Bewise Inc. www.tool-tool.com Reference source from the internet.

Перейти к: навигация, поиск

Линейные электронные фильтры

Фильтр Баттерворта

Фильтр Чебышёва

Эллиптический фильтр

Фильтр Бесселя

Фильтр Гаусса

Фильтр Лежандра

Фильтр Габора

Править

Фильтр Чебышёва — один из типов линейных аналоговых или цифровых фильтров, отличительной особенностью которого является более крутой спад амплитудно-частотной характеристики (АЧХ) и существенные пульсации амплитудно-частотной характеристики на частотах полос пропускания (фильтр Чебышёва I рода) и подавления (фильтр Чебышёва II рода), чем у фильтров других типов. Фильтр получил название в честь известного русского математика XIX века Пафнутия Львовича Чебышёва, так как характеристики этого фильтра основываются на многочленах Чебышёва.

Фильтры Чебышёва обычно используются там, где требуется с помощью фильтра небольшого порядка обеспечить требуемые характеристики АЧХ, в частности, хорошее подавление частот из полосы подавления, и при этом гладкость АЧХ на частотах полос пропускания и подавления не столь важна.

Различают фильтры Чебышёва I и II родов.

Содержание

[убрать]

[править] Фильтр Чебышёва I рода

АЧХ фильтра Чебышёва I рода четвёртого порядка с ω0 = 1 и \varepsilon=1

Это более часто встречающаяся модификация фильтров Чебышёва. Амплитудно-частотная характеристика такого фильтра n-го порядка задаётся следующим выражением:

G_n(\omega) = \left | H_n(j \omega) \right | = \frac{1}{\sqrt{1+\varepsilon^2 T_n^2\left(\frac{\omega}{\omega_0}\right)}}

где \varepsilon — показатель пульсаций, ω0частота среза, а Tn(x) — многочлен Чебышёва n \!-го порядка.

В полосе пропускания такого фильтра видны пульсации, амплитуда которых определяется показателем пульсации (англ. ripple factor) \varepsilon. В полосе пропускания многочлены Чебышёва принимают значения от 0 до 1, поэтому коэффициент усиления фильтра принимает значения от максимального \! G=1 до минимального G=1/\sqrt{1+\varepsilon^2}. На частоте среза ω0 коэффициент усиления имеет значение 1/\sqrt{1+\varepsilon^2}, а на частотах выше неё продолжает уменьшаться с увеличением частоты. (Примечание: обычное определение частоты среза как частоты, когда ЛАЧХ имеет значение −3 дБ в случае фильтра Чебышёва не работает).

В случае аналогового электронного фильтра Чебышёва его порядок равен числу реактивных компонентов (например, индуктивностей), использованных при его реализации.

Пульсации в полосе пропускания часто задаются в децибелах:

Пульсации в дБ = 20 \log_{10}\frac{1}{\sqrt{1+\varepsilon^2}}.

Например, пульсации амплитудой в 3 дБ соответствуют \varepsilon = 1 \!.

Более крутой спад характеристики может быть получен если допустить пульсации не только в полосе пропускания, но и в полосе подавления, добавив в передаточную функцию фильтра нулей на мнимой оси jω в комплексной плоскости. Это однако приведёт к меньшему эффективному подавлению в полосе подавления. Полученный фильтр является эллиптическим фильтром, также известным как фильтр Кауэра.

[править] Полюса и нули

Логарифм модуля амплитудной характеристики фильтра Чебышёва I рода 8-го порядка на плоскости комплексной частоты (s = σ + jω) при \varepsilon=0,\!1 и ω0 = 1. Белые пятна — это полюса фильтра. Они расположены на эллипсе с полуосью 0,3836… по действительной оси и 1,071… по мнимой оси. Полюса передаточной функции фильтра расположены в левой полуплоскости. Чёрный цвет соответствует коэффициенту передачи менее 0,05, белый соответствует коэффициенту передачи более 20.

Для простоты примем частоту среза равной единице. Полюсаpm) фильтра Чебышёва являются нулями его знаменателя. Используя комплексную частоту s, получим:

1+\varepsilon^2T_n^2(-js)=0.

Представив − js = cos(θ) и используя тригонометрическое определение многочленов Чебышёва, получим:

1+\varepsilon^2T_n^2(\cos(\theta))=1+\varepsilon^2\cos^2(n\theta)=0.

