种形状的内、外表面。其中,硬质合金可转位拉刀具有切削效率高、使用寿命长等特点,其应用日趋广泛。本文以曲轴加工为例,介绍用于加工外回转表面的硬质合金可转位拉刀的工作原理、设计特点以及拉刀角度的设计要点。

  1 拉刀的工作原理

图1 拉刀加工原理示意图

   采用拉削方式加工回转体外表面时,拉刀工作原理如图1 所示。加工时,工件固定在夹具上随主轴一起高速旋转,拉刀沿工件圆周切线方向作直线进给 运动。拉刀的每个刀齿均可看作一把切向成形车刀。由于拉刀各刀齿的切削刃与拉刀支撑平面的距离各不相同,当各刀齿依次切入工件时,从切削刃到工件轴线的最 小距离也逐齿变化,从而决定了各刀齿切除金属层的厚度。拉刀可在一次工作行程中完成粗、半精和精加工,且每一加工阶段可安排不同的加工余量。由于工件的径 向尺寸由刀具安装位置决定,与进给运动的时间无关,因此加工精度易于保证。

  2 拉刀的设计特点

  加工具有复杂廓形的外表面时,通常将拉刀设计为组合式,即将若干把拉刀安装在一个刀体上,使其分别加工同一零件的各部分表面。组合拉刀中的各把拉刀既可同时工作也可顺次工作。

   设计组合拉刀时,首先需将待加工表面廓形划分成若干简单的单元。为使加工每一单元的拉刀设计最简化,同时又能提高拉削效率和缩短拉刀长度,在廓 形分段及拉刀配置时应考虑尽可能让几把拉刀同时参与工作,但这样往往会造成拉刀结构过于复杂、拉刀及其紧固件布置困难、拉床过载、零件加工时变形过大、排 屑困难等问题,因此在多数情况下最好采用同时加工与顺次加工相结合的方式来安排拉刀位置,合理拉削复杂表面。例如在图2所示的加工曲轴用组合拉刀结构中, 布置在前面两侧的多排刀片可同时加工曲轴两侧板面,布置在后面的三排刀片则用于加工连杆轴颈表面。

图2 加工曲轴用组合拉刀结构示意图

1.楔块 2.螺钉 3.可转位刀片 4.内六角螺钉 5.刀垫 6.长刀座
图3 组合拉刀中可转位刀片的夹固方式

   采用硬质合金可转位刀片的拉刀可大大提高拉削效率和刀具使用寿命。图3所示为加工曲轴用组合拉刀中可转位刀片的夹固方式。在长刀座6上顺次布置 了若干刀槽,为满足齿升量的不同要求,各刀槽的底面高度尺寸各不相同。在刀槽中装入刀垫5并用内六角螺钉4紧固在长刀座上,可转位刀片3安放在刀垫上,利 用底面及两个侧面实现六点定位,并用楔块1和螺钉2夹紧固定。加工时,切削平面与工件的回转轴线相互平行。

  由于可转位刀片的刃长较 窄,而需加工的轴颈较宽,因此需将多个可转位刀片沿轴颈轴线方向并排布置,以达到轴颈宽度,两相邻刀片应在相交处的左右 各重叠一部分,以保证加工后不留刀痕。在设计组合拉刀时,其结构应能实现拉刀高度可调,以保证在加工复杂零件廓形时能获得所需加工精度。拉刀高度的调整通 常在装配新拉刀时进行,通过用厚度一致的垫片垫入刀座与进给滑台之间或采用可沿拉刀长度方向移动的专用调整楔铁均可实现拉刀高度调整。调整楔铁的斜角为 1°30´~2°,其长度应比拉刀总长大一个最大调节行程,其宽度等于拉刀底面宽度,楔铁上的紧固螺钉孔应做成长条形,其长度应大于楔铁的行程长度。

  3 拉刀角度的设计要点

图4 刀具前、后角的变化关系

  前角和后角

  如图4所示,某一切削刃上的任意点从A点开始切削,在B点结束切削。在切削过程中,切削刃上任意点的工作前角和后角都在不断变化。现在讨论切削刃在直线段AB上的任意位置C点时(C 点位置可用半径Ri=OC和角度h来表示)垂直于工件轴线的剖面内的前角和后角。若忽略进给运动对工作基面和切削平面的影响,则切削平面Pse为通过C点切于圆周的平面,工作基面Pre为通过OC的轴向平面。前刀面与工作基面Pre之间的夹角为工作前角gfe,后刀面与切削平面Pse之间的角度为工作后角afe;gf和af分别为标注前角和后角,h为工作角度与标注角度的变化值,即

  gfe=gf-h

  afe=af+h

  当切削刃上C点从位置A向位置B移动时,h由A点上的最大值变化到B点上的0°。h的最大值的计算关系式为

  cosh=r/(r+fz)

  式中:r——经该刀齿加工后的零件半径

  fz——齿升量

  通过以上分析可知,在切削过程中,前角gfe减小,后角afe增大。随着齿升量fz的增大,切削时前、后角的变化幅度也随之增大,刀具的切削能力反而下降。因此,为了避免前、后角变化范围过大,齿升量的取值不应过大。在拉刀设计中,标注后角af应取较小值(一般为2°左右),而标注前角gf的取值可适当大一些。

  刃倾角ls

  为使切削刃在切削时逐渐切入和切离工件,使切削过程平稳,排屑顺利,获得较高加工质量,在安装刀片时应使切削刃与工件轴线间有一偏斜角(即刃倾角ls) ,但设计时应注意,刃倾角ls必须小于所选刀片的法向后角,以保证合理的副刃后角。

图5 刀具的副偏角kr´

  副偏角kr´

   若选用正方形的可转位刀片,对于加工两侧板面的拉刀部分,可将刀片倾斜1°~2°,形成副偏角kr´(如图5a所 示),以减小副切削刃与侧板面之间的摩擦。虽然此时主切削刃相对于工件轴线也倾斜了一个角度kr´,但因该部分的外圆表面加工精度要求较低,因此完全可以 达到工艺要求。对于加工曲轴轴颈的拉刀部分,两侧边的刀片可选用平行四边形刀片,以获得副偏角kr´(如图5b所示)。

  4 结语

  加工回转外表面的硬质合金可转位拉刀同时具有普通拉刀、切向成形车刀和可转位刀具的综合特点,其设计、制造难度较大,成本较高。但这种刀具切削效率高,加工质量好,使用寿命长,在批量生产时能产生显著的经济效果,对于推进可转位式复杂刀具的国产化将起到积极作用。

BW碧威股份有限公司針對客戶端改善切削方式、提供專業切削CNC數控刀具專業能力、製造客戶需求如:Cutting tool、切削刀具、HSS Cutting toolCarbide end millsCarbide cutting toolNAS Cutting toolCarbide end millAerospace cutting toolCarbide drillHigh speed steelMilling cutterCore drill、鎢鋼銑刀、航太刀具、鎢鋼鑽頭、高速剛、鉸刀、中心鑽頭、Taperd end mills、斜度銑刀、Metric end mills、公制銑刀、Miniature end mills、微小徑銑刀、鎢鋼切削刀具、Pilot reamer、領先鉸刀、Electronics cutter、電子用切削刀具、Step drill、階梯鑽頭、Metal cutting saw、金屬圓鋸片、Double margin drill、領先階梯鑽頭、Gun barrelAngle milling cutter、角度銑刀、Carbide burrs、滾磨刀、Carbide tipped cutter、銲刃刀具、Chamfering tool、倒角銑刀、IC card engraving cutterIC晶片卡刀、Side cutter、側銑刀、NAS toolDIN tool、德國規範切削刀具、Special tool、特殊刀具、Metal slitting sawsShell end mills、滾筒銑刀、Side and face milling cuttersSide chip clearance saws、交叉齒側銑刀、Long end mills、長刃銑刀、Stub roughing end mills、粗齒銑刀、Dovetail milling cutters、鳩尾刀具、Carbide slot drillsCarbide torus cutters、鎢鋼圓鼻銑刀、Angeled carbide end mills、角度鎢鋼銑刀.aerospace toolCarbide torus cutters、短刃平銑刀、Carbide ball-noseed slot drills、鎢鋼球頭銑刀、Mould cutter、模具用刀具、BW微型渦流管槍、Tool manufacturer、刀具製造商等相關切削刀具、以服務客戶改善工廠加工條件、爭加競爭力。歡迎尋購~~~碧威股份有限公司www.tool-tool.com

beeway 發表在 痞客邦 留言(0) 人氣()

Bewise Inc.www.tool-tool.com

Reference source from the internet.

