Bewise Inc. www.tool-tool.com Reference source from the internet.

Ein digitales Filter ist ein elektronisches Filter welches ähnliche Aufgaben wie ein analoges Filter zu erfüllen hat: Es dient der Manipulation eines Signals wie beispielsweise das Sperren oder Durchlassen eines bestimmten Frequenzbereiches. Der Unterschied zum analogen Filter liegt in der Realisierung: Analoge Filter werden mit passiven elektronischen Bauelementen wie Kondensatoren, Spulen, Widerständen oder aktiv mit Operationsverstärkern aufgebaut. Digitale Filter werden mit Logikbausteinen wie ASICs, FPGAs oder in Form eines sequentiellen Programmes mit einem Signalprozessor realisiert.

Als weiteres wesentliches Merkmal verarbeiten digitale Filter keine kontinuierlichen Signale, sondern ausschließlich zeit- und wertdiskrete Signale. Ein zeitdiskretes Signal besteht in der zeitlich periodischen Abfolge nur aus einzelnen Impulsen, welche den Signalverlauf über die Zeit darstellen, den jeweiligen Abtastwerten. Der Abtastwert ist wertdiskret, da die digitale Zahlendarstellung nur eine endliche Auflösung bietet.

Das Filterverhalten von digitalen Filtern ist leichter zu reproduzieren. Auch lassen sich bestimmte Filtertypen, wie die so genannten FIR-Filter nur als digitales Filter und nicht als eine analoge Filterschaltung realisieren. Digitale Filter in Kombination mit Analog-Digital-Umsetzern und Digital-Analog-Umsetzern ersetzen auch zunehmend bisher rein analog realisierte Filterstrukturen. Digitale Filter stellen die Grundlage der digitalen Signalverarbeitung dar und finden beispielsweise Anwendung in der Kommunikationstechnologie.

Kontinuierliche Filterübertragungsfunktionen und daraus gebildete analoge Filter wie Butterworthfilter, Besselfilter, Tschebyschefffilter oder elliptische Filter lassen sich nach Anpassung der Filterübertragungsfunktion an das endliche, diskrete Spektrum in Form von digitalen IIR-Filtern mit geeignet gewählten Filterkoeffizienten nachbilden.


Mathematische Definition [Bearbeiten]

Ein abstraktes digitales Filter ist ein Operator, der zeitdiskreten digitalen Signalen wieder ebensolche zuordnet. Oft wird zur Vereinfachung der Beschreibung angenommen, dass das Signal reelle Zahlen als Werte hat, d. h. die Quantisierung der Abtastwerte (d. h. das Runden auf einen der endlich vielen Werte der Bitdarstellung) des digitalen Signals wird nicht berücksichtigt. Ein zeitdiskretes Signal x ist eine Abbildung, die jedem Punkt der diskreten, äquidistanten Menge

\Gamma = \{t_n:=t_0+n \Delta t, n\in \Z \}

eine Zahl zuordnet. Es kann auch durch die Folge seiner Funktionswerte

x[n] = xn: = x(tn)

angegeben werden. Die Notation mit eckigen Klammern wird in der Informatik der mit Index in der Mathematik vorgezogen.

Die grundlegende Funktionsweise einer (endlichen, nichtrekursiven) Filteroperation ist die folgende: Zu jedem Zeitpunkt, bzw. Punkt aus dem Gitter, wird eine Umgebung aus naheliegenden Zeitpunkten fixiert, z. B. je zwei Punkte vorher und nachher. Die Form dieser Umgebung ist dabei über die Zeit konstant. Enthält die Umgebung nur zeitlich vorhergehende Punkte, so wird das Filter kausal genannt.

Jetzt liegt zu jedem Zeitpunkt das Tupel der Werte in seiner Umgebung vor. Auf dieses Tupel wird immer eine gleiche Funktion angewendet, z. B. Maximumsbildung, Mittelwertbildung, gewichtete Mittelwerte,… Ist diese Funktion linear, so wird das Filter linear genannt, sonst nichtlinear.

Betrachtet man eine Familie von Signalen, die sich durch Zeitverschiebung auseinander ergeben, und erzeugt die Familie der durch das Filter transformierten Signale, so unterscheiden sich die gefilterten Signale durch exakt dieselbe Zeitverschiebung untereinander. Das Filter ist zeitinvariant. Signaltransformationen mit diesen Eigenschaften werden auch als LTI-Systeme bezeichnet, englisch für Linear Time Invariant. Betrachtet man das diskrete Signal als Koeffizientenfolge einer Fourier-Reihenentwicklung, d. h. die Signalwerte als Fourier-Integrale x_n=\int_{-1/2}^{1/2}\;f(s)\cdot e^{i2\pi sn}\,ds, so vermag ein LTI-System die Amplituden |f(s)| der einzelnen Frequenzen zu verändern, und gegenüber dem Eingangssignal in der Phase arg(f(s)) zu drehen.