Разрешим последнее выражение относительно θ

\theta=\frac{1}{n}\arccos\left(\frac{\pm j}{\varepsilon}\right)+\frac{m\pi}{n}.

Тогда полюса фильтра Чебышёва определяются из следующего выражения:

spm = icos(θ) =
=i\cos\left(\frac{1}{n}\arccos\left(\frac{\pm j}{\varepsilon}\right)+\frac{m\pi}{n}\right).

Используя свойства тригонометрических и гиперболических функций, запишем последнее выражение в комплексной форме:

s_{pm}^\pm=
\pm\,\mathop{\mathrm{sh}}\left(\frac{1}{n}\mathop{\mathrm{arsh}}\left(\frac{1}{\varepsilon}\right)\right)\sin(\theta_m)+
+j\mathop{\mathrm{ch}}\left(\frac{1}{n}\mathop{\mathrm{arsh}}\left(\frac{1}{\varepsilon}\right)\right)\cos(\theta_m),

где m=1,\;2,\;\ldots,\;n и

\theta_m=\frac{\pi}{2}\,\frac{2m-1}{n}.

Это выражение можно рассматривать как параметрическое уравнение с параметром θn. Оно показывает, что полюса лежат на эллипсе в s-плоскости, причём центр эллипса находится в точке s = 0, полуось действительной оси имеет длину \mathop{\mathrm{sh}}(\mathop{\mathrm{arsh}}(1/\varepsilon)/n), а полуось мнимой оси имеет длину \mathop{\mathrm{ch}}(\mathop{\mathrm{arsh}}(1/\varepsilon)/n).

[править] Передаточная функция

Уравнение, выведенное выше, содержит полюса, относящиеся к комплексному коэффициенту усиления фильтра G. Для каждого полюса есть комплексно-сопряжённый, а для каждой комплексно-сопряжённой пары есть два полюса, отличающихся от них только знаком. Передаточная функция должна быть устойчивой, что означает, что её полюса должны иметь отрицательную действительную часть, то есть лежать в левой полуплоскости комплексной плоскости. Передаточная функция в этом случае задаётся следующим выражением:

H(s)=\prod_{m=0}^{n-1}\frac{1}{(s-s_{pm}^-)}

где s_{pm}^- — только те полюса, которые имеют отрицательную действительную часть.

[править] Групповая задержка

Амплитуда и групповая задержка фильтра Чебышёва I рода пятого порядка с \varepsilon=0,\!5. Видно, что в полосе пропускания и АЧХ и групповая задержка имеют пульсации, в полосе подавления этих пульсаций нет.

Групповая задержка определяется как минус производная фазы фильтра по частоте и является мерой искажения фазы сигнала на различных частотах.

\tau_g=-\frac{d}{d\omega}\arg(H(j\omega))

[править] Фазовые характеристики

Типовая ФЧХ и фазовая задержка фильтра Чебышёва I рода 10-го порядка.

Фазовые характеристики фильтра Чебышёва I рода — фазо-частотная характеристика (ФЧХ) и фазовая задержка — представлены на рисунке. Фазо-частотная характеристика показывает распределение по частоте смещения фазы выходного сигнала относительно входного. Фазовая задержка определяется как частное от деления фазо-частотной характеристики на частоту и характеризует распределение по частоте временного смещения выходного сигнала относительно входного.

\tau_{\varphi}=\frac{\arg H(j\omega)}{\omega}

[править] Временны́е характеристики

Типовые временные характеристики фильтра Чебышёва I рода 10-го порядка.

Временные характеристики фильтра Чебышёва I рода — импульсная переходная функция и переходная функция — представлены на рисунке. Импульсная переходная функция представляет собой реакцию фильтра на входной сигнал в виде дельта-функции Дирака, а переходная функция — реакцию на входное воздействие в виде единичной функции Хевисайда.