1.肖氏硬度(HS)=勃式硬度(BHN)/10+12
2.
肖式硬度(HS)=洛式硬度(HRC)+15
3.
勃式硬度(BHN)= 洛克式硬度(HV)
4.
洛式硬度(HRC)= 勃式硬度(BHN)/10-3
 
硬度測定範圍:
HS<100
HB<500
HRC<70
HV<1300
(80~88)HRA, (85~95)HRB, (20~70)HRC

洛氏硬度中HRAHRBHRC等中的ABC为三种不同的标准,称为标尺A、标尺B、标尺C
洛氏硬度试验是现今所使用的几种普通压痕硬度试验之一,三种标尺的初始压力均为98.07N(10kgf),最后根据压痕深度计算硬度值。标尺A使用的是球锥菱形压头,然后加压至588.4N(60kgf);标尺B使用的是直径为1.588mm(1/16英寸)的钢球作为压头,然后加压至980.7N(100kgf);而标尺C使用与标尺A相同的球锥菱形作为压头,但加压后的力是1471N(150kgf)。因此标尺B适用相对较软的材料,而标尺C适用较硬的材料。
实践证明,金属材料的各种硬度值之间,硬度值与强度值之间具有近似的相应关系。因为硬度值是由起始塑性变形抗力和继续塑性变形抗力决定的,材料的强度越高,塑性变形抗力越高,硬度值也就越高。但各种材料的换算关系并不一致。
硬度表示材料抵抗硬物体压入其表面的能力。它是金属材料的重要性能指标之一。一般硬度越高,耐磨性越好。常用的硬度指标有布氏硬度、洛氏硬度和维氏硬度。

1.布氏硬度(HB)
以一定的载荷(一般3000kg)把一定大小(直径一般为10mm)的淬硬钢球压入材料表面,保持一段时间,去载后,负荷与其压痕面积之比值,即为布氏硬度值(HB),单位为公斤力/mm2 (N/mm2)
2.
洛氏硬度(HR)
HB>450或者试样过小时,不能采用布氏硬度试验而改用洛氏硬度计量。它是用一个顶角120°的金刚石圆锥体或直径为1.593.18mm的钢球,在一定载荷下压入被测材料表面,由压痕的深度求出材料的硬度。根据试验材料硬度的不同,分三种不同的标度来表示:
HRA
:是采用60kg载荷和钻石锥压入器求得的硬度,用于硬度极高的材料(如硬质合金等)
HRB
:是采用100kg载荷和直径1.58mm淬硬的钢球,求得的硬度,用于硬度较低的材料(如退火钢、铸铁等)
HRC
:是采用150kg载荷和钻石锥压入器求得的硬度,用于硬度很高的材料(如淬火钢等)
3
维氏硬度(HV)
120kg以内的载荷和顶角为136°的金刚石方形锥压入器压入材料表面,用材料压痕凹坑的表面积除以载荷值,即为维氏硬度HV(kgf/mm2)
HK=139.54·P/L2
。式中:HK-努普硬度,MpaP-荷重,kgL-凹坑对角线长度,mm。我国和欧洲各国采用维氏硬度,美国则采用努普硬度。兆帕(MPa)是显微硬度的法定计量单位,而kg/mm2是以前常用的硬度计算单位。它们之间的换算公式为1kg/mm2=9.80665Mpa

 

BW碧威股份有限公司針對客戶端改善切削方式、提供專業切削CNC數控刀具專業能力、製造客戶需求如:Cutting tool、切削刀具、HSS Cutting toolCarbide end millsCarbide cutting toolNAS Cutting toolCarbide end millAerospace cutting toolCarbide drillHigh speed steelMilling cutterCore drill、鎢鋼銑刀、航太刀具、鎢鋼鑽頭、高速剛、鉸刀、中心鑽頭、Taperd end mills、斜度銑刀、Metric end mills、公制銑刀、Miniature end mills、微小徑銑刀、鎢鋼切削刀具、Pilot reamer、領先鉸刀、Electronics cutter、電子用切削刀具、Step drill、階梯鑽頭、Metal cutting saw、金屬圓鋸片、Double margin drill、領先階梯鑽頭、Gun barrelAngle milling cutter、角度銑刀、Carbide burrs、滾磨刀、Carbide tipped cutter、銲刃刀具、Chamfering tool、倒角銑刀、IC card engraving cutterIC晶片卡刀、Side cutter、側銑刀、NAS toolDIN tool、德國規範切削刀具、Special tool、特殊刀具、Metal slitting sawsShell end mills、滾筒銑刀、Side and face milling cuttersSide chip clearance saws、交叉齒側銑刀、Long end mills、長刃銑刀、Stub roughing end mills、粗齒銑刀、Dovetail milling cutters、鳩尾刀具、Carbide slot drillsCarbide torus cutters、鎢鋼圓鼻銑刀、Angeled carbide end mills、角度鎢鋼銑刀.aerospace toolCarbide torus cutters、短刃平銑刀、Carbide ball-noseed slot drills、鎢鋼球頭銑刀、Mould cutter、模具用刀具、BW微型渦流管槍、Tool manufacturer、刀具製造商等相關切削刀具、以服務客戶改善工廠加工條件、爭加競爭力。歡迎尋購~~~碧威股份有限公司www.tool-tool.com

beeway 發表在 痞客邦 留言(0) 人氣()

Bewise Inc. www.tool-tool.com

Reference source from the internet.

一、钢合金
简单地说:钢就是铁和碳的合金。其它成分是为了使钢材性能有所区别。以下以字母顺序列出重要的钢材,他们包含以下成分:
碳(Carbon)
存在于所有的钢材,是最重要的硬化元素。有助于增加钢材的强度,我们通常希望刀具级别的钢材拥有5%以上的碳,也成为高碳钢。
铬(Chromium)
增加耐磨损性,硬度,最重要的是耐腐蚀性,拥有13%以上的认为是不锈钢。尽管这么叫,如果保养不当,所有钢材都会生锈的。
锰(Manganese)
重要的元素,有助于生成纹理结构,增加坚固性,和强度、及耐磨损性。在热处理和卷压过程中使钢材内部脱氧,出现在大多数的刀剪用钢材中,除了A-2,L-6和CPM 420V。
钼(Molybdenum)
碳化作用剂,防止钢材变脆,在高温时保持钢材的强度,出现在很多钢材中,空气硬化钢(例如A-2,ATS-34)总是包含1%或者更多的钼,这样它们才能在空气中变硬。
镍(Nickle)
保持强度、抗腐蚀性、和韧性。出现在L-6\AUS-6和AUS-8中。
硅(Silicon)
有助于增强强度。和锰一样,硅在钢的生产过程中用于保持钢材的强度。
钨(Tungsten)
增强抗磨损性。将钨和适当比例的铬或锰混合用于制造高速钢。在高速钢M-2中就含有大量的钨。
钒(Vanadium)
增强抗磨损能力和延展性。一种钒的碳化物用于制造条纹钢。在许多种钢材中都含有钒,其中M-2,Vascowear,CPM T440V和420VA含有大量的钒。而BG-42与ATS-34最大的不同就是前者含有钒。

二、碳合金钢 (非不锈钢)
这 一类钢材是通常用于锻造的钢材。其实不锈钢也是可以锻造的(象 Sean McWilliams 就锻造不锈钢), 但非常困难。另外,同一块碳钢可以用经由分段冶炼方法来获得非常坚硬的刃端和坚韧而具弹性的背端,而不锈钢不可以这样冶炼。当然,在不同程度上碳钢比不锈 钢容易生锈,也比使用不锈钢风险大 -- 但我相信,只要热处理方法正确,下面举出的所有的钢材都相当不错。
在 AISI 钢材命名系统中,10xx 是碳钢,其他的则是合金钢,例如,50xx 系列是铬钢。在 SAE 命名系统中,带有字符标示的 (例如, W-2, A-2) 是工具钢。另外还有ASM 命名系统,但它在刀具界中很少被提及,所以在这里我们可以忽略它。通常在钢材名称中的最后一个数字即为该种钢材的含碳量,如1095 约含0.95%的碳,52100 约含1.0% 的碳,而 5160 则约含0.60% 的碳。
O-1
这是一种应用得很广泛的优秀钢材,用作刃材可加工出非常坚韧和可深度打磨的刀刃,但它容易生锈。Randall刀具和Mad Dog都用0-1。
W-2
这种钢材由于含有0.2%的钒,因此可用于加工相当坚韧和可打磨的刀刃。大部分锉刀都用W-1,一种与 W-2 很相似的钢材,只是W-1不含钒。
10-系列 -- 1095 (1084, 1070, 1060, 1050, 等等)
在刀具业中,1095是被用得最广泛的 10-系列钢材。 按从 1095 - 1050 排序,总地来说,含碳量从高到低,可达到的打磨度也从高到低,但坚韧性却从低到高到最高。
同 样的,按从 1060 - 1050 排序通常适应于制剑业。而对刀来说,1095是一种很“标准”的碳钢材料,性能良好而且成本不贵,具有适当的坚韧度和打磨度。这是一种较单纯的钢材,容易 生锈,仅含有两种合金成分:0.95%的碳和0.4%的锰。KABAR系列通常使用1095,再加上黑色涂层。
碳V
碳V 是一个Cold Steel (冷钢公司)专用的术语,它并不一定是指某种特殊的钢材,确切地说,它指Cold Steel 采用的任何一种钢材,代表着他们不断选用不同钢材来制造刀具的历程。以我之见,碳V 的性能大致在1095系列和O-1系列之间,抗锈能力和 O-1 差不多。我曾听人说碳V就是O-1或1095,现在我知道它们当然是不同的。很多业界人士坚持说它是 0170-6,而有rec.knives的读者作过粗略实验后,好象指出它是50100-B,其实 50100-B 和 0170-6 是同一种钢材(见下文)。这就是今天的碳V的情况。
0170-6 和 50100-B
同一种钢材却有不同的名称:0170-6 是炼钢业的叫法,而50100-B 是 AISI 的命名。这是一种很不错的铬-钒钢,有点象 O-1,但比0-1便宜得多。刚去世的 Blackjack 曾用O170-6制造过一些刀。碳V 可能就是0170-6。 50100基本上是52100,但铬含量只有52100的1/3。 而50100-B中的B 表示这种钢材加入了钒,是铬-钒钢。
A-2
A-2是一种非常优秀的压缩钢材,以很好的坚韧性和打磨度而著名。因 为是压缩钢,所以不能指望它可以进行分段冶炼,突出的坚韧性使其常常作为生产战斗刀具的首选。Chris Reeve 和Phil Hartsfield 都采用 A-2,而 Blackjack的几款刀也是用的A-2。
L-6
L-6是一种锯齿钢材,坚韧度和打磨度都很好,但容易生锈。和0-1一样,L-6是锻工的最爱。如果你不计较成本,这是制刀的最好选择之一,尤其是坚韧性要求高的刀具。
M-2
一种高速钢,可以承受很高的温度,所以被运用在高温下的切割工作中。可以达到非常优秀的打磨度。它的坚韧程度当然比不上那些以坚韧而出名的钢材,但比不锈钢好,打磨度也胜过不锈钢。Benchmade 在AFCK系列中开始用到M-2。
5160
一种很普遍的高端钢材,主要是一种简单的弹簧钢加入铬来增强硬度,具有很好的打磨度。但其更广为人知的是杰出的坚韧性(象L-6一样)。通常被用于制造剑类(硬度低于50s RC)和使用强度大的刀具(最高硬度大于60s RC)。
52100
52100是一种滚轴钢材,只被锻工们使用。它和5160很近似, (但52100约含有 1% 碳,而5160 约含有0.60%碳),比5160的打磨度好, 但不如5160坚韧。常被用于制造猎刀和其他打磨度要求高而坚韧度要求不似5160那么高的刀具。
D-2
D-2 有时被叫作“半不锈钢”,含铬量较高(12%),但不到不锈钢的程度。它比上面提到的碳钢的抗锈性都好,也有很优秀的打磨度,但坚韧度不如前述碳钢,也不能达到完美的表面处理度。Bob Dozier 爱用D-2。
Vascowear
一种很难找到的高钒钢材,加工非常困难,但抗磨损性出奇地好。未用于产品化刀具生产。

