Bewise Inc. www.tool-tool.com Reference source from the internet.
所 谓加工中心参考点又名原点或零点,是机床的机械原点和电气原点相重合的点,是原点复归后机械上固定的点。每台机床可以有一个参考原点,也可以据需要设置多 个参考原点,用于自动刀具交换(ATC)或自动拖盘交换(APC)等。参考点作为工件坐标系的原始参照系,机床参考点确定后,各工件坐标系随之建立。所谓 机械原点,是基本机械坐标系的基准点,机械零部件一旦装配完毕,机械原点随即确立。所谓电气原点,是由机床所使用的检测反馈元件所发出的栅点信号或零标志 信号确立的参考点。为了使电气原点与机械原点重合,必须将电气原点到机械原点的距离用一个设置原点偏移量的参数进行设置。这个重合的点就是机床原点。在加 工中心使用过程中,机床手动或者自动回参考点操作是经常进行的动作。不管机床检测反馈元件是配用增量式脉冲编码器还是绝对式脉冲编码器,在某些情况下,如 进行ATC或APC过程中,机床某一轴或全部轴都要先回参考原点。
按机床检测元件检测原点信号方式的不同,返回机床参考点的方法有两 种。一种为栅点法,另一种为磁开关法。在栅点法中,检测器随着电机一转信号同时产生一个栅点或一个零位脉冲,在机械本体上安装一个减速撞块及一个减速开关 后,数控系统检测到的第一个栅点或零位信号即为原点。在磁开关法中,在机械本体上安装磁铁及磁感应原点开关,当磁感应原点开关检测到原点信号后,伺服电机 立即停止,该停止点被认作原点。栅点方法的特点是如果接近原点速度小于某一固定值,则伺服电机总是停止于同一点,也就是说,在进行回原点操作后,机床原点 的保持性好。磁开关法的特点是软件及硬件简单,但原点位置随着伺服电机速度的变化而成比例地漂移,即原点不确定。目前,几乎所有的机床都采用栅点法。
使用栅点法回机床原点的几种情形如下:
1. 使用增量检测反馈元件的机床开机后的第一次回机床原点;
2. 使用绝对式检测反馈元件的机床安装后调试时第一次机床开机回原点;
3. 栅点偏移量参数设置调整后机床第一次手动回原点。
按照检测元件测量方式的不同分为以绝对脉冲编码器方式归零和以增量脉冲编码器方式归零。在使用绝对脉冲编码器作为测量反馈元件的系统中,机床调试前第一 次开机后,通过参数设置配合机床回零操作调整到合适的参考点后,只要绝对脉冲编码器的后备电池有效,此后的每次开机,不必进行回参考点操作。在使用增量脉 冲编码器的系统中,回参考点有两种模式,一种为开机后在参考点回零模式各轴手动回原点,每一次开机后都要进行手动回原点操作;另一种为使用过程中,在存储 器模式下的用G代码指令回原点。
使用增量式脉冲编码器作为测量反馈元件的机床开机手动回原点的动作过程一般有以下三种:
1.手动 回原点时,回原点轴先以参数设置的快速进给速度向原点方向移动,当原点减速撞块压下原点减速开关时,伺服电机减速至由参数设置的原点接近速度继续向前移 动,当减速撞块释放原点减速开关后,数控系统检测到编码器发出的第一个栅点或零标志信号时,归零轴停止,此停止点即为机床参考点。
2.回原点轴先以快速进给速度向原点方向移动,当原点减速开关被减速撞块压下时,回原点轴制动到速度为零,在以接近原点速度向相反方向移动,当减速撞块释放原点接近开关后,数控系统检测到检测反馈元件发出的第一个栅点或零标志信号时,回零轴停止,该点即机床原点。
3.回原点时,回原点轴先以快速进给速度向原点方向移动,当原点减速撞块压下原点减速开关时,回归原点轴制动到速度为零,再向相反方向微动,当减速撞块 释放原点减速开关时,归零轴又反向沿原快速进给方向移动,当减速撞块再次压下原点减速开关时,归零轴以接近原点速度前移,减速撞块释放减速开关后,数控系 统检测到第一个栅点或零标志信号时,归零轴停止,机床原点随之确立。
使用增量式检测反馈元件的机床开机第一次各伺服轴手动回原点大多采用撞块式复归,其后各次的原点复归可以用G代码指令以快速进给速度高速复归至第一次原点复归时记忆的参考点位置。
进一步从数控系统控制过程来分析机床原点的复归,机床在回机床原点模式下,伺服电机以大于某一固定速度的进给速度向原点方向旋转,当数控系统检测到电机 一转信号时,数控系统内的参考计数器被清零。如果通过参数设置了栅点偏移量,则参考计数器内也自动被设定为和栅点偏移量相等的值。此后,参考计数器就成为 一个环行计数器。当计数器对移动指令脉冲计数到参考计数器设定的值时被复位,随着一转信号的出现产生一个栅点。当减速撞块压下原点减速开关时,电机减速到 接近原点速度运行,撞块释放原点减速开关后,电机在下一个栅点停止,产生一个回原点完成标志信号,参考位置被复位。电源开启后第二次返回原点,由于参考计 数器已设置,栅点已建立,因此可以直接返回原点位置。使用绝对检测反馈元件的机床第一次回原点时,首先数控系统与绝对式检测反馈元件进行数据通信以建立当 前的位置,并计算当前位置到机床原点的距离及当前位置到最近栅点的距离,将计算值赋给计数器,栅点被确立。
当加工中心回参考点出现故障时,首 先由简单到复杂进行检查。先检查原点减速憧块是否松动,减速开关固定是否牢固,开关是否损坏,若无问题,应进一步用百分表或激光测量仪检查机械相对位置的 漂移量,检查减速撞块的长度,检查回原点起始位置、减速开关位置与原点位置的关系,检查回原点模式,是否是在开机后的第一次回原点,是否采用绝对脉冲编码 器,伺眼电机每转的运动量、指令倍比及检测倍乘比,检查回原点快速迸给速度的参数设置、接近原点速度的参数设置及快速进给时间常数的参数设置是否合适,检 查系统是全闭环还是半闭环,检查参考计数器设置是否适当等。
回原点故障现象及诊断调整步骤如下:
1.机床回原点 后原点漂移检查是否采用绝对脉冲编码器,如果采用,诊断及调整步骤见使用绝对脉冲编码器的机床回原点时的原点漂移;若是采用增量脉冲编码器的机床,应确定 系统是全闭环还是半闭环,若为全闭环系统,诊断调整步骤见全闭环系统中的原点偏移;若为半闭环系统,用百分表或激光测量仪检查机械相对位置是否漂移。若不 漂移,只是位置显示有偏差,检查是否为工件坐标系偏置无效。在机床回原点后,机床CRT位置显示为一非零值,该值取决于某些诸如工件坐标系偏置一类的参数 设置。若机械相对位置偏移,确定偏移量。若偏移量为一栅格,诊断方法见原点漂移一栅点的处理步骤。若漂移量为数个脉冲,见原点漂移数个脉冲的诊断步骤。否 则检查脉冲数量和参考计数器的值是否匹配。如不匹配,修正参考计数器的值使之匹配;如果匹配,则脉冲编码器坏,需要更换。
2.使用绝对脉冲编码器的机床回原点时的原点漂移
首先检查并重新设置与机床回原点有关的检测绝对位置的有关参数,重新再试一次回原点操作,若原点仍漂移,检查机械相对是否有变化。如无漂移,只是位置显示有偏差,则检查工件坐标偏置是否有效;若机械位置偏移,则绝对脉冲编码器故障。
3.全闭环系统中的原点漂移
先检查半闭环系统回原点的漂移情况,如果正常,应检查电机一转标志信号是否由半闭环系统提供,检查有关参数设置及信号电缆联接。如参数设置正常,则光栅尺等线性测量元件不良或其接口电路故障。如参数设置不正确,则修正设置重试。
4.原点漂移一个栅点
先 减小由参数设置的接近原点速度,重试回原点操作,若原点不漂移,则为减速撞块太短或安装不良。可通过改变减速撞块或减速开关的位置来解决,也可通过设置栅 点偏移改变电气原点解决。当一个减速信号由硬件输出后,到数字伺服软件识别这个信号需要一定时间,因此当减速撞块离原点太近时软件有时捕捉不到原点信号, 导致原点漂移。
如果减小接近原点速度参数设置后,重试原点复归,若原点仍漂移,可减小‘快速进给速度或快速进给时间常数的参数设置,重回原点。若时间常数设置太大或减速 撞块太短,在减速撞块范围内,进给速度不能到达接近原点速度,当接近开关被释放时,即使栅点信号出现,软件在未检测进给速度到达接近速度时,回原点操作不 会停止,因而原点发生漂移。
若减小快进时间常数或快速进给速度的设置,重新回原点,原点仍有偏移,应检查参考计数器设置的值是否有效,修正参数设置。
5.原点漂移数个脉冲
若只是在开机后第一次回原点时原点漂移,则为零标志信号受干扰失效。为防止噪声干扰,应确保电缆屏蔽线接地良好,安装必要的火花抑制器,不要使检测反馈元件的通信电缆线与强电线缆靠得大近。若并非仅在开机首次回原点时原点变化,应修正参考计数器的设定值。
如果通过上述步骤检查仍不能排除故障,应检查编码器电源电压是否太低,编码器是否损坏,伺服电机与工作台的联轴器是否松动,系统主电路板是否正常,有关伺服轴电路板是否正常及伺服放大器板是否正常等。
原点故障例:
1.台湾DM4400M加工中心发生Z轴方向加工尺寸不稳定,尺寸超差且无规律的故障,也就是说,Z轴原点出现无规律的漂移,CRT及伺服放大器无任何 报警显示。该加工中心采用三菱M3系统,半闭环控制方式,交流伺服电机与滚珠丝杠通过联轴器直接联接。根据故障现象结合该机采用的控制方式、联接方式进行 分析,故障原因可能是联轴器联接螺钉松动,导致联轴器与滚珠丝杠或伺服电机轴间滑动。对Z轴联轴器联接进行检查,发现联轴器六只紧定螺钉都出现松动。紧定 螺钉后,故障排除。