[править] Фильтр Чебышёва II рода

АЧХ фильтра Чебышёва II рода (фильтр низких частот) с ω0 = 1 и \varepsilon=0,\!01

Фильтр Чебышёва II рода (инверсный фильтр Чебышёва) используется реже, чем фильтр Чебышёва I рода ввиду менее крутого спада амплитудной характеристики, что приводит к увеличению числа компонентов. У него отсутствуют пульсации в полосе пропускания, однако присутствуют в полосе подавления. Амплитудная характеристика такого фильтра задаётся следующим выражением:

G_n(\omega,\;\omega_0) = \frac{1}{\sqrt{1+ \frac{1} {\varepsilon^2 T_n ^2 \left ( \omega_0 / \omega \right )}}}

В полосе подавления полиномы Чебышёва принимают значения от 0 до 1, из-за чего амплитудная характеристика такого фильтра принимает значения от нуля до

\frac{1}{\sqrt{1+ \frac{1}{\varepsilon^2}}}

минимальной частотой, при которой достигается этот максимум является частота среза ω0. Параметр \varepsilon связан с затуханием в полосе подавления γ в децибелах следующим выражением:

\varepsilon = \frac{1}{\sqrt{10^{0,\!1\gamma}-1}}

Для затухания на частотах полосы подавления в 5 дБ: \varepsilon=0,\!6801; для затухания в 10 дБ: \varepsilon=0,\!3333. Частота fC = ωC / (2π) является частотой среза. Частота затухания в 3 дБ fH связана с fC следующим выражением:

f_H = f_C\,\mathop{\mathrm{ch}}\left(\frac{1}{n}\mathop{\mathrm{ch}}^{-1}\frac{1}{\varepsilon}\right).

[править] Полюса и нули

Логарифм модуля амплитудной характеристики фильтра Чебышёва II рода восьмого порядка на комплексной плоскости (s = σ + jω) с \varepsilon=0,\!1 и ω0 = 1. Белые пятна соответствуют полюсам, а чёрные — нулям. Показаны все 16 полюсов. 6 нулей (все нули второго порядка) показаны также, 2 находятся за пределами картинки (один на положительной мнимой оси, другой — на отрицательной мнимой оси). Полюса передаточной функции фильтра — это полюса, находящиеся в левой полуплоскости, нули передаточной функции — это нули модуля амплитудной характеристики фильтра Чебышёва, только не второго, а первого порядка. Чёрный цвет соответствует коэффициенту усиления менее 0,01, белый — коэффициенту усиления более 3.

Приняв частоту среза равной единице, получим выражение для полюсов (ωpm) фильтра Чебышёва:

1+\varepsilon^2T_n^2(-1/js_{pm})=0.

Полюса фильтра Чебышёва II рода представляют собой «инверсию» полюсов фильтра Чебышёва I рода:

\frac{1}{s_{pm}^\pm}=
\pm\,\mathop{\mathrm{sh}}\left(\frac{1}{n}\mathop{\mathrm{arsh}}\left(\frac{1}{\varepsilon}\right)\right)\sin(\theta_m)+
+j\mathop{\mathrm{ch}}\left(\frac{1}{n}\mathop{\mathrm{arsh}}\left(\frac{1}{\varepsilon}\right)\right)\cos(\theta_m),

где m=1,\;2,\;\ldots,\;n.

Нули (ωzm) фильтра Чебышёва II рода определяются из следующего соотношения::

\varepsilon^2T_n^2(-1/js_{zm})=0.

Нули фильтра Чебышёва II рода являются «инверсией» нулей многочленов Чебышёва:

1/s_{zm} = \cos\left(\frac{\pi}{2}\,\frac{2m-1}{n}\right),

где m=1,\;2,\;\ldots,\;n.

[править] Передаточная функция

Передаточная функция задаётся при помощи полюсов в левой полуплоскости комлексной плоскости, её нули совпадают с нулями модуля амплитудной характеристики, с тем лишь отличием, что их порядок равен 1.

[править] Групповая задержка

Амплитудная характеристика и групповая задержка фильтра Чебышёва II рода пятого порядка с \varepsilon=0,\!1.

Амплитудная характеристика и групповая задержка показаны на графике. Можно видеть, что пульсации амплитуды приходятся на полосу подавления, а не на полосу пропускания.

[править] Фазовые характеристики

Типовая ФЧХ и фазовая задержка фильтра Чебышёва II рода 10-го порядка.

Фазовые характеристики фильтра Чебышёва II рода — фазо-частотная характеристика и фазовая задержка — представлены на рисунке. Фазо-частотная характеристика показывает распределение по частоте смещения фазы выходного сигнала относительно входного. Фазовая задержка определяется как частное от деления фазо-частотной характеристики на частоту и характеризует распределение по частоте временного смещения выходного сигнала относительно входного.