三、"不锈钢" 钢材
首先,请记住,所有的钢材都会生锈,但是下面这些钢材由于含有高于
13% 的铬,所以具有比上面提到的钢材高得多的抗锈能力。我要指出的是并没有一致的标准来规定钢材需要含多少铬才能被认为是不锈钢。在刀具界,实际上规定为 13%,但ASM金属手册说“大于10%”,而另一些书记录又不同。另外,其他合金元素的含量对含铬量要求的影响很大,如果使用的合金得当,即使含铬量较 低也能达到“不锈钢”品质。 420
比440系列低的碳含量(<.5%)使420非常柔软,不能打磨。通常用于潜水刀,因为它抗锈能力非常好,可以在盐水中使用。也被用于生产低成本刀具,但其过于柔软,不能用于日常实用刀具。
440 A - 440 B - 440C
含 碳量和硬度由A-B-C逐次增加(A-0.75%,B-0.9%,C-1.2%)。 440C 是一种很优秀的高端不锈钢,硬度通常达到56-58 Rc。这三种钢材的抗锈能力都不错,440A最好,而440C相比最低。SOG SEAL 2000用的是440A,Randall 用440B 来生产他们的不锈钢刀具。 440C 用的非常普遍,可能是第二最常用的不锈钢(仅次于ATS-34)。如果你的刀标有“440”,那么它很可能比440A便宜;如果厂商用更贵的440C,他 们会很愿意宣传这一点。普遍感觉440A对于日常使用来说刚刚好,尤其是经过优质热处理的440A(我们听说SOG的440A热处理很受好评,不知道他们 请谁来做这个)。440B更加结实,而440C是优秀的。
425M - 12C27
这两种钢材都和440A很相似,425M (含碳0.5% )被用到Buck刀具中。12C27 (含碳0.6%)是一款斯堪迪那维亚钢材,经常被Finish Puukkos和Norwegian Knives选用。
AUS-6 - AUS-8 - AUS-10 (AKA 6A 8A 10A)
日 本不锈钢材,大略与440A (AUS-6, 含碳0.65%)、 440B (AUS-8, 含碳0.75%)、440C (AUS-10, 含碳1.1% )相似。 AUS-6 被用来制造 Al Mar;Cold Steel使用 AUS-8,从而使这种钢材变得很普遍,CS的热处理方法使AUS-8的打磨度不如ATS-34,但也使它更柔软,或许也更坚韧。AUS-10 的含碳量近似于440C,但是含铬量降低,因此抗锈能力也相应下降,不过也增强了坚韧性。这三种钢材都加入了钒(这是440系列没有的),因此增加了抗磨 损能力。
GIN-1 (AKA G-2)
一种很好的不锈钢,含碳量略低,含铬量略高,而钼含量比ATS-34低。经常被 Spyderco选用。
ATS-34 - 154-CM
目前最热的高端不锈钢。154-CM是最初的美洲版本,但很长时间达不到高端制刀业期望的生产标准,所以未被广泛使用,最新爆出的消息说高品质的154-CM会卷土重来。
ATS-34 是一种日本日立的产品,它和154-CM非常、非常相似,是顶级高质不锈钢。
通常硬度约为 60 Rc,打磨度非常好,即使硬度如此高仍然具有足够的坚韧度。抗锈能力不如前面提到的400系列。很多定制手工刀匠使用ATS-34,Spyderco (在他们的高端产品刀) 和 Benchmade 等众多知名厂商都选用它。
ATS-55
和ATS -34很相似,但去掉钼,加入了其他一些元素。目前对这种钢材所知不多,但它看起来具有似乎是保留了ATS-34的优秀打磨度并增加了坚韧性。钼是高速钢 生产中一种昂贵而有用的元素,而刀锋并不需要用到高速钢,所以去掉钼可以大幅度降低钢材成本,且仍然保持了ATS-34的特性。Spyderco 选用这种钢材。
BG-42
Bob Loveless 最近宣称他从ATS-34转向这种钢材。留神,这是个征兆。BG-42 在某种程度上与ATS-34近似,而有两个最大的不同之处: BG-42有两倍于ATS-34的锰含量,和1.2%的钒含量 (ATS-34不含钒), 所以可知它比ATS-34的打磨度更好。Chris Reeves 在生产Sebenzas时,也从 ATS-34 转向了 BG-42。
CPM T440V - CPM T420V
两 种具高打磨度的钢材 (高于 ATS-34),但很难把打磨度放到第一位来考虑。 这两种钢材都含有高量的钒。Spyderco 都至少有一款 CPM T440V型号。手工刀匠 Sean McWilliams 是440V迷。要想使这种钢材变得锋利有点困难,——同样的,也别指望ATS-34能很坚韧——取决于热处理情况。 420V 是 CPM 440V的变种,含铬量较低,而含钒量加倍,抗磨损能力更高,或许比440V的坚韧度也更高。
400 系列不锈钢
在Cold Steel 转而选用 AUS-8之前,他们的很多不锈钢产品都是用"400 系列不锈钢"制造的。其他刀具厂商正开始使用这个系列钢材。那么,什么是“400 系列不锈钢”? 我一直假设它是 440-A,但也不排除厂商使用的其他4xx钢材,象420 或 425M,并统称为 400 系列不锈钢。

四、制刀用的非钢材料
钴-斯泰利特硬质合金6K
是一种具有很好抗磨损性的弹性材料,实际上其抗腐蚀性也很好。斯泰利特硬质合金6K是一种钴合金,有时可以看到其被使用在刀具中。 David Boye 在他的潜水刀中使用钴。

新的钛合金可以达到50 Rc的硬度,而即使在这种硬度下,仍保持可用的打磨度。它极度抗锈,无磁性。常被用于生产高级而昂贵的潜水刀,因为SEALs特种部队用这种潜水刀来在磁性引爆雷区行动。另外特种用途刀具也用到钛。Tygrys用将钛作为钢质刀锋的中间夹层。
陶瓷
很 多刀具都提供陶瓷刀刃型号。通常,这种刀刃都非常非常易碎,也不可以由用户自行打磨;但是,它们可以制造出非常锋利的刀锋。Boker 和 Kyocera 用这种陶瓷来生产刀具;Kevin McClung 最近开发出比以前的陶瓷坚韧得多的混合陶瓷刀具,其坚韧程度可以胜任很多工作,可由用户自行打磨,且其打磨度难以置信地好。
返回