2.台湾DM4400M加工中心使用中出现换刀位置有的班次不对,有的班次正常的故障。换刀位置发生变化时,被加工工件的 Z向加工尺寸也相应变化,且与换刀位置的变化相对应。无任何报警显示。该加工中心采用三菱M3数控系统。开机回参考点采用下列方式:安装于伺服电机端部的 位置编码器每转360°有一定数量的等距离的栅点,两个栅点间的距离叫栅点间隔。开机手动回参考点时,轴先以参数设定的回参点速度向参考点快速移动,当接 近参考点减速撞块压下回参考点减速行程开关时,轴以参数设立的较低的接近速度移动,当接近参考点撞块离开回参考点减速行段开关时,编码器检测到的第一个栅 点的位置为参考点复归的位置。由于机械有其固有的机械原点,故要求电气原点要和机械原点一致。机械原点和电气原点问的偏移叫参考点偏移,在G28sft参 数中设定。当参考点减速开关离开接近参考点减速撞块时的位置,不在栅点间隔中心附近时,参考点有时会发生偏移,可以通过参数grmask栅点屏蔽的设定防 止参考点位置偏移。机床换刀点由机床的第二参考原点设定,而第二参考原点是由机床第一参考原点确定的。由于机床所出现的故障有的班次有,有的班次没有,因 此怀疑该机床开机手动回参考点时出现问题。经查,Z轴回参考点减速行程开关固定板与立柱固定不牢,严重松动,导致原点漂移。
Welcome to BW tool world! We are an experienced tool maker specialized in cutting tools. We focus on what you need and endeavor to research the best cutter to satisfy users’ demand. Our customers involve wide range of industries, like mold & die, aerospace, electronic, machinery, ,,,etc. We are professional expert in cutting field. We would like to solve every problem from you. Please feel free to contact us, it’s our pleasure to serve for you. BW product including: utting tool、aerospace tool .HSS Cutting tool、Carbide end mills、Carbide cutting tool、NAS Cutting tool、Carbide end mill、Aerospace cutting tool、Carbide drill、High speed steel、Milling cutter、Core drill、Taperd end mills、Metric end mills、Miniature end mills、Pilot reamer、Electronics cutter、Step drill、Metal cutting saw、Double margin drill、Gun barrel、Angle milling cutter、Carbide burrs、Carbide tipped cutter、Chamfering tool、IC card engraving cutter、Side cutter、NAS tool、DIN tool、Special tool、Metal slitting saws、Shell end mills、Side and face milling cutters、Side chip clearance saws、Long end mills、Stub roughing end mills、Dovetail milling cutters、Carbide slot drills、Carbide torus cutters、Angeled carbide end mills、Carbide torus cutters、Carbide ball-noseed slot drills、Mould cutter、Tool manufacturer.
Bewise Inc. www.tool-tool.com
beeway 發表在 痞客邦 留言(0) 人氣()
Bewise Inc. www.tool-tool.com Reference source from the internet.
讀孫子兵法學英文》擇善固執
【經濟日報/朱文章】
2007.05.13 04:48 am
自1970年代末期以來,美國企業執行長與一般員工薪酬差距不斷擴大,目前大企業執行長平均年薪1,160萬美元,是勞工的411倍。企業主管薪酬飆漲,反映市場競爭壓力,企業有賴一流CEO的帶領,方能永續經營。
執 行長落實願景,提出致勝手段,打贏競爭對手;社會、股東、員工以及自身的福祉雖然不盡相同,他卻能同時兼顧(self interest is a shared interest)。成功的執行長以行動接受市場考驗,光說不練(untested bond)必會遭致失敗。
光說不練 必遭失敗
例: “In the mid 1800s many people traveled west in search of gold. There were many challenges on this voyage and many helped each other along the way as self interest is a shared interest.”「淘金客發財夢有志一同,在西進的路上彼此扶持,渡過難關。」
“Our unsaid agreement with the bank is an untested bond as we will see if they're really willing to help when we need a loan and are close to bankruptcy.”「如果我們瀕臨破產而銀行拒絕我們的貸款申請,就表示銀行的默契只是口惠,根本不想幫忙。」
優秀的執行長能讓企 業起死回生,因此企業主或董事會無不使出渾身解數,千方百計(offer him“their first born ”)想將他們挖角過來。薪資談判不但有求必應(“you ask and I give”or“no matter what”),其他各方面的福利(loose change)也應有盡有。
例:“IBM really wanted John to work for them. John told them that he already had a very well paying job but they offered him their first born so he couldn't resist!”「雖然約翰現在的工作待遇優渥,不過IBM還是以重金將他挖角過去。」
百計千方 搞定合約
“Our company is about to go bankrupt and we will all lose our jobs if we don't make this deal tomorrow. I need you to get that contract signed no matter what!”「這個合約簽不下來,明天大家都要失業。不論任何代價,都要把它簽成功!」
“Michael Jordan was not paid much his first year but the loose change he was getting from interviews and commercials was more than enough to compensate.”「喬登第一年的待遇差強人意,但他接受專訪和廣告的收入卻相當豐碩。」
華爾街日報曾有一篇報導質疑:CEO如此 搶手,企業可以抗拒薪酬節節上升的壓力,且留住優秀主管嗎?除了同行挖角壓力,董事會如何根據CEO業績表現,來酬庸他的表現(everyone wants their piece of pie),但不讓他予取予求(want more than their fair share ),並且制止他得了便宜還賣乖(Appeasement be damned!)的想法,是一大考驗。
論功行賞 堅持原則
例: “The salesman quit his job after the company wouldn't give him his percentage on the big sales he made. He went somewhere else where he could get his piece of the pie.”「得不到應有的業績獎金,那業務員憤而離職,並跳槽到公平對待他的公司去。」
“Rob doesn't do much work and always insists on getting more than his fair share of the credit and pay.”「羅伯不做事又愛搶功。」
企業酬庸CEO顯然不能通通有獎、皆大歡喜,必須擇善固執、論功行賞。英文說「你不能取悅所有人」(You can't please everyone.)除提醒想討好所有人是不可行的,更建議要善待追隨你、有傑出表現的人,否則遲早他也會因你沒有原則而離去。