[править] Временные характеристики

 

Типовые временные характеристики фильтра Чебышёва II рода 5-го порядка.

Временные характеристики фильтра Чебышёва II рода — импульсная переходная функция и переходная функция — представлены на рисунке. Импульсная переходная функция представляет собой реакцию фильтра на входной сигнал в виде дельта-функции Дирака, а переходная функция — реакцию на входное воздействие в виде единичной функции Хевисайда.

[править] Цифровые фильтры Чебышёва

Фильтры Чебышёва часто реализуются в цифровой форме. Для того, чтобы от аналогового фильтра перейти к цифровому, необходимо над каждым каскадом фильтра осуществить билинейное преобразование. Весь фильтр получается путём последовательного соединения каскадов. Простой пример фильтра Чебышёва низких частот I рода чётного порядка:

Z-преобразование каждого каскада:

S(Z) =\frac{a(Z)}{b(Z)}=\frac{\alpha_0 + \alpha_1 \cdot Z^{-1}+ \alpha_2 \cdot Z^{-2}}{1 + \beta_1 \cdot Z^{-1} + \beta_2 \cdot Z^{-2}}.

Во временной области преобразование записывается как:

y[n]=\alpha_0 \cdot x[0] + \alpha_1 \cdot x[-1] + \alpha_2 \cdot x[-2] - \beta_1 \cdot y[-1] - \beta_2 \cdot y[-2]

Коэффициенты \alpha_i \! и \beta_i \! подсчитываются из коэффициентов a_i \! и \! b_i:

 K = \mathop{\mathrm{tg}}\left( \pi \frac{\mbox{Frequency}}{\mbox{SampleRate}}\right)
 \mbox{temp}_i =\cos\frac{(2i+1)\pi}{n}
 b_i = \frac{1}{\mathop{\mathrm{ch}}^2\gamma-\mbox{temp}_i ^2}
 a_i = K \cdot b_i \cdot \mathop{\mathrm{sh}}\,\gamma \cdot 2\,\mbox{temp}_i
  \alpha_0 = K \cdot K
  \alpha_1 = 2 \cdot K^2
  \alpha_2 = K \cdot K
  \beta_0^\prime =   (a_i + K^2 + b_i)
  \beta_1^\prime = 2 \cdot (b_i - K^2)
  \beta_2^\prime =   (a_i - K^2 - b_i)
  \beta_1 = \beta_1^\prime / \beta_0^\prime
  \beta_2 = \beta_2^\prime / \beta_0^\prime

Для получения фильтра Чебышёва более высокого порядка, необходимо соединить последовательно несколько каскадов.

[править] Сравнение с другими линейными фильтрами

Ниже представлены графики АЧХ фильтра Чебышёва I и II родов в сравнении с некоторыми другими фильтрами с тем же числом коэффициентов:

По графикам видно, что амплитудная характеристики фильтров Чебышёва имее более крутой спад, чем у фильтров Баттерворта, но не такой крутой, как у эллиптического фильтра.