Faltungsoperatoren als LTI-Systeme [Bearbeiten]

Ein Faltungsoperator ist über eine Folge f von Koeffizienten gegeben, welche per Faltung auf das diskrete Signal x wirkt:

x\mapsto y:=f*x, y_n=\sum_{k=-\infty}^\infty f_k\cdot x_{n-k}

Diese Summe ist in folgenden Fällen wohldefiniert:

  1. x ist beliebig und f ist als Folge endlich, so dass die Summe endlich ist,
  2. x ist beschränkt, und f ist absolut summierbar, => y ist beschränkt,
  3. x ist "quadratsummierbar" und f hat eine beschränkte Frequenzantwort, => y ist "quadratsummierbar".
  4. x ist absolut summierbar und f ist absolut summierbar => y ist absolut summierbar.

Dabei heißt

  • x beschränkt, falls -K < xn < K für ein K und alle n∈ℤ,
  • x „quadratsummierbar“, wenn die Reihe der Betragsquadrate konvergiert
    E(x):=\|x\|_2^2:=\sum_{n=-\infty}^\infty |x_n|^2&lt;\infty,
  • f endlich, wenn es eine endliche Teilmenge I von ℤ gibt, so dass fn≠0 nur für n∈I gilt,
  • f absolut summierbar, falls die Reihe der Beträge konvergiert
    \|f\|_1:=\sum_{n=-\infty}^\infty |f_n|&lt;\infty,
  • f von beschränkter Frequenzantwort, wenn die Fourier-Reihe zu f
    \hat f(\xi):=\sum_{k=-\infty}^\infty f_ke^{-ik\xi}
    fast überall konvergiert und (essentiell) beschränkt ist.

Wie man sich überlegt, ist die Impulsantwort des Faltungsoperators in allen diesen Fällen die Folge f.

Für ein endliches Filter nennt man die Menge I auch Träger, die Differenz zwischen Anfangs- und Endpunkt des Trägers wird Länge des Filters genannt. Die Elemente des Trägers werden häufig als Taps bezeichnet, ihre Anzahl ist um Eins höher als die Länge des Signals. Nur dieser erste, endliche Fall entspricht dem in der Einleitung geschilderten. Die Menge I definiert die Umgebung, welche zur Bestimmung der gefilterten Werte herangezogen wird, die Glieder von f definieren eine lineare Funktion der Werte dieser Umgebung.

Die absolut summierbaren Filterfolgen f des zweiten Falls haben nicht nur eine beschränkte, sondern sogar eine stetige Frequenzantwort. Diese gibt die Amplitudenänderung für die Elementarschwingungen e(ω)=(en(ω):n∈ℤ) mit en(ω):=exp(inω)=cos(nω)+i sin(nω) an. Diese sind beschränkt, deshalb ist f*e(ω) definiert und

[f*e(\omega)]_n=\sum f_k e_{n-k}(\omega)=e_n(\omega)\sum f_ke^{-ik\omega}=\hat f(\omega) e_n(\omega).

Ideale frequenzselektive Filter nehmen in ihrer Frequenzantwort nur die Werte 0 und 1 an. Die auftretenden Sprünge lassen sich nur schwer mit den stetigen Frequenzantworten absolut summierbarer und noch schlechter mit den polynomialen Frequenzantworten endlicher Filter approximieren.

Für die Fourier-Reihen, welche nur im dritten Fall alle existieren (als L²-Funktionen), gilt die Beziehung:

\hat y(\xi)=\hat f(\xi)\cdot \hat x(\xi).

Die Quadratsumme E(x) wird auch als "Energie" des Signals bezeichnet. Aufgrund der Parseval-Identität

\|x\|_2^2=\frac1{2\pi}\|\hat x\|_2^2:=\frac1{2\pi}\int_{-\pi}^\pi|\hat x(\xi)|^2\,d\xi

kann mittels frequenzselektiver Filter eine orthogonale Zerlegung des Signals erreicht werden.