孫子兵法有云:「數賞者,窘也(缺乏自信的領導者,會亂發獎賞以收買人心,因而造成組織的鬆懈)」,與此正好不謀而合。
例: “I've increased sales, brought more profit,and paid more dividends to my investors yet I'm still getting com-plaints about working conditions and production! I guess you can't please everybody.”「我盡了全力增加業績、提高利潤,還分更多股利給投資人。不過,我還是被批評漠視員工的工作環境和產品品質。我想,你總不能取悅所 有人。」
(作者是陸軍官校語言中心主任)
Welcome to BW tool world! We are an experienced tool maker specialized in cutting tools. We focus on what you need and endeavor to research the best cutter to satisfy users’ demand. Our customers involve wide range of industries, like mold & die, aerospace, electronic, machinery, ,,,etc. We are professional expert in cutting field. We would like to solve every problem from you. Please feel free to contact us, it’s our pleasure to serve for you. BW product including: utting tool、aerospace tool .HSS Cutting tool、Carbide end mills、Carbide cutting tool、NAS Cutting tool、Carbide end mill、Aerospace cutting tool、Carbide drill、High speed steel、Milling cutter、Core drill、Taperd end mills、Metric end mills、Miniature end mills、Pilot reamer、Electronics cutter、Step drill、Metal cutting saw、Double margin drill、Gun barrel、Angle milling cutter、Carbide burrs、Carbide tipped cutter、Chamfering tool、IC card engraving cutter、Side cutter、NAS tool、DIN tool、Special tool、Metal slitting saws、Shell end mills、Side and face milling cutters、Side chip clearance saws、Long end mills、Stub roughing end mills、Dovetail milling cutters、Carbide slot drills、Carbide torus cutters、Angeled carbide end mills、Carbide torus cutters、Carbide ball-noseed slot drills、Mould cutter、Tool manufacturer.
Bewise Inc. www.tool-tool.com
beeway 發表在 痞客邦 留言(0) 人氣()
Bewise Inc. www.tool-tool.com Reference source from the internet.
禪說人生》智慧的覺醒
【經濟日報/釋證嚴】
2007.05.13 04:48 am
每個人的身體是一個小乾坤,隱藏著許多病毒、細菌,天地之間大乾坤,也有難以計量的病菌;人心不調導致自然失衡,想要回復平衡,就必須有一股大力量,這絕非少數人即可,一定要動員多數人。
最近大家都很熟悉「碳足跡」一詞:人類生活愈文明,就會消耗愈多的資源,排放更多二氧化碳,留下碳足跡,加上工業製造過程、交通來往等等,汙染更甚。在日常生活中,如何才能讓大氣結構調和?這需要大家響應做環保,最怕的是心不平衡。
不久前有一則新聞報導,美國某州立大學的教職員醞釀罷教,爭取提高薪資福利,此舉將影響數以萬計的學子。老師是學子的典範,為爭私利,採取犧牲學生權益的舉動,將會帶給學生怎樣的影響?
反觀慈濟大學有一群年輕人,很有智慧合心合力地推動「碳平衡」,這群大學生令人佩服,也讓人放心,儘管人數有限,不過只要有帶動、有響應,就會有希望。
他 們很用心地在校園裡舉辦茶會,推廣愛護地球的活動,不但搜集許多數據資料,並且身體力行,讓大家知道在日常生活中可以如何落實環保。其中有位學生分享參與 活動的心得:他是住校生,由於電費已包含在租金中,所以他整天開著電風扇,無形中也製造碳足跡。透過活動,他學習到不論用電、用水都要節約。
慈濟大學生稱這次茶會為「覺醒茶會」,大家藉由活動各自反省,到底在每天的生活中,製造多少二氧化碳。同時也發願,要用心推廣讓更多年輕人響應「覺醒茶會」,並且展示環保資訊。
還有許多學子不僅在校園裡推動環保,也利用周日到校外挨家挨戶宣導;附近居民都非常支持,紛紛將紙類、寶特瓶等分類清楚,等學生們前往回收。
期待這群環保尖兵能對抗、調和大乾坤的病菌。地球的溫室效應已經很嚴重,氣候異常,倘若人人還執迷於自私的作為,這種自私症候群真是令人擔心。試想,每次天災帶給人類多少災難?倘若天地之間不平衡,人類還有什麼可爭,自私自利,於己何益?
期待人人都能有智慧的覺醒,共同推動環保,相信這就是世間的希望。
Welcome to BW tool world! We are an experienced tool maker specialized in cutting tools. We focus on what you need and endeavor to research the best cutter to satisfy users’ demand. Our customers involve wide range of industries, like mold & die, aerospace, electronic, machinery, ,,,etc. We are professional expert in cutting field. We would like to solve every problem from you. Please feel free to contact us, it’s our pleasure to serve for you. BW product including: utting tool、aerospace tool .HSS Cutting tool、Carbide end mills、Carbide cutting tool、NAS Cutting tool、Carbide end mill、Aerospace cutting tool、Carbide drill、High speed steel、Milling cutter、Core drill、Taperd end mills、Metric end mills、Miniature end mills、Pilot reamer、Electronics cutter、Step drill、Metal cutting saw、Double margin drill、Gun barrel、Angle milling cutter、Carbide burrs、Carbide tipped cutter、Chamfering tool、IC card engraving cutter、Side cutter、NAS tool、DIN tool、Special tool、Metal slitting saws、Shell end mills、Side and face milling cutters、Side chip clearance saws、Long end mills、Stub roughing end mills、Dovetail milling cutters、Carbide slot drills、Carbide torus cutters、Angeled carbide end mills、Carbide torus cutters、Carbide ball-noseed slot drills、Mould cutter、Tool manufacturer.
Bewise Inc. www.tool-tool.com
beeway 發表在 痞客邦 留言(0) 人氣()
Bewise Inc. www.tool-tool.com Reference source from the internet.