[править] См. также

[править] Библиография

  • В.А. Лукас Теория автоматического управления. — M.: Недра, 1990.
  • Б.Х. Кривицкий Справочник по теоретическим основам радиоэлектроники. — М.: Энергия, 1977.
  • Richard W. Daniels Approximation Methods for Electronic Filter Design. — New York: McGraw-Hill, 1974. — ISBN 0-07-015308-6
  • Steven W. Smith The Scientist and Engineer’s Guide to Digital Signal Processing. — Second Edition. — San-Diego: California Technical Publishing, 1999. — ISBN 0-9660176-4-1
  • Britton C. Rorabaugh Approximation Methods for Electronic Filter Design. — New York: McGraw-Hill, 1999. — ISBN 0-07-054004-7
  • B. Widrow, S.D. Stearns Adaptive Signal Processing. — Paramus, NJ: Prentice-Hall, 1985. — ISBN 0-13-004029-0
  • S. Haykin Adaptive Filter Theory. — 4rd Edition. — Paramus, NJ: Prentice-Hall, 2001. — ISBN 0-13-090126-1
  • Michael L. Honig, David G. Messerschmitt Adaptive Filters — Structures, Algorithms, and Applications. — Hingham, MA: Kluwer Academic Publishers, 1984. — ISBN 0-89838-163-0
  • J.D. Markel, A.H. Gray, Jr. Linear Prediction of Speech. — New York: Springer-Verlag, 1982. — ISBN 0-387-07563-1
  • L.R. Rabiner, R.W. Schafer Digital Processing of Speech Signals. — Paramus, NJ: Prentice-Hall, 1978. — ISBN 0-13-213603-1
  • Richard J. Higgins Digital Signal Processing in VLSI. — Paramus, NJ: Prentice-Hall, 1990. — ISBN 0-13-212887-X
  • A. V. Oppenheim, R. W. Schafer Digital Signal Processing. — Paramus, NJ: Prentice-Hall, 1975. — ISBN 0-13-214635-5
  • L. R. Rabiner, B. Gold Theory and Application of Digital Signal Processing. — Paramus, NJ: Prentice-Hall, 1986. — ISBN 0-13-914101-4
  • John G. Proakis, Dimitris G. Manolakis Introduction to Digital Signal Processing. — Paramus, NJ: Prentice-Hall, 1988. — ISBN 0-02-396815-X

[править] Ссылки

歡迎來到Bewise Inc.的世界,首先恭喜您來到這接受新的資訊讓產業更有競爭力,我們是提供專業刀具製造商,應對客戶高品質的刀具需求,我們可以協助客戶滿足您對產業的不同要求,我們有能力達到非常卓越的客戶需求品質,這是現有相關技術無法比擬的,我們成功的滿足了各行各業的要求,包括:精密HSS DIN切削刀具協助客戶設計刀具流程DIN or JIS 鎢鋼切削刀具設計NAS986 NAS965 NAS897 NAS937orNAS907 航太切削刀具,NAS航太刀具設計超高硬度的切削刀具醫療配件刀具設計複合式再研磨機PCD地板專用企口鑽石組合刀具NSK高數主軸與馬達專業模具修補工具-氣動與電動粉末造粒成型機主機版專用頂級電桿PCD V-Cut捨棄式圓鋸片組粉末成型機主機版專用頂級電汽車業刀具設計電子產業鑽石刀具木工產業鑽石刀具銑刀與切斷複合再研磨機銑刀與鑽頭複合再研磨機銑刀與螺絲攻複合再研磨機等等。我們的產品涵蓋了從民生刀具到工業級的刀具設計;從微細刀具到大型刀具;從小型生產到大型量產;全自動整合;我們的技術可提供您連續生產的效能,我們整體的服務及卓越的技術,恭迎您親自體驗!!

BW Bewise Inc. Willy Chen willy@tool-tool.com bw@tool-tool.com www.tool-tool.com skype:willy_chen_bw mobile:0937-618-190 Head &Administration Office No.13,Shiang Shang 2nd St., West Chiu Taichung,Taiwan 40356 http://www.tool-tool.com / FAX:+886 4 2471 4839 N.Branch 5F,No.460,Fu Shin North Rd.,Taipei,Taiwan S.Branch No.24,Sec.1,Chia Pu East Rd.,Taipao City,Chiayi Hsien,Taiwan

Welcome to BW tool world! We are an experienced tool maker specialized in cutting tools. We focus on what you need and endeavor to research the best cutter to satisfy users demand. Our customers involve wide range of industries, like mold & die, aerospace, electronic, machinery, etc. We are professional expert in cutting field. We would like to solve every problem from you. Please feel free to contact us, its our pleasure to serve for you. BW product including: cutting toolaerospace tool .HSS  DIN Cutting toolCarbide end millsCarbide cutting toolNAS Cutting toolNAS986 NAS965 NAS897 NAS937orNAS907 Cutting Tools,Carbide end milldisc milling cutter,Aerospace cutting toolhss drillФрезерыCarbide drillHigh speed steelCompound SharpenerMilling cutterINDUCTORS FOR PCDCVDD(Chemical Vapor Deposition Diamond )’PCBN (Polycrystalline Cubic Boron Nitride) Core drillTapered end millsCVD Diamond Tools Inserts’PCD Edge-Beveling Cutter(Golden FingerPCD V-CutterPCD Wood toolsPCD Cutting toolsPCD Circular Saw BladePVDD End Millsdiamond tool. INDUCTORS FOR PCD . POWDER FORMING MACHINE Single Crystal Diamond Metric end millsMiniature end millsСпециальные режущие инструментыПустотелое сверло Pilot reamerFraisesFresas con mango PCD (Polycrystalline diamond) ‘FresePOWDER FORMING MACHINEElectronics cutterStep drillMetal cutting sawDouble margin drillGun barrelAngle milling cutterCarbide burrsCarbide tipped cutterChamfering toolIC card engraving cutterSide cutterStaple CutterPCD diamond cutter specialized in grooving floorsV-Cut PCD Circular Diamond Tipped Saw Blade with Indexable Insert PCD Diamond Tool Saw Blade with Indexable InsertNAS toolDIN or JIS toolSpecial toolMetal slitting sawsShell end millsSide and face milling cuttersSide chip clearance sawsLong end millsend mill grinderdrill grindersharpenerStub roughing end millsDovetail milling cuttersCarbide slot drillsCarbide torus cuttersAngel carbide end millsCarbide torus cuttersCarbide ball-nosed slot drillsMould cutterTool manufacturer.