Endliche Spezialfälle [Bearbeiten]

Hat der Träger des Filters f endliche Länge, so wird das Filter als FIR-System bezeichnet, FIR für endliche Impulsantwort (engl. Finite Impulse Response). Diese Filter werden auch als nicht-rekursiv bzw. rückkopplungsfrei implementierbar bezeichnet

Hat der Träger des Filters f keine endliche Länge, so wird das Filter als IIR-System bezeichnet, IIR für unendliche Impulsantwort (engl. Infinite Impulse Response). Unter diesen gibt es eine Klasse von Filtern f, die als rekursiv bzw. mit Rückkopplung implementierbar bezeichnet werden, die sich als Quotient endlicher Filter darstellen lassen, d. h. es gibt zwei endliche Folgen a und b, so dass im Faltungsprodukt a*f=b gilt. Nur solche unendlichen Filter lassen sich überhaupt exakt implementieren.

Implementierungen [Bearbeiten]

  • Software-Implementierung: Es können digitale Filter mit vielen Taps berechnet werden, an die keine Echtzeitanforderungen gestellt werden (z. B. in Sound-Editoren für Computer). Realisierungsmöglichkeiten sind: spezialisierte Signalprozessoren, Microcontroller, Mikroprozessoren.
  • Hardware-Implementierung: Es können digitale Filter mit Echtzeitanforderungen (z. B. in der Mobilfunktechnik, als Kanalfilter, Interpolationsfilter für digitales Fernsehen, …) aber mit weniger Taps als in Software-Implementierungen erstellt werden. Realisierungsmöglichkeiten: FPGAs, CPLDs oder Spezialbausteine.

Vor- und Nachteile von Digitalfiltern [Bearbeiten]

Digitale Filter spielen eine große Rolle in der Kommunikationstechnik. Sie haben gegenüber analogen Filtern den wichtigen Vorzug, ihre technischen Daten jederzeit exakt einzuhalten.

Vorteile [Bearbeiten]
  • keine Schwankungen durch Toleranz der Bauteile
  • keine Alterung der Bauteile
  • kein manueller Abgleich in der Fertigung notwendig, daher raschere Endprüfung von Geräten
  • mögliche Filterfunktionen, die mit Analogfiltern nur schwer oder gar nicht realisierbar sind, beispielsweise Filter mit linearer Phase.

Nachteile digitaler Filter [Bearbeiten]
  • begrenzter Frequenzbereich (durch periodische Fortsetzung des Spektrums)
  • begrenzter Wertebereich (durch Wertequantisierung)
  • durch interne Rundungs-, Abschneide- und Begrenzungsoperationen zur Wortlängenbegrenzung weisen digitale Filter in der Praxis "Quantisierungsrauschen" und andere nichtlineare Effekte auf, die sich vor allem in rekursiven Filtern höherer Ordnung bemerkbar machen und eine feinere Quantisierung, Nutzung von Gleitkommazahlen, angepassten Filterstrukturen wie den Einsatz von Wellendigitalfiltern erfordern können.

Klassifikation von digitalen Filtern [Bearbeiten]

Frequenzlineare Filter: [Bearbeiten]

Anhand des Aufbaus lassen sich zwei Klassen von digitalen Filtern unterscheiden:

Eine zweite Unterscheidung lässt sich anhand der Impulsantwort treffen:

  • FIR-Filter (Finite Impulse Response) - Filter mit endlich langer Impulsantwort. FIR-Filter beinhalten meistens nur nicht-rekursive Elemente. Es gibt aber auch spezielle FIR-Filterstrukturen mit Rückkopplungen, ein Beispiel dafür sind CIC-Filter.
  • IIR-Filter (Infinite Impulse Response) - Filter mit unendlich langer Impulsantwort.

FIR-Filter sind immer stabil, auch jene mit rekursiven Elementen. Dies liegt darin begründet, dass die nichtrekursiven Formen nur Nullstellen und triviale Polstellen im Ursprung in der Übertragungsfunktion aufweisen. Und die nichttrivialen Polstellen bei rekursiven Formen der FIR-Filter immer am Einheitskreis liegen. Nullstellen unterliegen bezüglich des Stabilitätskriteriums keiner Beschränkung in ihrer Lage im Pol-Nullstellen-Diagramm. Liegen sie alle innerhalb des Einheitskreises, so spricht man von einem minimalphasigen System, liegt mindestens eine außerhalb, so handelt es sich um ein nicht-minimalphasiges System. Beim Entwurf eines FIR-Filters wird in den meisten Fällen eine Fensterung der Impulsantwort vorgenommen, um den Gibbs-Effekt zu verringern.