在铰孔加工过程中,经常出现孔径超差、内孔表面粗糙度值高等诸多问题。问题产生的原因孔径增大,误差大铰刀外径尺寸设计值偏大或铰刀刃口有毛刺。进给量不当或加工余量过大。铰刀主偏角过大。
在铰孔加工过程中,经常出现孔径超差、内孔表面粗糙度值高等诸多问题。
问题产生的原因
孔径增大,误差大
铰 刀外径尺寸设计值偏大或铰刀刃口有毛刺;切削速度过高;进给量不当或加工余量过大;铰刀主偏角过大;铰刀弯曲;铰刀刃口上粘附着切屑瘤;刃磨时铰刀刃口摆 差超差;切削液选择不合适;安装铰刀时锥柄表面油污未擦干净或锥面有磕碰伤;锥柄的扁尾偏位装入机床主轴后锥柄圆锥干涉;主轴弯曲或主轴轴承过松或损坏; 铰刀浮动不灵活;与工件不同轴;手铰孔时两手用力不均匀,使铰刀左右晃动。
孔径缩小
铰刀外径尺寸设计值偏小;切削速度过低;进给量过大;铰刀主偏角过小;切削液选择不合适;刃磨时铰刀磨损部分未磨掉,弹性恢复使孔径缩小;铰钢件时,余量太大或铰刀不锋利,易产生弹性恢复,使孔径缩小;内孔不圆,孔径不合格。
铰出的内孔不圆
铰刀过长,刚性不足,铰削时产生振动;铰刀主偏角过小;铰刀刃带窄;铰孔余量偏;内孔表面有缺口、交叉孔;孔表面有砂眼、气孔;主轴轴承松动,无导向套,或铰刀与导向套配合间隙过大;由于薄壁工件装夹过紧,卸下后工件变形。
孔的内表面有明显的棱面
铰孔余量过大;铰刀切削部分后角过大;铰刀刃带过宽;工件表面有气孔、砂眼;主轴摆差过大。
内孔表面粗糙度值高
切 削速度过高;切削液选择不合适;铰刀主偏角过大,铰刀刃口不在同一圆周上;铰孔余量太大;铰孔余量不均匀或太小,局部表面未铰到;铰刀切削部分摆差超差、 刃口不锋利,表面粗糙;铰刀刃带过宽;铰孔时排屑不畅;铰刀过度磨损;铰刀碰伤,刃口留有毛刺或崩刃;刃口有积屑瘤;由于材料关系,不适用于零度前角或负 前角铰刀。
铰刀的使用寿命低
铰刀材料不合适;铰刀在刃磨时烧伤;切削液选择不合适,切削液未能顺利地流动切削处;铰刀刃磨后表面粗糙度值太高。
铰出的孔位置精度超差
导向套磨损;导向套底端距工件太远;导向套长度短、精度差;主轴轴承松动。
铰刀刀齿崩刃
铰孔余量过大;工件材料硬度过高;切削刃摆差过大,切削负荷不均匀;铰刀主偏角太小,使切削宽度增大;铰深孔或盲孔时,切屑太多,又未及时清除;刃磨时刀齿已磨裂。
铰刀柄部折断
铰孔余量过大;铰锥孔时,粗精铰削余量分配及切削用量选择不合适;铰刀刀齿容屑空间小,切屑堵塞。
铰孔后孔的中心线不直
铰孔前的钻孔偏斜,特别是孔径较小时,由于铰刀刚性较差,不能纠正原有的弯曲度;铰刀主偏角过大;导向不良,使铰刀在铰削中易偏离方向;切削部分倒锥过大;铰刀在断续孔中部间隙处位移;手铰孔时,在一个方向上用力过大,迫使铰刀向一端偏斜,破坏了铰孔的垂直度。
解决措施
1,孔径增大,误差大
根 据具体情况适当减小铰刀外径;降低切削速度;适当调整进给量或减少加工余量;适当减小主偏角;校直或报废弯曲的不能用的铰刀;用油石仔细修整到合格;控制 摆差在允许的范围内;选择冷却性能较好的切削液;安装铰刀前必须将铰刀锥柄及机床主轴锥孔内部油污擦净,锥面有磕碰处用油石修光;修磨铰刀扁尾;调整或更 换主轴轴承;重新调整浮动卡头,并调整同轴度;注意正确操作。
2,孔径缩小
更换铰刀外径尺寸;适当提高切削速度;适当降低进给量;适当增大主偏角;选择润滑性能好的油性切削液;定期互换铰刀,正确刃磨铰刀切削部分;设计铰刀尺寸时,应考虑上述因素,或根据实际情况取值;作试验性切削,取合适余量,将铰刀磨锋利。
3,铰出的内孔不圆
刚 性不足的铰刀可采用不等分齿距的铰刀,铰刀的安装应采用刚性联接,增大主偏角;选用合格铰刀,控制预加工工序的孔位置公差;采用不等齿距铰刀,采用较长、 较精密的导向套;选用合格毛坯;采用等齿距铰刀铰削较精密的孔时,应对机床主轴间隙进行调整,导向套的配合间隙应要求较高;采用恰当的夹紧方法,减小夹紧 力。
4,孔的内表面有明显的棱面
减小铰孔余量;减小切削部分后角;修磨刃带宽度;选择合格毛坯;调整机床主轴。
5,内孔表面粗糙度值高
降 低切削速度;根据加工材料选择切削液;适当减小主偏角,正确刃磨铰刀刃口;适当减小铰孔余量;提高铰孔前底孔位置精度与质量或增加铰孔余量;选用合格铰 刀;修磨刃带宽度;根据具体情况减少铰刀齿数,加大容屑槽空间或采用带刃倾角的铰刀,使排屑顺利;定期更换铰刀,刃磨时把磨削区磨去;铰刀在刃磨、使用及 运输过程中,应采取保护措施,避免碰伤;对已碰伤的铰刀,应用特细的油石将碰伤的铰刀修好,或更换铰刀;用油石修整到合格,采用前角5°~10°的铰刀。
6,铰刀的使用寿命低
根据加工材料选择铰刀材料,可采用硬质合金铰刀或涂层铰刀;严格控制刃磨切削用量,避免烧伤;经常根据加工材料正确选择切削液;经常清除切屑槽内的切屑,用足够压力的切削液,经过精磨或研磨达到要求。
7,铰出的孔位置精度超差
定期更换导向套;加长导向套,提高导向套与铰刀间隙的配合精度;及时维修机床、调整主轴轴承间隙。
8,铰刀刀齿崩刃
修改预加工的孔径尺寸;降低材料硬度或改用负前角铰刀或硬质合金铰刀;控制摆差在合格范围内;加大主偏角;注意及时清除切屑或采用带刃倾角铰刀;注意刃磨质量。
9,铰刀柄部折断
修改预加工的孔径尺寸;修改余量分配,合理选择切削用量;减少铰刀齿数,加大容屑空间或将刀齿间隙磨去一齿。
10,铰孔后的孔中心线不直
增加扩孔或镗孔工序校正孔;减小主偏角;调整合适的铰刀;调换有导向部分或加长切削部分的铰刀;注意正确操作。
Welcome to BW tool world! We are an experienced tool maker specialized in cutting tools. We focus on what you need and endeavor to research the best cutter to satisfy users’ demand. Our customers involve wide range of industries, like mold & die, aerospace, electronic, machinery, ,,,etc. We are professional expert in cutting field. We would like to solve every problem from you. Please feel free to contact us, it’s our pleasure to serve for you. BW product including: utting tool、aerospace tool .HSS Cutting tool、Carbide end mills、Carbide cutting tool、NAS Cutting tool、Carbide end mill、Aerospace cutting tool、Carbide drill、High speed steel、Milling cutter、Core drill、Taperd end mills、Metric end mills、Miniature end mills、Pilot reamer、Electronics cutter、Step drill、Metal cutting saw、Double margin drill、Gun barrel、Angle milling cutter、Carbide burrs、Carbide tipped cutter、Chamfering tool、IC card engraving cutter、Side cutter、NAS tool、DIN tool、Special tool、Metal slitting saws、Shell end mills、Side and face milling cutters、Side chip clearance saws、Long end mills、Stub roughing end mills、Dovetail milling cutters、Carbide slot drills、Carbide torus cutters、Angeled carbide end mills、Carbide torus cutters、Carbide ball-noseed slot drills、Mould cutter、Tool manufacturer.
Bewise Inc. www.tool-tool.com
beeway 發表在 痞客邦 留言(0) 人氣()
Bewise Inc. www.tool-tool.com Reference source from the internet.