刀具的保养与打磨 返回

任 何时候都要保证清洁和润滑要创造一种具较好切割能力又不生锈的钢材是一种特殊的挑战。尽管大多数知名刀具厂商均采用优秀不锈钢,但如果没有好的保养,这些 刀仍然会生锈,这不是工厂的质量问题。通常钢材中含碳量高会增加切割能力,即锋利性,但同时会降低抗锈性。当在盐水或潮湿的环境下使用刀具时,一定要注意 防锈:如有锈斑出现一定要注意及时用金属防锈剂擦拭;如在海水或盐水中用过要及时在清水中冲洗干净,将刀具完全甩干涂上润滑油或硅油,越全面越好。为了保 证安全使用,要注意摩擦部分,最好是用牙签清理污垢和用热水溶掉不易清理的污渍,然后在滴几滴润滑油,就可以保证轻松安全开关。
   永远保持刀刃锋利 刀越钝则越不安全,越懒磨刀,刀就越难磨。锋利的刀刃,可以顺利的切割,保持锋利并不难,根据你的刀具所要求的磨刀角度,采用质量较好的磨刀器打磨或送回 经销商处免费打磨。比较好的磨刀器品牌有LANSKY、蜘蛛、钻石、单价较高。你也可以选用数十元的便于携式卡式磨刀器。通常磨刀角度在15-25之间, 一些高档刀具均有磨刀角度说明。请勿从背面打磨带齿刀刃,最好用齿刃磨刀器。打磨时要两面同样次数,保持同样角度。

  使用打磨钢是一种很好的保养刀具的方法,尤其对厨刀等使用频繁的直柄刀具而言是这样的。经常使用可以保持刀刃锋利。专家们建议,应该在频繁使用刀具的时期经常打磨,至少在你每次使用前后打磨一次。事实上,打磨钢并不是真的将刀刃磨利,而是校正和清理刀具的刃缘。

   一个最基本的打磨钢是一根带柄的金属杆,上面分布着直条的细沟。而更好的打磨钢经过磁化处理,能吸引刀具的分子使之重新排列成一条直线。刀具和打磨钢摩 擦后,可以得到矫正,并能够去掉一些细微的划痕。未经磁化的陶瓷打磨钢同样有此功效。而钻石打磨钢也正作为一种新的潮流在厨具界流行起来,其表面覆盖着一 层单晶体钻石,它具有和传统打磨钢同样好的效果,但比传统打磨钢更加耐用,更加轻便,打磨速度也更快。

  使用打磨钢时,将刀锋以20 度角接触打磨钢的顶端,然后轻轻地将整个刀锋沿划过整条打磨钢至底部,就好象正用刀切下一片打磨钢似的。每次正、反各一次交替打磨,使刀锋两面能被打磨均 匀。一种简单方法可以判断是否已打磨好刀具:用拇指分别沿着刀锋两面轻轻摸过,如果两面的感觉是一样的,则说明你已经打磨好了。如果某一面摸上去比另一面 略为粗糙,那么轻轻地将这一面再打磨,每打磨一次在对比,直到两面感觉一样为止。
  用天然磨石打磨刀具 首先我们列出可以用于打磨的天然磨石种类以及它们的粒度当量(研磨能力):瓦仕塔石(Washita Stone) - 外观象大理石,其粒度当量为300-350。很好的起始打磨石,可以去处小划痕,并形成斜面轮廓。硬阿肯色石(Hard Arkansas) - 白色或浅灰色,其粒度当量为500-600。用于打磨最后时使边缘完美。黑硬阿肯色(BlackHardArkansas) - 黑色或暗灰色,其粒度当量通常为800-1000. 非常好的磨光石,可以用来打磨如剃刀般锋利的刀锋。多年以来,这种石材几乎被采掘殆尽,只有很少些地方还出产这种石材。一般磨刀并不需要这种石材,最初只 有使用折叠剃刀的人才爱用它来磨刀。

  一般来说,我们选择一块瓦仕塔石和一块硬阿肯色石来作天然磨石,磨石的尺寸取决于刀锋的长度。例如:便携刀 - 3-5" 长的磨石 猎刀 - 4-8" 长的磨石 厨刀 - 6-8" 长的磨石。

   使用磨刀油可以防止细小的金属屑嵌入磨石中,不要使用普通的润滑油,它会堵塞磨石的凹孔。磨刀时刀刃与磨石接触的角度是最不易掌握的部分。将刀平放在磨 刀石上,然后慢慢抬起刀背,直到刀刃的斜面与磨刀石表面平行,如果抬得太高会磨钝刀锋,而太低则打磨不到刀锋,可以尝试一下以20度角度来打磨。打磨时,应该在磨石上覆盖大量的磨刀油,不能干磨,因为金属屑会被刮下嵌入磨石表面,损害磨石和刀锋。

  用瓦仕塔磨石开始粗打磨,将刀锋向着磨石表面,而刀背面向你自己,并使刀面与磨石表面成20 度角,然后向前推动刀,好象你正想从磨石前端削下一小片一样。重复从下到上这个动作2-3次,然后反转刀使刀锋面向你自己,再以刀面与磨石表面成20度 角,打磨相同的次数。要注意两面打磨的次数应该相同。当这个打磨过程完成后,就可以获得一条清晰的斜面线,这样就准备进入最后的精细打磨过程了。我们用硬 阿肯色磨石来进行精细打磨,同样地,需要在磨石表面涂上大量的磨刀油,重复粗打磨的动作,直到你得到你所期望的锋利程度,这样打磨就完成了。

   请注意,每次打磨后都要将磨石用布擦干净,而每一年,你都应该用特殊的溶液和钢丝刷彻底清洗一次磨石,使石上的凹穴畅通清洁。切记:钝刀更危险!事实上 一把刀锋完美锋利的刀比钝刀更加安全,因为它切割容易,不需要你使出大力或工作时看上去笨手笨脚,也更加有效率。无论多么昂贵精美的刀具都不可能自行保持 锋利,所以你必须周期性地打磨和保养刀锋使其始终在最佳状态。

BW碧威股份有限公司針對客戶端改善切削方式、提供專業切削CNC數控刀具專業能力、製造客戶需求如:Cutting tool、切削刀具、HSS Cutting toolCarbide end millsCarbide cutting toolNAS Cutting toolCarbide end millAerospace cutting toolCarbide drillHigh speed steelMilling cutterCore drill、鎢鋼銑刀、航太刀具、鎢鋼鑽頭、高速剛、鉸刀、中心鑽頭、Taperd end mills、斜度銑刀、Metric end mills、公制銑刀、Miniature end mills、微小徑銑刀、鎢鋼切削刀具、Pilot reamer、領先鉸刀、Electronics cutter、電子用切削刀具、Step drill、階梯鑽頭、Metal cutting saw、金屬圓鋸片、Double margin drill、領先階梯鑽頭、Gun barrelAngle milling cutter、角度銑刀、Carbide burrs、滾磨刀、Carbide tipped cutter、銲刃刀具、Chamfering tool、倒角銑刀、IC card engraving cutterIC晶片卡刀、Side cutter、側銑刀、NAS toolDIN tool、德國規範切削刀具、Special tool、特殊刀具、Metal slitting sawsShell end mills、滾筒銑刀、Side and face milling cuttersSide chip clearance saws、交叉齒側銑刀、Long end mills、長刃銑刀、Stub roughing end mills、粗齒銑刀、Dovetail milling cutters、鳩尾刀具、Carbide slot drillsCarbide torus cutters、鎢鋼圓鼻銑刀、Angeled carbide end mills、角度鎢鋼銑刀.aerospace toolCarbide torus cutters、短刃平銑刀、Carbide ball-noseed slot drills、鎢鋼球頭銑刀、Mould cutter、模具用刀具、BW微型渦流管槍、Tool manufacturer、刀具製造商等相關切削刀具、以服務客戶改善工廠加工條件、爭加競爭力。歡迎尋購~~~碧威股份有限公司www.tool-tool.com

beeway 發表在 痞客邦 留言(0) 人氣()

Bewise Inc. www.tool-tool.com
Reference source from the internet.
对一种合金的轻型结构潜力做出判断,需要按照材料的密度首先求出强度值和刚度值。当求出的刚度仅达到与钢相同的水平时,象AA 5182或AZ 31这样的合金在相关的强度上就显然超过传统的深冲钢的强度。

轻金属合金在室温下的变形性较小,这种特性有其缺点。特别是镁板,在室温下只能进行简单的变形过程,如果以大半径弯曲,或者做出简单
的工件形状,只有将变形温度提高到阈值以上大约200℃,它的变形能力才能有跃变式的提高。其原因在于晶体格子中额外的滑移系统被热激活,而且允许表现为复杂的构件形状。提高变形温度的另一个有益的结果是流变应力减小了。这样,需要的变形力也就下降了。

与深冲相比省去了一半模具

对 于制造平面轻型结构件,艾尔朗根大学制造技术讲座所进行的研究工作,重点集中在室温下以及更高温度下以作用介质为基础的变形。这种制造方法是用一种带有流 体静力压力状态的液态介质以同样的形式作用于金属板上,并根据模具的沟槽制成一定的形状。与采用固定模具冲头的深冲相比,这种方法可以省去制作半个模具, 尤其是在小批量生产时具有经济合算的优点。此外也可以制造出形状复杂的零件,例如背切。例如一种可能的组件几何形状,其背切规定为一种抓槽的形状。在传统 的深冲情况下,将需要一个多级的过程。现在,采用有效介质,仅用一个唯一的变形步骤就可以完成加工。在空心的双模板材结构方式下,流体静力的压力状态同样 也可以在一个变形步骤中完成加工。