IIR-Filter sind nur dann stabil, wenn alle Polstellen innerhalb des Einheitskreises liegen. Liegen einfache Polstellen auf dem Einheitskreis, so ist das System bedingt stabil, d. h. in Abhängigkeit vom Eingangssignal. Sobald zwei oder mehr Polstellen auf demselben Punkt des Einheitskreises oder auch nur eine Polstelle außerhalb des Einheitskreises liegt, liegt ein instabiles Filter vor.

Der Vorteil von IIR Filtern liegt darin, dass sie in der Übertragungsfunktion neben den Nullstellen auch Polstellen aufweisen und damit höhere Filtergüten ermöglichen. Die Berechnung eines IIR-Filters ist gegenüber der eines FIR-Filters aufwändiger und sollte auch eine Stabilitätsuntersuchung der quantisierten Koeffizienten umfassen. Eine zuverlässige Methode zur Koeffizientenbestimmung eines IIR-Filters bietet die Methode nach Prony.

Praktisch durchgeführt werden die Koeffizientenbestimmung mit Programmen wie MATLAB.

Frequenzverzerrte Filter [Bearbeiten]

(basieren auf der Tiefpass-Tiefpass-Transformation)

Eine Unterscheidung dieser Filter ist anhand der Impulsantwort nicht mehr möglich.

  • WFIR-Filter warped FIR - sind stabil. Diese Filter basieren auf einem FIR-Filter, welches aber frequenzverzerrt ist. Sie besitzen immer eine unendliche Impulsantwort.
  • WIIR-Filter warped IIR - sind ebenfalls nur dann stabil, wenn alle Polstellen innerhalb des Einheitskreises liegen. Auch sie gehören zu den frequenzverzerrten Filtern. Sie lassen sich nicht direkt realisieren, da ein Koeffizientenmapping erforderlich ist, um verzögerungsfreie Schleifen zu entfernen.

Multiratenfilter [Bearbeiten]

Sie dienen der Konvertierung zwischen verschiedenen Abtastraten und vermeiden das Auftreten von Spiegelspektren bzw. Aliasing. Beispiele von Multiratenfilter sind CIC-Filter.

Siehe auch [Bearbeiten]

Filter (Elektronik), Filterfunktion, Hochpassfilter, Tiefpassfilter, Bandpass, Kalman-Filter, Fourieranalyse, FFT, Wavelet, ARMA, Wellendigitalfilter, Matched Filter

Weblinks [Bearbeiten]

歡迎來到Bewise Inc.的世界,首先恭喜您來到這接受新的資訊讓產業更有競爭力,我們是提供專業刀具製造商,應對客戶高品質的刀具需求,我們可以協助客戶滿足您對產業的不同要求,我們有能力達到非常卓越的客戶需求品質,這是現有相關技術無法比擬的,我們成功的滿足了各行各業的要求,包括:精密HSS DIN切削刀具協助客戶設計刀具流程DIN or JIS 鎢鋼切削刀具設計NAS986 NAS965 NAS897 NAS937orNAS907 航太切削刀具,NAS航太刀具設計超高硬度的切削刀具醫療配件刀具設計複合式再研磨機PCD地板專用企口鑽石組合刀具NSK高數主軸與馬達專業模具修補工具-氣動與電動粉末造粒成型機主機版專用頂級電桿PCD V-Cut捨棄式圓鋸片組粉末成型機主機版專用頂級電汽車業刀具設計電子產業鑽石刀具木工產業鑽石刀具銑刀與切斷複合再研磨機銑刀與鑽頭複合再研磨機銑刀與螺絲攻複合再研磨機等等。我們的產品涵蓋了從民生刀具到工業級的刀具設計;從微細刀具到大型刀具;從小型生產到大型量產;全自動整合;我們的技術可提供您連續生產的效能,我們整體的服務及卓越的技術,恭迎您親自體驗!!

BW Bewise Inc. Willy Chen willy@tool-tool.com bw@tool-tool.com www.tool-tool.com skype:willy_chen_bw mobile:0937-618-190 Head &Administration Office No.13,Shiang Shang 2nd St., West Chiu Taichung,Taiwan 40356 http://www.tool-tool.com / FAX:+886 4 2471 4839 N.Branch 5F,No.460,Fu Shin North Rd.,Taipei,Taiwan S.Branch No.24,Sec.1,Chia Pu East Rd.,Taipao City,Chiayi Hsien,Taiwan

arrow
arrow
    全站熱搜
    創作者介紹
    創作者 beeway 的頭像
    beeway

    BW Professional Cutter Expert www.tool-tool.com

    beeway 發表在 痞客邦 留言(0) 人氣()