一、技术概述
超高速加工技术是指采用超硬材料的刃具,通过极大地提高切削速度和进给速度来提高材料切除率、加工精度和加工质量的现代加工技术。
超高速加工的切削速度范围因不同的工件材料、不同的切削方式而异。目前,一般认为,超高速切削各种材料的切速范围为:铝合金已超过1600m/min,铸 铁为1500m/min,超耐热镍合金达300m/min,钛合金达150~1000m/min,纤维增强塑料为2000~9000m/min。各种切削 工艺的切速范围为:车削700~7000m/min,铣削300~6000m/min,钻削200~1100m/min,磨削250m/s以上等等。
超高速加工技术主要包括:超高速切削与磨削机理研究,超高速主轴单元制造技术,超高速进给单元制造技术,超高速加工用刀具与磨具制造技术,超高速加工在线自动检测与控制技术等。
超精密加工当前是指被加工零件的尺寸精度高于0.1μ m,表面粗糙度Ra小于0.025μ m,以及所用机床定位精度的分辨率和重复性高于0.01μ m的加工技术,亦称之为亚微米级加工技术,且正在向纳米级加工技术发展。
超精密加工技术主要包括:超精密加工的机理研究,超精密加工的设备制造技术研究,超精密加工工具及刃磨技术研究,超精密测量技术和误差补偿技术研究,超精密加工工作环境条件研究。
二、现状及国内外发展趋势
1.超高速加工
工业发达国家对超高速加工的研究起步早,水平高。在此项技术中,处于领先地位的国家主要有德国、日本、美国、意大利等。
在超高速加工技术中,超硬材料工具是实现超高速加工的前提和先决条件,超高速切削磨削技术是现代超高速加工的工艺方法,而高速数控机床和加工中心则是实现 超高速加工的关键设备。目前,刀具材料已从碳素钢和合金工具钢,经高速钢、硬质合金钢、陶瓷材料,发展到人造金刚石及聚晶金刚石(PCD)、立方氮化硼及 聚晶立方氮化硼(CBN)。切削速度亦随着刀具材料创新而从以前的12m/min提高到1200m/min以上。砂轮材料过去主要是采用刚玉系、碳化硅系 等,美国G.E公司50年代首先在金刚石人工合成方面取得成功,60年代又首先研制成功CBN。90年代陶瓷或树脂结合剂CBN砂轮、金刚石砂轮线速度可 达125m/s,有的可达150m/s,而单层电镀CBN砂轮可达250m/s。因此有人认为,随着新刀具(磨具)材料的不断发展,每隔十年切削速度要提 高一倍,亚音速乃至超声速加工的出现不会太遥远了。
在超高速切削技术方面,1976年美国的Vought公司研制了一台超高速铣床,最高转速达到了20000rpm。特别引人注目的是,联邦德国 Darmstadt工业大学生产工程与机床研究所(PTW)从1978年开始系统地进行超高速切削机理研究,对各种金属和非金属材料进行高速切削试验,联 邦德国组织了几十家企业并提供了2000多万马克支持该项研究工作,自八十年代中后期以来,商品化的超高速切削机床不断出现,超高速机床从单一的超高速铣 床发展成为超高速车铣床、钻铣床乃至各种高速加工中心等。瑞士、英国、日本也相继推出自己的超高速机床。日本日立精机的HG400III型加工中心主轴最 高转速达36000~40000r/min,工作台快速移动速度为36~40m/min。采用直线电机的美国Ingersoll公司的HVM800型高速 加工中心进给移动速度为60m/min。
在高速和超高速磨削技术方面,人们开发了高速、超高速磨削、深切缓进给磨削、深切快进给磨削(即HEDG)、多片砂轮和多砂轮架磨削等许多高速高效率磨 削,这些高速高效率磨削技术在近20年来得到长足的发展及应用。德国Guehring Automation公司1983年制造出了当时世界第一台最具威力的60kw强力CBN砂轮磨床,Vs达到140~160m/s。德国阿享工业大学、 Bremen大学在高效深磨的研究方面取得了世界公认的高水平成果,并积极在铝合金、钛合金、因康镍合金等难加工材料方面进行高效深磨的研究。德国 Bosch公司应用CBN砂轮高速磨削加工齿轮齿形,采用电镀CBN砂轮超高速磨削代替原须经滚齿及剃齿加工的工艺,加工16MnCr5材料的齿轮齿形, Vs=155m/s,其Q'达到811mm3/mm.s,德国Kapp公司应用高速深磨加工泵类零件深槽,工件材料为100Cr6轴承钢,采用电镀CBN 砂轮,Vs达到300m/s,其Q`=140mm3/mm.s,磨削加工中,可将淬火后的叶片泵转子10个一次装夹,一次磨出转子槽,磨削时工件进给速度 为1.2m/min,平均每个转子加工工时只需10秒钟,槽宽精度可保证在2μ m,一个砂轮可加工1300个工件。目前日本工业实用磨削速度已达200m/s,美国Conneticut大学磨削研究中心,1996年其无心外圆高速磨 床上,最高砂轮磨削速度达250m/s。
近年来,我国在高速超高速加工的各关键领域如大功率高速主轴单元、高加减速直线进给电机、陶瓷滚动轴承等方面也进行了较多的研究,但总体水平同国外尚有较大差距,必须急起直追。
2.超精密加工
超精密加工技术在国际上处于领先地位的国家有美国、英国和日本。这些国家的超精密加工技术不仅总体成套水平高,而且商品化的程度也非常高。
美国是开展超精密加工技术研究最早的国家,也是迄今处于世界领先地位的国家。早在50年代末,由于航天等尖端技术发展的需要,美国首先发展了金刚石刀具的 超精密切削技术,称为“SPDT技术”(Single Point Diamond Turning)或“微英寸技术”(1微英寸=0.025μ m),并发展了相应的空气轴承主轴的超精密机床。用于加工激光核聚变反射镜、战术导弹及载人飞船用球面非球面大型零件等等。如美国LLL实验室和Y-12 工厂在美国能源部支持下,于1983年7月研制成功大型超精密金刚石车床DTM-3型,该机床可加工最大零件?2100mm、重量4500kg的激光核聚 变用的各种金属反射镜、红外装置用零件、大型天体望远镜(包括X光天体望远镜)等。该机床的加工精度可达到形状误差为28nm(半径),圆度和平面度为 12.5nm,加工表面粗糙度为Ra4.2nm。该机床与该实验室1984年研制的LODTM大型超精密车床一起仍是现在世界上公认的技术水平最高、精度 最高的大型金刚石超精密车床。
在超精密加工技术领域,英国克兰菲尔德技术学院所属的克兰菲尔德精密工程研究所(简称CUPE)享有较高声誉,它是当今世界上精密工程的研究中心之一,是 英国超精密加工技术水平的独特代表。如CUPE生产的Nanocentre(纳米加工中心)既可进行超精密车削,又带有磨头,也可进行超精密磨削,加工工 件的形状精度可达0.1μ m ,表面粗糙度Ra<10nm。
日本对超精密加工技术的研究相对于美、英来说起步较晚,但是当今世界上超精密加工技术发展最快的国家。日本的研究重点不同于美国,前者是以民品应用为主要 对象,后者则是以发展国防尖端技术为主要目标。所以日本在用于声、光、图象、办公设备中的小型、超小型电子和光学零件的超精密加工技术方面,是更加先进和 具有优势的,甚至超过了美国。
我国的超精密加工技术在70年代末期有了长足进步,80年代中期出现了具有世界水平的超精密机床和部件。北京机床研究所是国内进行超精密加工技术研究的主 要单位之一,研制出了多种不同类型的超精密机床、部件和相关的高精度测试仪器等,如精度达0.025μ m的精密轴承、JCS-027超精密车床、JCS-031超精密铣床、JCS-035超精密车床、超精密车床数控系统、复印机感光鼓加工机床、红外大功率 激光反射镜、超精密振动-位移测微仪等,达到了国内领先、国际先进水平。航空航天工业部三零三所在超精密主轴、花岗岩坐标测量机等方面进行了深入研究及产 品生产。哈尔滨工业大学在金刚石超精密切削、金刚石刀具晶体定向和刃磨、金刚石微粉砂轮电解在线修整技术等方面进行了卓有成效的研究。清华大学在集成电路 超精密加工设备、磁盘加工及检测设备、微位移工作台、超精密砂带磨削和研抛、金刚石微粉砂轮超精密磨削、非圆截面超精密切削等方面进行了深入研究,并有相 应产品问世。此外中科院长春光学精密机械研究所、华中理工大学、沈阳第一机床厂、成都工具研究所、国防科技大学等都进行了这一领域的研究,成绩显著。但总 的来说,我国在超精密加工的效率、精度可靠性,特别是规格(大尺寸)和技术配套性方面与国外比,与生产实际要求比,还有相当大的差距。