300℃以下的压力介质可保证调温状态

镁合金变形加工成复杂的构件形状,需要对模具和 工件进行调温。鉴于可能出现的温度范围大约在200℃至300℃之间,从核心模具到机床的加热和绝热在模具技术上的额外费用是有限的。由此达到的起始温度 并不以任何耐高温的特殊工具钢为前提。为了准备压力介质,此次讲座安装了一个热压转换器,转换器以载热油为压力介质,将其加热到300℃,同时产生的工作 压力达1000巴。同时,高压和高温对密封技术提出了很高的要求。试验工作中取得的有关所用活塞密封件的泄漏率和寿命方面的经验,导致了建造一台压力转换 器试验台,该试验台与两家工业伙伴(Schuler-Hydroforming GmbH & Co.KG,Dego-Hydraulik GmbH)共同使用,用于对现存的以及替代的密封技术方案进行调研。

为了能够使象镁合金AZ 31这样的轻型结构材料的性能达到适合变形加工的水平,对材料的特性进行了各种各样的试验。比如在确定可以达到的最大膨胀度和为此付出的变形时,可在不同 温度下进行扁平拉伸试验。在温度升高情况下,对出现的膨胀进行测量时,采用光学无接触测量的膨胀测量系统(Aramis,制造厂家为布伦瑞克市Gom GmbH公司),这种系统不仅可以确定出现膨胀的尺寸,而且可以确定膨胀在试样的宽度和长度上的分布情况。

该测量方法的依据是图样识别原 理,该原理使用的是在变形过程中用数字照相机拍摄的随机取景功能。从这些照片中由软件生成反映发生膨胀情况的测量格栅。这种测量方法的一个重要优点是:可 以超出同比尺寸的膨胀对材料的流变曲线进行测量。曲线表明,随着膨胀率的下降,材料对变形的阻力也随之减小。至于以后的过程设计,特别是在膨胀率为 0.1/s和0.01/s时拍摄的曲线可以提供良好的依据,以便在尽可能低的模具温度、尽量短的过程持续时间和尽量小的压力应力场中取得折衷。

板材“后随流变”的前提是摩擦知识

设 计变形过程时,不仅需要掌握材料的机械特征值,而且也需要了解有关温度升高时的摩擦性能。在采用象深冲这种工艺时通过内部高压过程,在这个过程中希望板材 从夹紧的压紧装置部位发生“后随流变”而进入模具空腔,必须有关于法兰中摩擦条件的精确特征值,以用于在数字仿真中取得过程的正确图象。轻金属合金需要克 服的摩擦力随着温度的升高有不断增加的趋势,为了利用所谓的摩擦系数对这种性能加以描述,使用大学讲座设计的可加热深冲模具进行了改进的深冲试验。通过对 径向膨胀和切向镦粗的板材在模具被加热的入口半径上滑动掠过,可以真实地模拟出以后模具中的各种条件,并求出深冲过程中的摩擦系数。

利用 该讲座现有的模具技术和系统技术设备,制造出了圆形和长方形的组件。制造这些组件的目的是求出铝合金与镁合金板内部高压变形的适当过程窗。用可以时效硬化 的铝合金AA 6016和天然硬度的铝合金AA 5182,在200℃的过程温度下即已制成了示范零件“标志板”。现在,通过Salzgitter公司利用AZ 31新型镁板的可使用性,鉴于其接近系列产品的质量,由巴伐利亚研究基金会于2003年中期批准了“镁板的内部高压变形”项目。该项目的目标是,研究镁板 在温度升高情况下以有效介质为基础进行变形加工的依据。除了变形过程本身以外,还同参与该项目的工业伙伴奥迪股份公司合作,对后续过程如接缝过程和表面处 理过程进行了调研。镁板的半热变形加工潜力将导致制造具有复杂形状的演示零件,该零件的机械性能可以在符合现实的荷载状态下得到评价。
BW碧威股 份有限公司針對客戶端改善切削方式、提供專業切削CNC數控刀具專業能力、製造客戶需求如:Cutting tool、切削刀具、HSS Cutting tool、Carbide end mills、Carbide cutting tool、NAS Cutting tool、Carbide end mill、Aerospace cutting tool、Carbide drill、High speed steel、Milling cutter、Core drill、鎢鋼銑刀、航太刀具、鎢鋼鑽頭、高速剛、鉸刀、中心鑽頭、Taperd end mills、斜度銑刀、Metric end mills、公制銑刀、Miniature end mills、微小徑銑刀、鎢鋼切削刀具、Pilot reamer、領先鉸刀、Electronics cutter、電子用切削刀具、Step drill、階梯鑽頭、Metal cutting saw、金屬圓鋸片、Double margin drill、領先階梯鑽頭、Gun barrel、Angle milling cutter、角度銑刀、Carbide burrs、滾磨刀、Carbide tipped cutter、銲刃刀具、Chamfering tool、倒角銑刀、IC card engraving cutter、IC晶片卡刀、Side cutter、側銑刀、NAS tool、DIN tool、德國規範切削刀具、Special tool、特殊刀具、Metal slitting saws、Shell end mills、滾筒銑刀、Side and face milling cutters、Side chip clearance saws、交叉齒側銑刀、Long end mills、長刃銑刀、Stub roughing end mills、粗齒銑刀、Dovetail milling cutters、鳩尾刀具、Carbide slot drills、Carbide torus cutters、鎢鋼圓鼻銑刀、Angeled carbide end mills、角度鎢鋼銑刀.aerospace tool、Carbide torus cutters、短刃平銑刀、Carbide ball-noseed slot drills、鎢鋼球頭銑刀、Mould cutter、模具用刀具、BW微型渦流管槍、Tool manufacturer、刀具製造商等相關切削刀具、以服務客戶改善工廠加工條件、爭加競爭力。歡迎尋購~~~碧威股份有限公司www.tool- tool.com

beeway 發表在 痞客邦 留言(0) 人氣()

Bewise Inc. www.tool-tool.com
Reference source from the internet.
锌合金压铸件目前广泛应用于各种装饰方面,如家具配件、建筑装饰、浴室配件、灯饰零件、玩具、领带夹、皮带扣、各种金属饰扣等,因而对铸件表面质量要求高,并要求有良好的表面处理性能。而锌合金压铸件最常见的缺陷是表面起泡。

缺陷表征:压铸件表面有突起小泡、压铸出来就发现、抛光或加工后显露出来、喷油或电镀后出现。

产生原因:

1.孔洞引起:主要是气孔和收缩机制,气孔往往是圆形,而收缩多数是不规则形。


(1)气孔产生原因:

a 金属液在充型、凝固过程中,由于气体侵入,导致铸件表面或内部产生孔洞。
b 涂料挥发出来的气体侵入。
c 合金液含气量过高,凝固时析出。

当型腔中的气体、涂料挥发出的气体、合金凝固析出的气体,在模具排气不良时,最终留在铸件中形成的气孔。

(2)缩孔产生原因:

a 金属液凝固过程中,由于体积缩小或最后凝固部位得不到金属液补缩,而产生缩孔。
b 厚薄不均的铸件或铸件局部过热,造成某一部位凝固慢,体积收缩时表面形成凹位。

由于气孔和缩孔的存在,使压铸件在进行表面处理时,孔洞可能会进入水,当喷漆和电镀后进行烘烤时,孔洞内气体受热膨胀;或孔洞内水会变蒸气,体积膨胀,因而导致铸件表面起泡。

2.晶间腐蚀引起:

锌合金成分中有害杂质:铅、镉、锡会聚集在晶粒交界处导致晶间腐蚀,金属基体因晶间腐蚀而破碎,而电镀加速了这一祸害,受晶间腐蚀的部位会膨胀而将镀层顶起,造成铸件表面起泡。特别是在潮湿环境下晶间腐蚀会使铸件变形、开裂、甚至破碎。

3.裂纹引起:水纹、冷隔纹、热裂纹。

水纹、冷隔纹:金属液在充型过程中,先进入的金属液接触型壁过早凝固,后进入金属液不能和已凝固金属层熔合为一体,在铸件表面对接处形成叠纹,出现条状缺陷,见图2。水纹一般是在铸件表面浅层;而冷隔纹有可能渗入到铸件内部。

热裂纹:

a 当铸件厚薄不均,凝固过程产生应力;
b 过早顶出,金属强度不够;
c 顶出时受力不均
d 过高的模温使晶粒粗大;
e 有害杂质存在。

以上因素都有可能产生裂纹。

当压铸件存在水纹、冷隔纹、热裂纹,电镀时溶液会渗入到裂纹中,在烘烤时转化为蒸气,气压顶起电镀层形成起泡。

解决缺陷方案:

控 制气孔产生,关键是减少混入铸件内的气体量,理想的金属流应不断加速地由喷嘴经过分流锥和浇道进入型腔,形成一条顺滑及方向一致的金属流,采用锥形流道设 计,即浇流应不断加速地由喷嘴向内浇口逐渐减少,可达到这个目的。在充填系统中,混入的气体是由于湍流与金属液相混合而形成气孔,从金属液由浇铸系统进入 型腔的模拟压铸过程的研究中,明显看出浇道中尖锐的转变位和递增的浇道截面积,都会使金属液流出现湍流而卷气,平稳的金属液才有利于气体从浇道和型腔进入 溢流槽和排气槽,排出模外。