Bewise Inc. www.tool-tool.com

ようこそBewise Inc.の世界へお越し下さいませ、先ず御目出度たいのは新たな

情報を受け取って頂き、もっと各産業に競争力プラス展開。

弊社は専門なエンドミルの製造メーカーで、客先に色んな分野のニーズ

豊富なパリエーションを満足させ、特にハイテク品質要求にサポート致します。

弊社は各領域に供給できる内容は:

(1)精密HSSエンドミルのR&D

(2)Carbide Cutting tools設計

(3)鎢鋼エンドミル設計

(4)航空エンドミル設計

(5)超高硬度エンドミル

(6)ダイヤモンドエンドミル

(7)医療用品エンドミル設計

(8)自動車部品&材料加工向けエンドミル設計

弊社の製品の供給調達機能は:

(1)生活産業~ハイテク工業までのエンドミル設計

(2)ミクロエンドミル~大型エンドミル供給

(3)小Lot生産~大量発注対応供給

(4)オートメーション整備調達

(5)スポット対応~流れ生産対応

弊社の全般供給体制及び技術自慢の総合専門製造メーカーに貴方のご体験を御待ちしております。

Bewise Inc. talaşlı imalat sanayinde en fazla kullanılan ve üç eksende (x,y,z) talaş kaldırabilen freze takımlarından olan Parmak Freze imalatçısıdır. Çok geniş ürün yelpazesine sahip olan firmanın başlıca ürünlerini Karbür Parmak Frezeler, Kalıpçı Frezeleri, Kaba Talaş Frezeleri, Konik Alın Frezeler, Köşe Radyüs Frezeler, İki Ağızlı Kısa ve Uzun Küresel Frezeler, İç Bükey Frezeler vb. şeklinde sıralayabiliriz.

BW специализируется в научных исследованиях и разработках, и снабжаем самым высокотехнологичным карбидовым материалом для поставки режущих / фрезеровочных инструментов для почвы, воздушного пространства и электронной индустрии. В нашу основную продукцию входит твердый карбид / быстрорежущая сталь, а также двигатели, микроэлектрические дрели, IC картонорезальные машины, фрезы для гравирования, режущие пилы, фрезеры-расширители, фрезеры-расширители с резцом, дрели, резаки форм для шлицевого вала / звездочки роликовой цепи, и специальные нано инструменты. Пожалуйста, посетите сайт  www.tool-tool.com  для получения большей информации.

BW is specialized in R&D and sourcing the most advanced carbide material with high-tech coating to supply cutting / milling tool for mould & die, aero space and electronic industry. Our main products include solid carbide / HSS end mills, micro electronic drill, IC card cutter, engraving cutter, shell end mills, cutting saw, reamer, thread reamer, leading drill, involute gear cutter for spur wheel, rack and worm milling cutter, thread milling cutter, form cutters for spline shaft/roller chain sprocket, and special tool, with nano grade. Please visit our web  www.tool-tool.com  for more info.

arrow
arrow
    全站熱搜
    創作者介紹
    創作者 beeway 的頭像
    beeway

    BW Professional Cutter Expert www.tool-tool.com

    beeway 發表在 痞客邦 留言(0) 人氣()