超精密加工技术发展趋势是:向更高精度、更高效率方向发展;向大型化、微型化方向发展;向加工检测一体化方向发展;机床向多功能模块化方向发展;不断探讨 适合于超精密加工的新原理、新方法、新材料。21世纪初十年将是超精密加工技术达到和完成纳米加工技术的关键十年。
三、“十五”目标及主要研究内容
1.目标
超高速加工到2005年基本实现工业应用,主轴最高转速达15000r/min,进给速度达40~60m/min,砂轮磨削速度达100~150m/s;超精密加工基本实现亚微米级加工,加强纳米级加工技术应用研究,达到国际九十年代初期水平。
2.主要研究内容
(1)超高速切削、磨削机理研究。对超高速切削和磨削加工过程、各种切削磨削现象、各种被加工材料和各种刀具磨具材料的超高速切削磨削性能以及超高速切削磨削的工艺参数优化等进行系统研究。
(2)超高速主轴单元制造技术研究。主轴材料、结构、轴承的研究与开发;主轴系统动态特性及热态性研究;柔性主轴及其轴承的弹性支承技术研究;主轴系统的润滑与冷却技术研究;主轴的多目标优化设计技术、虚拟设计技术研究;主轴换刀技术研究。
(3)超高速进给单元制造技术研究。高速位置芯片环的研制;精密交流伺服系统及电机的研究;系统惯量与伺服电机参数匹配关系的研究;机械传动链静、动刚度研究;加减速控制技术研究;精密滚珠丝杠副及大导程丝杠副的研制等。
(4)超高速加工用刀具磨具及材料研究。研究开发各种超高速加工(包括难加工材料)用刀具磨具材料及制备技术,使刀具的切削速度达到国外工业发达国家90年代末的水平,磨具的磨削速度达到150m/s以上。
(5)超高速加工测试技术研究。对超高速加工机床主轴单元、进给单元系统和机床支承及辅助单元系统等功能部位和驱动控制系统的监控技术,对超高速加工用刀具磨具的磨损和破损、磨具的修整等状态以及超高速加工过程中工件加工精度、加工表面质量等在线监控技术进行研究。
(6)超精密加工的加工机理研究。“进化加工”及“超越性加工”机理研究;微观表面完整性研究;在超精密范畴内的对各种材料(包括被加工材料和刀具磨具材料)的加工过程、现象、性能以及工艺参数进行提示性研究。
(7)超精密加工设备制造技术研究。纳米级超精密车床工程化研究;超精密磨床研究;关键基础件,如轴系、导轨副、数控伺服系统、微位移装置等研究;超精密机床总成制造技术研究。
(8)超精密加工刀具、磨具及刃磨技术研究。金刚石刀具及刃磨技术、金刚石微粉砂轮及其修整技术研究。
(9)精密测量技术及误差补偿技术研究。纳米级基准与传递系统建立;纳米级测量仪器研究;空间误差补偿技术研究;测量集成技术研究。
(10)超精密加工工作环境条件研究。超精密测量、控温系统、消振技术研究;超精密净化设备,新型特种排屑装置及相关技术的研究.
Welcome to BW tool world! We are an experienced tool maker specialized in cutting tools. We focus on what you need and endeavor to research the best cutter to satisfy users’ demand. Our customers involve wide range of industries, like mold & die, aerospace, electronic, machinery, ,,,etc. We are professional expert in cutting field. We would like to solve every problem from you. Please feel free to contact us, it’s our pleasure to serve for you. BW product including: utting tool、aerospace tool .HSS Cutting tool、Carbide end mills、Carbide cutting tool、NAS Cutting tool、Carbide end mill、Aerospace cutting tool、Carbide drill、High speed steel、Milling cutter、Core drill、Taperd end mills、Metric end mills、Miniature end mills、Pilot reamer、Electronics cutter、Step drill、Metal cutting saw、Double margin drill、Gun barrel、Angle milling cutter、Carbide burrs、Carbide tipped cutter、Chamfering tool、IC card engraving cutter、Side cutter、NAS tool、DIN tool、Special tool、Metal slitting saws、Shell end mills、Side and face milling cutters、Side chip clearance saws、Long end mills、Stub roughing end mills、Dovetail milling cutters、Carbide slot drills、Carbide torus cutters、Angeled carbide end mills、Carbide torus cutters、Carbide ball-noseed slot drills、Mould cutter、Tool manufacturer.
Bewise Inc. www.tool-tool.com
beeway 發表在 痞客邦 留言(0) 人氣()
Bewise Inc. www.tool-tool.com Reference source from the internet.
当今社会的科技要求不断发展消费品的质量,在能源技术和生产力的发展中, 增加更高标准的材料的使用的比率.在超强作业的情况下,材料变得更加坚硬.因此,过去使用的工具,原则上讲已经过时了.取而代之的是新型技术的设备.
Microbor微硼—专业生产立方氮化硼高效刀具的生产商,在俄罗斯立方氮化硼产业的领头人,也是世界上相关产业的主要企业之一。在从立方氮化硼微粉合成到成品工具加工的每个过程都拥有自己独立的专利技术。
立方氮化硼的优点是显而易见的-它的硬度可媲美金刚石,拥有非常好的耐磨性。其特点是在高温下分散固化,具有独特的耐热性和冲击韧性
采用Microbor微硼的立方氮化硼材料所制造的切割刀具,更广泛地应用于金属,石头,合金,塑料的加工。完美的特性使其在工作中可以承载更大的负荷,这样以来,它不仅可以满足精加工的生产需要,还可以通过改善生产状态对超硬材料进行粗加工。
Microbor微硼立方氮化硼材料适用于表面硬度极高的磨料坯料加工,生铁制品加工,粉末冶金制品,及石材制品等。
Microbor微硼的立方氮化硼材料在进入任何一个稳定的生产过程当中都不需要做任何改变。当为加工硬质材料选择新的加工工具时,提高生产效率则成为决定性因素。 这时,使用Microbor微硼立方氮化硼产品无疑是您最正确的选择。
加工材料的经济性与节能性这一课题的研究,被优先列入俄罗斯关键科学技术的名单。
自2005年开始,Microbor微硼研究中心的绝大部分科技活动经费都是来自于俄联邦的预算中的。
经俄罗斯和欧洲各大企业的反复试验的结果,事实证明,由Microbor微硼生产的CNB工具和传统陶瓷工具及硬合金工具相比,加工效率提高了3.5到24倍。效率的增长主要体现于加工状态的提高及辅助作业的减少。
为了更好的满足工业企业的需求,Microbor微硼生产的工具材料分为2大产品系列:
1.Microbor微硼“经典”系列——精加工、成型加工用用具的材料
2.Microbor微硼“重型”系列——针对超硬材料进行超重磨削、粗加工,半精加工的材料
还将继续开发不同种类的Microbor产品用在航空工业,木材加工,石材加工,碳-玻璃钢,岩石的钻探。
现代加工部门的潮流方向发展
由对西欧切割工具市场的评论得知(来源于杂志«Werkzeuge»),最近一段时间形成明显的趋势,以高效切割工具(HPC)取代高速切割工具(HSC).