对于缩孔:要使压铸凝固过程中各个部位尽量同时均匀散热,同时凝固。可通过合理的水口设计,内浇口厚度及位置,模具设计,模温控制及冷却,来避免缩孔产生。
对于晶间腐蚀现象:主要是控制合金原料中有害杂质含量,特别是铅<0.003%。注意废料带来的杂质元素。
对于水纹、冷隔纹,可提高模具温度,加大内浇口速度,或在冷隔区加大溢流槽,来减少冷隔纹的出现。
对于热裂纹:压铸件厚薄不要急剧变化以减少应力产生;相关的压铸工艺参数作调整;降低模温。
BW 碧威股份有限公司針對客戶端改善切削方式、提供專業切削CNC數控刀具專業能力、製造客戶需求如:Cutting tool、切削刀具、HSS Cutting tool、Carbide end mills、Carbide cutting tool、NAS Cutting tool、Carbide end mill、Aerospace cutting tool、Carbide drill、High speed steel、Milling cutter、Core drill、鎢鋼銑刀、航太刀具、鎢鋼鑽頭、高速剛、鉸刀、中心鑽頭、Taperd end mills、斜度銑刀、Metric end mills、公制銑刀、Miniature end mills、微小徑銑刀、鎢鋼切削刀具、Pilot reamer、領先鉸刀、Electronics cutter、電子用切削刀具、Step drill、階梯鑽頭、Metal cutting saw、金屬圓鋸片、Double margin drill、領先階梯鑽頭、Gun barrel、Angle milling cutter、角度銑刀、Carbide burrs、滾磨刀、Carbide tipped cutter、銲刃刀具、Chamfering tool、倒角銑刀、IC card engraving cutter、IC晶片卡刀、Side cutter、側銑刀、NAS tool、DIN tool、德國規範切削刀具、Special tool、特殊刀具、Metal slitting saws、Shell end mills、滾筒銑刀、Side and face milling cutters、Side chip clearance saws、交叉齒側銑刀、Long end mills、長刃銑刀、Stub roughing end mills、粗齒銑刀、Dovetail milling cutters、鳩尾刀具、Carbide slot drills、Carbide torus cutters、鎢鋼圓鼻銑刀、Angeled carbide end mills、角度鎢鋼銑刀.aerospace tool、Carbide torus cutters、短刃平銑刀、Carbide ball-noseed slot drills、鎢鋼球頭銑刀、Mould cutter、模具用刀具、BW微型渦流管槍、Tool manufacturer、刀具製造商等相關切削刀具、以服務客戶改善工廠加工條件、爭加競爭力。歡迎尋購~~~碧威股份有限公司www.tool- tool.com

beeway 發表在 痞客邦 留言(0) 人氣()

Bewise Inc. www.tool-tool.com

Reference source from the internet
【經濟日報/記者陳信榮、郭維邦、林茂仁、宋健生】
2007.04.06 03:36 am
鋼鐵價格上揚,汽車零件製造業者積極因應,以加強內控、增加共用零件等,設法降低成本。
記者陳信榮/攝影

不銹鋼價格再漲下去,就要跳樓啦!」關中公司總經理林身仁,發出許多台灣中小製造業者的心聲;一位精密機械加工業董事長自爆,自己的血壓幾乎跟著國際鋼鐵期貨行情一路飆高,「都快爆血管啦!」

中華汽車
號召協力廠 改善製程節省成本

國際鋼價飆漲,帶動包括鎳、銅等非鐵金屬行情跟著飛升,上游的鋼廠、不銹鋼業者,可以每季、甚至每月轉嫁,調漲產品價格;但下游廠商卻遭遇客戶反對的阻力,讓這一波接著一波的鋼鐵原料上漲,搞得血壓直線上升。

台北國際工具機展剛結束,不少機械業者在會場才高興接到訂單,結果馬上碰到鋼鐵原料行情創新高,新接訂單無法立即反映成本上漲,心情如洗三溫暖。

工具機業者說,為了業績,現階段只能忍痛接單,但也不敢保證半年後不會漲價。面對上游鑄件廠放話漲價的壓力,已有工具機業者被迫轉向大陸採購,確保獲利。

不過,儘管鋼價大漲,還是有許多傳統製造業者從容應對,從中找出生存、獲利之道。

「每輛汽車超過四成的零件與鋼鐵有關,鋼價大漲、甚至供應短缺,對汽車製造業當然會有衝擊」,某汽車業者初估,近三年來鋼價上漲,汽車製造成本因此增加超過一成。

但國內新車銷售市場,卻陷入20年來最低迷的窘境,讓國內汽車製造廠只能把苦往肚子吞,得自行吸收成本。

汽車廠除透過同業聯合採購鋼材外,最常使用的手段,就是要求零件協力廠家配合降價。但經過多年的降低成本,零件供應價格幾乎見底,加上國內新車銷售市場萎縮,車廠自知無法強勢要求協力廠降價,必須另謀他策。

中華汽車透過號召協力廠加入「VA/VE」運動,成功戰勝高鋼價威脅。

中華車採購主管說,設法在生產過程中,減少加工次數、不良率、材料消耗率,達到節省成本的效果;同時在開發新車時,提升零件與其他車型共用程度,節省成本。

和大工業
材料彈性收費,分攤價格波動風險

汽車變速箱、傳動系統零件製造業者和大工業,則仿效航空業者燃油附加費的策略,推出「材料附加費」的措施,攤提鋼價波動風險,確保公司獲利。

和大總經理陳俊智說,「材料附加費」並非單向的對客戶增加收費,一旦鋼價走跌時,也必須將利潤回饋給客戶。透過這種雙向的收費回饋方式,更容易獲得顧客的支持。

然材料附加費每半年、甚至一年才檢討一次,鋼價調漲卻是愈來愈頻繁,材料附加費也無法100%反映成本上漲。陳俊智建議同業,還是得從生產效率提升、降低浪費等著手,才能將鋼價漲價衝擊減至最低。

國內最大烤肉爐製造商關中,則跳脫降低成本的思維,從改變產品設計,迎戰高鋼價。關中生產的烤肉爐材料中,有高達七成是不銹鋼,一年來不銹鋼板報價調漲將近一倍,讓曾是台灣傳產股王的關中措手不及,去年一度出現虧損。

烤 肉爐市場競爭愈來愈激烈,關中想漲價轉嫁成本根本行不通,於是朝更改烤肉爐的設計著手。關中開始設計使用低階不銹鋼板的烤肉爐產品,降低 材料成本;因不銹鋼板漲價的主因是鎳價大漲,而高階不銹鋼中有八成的原料是鎳,低階不銹鋼使用鎳的比重很低,漲幅相對較小。經此變化,關中樂觀預期,今年 上半年就能重回獲利企業的行列。

衛浴設備業者是這波高鋼價時代的另類受害者,因為鋼價上漲,帶動包括銅在內的非鐵金屬同漲,銅是製造水龍頭等衛浴設備的主要原料,業者苦不堪言。

國內衛浴設備龍頭和成欣業協理顧成棟表示,和成從前年起,著手展開替代材料的開發工作,成功研發出陶瓷水龍頭產品。和成計畫提高陶瓷水龍頭的銷售比重,拋開銅價上漲的沉重壓力。

【2007/04/06 經濟日報】@ http://udn.com/

Welcome to BW tool world! We are an experienced tool maker specialized in cutting tools. We focus on what you need and endeavor to research the best cutter to satisfy users’ demand. Our customers involve wide range of industries, like mold & die, aerospace, electronic, machinery, ,,,etc. We are professional expert in cutting field. We would like to solve every problem from you. Please feel free to contact us, it’s our pleasure to serve for you. BW product including: utting toolaerospace tool .HSS Cutting toolCarbide end millsCarbide cutting toolNAS Cutting toolCarbide end millAerospace cutting toolCarbide drillHigh speed steelMilling cutterCore drillTaperd end millsMetric end millsMiniature end millsPilot reamerElectronics cutterStep drillMetal cutting sawDouble margin drillGun barrelAngle milling cutterCarbide burrsCarbide tipped cutterChamfering toolIC card engraving cutterSide cutterNAS toolDIN toolSpecial toolMetal slitting sawsShell end millsSide and face milling cuttersSide chip clearance sawsLong end millsStub roughing end millsDovetail milling cuttersCarbide slot drillsCarbide torus cuttersAngeled carbide end millsCarbide torus cuttersCarbide ball-noseed slot drillsMould cutterTool manufacturer.