专家意见表明,采用这种工具能够提高生产效率2-3倍,降低加工零件的支出费用30-40%
高效切割工具必须具有:
高速加工
保证最小数量 的更迭加工元件(走刀)
拥有高稳定性(寿命)
可以加工各种不同成份的材料.
使用冷却剂来降低废品的生产率。
高效切割加工与高速切割加工的分别主要在于高效加工考虑到了操作的综合性,像加工材料的性能,工具的性能,旨在把直接和间接的费用降到最低。
使用高效切割加工技术对总成本的降低可以从制造单个零件的成本中看出来
生产零件中机械消费占所有支出的65%的比重。
机械加工费用包括全部机械耗时量的费用,刀具的费用和冷冻液的费用。
这些基本的费用(81%)产生全部机械耗时量的费用(Тмаш),其中包括基本机械耗时量 (Тосн),调整设备(Тпер)及更换工具(Тсмен).
Тмаш (100%) = Тосн (68%) + Тпер (25%) + Тсмен (7%)
使用高速切削加工技术,在润滑冷冻液这一项的开支就占了16%
使用这种工具仅占总支出 的3%
使用高效切削的加工技术的对总成本的降低通过下列的几项高效工具得到实现
1. 高寿命:
降低更换工具的费用(Тсмен)
减少调整设备的支出(Тпер)
2. 应用高速的状态: 减少加工材料的时间(Тосн)
3. 增加工料(切屑量): 缩短主要机器耗时量(Тосн).
4. 通用性:
降低重新调整机器的费用
缩短工时(取决于同时进行2种或更多工序,比如说——粗加工和半精加工)
5. 采用超硬磨削(缺少冷却液):
完全消除在冷却液上的开支
结论:
通过高效切削在经济上若干倍的优于高速切割。
要满足高效切割的所有需求,可以通过使用拥有完美物理性质的新材料工具来完成。
Microbor微硼的新型材料
通过认真分析研究市场上的客观需求和市场趋势,Microbor微硼为得到新型材料进行了专业的研究、开发、实验,以满足新一代工具高效率切割的技术要求。
在当前时间,Microbor微硼——俄罗斯唯一一家独立设计并生产立方氮化硼材料和工具的公司,在合成立方氮化硼微粉到制造最终成品和制造工具的每一个阶段都拥有自己独立的专利技术。
立方氮化硼属于超硬材料,硬度仅略低于金刚石。这种材料在自然界中不存在,只能通过人工合成。合成工艺近似于人工金刚石的合成工艺,同样需要通过高温、高压生产。原始物质为六角型氮化硼。
在加工立方氮化硼的各种不同的方法中,Microbor硼公司选用最为科学先进的方法——催化剂法,通过采用催化剂以取得带有不同属性的立方氮化硼粉末。
Microbor微硼成功的创建了合成工艺生产琥珀色立方氮化硼粉末压实体,取得的压实体保留了所有立方氮化硼微粉的良好性质(耐热性,抗冲击性)。
通过使用Microbor微硼的专利技术生产出的Microbor立方氮化硼比传统的用来制作刀具的立方氮化硼材料拥有更加完美的物理性质。
Welcome to BW tool world! We are an experienced tool maker specialized in cutting tools. We focus on what you need and endeavor to research the best cutter to satisfy users’ demand. Our customers involve wide range of industries, like mold & die, aerospace, electronic, machinery, ,,,etc. We are professional expert in cutting field. We would like to solve every problem from you. Please feel free to contact us, it’s our pleasure to serve for you. BW product including: utting tool、aerospace tool .HSS Cutting tool、Carbide end mills、Carbide cutting tool、NAS Cutting tool、Carbide end mill、Aerospace cutting tool、Carbide drill、High speed steel、Milling cutter、Core drill、Taperd end mills、Metric end mills、Miniature end mills、Pilot reamer、Electronics cutter、Step drill、Metal cutting saw、Double margin drill、Gun barrel、Angle milling cutter、Carbide burrs、Carbide tipped cutter、Chamfering tool、IC card engraving cutter、Side cutter、NAS tool、DIN tool、Special tool、Metal slitting saws、Shell end mills、Side and face milling cutters、Side chip clearance saws、Long end mills、Stub roughing end mills、Dovetail milling cutters、Carbide slot drills、Carbide torus cutters、Angeled carbide end mills、Carbide torus cutters、Carbide ball-noseed slot drills、Mould cutter、Tool manufacturer.
Bewise Inc. www.tool-tool.com
beeway 發表在 痞客邦 留言(0) 人氣()
Bewise Inc. www.tool-tool.com Reference source from the internet.
数控系统技术的突飞猛进为数控机床的技术进步提供了条件。为了满足市场的需要,达到现代制造技术对数控技术提出的更高的要求,当前,世界数控技术及其装备的发展主要体现为以下几方面技术特征:
1、高速、高效
机床向高速化方向发展,不但可大幅度提高加工效率、降低加工成本,而且还可提高零件的表面加工质量和精度。超高速加工技术对制造业实现高效、优质、低成本生产有广泛的适用性。
20世纪90年代以来,欧、美、日各国争相开发应用新一代高速数控机床,加快机床高速化发展步伐。高速主轴单元(电主轴,转速15000- 100000r/min)、高速且高加/减速度的进给运动部件(快移速度60~120m/min,切削进给速度高达60m/min)、高性能数控和伺服系 统以及数控工具系统都出现了新的突破,达到了新的技术水平。随着超高速切削机理、超硬耐磨长寿命刀具材料和磨料磨具,大功率高速电主轴、高加/减速度直线 电机驱动进给部件以及高性能控制系统(含监控系统)和防护装置等一系列技术领域中关键技术的解决,为开发应用新一代高速数控机床提供了技术基础。
目前,在超高速加工中,车削和铣削的切削速度已达到5000~8000m/min以上;主轴转数在30000转/分(有的高达10万r/min)以上;工 作台的移动速度(进给速度):在分辨率为1微米时,在100m/min(有的到200m/min)以上,在分辨率为0.1微米时,在24m/min以上; 自动换刀速度在1秒以内;小线段插补进给速度达到12m/min。
2、高精度
从精密加工发展到超精密加工,是世界各工业强国致力发展的方向。其精度从微米级到亚微米级,乃至纳米级(<10nm),其应用范围日趋广泛。
当前,在机械加工高精度的要求下,普通级数控机床的加工精度已由±10μm提高到±5μm;精密级加工中心的加工精度则从±3~5μm,提高到± 1~1.5μm,甚至更高;超精密加工精度进入纳米级(0.001微米),主轴回转精度要求达到0.01~0.05微米,加工圆度为0.1微米,加工表面 粗糙度Ra=0.003微米等。这些机床一般都采用矢量控制的变频驱动电主轴(电机与主轴一体化),主轴径向跳动小于2μm,轴向窜动小于1μm,轴系不 平衡度达到G0.4级。
高速高精加工机床的进给驱动,主要有“回转伺服电机加精密高速滚珠丝杠”和“直线电机直接驱动”两种类型。此外,新兴的并联机床也易于实现高速进给。
滚珠丝杠由于工艺成熟,应用广泛,不仅精度能达到较高(ISO3408 1级),而且实现高速化的成本也相对较低,所以迄今仍为许多高速加工机床所采用。当前使用滚珠丝杠驱动的高速加工机床最大移动速度90m/min,加速度1.5g。
滚珠丝杠属机械传动,在传动过程中不可避免存在弹性变形、摩擦和反向间隙,相应地造成运动滞后和其它非线性误差,为了排除这些误差对加工精度的影响, 1993年开始在机床上应用直线电机直接驱动,由于是没有中间环节的“零传动”,不仅运动惯量小、系统刚度大、响应快,可以达到很高的速度和加速度,而且 其行程长度理论上不受限制,定位精度在高精度位置反馈系统的作用下也易达到较高水平,是高速高精加工机床特别是中、大型机床较理想的驱动方式。目前使用直 线电机的高速高精加工机床最大快移速度已达208 m/min,加速度2g,并且还有发展余地。