Bewise Inc. www.tool-tool.com

beeway 發表在 痞客邦 留言(0) 人氣()

Bewise Inc. www.tool-tool.com
Reference source from the internet.
模具损坏分析

在压铸生产中,模具损坏最常见的形式是裂纹、开裂。应力是导致模具损坏的主要原因。热、机械、化学、操作冲击都是产生应力之源,包括有机械应力和热应力,应力产生于:

一.在模具加工制造过程中

1、毛坯锻造质量问题
有些模具只生产了几百件就出现裂纹,而且裂纹发展很快。有可能是锻造时只保证了外型尺寸,而钢材
中的树枝状晶体、夹杂碳化物、缩孔、气泡等疏松缺陷沿加工方法被延伸拉长,形成流线,这种流线对以后的最后的淬火变形、开裂、使用过程中的脆裂、失效倾向影响极大。
2、在车、铣、刨等终加工时产生的切削应力,这种应力可通过中间退火来消除。
3、淬火钢磨削时产生磨削应力,磨削时产生摩擦热,产生软化层、脱碳层,降低了热疲劳强度,容易导致热裂、早期裂纹。对H13钢在精磨后,可采取加热至510-570℃,以厚度每25mm保温一小时进行消除应力退火。
4、电火花加工产生应力。模具表面产生一层富集电极元素和电介质元素的白亮层,又硬又脆,这一层本身会有裂纹,有应力。电火花加工时应采用高的频率,使白亮层减到最小,必须进行抛光方法去除,并进行回火处理,回火在三级回火温度进行。

二.模具处理过程中

热处理不当,会导致模具开裂而过早报废,特别是只采用调质,不进行淬火,再进行表面氮化工艺,在压铸几千模次后会出现表面龟裂和开裂。
钢淬火时产生应力,是冷却过程中的热应力与相变时的组织应力叠加的结果,淬火应力是造成变形、开裂的原因,固必须进行回火来消除应力。

三.在压铸生产过程中

1、模温
模具在生产前应预热到一定的温度,否则当高温金属液充型时产生激冷,导致模具内外层温度梯度增大,形成热应力,使模具表面龟裂,甚至开裂。
在生产过程中,模温不断升高,当模温过热时,容易产生粘模,运动部件失灵而导致模具表面损伤。
应设置冷却温控系统,保持模具工作温度在一定的范围内。
2、充型
金 属液以高压、高速充型,必然会对模具产生激烈的冲击和冲刷,因而产生机械应力和热应力。在冲击过程中,金属液、杂质、气体还会与模具表面产生复杂的化学作 用,并加速腐蚀和裂纹的产生。当金属液裹有气体时,会在型腔中低压区先膨胀,当气体压力升高时,产生内向爆破,扯拉出型腔表面的金属质点而造成损伤,因气 蚀而产生裂纹。
3、开模
在抽芯、开模的过程中,当某些元件有形变时,也会产生机械应力。
4、生产过程
在每一个压铸件生产 过程中,由于模具与金属液之间的热交换,使模具表面产生周期性温度变化,引起周期性的热膨胀和收缩,产生周期性热应力。如浇注时模具表面因升温受到压应 力,而开模顶出铸件后,模具表面因降温受到拉应力。当这种交变应力反复循环时,使模具内部积累的应力越来越大,当应力超过材料的疲劳极限时,模具表面产生 裂纹。

预防模具损伤的措施

1.良好的铸件结构设计

铸件壁厚尽可能均匀,避免产生热节,以减少模具局部热量集中产生的热疲劳。铸件的转角处应有适当的铸造圆角,以避免模具上有尖角位导致应力产生。

2.合理的模具结构设计
1)模具中各元件应有足够的刚度、强度,以承受压力而不变形。模具壁厚要足够,才能减少变形。
2)浇注系统设计尽量减少对型芯冲击、冲蚀。
3)正确选择各元件的公差配合和表面粗糙度。
4)保持模具热平衡。

3.规范热处理工艺

通过热处理可改变材料的金相组织,保证必要的强度、硬度、高温下尺寸稳定性、抗热疲劳性能和材料切削性能。
正确的热处理工艺,才会得到最佳的模具性能,而钢材的性能是受到淬火温度和时间、冷却速度和回火温度控制。

4.压铸生产过程控制

1)温度控制:模具的预热温度和工作温度;合金浇注温度,在保证成型良好前提下,用较低的浇注温度。
2)合理的压铸工艺:比压、充填速度。
3)调整机器的锁模力,使模具受力均匀。注意清扫模具表面的残削碎片,以免合模时这些多余物使模具表面受力不均匀,引起变形。
4)对合金熔炼严格控制,减少金属液中气体。

5.模具的维护与保养

1)定期消除应力
2)模具修补

压铸件结构设计的注意事项

BW碧威股份有限公司針對客戶端改善切削方式、提供專業切削CNC數控刀具專業能力、製造客戶需求如:Cutting tool、切削刀具、HSS Cutting toolCarbide end millsCarbide cutting toolNAS Cutting toolCarbide end millAerospace cutting toolCarbide drillHigh speed steelMilling cutterCore drill、鎢鋼銑刀、航太刀具、鎢鋼鑽頭、高速剛、鉸刀、中心鑽頭、Taperd end mills、斜度銑刀、Metric end mills、公制銑刀、Miniature end mills、微小徑銑刀、鎢鋼切削刀具、Pilot reamer、領先鉸刀、Electronics cutter、電子用切削刀具、Step drill、階梯鑽頭、Metal cutting saw、金屬圓鋸片、Double margin drill、領先階梯鑽頭、Gun barrelAngle milling cutter、角度銑刀、Carbide burrs、滾磨刀、Carbide tipped cutter、銲刃刀具、Chamfering tool、倒角銑刀、IC card engraving cutterIC晶片卡刀、Side cutter、側銑刀、NAS toolDIN tool、德國規範切削刀具、Special tool、特殊刀具、Metal slitting sawsShell end mills、滾筒銑刀、Side and face milling cuttersSide chip clearance saws、交叉齒側銑刀、Long end mills、長刃銑刀、Stub roughing end mills、粗齒銑刀、Dovetail milling cutters、鳩尾刀具、Carbide slot drillsCarbide torus cutters、鎢鋼圓鼻銑刀、Angeled carbide end mills、角度鎢鋼銑刀.aerospace toolCarbide torus cutters、短刃平銑刀、Carbide ball-noseed slot drills、鎢鋼球頭銑刀、Mould cutter、模具用刀具、BW微型渦流管槍、Tool manufacturer、刀具製造商等相關切削刀具、以服務客戶改善工廠加工條件、爭加競爭力。歡迎尋購~~~碧威股份有限公司www.tool-tool.com

beeway 發表在 痞客邦 留言(0) 人氣()

Bewise Inc. www.tool-tool.com
Reference source from the internet.
一、概述

面 对制造行业日益激烈的国际性竞争,高速加工(HSC)已成为一个非常重要的技术研发方向。高速切削是一个相对概念。一般地,高速被定义为明显超出普通切削 速度的5~10倍。同时,高速切削不仅仅是切削速度的提高,还需要在制造技术全面进步和进一步创新的基础上,包括驱动、刀具材料、涂层、刀具、测试、安全 等技术的重大进步,才能达到的切削速度和进给速度的成倍提高,才能使制造业整体切削加工效率有显著的提高。


图1 铣削加工

高速切削工艺主要有以下几方面的优点:

1) 缩短生产时间。 切削速度和进给速度的成倍提高,刀具消耗工具交换时间的增加可忽略不计,空运时间减少,整体切削加工效率有显著的提高 ,加工时间明显缩短。
2) 降低制造成本。 更快的生产力必然引起制造成本的下降。
3) 高速切削吸收能量。 一方面减少了工件在加工过程中的发热(特别在铣削加工中),工件升温小;另一方面可加工硬质材料。
4) 改善工件的加工质量。 加工精度和切削表面的光洁度大大提高,减少人工后加工及辅助工时。

把当前的高速切削水平实用化,使我国机加工整体切削效率提高1~2倍,缩小与工业发达国家的差距,是我国从事切削加工与刀具技术的专业人员在新世纪的努力目标和面临的重大挑战。

二、汽车工业中的高速加工

高 速加工最先应用于航天技术领域,主要加工大型整体零件、金属去除量比较大从而生产时间比较长的工件。如今,随着新的工艺不断采用,超硬材料刀具、涂层刀具 与合金材料刀具的不断开发,高速加工在普通加工中也变得愈发重要。汽车工业中的高速加工中心、高速外铣、CBN砂轮高速磨削等应用十分普遍。


图2 曲轴磨床CBN高速磨削

汽 车制造业在高速加工的应用中以电主轴实现主轴高速和以直线电机实现高直线移动速度为主要特征,目的是 力图用高主轴转速和高速直线进给运动的单主轴加工中心来替代多主轴但难以实现高主轴转速和高速进给的组合机床。主轴最高转速一般可达 60000r/min,最大进给速度100m/min左右。电主轴融合了许多尖端技术,如一般采用复合陶瓷材料或电磁悬浮的高速轴承、高速电机技术、定时 定量油气润滑、自动换刀装置等等。

也有一些公司为降低成本,不用直线电机,而采用中空通冷却液、加大直径和加大导程的滚珠丝杆。

上海大众在发动机制造过程中,逐步采用高速加工中心。

1 铣削加工

目前汽车工业中缸体、缸盖大平面加工一般使用铣削技术。以灰铸铁材料缸体在高速加工中心上的铣削加工为例,采用了立方氮化硼(CBN)刀片,其切削速度可达到700~1500m/min(见图一)。

铣削的生产效率大大提高,经综合国内国外铣削缸体平面的切削用量见表1。在该工序中,安装了切屑回收装置,可消除切屑飞散造成的机械故障,减轻机床清洁保养作业的强度,从而提高设备运转率。

对于铝合金缸体、缸盖均采用面铣刀进行高速切削加工。采用PCD刀片,铣刀直径逐渐缩小,并向多工位复式加工发展。

2 磨削加工

曲轴加工中应用高速磨削,可大大提高加工柔性,CBN砂轮每修整一次,可加工600~800件曲轴(见图2)。

凸轮轴采用CBN砂轮高速磨削已普遍在使用。 在外圆磨削中采用了JUNKER公司的点磨技术。其使用CBN砂轮在一次夹紧工件的条件下对凸轮进行加工。它具有高切削功率,高精度的工件几何外形,均匀的高精度尺寸及外表面质量等优点。

3 车-车拉结合高速外铣

车车拉工艺将车削和车拉工艺结合在一起,使加工的柔性增大。不但可加工曲轴的主轴颈、连杆颈、法兰和皮带轮轴颈,而且还可同时加工轴颈的外圆轴肩、圆角或沿割槽。结合曲轴的高速外铣后可大大节省加工时间(见图3)。


图3 高速外铣

4 钻削加工

在发动机生产过程中,孔加工的比例也比较高。尤其是缸盖和缸体的孔加工作业量比较大。其中钻削加工约占60%,其次为镗削加工、攻丝加工。高速钻削加工主要注意提高排屑性能,提高工具刚性,防止钻尖过热,回转平衡性等问题。以上各点均需根据被加工材料特性采取相应措施。

三、切削刀具的应用

高速加工的发展史,就是刀具材料不断进步的历史。上海大众建成初期采用的大部分刀具均为进口,国产化工作不断取得突破,现在应用比较普遍的刀具主要有CBN和PCD刀具、涂层硬质合金刀具、陶瓷刀具等。

1 CBN及PCD刀具

高 速切削的代表性工具材料是CBN以及PCD。端面铣削使用CBN刀具时,其切削速度可高达5000m/min。用CBN刀具加工20CrMo5 淬硬齿轮(60HRC)内孔,代替磨削,表面粗糙度可达0.22μm,已成为国内外汽车行业推广的新工艺。凸轮轴和曲轴也采用CBN砂轮进行高速磨削;在 缸体、缸盖铝合金材料铣削加工中则广泛采用PCD刀具,考虑到高速回转时将会产生很大的离心力,因此刀体采用高强度铝合金材料制作(见图4)。


图4 凸轮轴CBN砂轮

2 硬质合金刀具及涂层技术

硬质件切削是高速切削技术的重要应用领域,即用单刃或多刃刀具加工淬硬零件,它比传统的磨削加工效率高,而且简化了工艺方法和工艺环节,不仅节约了成本,而且更加柔性化。

在 钻削和铣削加工中,超细晶粒硬质合金适合于大多数应用,它们同时具有较高的韧性和优异的耐热性,从而可将有利的切削刃槽形与较大的前角及后角融为一体, 这些特征的直接反映是降低了切削力和切削温度;在攻丝时,特别高的扭矩以及在较高切削速度下升高的温度需要采用非常坚韧却具有高耐热性的切削材料。

我们采用内冷的硬质合金钻头代替过去的高速钢钻头进行孔加工,攻螺纹也采用硬质合金丝锥来提高速度,曲轴攻螺纹甚至采用无切削挤压式丝锥;凸轮轴轴颈加工现改用硬质件加工方式,刀具一次加工就可达到要求的表面光洁度,不需要再进行磨削。

为使切削工具既作到价格低廉,又具备优异的性能,可有效降低加工成本的技术,目前当首推涂层技术。现在高速加工使用的立铣刀,大都采用TiAIN系的复合多层涂镀技术进行处理。

3 刀具夹持系统

刀 具的夹持系统是支撑高速切削的重要技术,以前使用的7:24大锥度刀柄,轴向定位精度低,刚度差,在高速时主轴孔大头在离心力作用下“张口”, 使其刚度进一步降低,且不安全。目前两面夹紧式工具系统被广泛应用,上海大众发动机厂大量采用了HSK工具系统。这种短锥柄采用锥面和端面同时定位,轴向 重复精度比7:24刀柄提高3倍,达0.001mm,有效防止了轴向的窜动;径向跳动提高2~3倍,达0.003mm,提高了抵抗径向切削力的能力。刀具 与夹具回转平衡性能的优劣,不仅影响到加工精度和刀具寿命,而且也会影响机床的使用寿命。

Welcome to BW tool world! We are an experienced tool maker specialized in cutting tools. We focus on what you need and endeavor to research the best cutter to satisfy users’ demand. Our customers involve wide range of industries, like mold & die, aerospace, electronic, machinery, ,,,etc. We are professional expert in cutting field. We would like to solve every problem from you. Please feel free to contact us, it’s our pleasure to serve for you. BW product including: utting toolaerospace tool .HSS Cutting toolCarbide end millsCarbide cutting toolNAS Cutting toolCarbide end millAerospace cutting toolCarbide drillHigh speed steelMilling cutterCore drillTaperd end millsMetric end millsMiniature end millsPilot reamerElectronics cutterStep drillMetal cutting sawDouble margin drillGun barrelAngle milling cutterCarbide burrsCarbide tipped cutterChamfering toolIC card engraving cutterSide cutterNAS toolDIN toolSpecial toolMetal slitting sawsShell end millsSide and face milling cuttersSide chip clearance sawsLong end millsStub roughing end millsDovetail milling cuttersCarbide slot drillsCarbide torus cuttersAngeled carbide end millsCarbide torus cuttersCarbide ball-noseed slot drillsMould cutterTool manufacturer.

Bewise Inc. www.tool-tool.com

beeway 發表在 痞客邦 留言(0) 人氣()

Bewise Inc. www.tool-tool.com
Reference source from the internet.
切 削镁合金零件是一项危险性很大的加工操作。因为镁合金的熔点很低(651℃),在切削中,产生的也高达500-600℃的切屑飞溅,使操作者处于不安全条 件下加工。加之高温的碎屑和粉尘与冷却液中的油剂混合,很容易引起燃烧,稍有不慎(处理不当),将会造成火灾事故发生。通常在切削过程中,要求一定将产生 的切屑处理好,将碎屑和粉尘,迅速处理出加工现场。一般采用在刀具前加一个隔离罩,防止切屑乱飞,将碎屑和粉尘及时清
扫干净。条件好的公司,使用 真空吸尘器把切屑、碎屑和粉末从切削区抽吸到集屑箱内,然后进行清理。经过长时间的加工实践证明,采用干式切削或使用最小量润滑(MQL)液冷却与使用真 空吸尘方法相结合的方法,能较好的收集切屑,取消清扫碎屑和粉尘的工作程序。但是,附加在机床上的真空吸尘器将给换刀和机床的高速运动造成不便。

油剂冷却液虽然减少,但还不能完全取消,所以造成火灾事故的危险依然存在。另外混合在油剂冷却液中的碎屑和粉尘也再不能回收利用,所以还需付出另派专人处理的费用。

最 近,西班牙达诺巴特(Danobat)集团所属的IDEKO研究所,为满足高速切削镁合金零件的市场需要,和多家公司合作新开发出一种安全可靠的新加工方 法。而其中的核心技术是设计出一台能包括中空的刀具、夹头和主轴在内的新型真空吸尘系统,及时、高效、彻底地将切屑和碎屑与粉尘抽吸到一个较大空间的集屑 箱内。正是这个与冷却液加注方向相反的吸尘系统,使镁合金的高速切削变得安全、可靠。


切削中产生的易燃镁合金的切屑、碎屑和粉尘可通过包括中空刀具、夹头和主轴在内的真空吸尘系统,抽吸到集屑箱内
在 新的真空吸尘系统中,最关键的零件有特别设计的新结构刀具、刀具夹头。新型刀具设计成中空型刀体和具有特殊几何形状的硬质合金刀头。通过使用CNC系统所 具有的圆弧内插补功能,控制刀具的切削运动,和设计出的具有断屑、定向控制切屑排除方向功能的切削刃共同作用,产生出的体积小而且容易折断的切屑,因而使 镁合金切屑的收集与排除变得快速、容易。该系统设计中,刀具夹头选用了HSK刀夹结构形式,与通入大流量高压冷却液效果相同,有利于切屑的顺利排除。

据IDEKO 公司透露,使用该系统能及时排除切削镁合金切屑的 95 %。同时,还对该系统能否用于其它材料,例如铝合金加工,进行了试验研究,结果表明,只要处理好影响系统全局的关键问题,例如,使用能产生出体积小、易折 断切屑的刀具,即可在加工中使用新型真空吸尘系统。

Welcome to BW tool world! We are an experienced tool maker specialized in cutting tools. We focus on what you need and endeavor to research the best cutter to satisfy users’ demand. Our customers involve wide range of industries, like mold & die, aerospace, electronic, machinery, ,,,etc. We are professional expert in cutting field. We would like to solve every problem from you. Please feel free to contact us, it’s our pleasure to serve for you. BW product including: utting tool、aerospace tool .HSS Cutting tool、Carbide end mills、Carbide cutting tool、NAS Cutting tool、Carbide end mill、Aerospace cutting tool、Carbide drill、High speed steel、Milling cutter、Core drill、Taperd end mills、Metric end mills、Miniature end mills、Pilot reamer、Electronics cutter、Step drill、Metal cutting saw、Double margin drill、Gun barrel、Angle milling cutter、Carbide burrs、Carbide tipped cutter、Chamfering tool、IC card engraving cutter、Side cutter、NAS tool、DIN tool、Special tool、Metal slitting saws、Shell end mills、Side and face milling cutters、Side chip clearance saws、Long end mills、Stub roughing end mills、Dovetail milling cutters、Carbide slot drills、Carbide torus cutters、Angeled carbide end mills、Carbide torus cutters、Carbide ball-noseed slot drills、Mould cutter、Tool manufacturer.
Bewise Inc. www.tool-tool.com

beeway 發表在 痞客邦 留言(0) 人氣()