3、高可靠性
随着数控机床网络化应用的发展,数控机床的高可靠性已经成为数控系统制造商和数控机床制造商追求的目标。对于每天工作两班的无人工厂而言,如果要求在16 小时内连续正常工作,无故障率在P(t)=99%以上,则数控机床的平均无故障运行时间MTBF就必须大于3000小时。我们只对一台数控机床而言,如主 机与数控系统的失效率之比为10:1(数控的可靠比主机高一个数量级)。此时数控系统的MTBF就要大于33333.3小时,而其中的数控装置、主轴及驱 动等的MTBF就必须大于10万小时。
当前国外数控装置的MTBF值已达6000小时以上,驱动装置达30000小时以上,但是,可以看到距理想的目标还有差距。
4、复合化
在零件加工过程中有大量的无用时间消耗在工件搬运、上下料、安装调整、换刀和主轴的升、降速上,为了尽可能降低这些无用时间,人们希望将不同的加工功能整合在同一台机床上,因此,复合功能的机床成为近年来发展很快的机种。
柔性制造范畴的机床复合加工概念是指将工件一次装夹后,机床便能按照数控加工程序,自动进行同一类工艺方法或不同类工艺方法的多工序加工,以完成一个复杂 形状零件的主要乃至全部车、铣、钻、镗、磨、攻丝、铰孔和扩孔等多种加工工序。就棱体类零件而言,加工中心便是最典型的进行同一类工艺方法多工序复合加工 的机床。事实证明,机床复合加工能提高加工精度和加工效率,节省占地面积特别是能缩短零件的加工周期。
5、多轴化
随着5轴联动数控系统和编程软件的普及,5轴联动控制的加工中心和数控铣床已经成为当前的一个开发热点,由于在加工自由曲面时,5轴联动控制对球头铣刀的 数控编程比较简单,并且能使球头铣刀在铣削3维曲面的过程中始终保持合理的切速,从而显着改善加工表面的粗糙度和大幅度提高加工效率,而在3轴联动控制的 机床无法避免切速接近于零的球头铣刀端部参予切削,因此,5轴联动机床以其无可替代的性能优势已经成为各大机床厂家积极开发和竞争的焦点。
最近,国外还在研究6轴联动控制使用非旋转刀具的加工中心,虽然其加工形状不受限制且切深可以很薄,但加工效率太低一时尚难实用化。
6、智能化
智能化是21世纪制造技术发展的一个大方向。智能加工是一种基于神经网络控制、模糊控制、数字化网络技术和理论的加工,它是要在加工过程中模拟人类专家的 智能活动,以解决加工过程许多不确定性的、要由人工干预才能解决的问题。智能化的内容包括在数控系统中的各个方面:
为追求加工效率和加工质量的智能化,如自适应控制,工艺参数自动生成;
为提高驱动性能及使用连接方便的智能化,如前馈控制、电机参数的自适应运算、自动识别负载自动选定模型、自整定等;
简化编程、简化操作的智能化,如智能化的自动编程,智能化的人机界面等;
智能诊断、智能监控,方便系统的诊断及维修等。
世界上正在进行研究的智能化切削加工系统很多,其中日本智能化数控装置研究会针对钻削的智能加工方案具有代表性。
7、网络化
数控机床的网络化,主要指机床通过所配装的数控系统与外部的其它控制系统或上位计算机进行网络连接和网络控制。数控机床一般首先面向生产现场和企业内部的局域网,然后再经由因特网通向企业外部,这就是所谓Internet/Intranet技术。
随着网络技术的成熟和发展,最近业界又提出了数字制造的概念。数字制造,又称“e-制造”,是机械制造企业现代化的标志之一,也是国际先进机床制造商当今 标准配置的供货方式。随着信息化技术的大量采用,越来越多的国内用户在进口数控机床时要求具有远程通讯服务等功能。机械制造企业在普遍采用CAD/CAM 的基础上,越加广泛地使用数控加工设备。数控应用软件日趋丰富和具有“人性化”。虚拟设计、虚拟制造等高端技术也越来越多地为工程技术人员所追求。通过软 件智能替代复杂的硬件,正在成为当代机床发展的重要趋势。在数字制造的目标下,通过流程再造和信息化改造,ERP等一批先进企业管理软件已经脱颖而出,为 企业创造出更高的经济效益。
8、柔性化
数控机床向柔性自动化系统发展的趋势是:从点(数控单机、加工中心和数控复合加工机床)、线(FMC、FMS、FTL、FML)向面(工段车间独立制造 岛、FA)、体(CIMS、分布式网络集成制造系统)的方向发展,另一方面向注重应用性和经济性方向发展。柔性自动化技术是制造业适应动态市场需求及产品 迅速更新的主要手段,是各国制造业发展的主流趋势,是先进制造领域的基础技术。其重点是以提高系统的可靠性、实用化为前提,以易于联网和集成为目标;注重 加强单元技术的开拓、完善;CNC单机向高精度、高速度和高柔性方向发展;数控机床及其构成柔性制造系统能方便地与CAD、CAM、CAPP、MTS联 结,向信息集成方向发展;网络系统向开放、集成和智能化方向发展。
9、绿色化
21世纪的金切机床必须把环保和节能放在重要位置,即要实现切削加工工艺的绿色化。目前这一绿色加工工艺主要集中在不使用切削液上,这主要是因为切削液既 污染环境和危害工人健康,又增加资源和能源的消耗。干切削一般是在大气氛围中进行,但也包括在特殊气体氛围中(氮气中、冷风中或采用干式静电冷却技术)不 使用切削液进行的切削。不过,对于某些加工方式和工件组合,完全不使用切削液的干切削目前尚难与实际应用,故又出现了使用极微量润滑(MQL)的准干切 削。目前在欧洲的大批量机械加工中,已有10~15%的加工使用了干和准干切削。对于面向多种加工方法/工件组合的加工中心之类的机床来说,主要是采用准 干切削,通常是让极微量的切削油与压缩空气的混合物经由机床主轴与工具内的中空通道喷向切削区。在各类金切机床中,采用干切削最多的是滚齿机。
总之,数控机床技术的进步和发展为现代制造业的发展提供了良好的条件,促使制造业向着高效、优质以及人性化的方向发展。可以预见,随着数控机床技术的发展和数控机床的广泛应用,制造业将迎来一次足以撼动传统制造业模式的深刻革命。
Welcome to BW tool world! We are an experienced tool maker specialized in cutting tools. We focus on what you need and endeavor to research the best cutter to satisfy users’ demand. Our customers involve wide range of industries, like mold & die, aerospace, electronic, machinery, ,,,etc. We are professional expert in cutting field. We would like to solve every problem from you. Please feel free to contact us, it’s our pleasure to serve for you. BW product including: utting tool、aerospace tool .HSS Cutting tool、Carbide end mills、Carbide cutting tool、NAS Cutting tool、Carbide end mill、Aerospace cutting tool、Carbide drill、High speed steel、Milling cutter、Core drill、Taperd end mills、Metric end mills、Miniature end mills、Pilot reamer、Electronics cutter、Step drill、Metal cutting saw、Double margin drill、Gun barrel、Angle milling cutter、Carbide burrs、Carbide tipped cutter、Chamfering tool、IC card engraving cutter、Side cutter、NAS tool、DIN tool、Special tool、Metal slitting saws、Shell end mills、Side and face milling cutters、Side chip clearance saws、Long end mills、Stub roughing end mills、Dovetail milling cutters、Carbide slot drills、Carbide torus cutters、Angeled carbide end mills、Carbide torus cutters、Carbide ball-noseed slot drills、Mould cutter、Tool manufacturer.
Bewise Inc. www.tool-tool.com
beeway 發表在 痞客邦 留言(0) 人氣()