公告版位

有趣的~~www.tool-tool.com

你再學嘛 活該



好無辜的女孩啊...唉



對付色狼的方法..
那ㄍ屁..威力真大ㄋㄟ...



男生呀~
上廁所要小心ㄋㄟ



哈哈哈 
先生小姐 
你們想到哪去啦 
真是ㄉ...



其實古人是很帥滴
 不信你看看呀~ 



企鵝是很心機的
 小心點好 
別在被他的外表騙囉



死也要出來
不會橫著走喔!
笨蛋



千萬不能得罪女人



哇咧 
功力超強....


 



BW碧威股份有限公司針對客戶端改善切削方式、提供專業切削CNC數控刀具專業能力、製造客戶需求如:Cutting tool、切削刀具、HSS Cutting toolCarbide end millsCarbide cutting toolNAS Cutting toolCarbide end millAerospace cutting toolCarbide drillHigh speed steelMilling cutterCore drill、鎢鋼銑刀、航太刀具、鎢鋼鑽頭、高速剛、鉸刀、中心鑽頭、Taperd end mills、斜度銑刀、Metric end mills、公制銑刀、Miniature end mills、微小徑銑刀、鎢鋼切削刀具、Pilot reamer、領先鉸刀、Electronics cutter、電子用切削刀具、Step drill、階梯鑽頭、Metal cutting saw、金屬圓鋸片、Double margin drill、領先階梯鑽頭、Gun barrelAngle milling cutter、角度銑刀、Carbide burrs、滾磨刀、Carbide tipped cutter、銲刃刀具、Chamfering tool、倒角銑刀、IC card engraving cutterIC晶片卡刀、Side cutter、側銑刀、NAS toolDIN tool、德國規範切削刀具、Special tool、特殊刀具、Metal slitting sawsShell end mills、滾筒銑刀、Side and face milling cuttersSide chip clearance saws、交叉齒側銑刀、Long end mills、長刃銑刀、Stub roughing end mills、粗齒銑刀、Dovetail milling cutters、鳩尾刀具、Carbide slot drillsCarbide torus cutters、鎢鋼圓鼻銑刀、Angeled carbide end mills、角度鎢鋼銑刀、Carbide torus cutters、短刃平銑刀、Carbide ball-noseed slot drills、鎢鋼球頭銑刀、Mould cutter、模具用刀具、BW微型渦流管槍、Tool manufacturer、刀具製造商等相關切削刀具、以服務客戶改善工廠加工條件、爭加競爭力。

歡迎尋購~~~

碧威股份有限公司www.tool-tool.com

beeway 發表在 痞客邦 留言(0) 人氣()

BW NaNo Cutting Tools www.tool-tool.com

碧威股份有限公司
www.tool-tool.com
高硬度奈米銑刀

Welcome to BW tool world!  We are an experienced tool maker specialized in cutting tools.  We focus on what you need and endeavor to research the best cutter to satisfy users’ demand.  Our customers involve wide range of industries, like mold & die, aerospace, electronic, machinery, ,,,etc.  We are professional expert in cutting field.  We would like to solve every problem from you.  Please feel free to contact us, it’s our pleasure to serve for you.     BW product including: utting toolaerospace tool .HSS Cutting toolCarbide end millsCarbide cutting toolNAS Cutting toolCarbide end millAerospace cutting toolCarbide drillHigh speed steelMilling cutterCore drillTaperd end millsMetric end millsMiniature end millsPilot reamerElectronics cutterStep drillMetal cutting sawDouble margin drillGun barrelAngle milling cutterCarbide burrsCarbide tipped cutterChamfering toolIC card engraving cutterSide cutterNAS toolDIN toolSpecial toolMetal slitting sawsShell end millsSide and face milling cuttersSide chip clearance sawsLong end millsStub roughing end millsDovetail milling cuttersCarbide slot drillsCarbide torus cuttersAngeled carbide end millsCarbide torus cuttersCarbide ball-noseed slot drillsMould cutterTool manufacturer.

Bewise Inc.   www.tool-tool.com      

Bewise Inc.
www.tool-tool.com

BW碧威股份有限公司針對客戶端改善切削方式、提供專業切削CNC數控刀具專業能力、製造客戶需求如:Cutting tool、切削刀具、HSS Cutting toolCarbide end millsCarbide cutting toolNAS Cutting toolCarbide end millAerospace cutting toolCarbide drillHigh speed steelMilling cutterCore drill、鎢鋼銑刀、航太刀具、鎢鋼鑽頭、高速剛、鉸刀、中心鑽頭、Taperd end mills、斜度銑刀、Metric end mills、公制銑刀、Miniature end mills、微小徑銑刀、鎢鋼切削刀具、Pilot reamer、領先鉸刀、Electronics cutter、電子用切削刀具、Step drill、階梯鑽頭、Metal cutting saw、金屬圓鋸片、Double margin drill、領先階梯鑽頭、Gun barrelAngle milling cutter、角度銑刀、Carbide burrs、滾磨刀、Carbide tipped cutter、銲刃刀具、Chamfering tool、倒角銑刀、IC card engraving cutterIC晶片卡刀、Side cutter、側銑刀、NAS toolDIN tool、德國規範切削刀具、Special tool、特殊刀具、Metal slitting sawsShell end mills、滾筒銑刀、Side and face milling cuttersSide chip clearance saws、交叉齒側銑刀、Long end mills、長刃銑刀、Stub roughing end mills、粗齒銑刀、Dovetail milling cutters、鳩尾刀具、Carbide slot drillsCarbide torus cutters、鎢鋼圓鼻銑刀、Angeled carbide end mills、角度鎢鋼銑刀、Carbide torus cutters、短刃平銑刀、Carbide ball-noseed slot drills、鎢鋼球頭銑刀、Mould cutter、模具用刀具、BW微型渦流管槍、Tool manufacturer、刀具製造商等相關切削刀具、以服務客戶改善工廠加工條件、爭加競爭力。

歡迎尋購~~~

碧威股份有限公司www.tool-tool.com

beeway 發表在 痞客邦 留言(2) 人氣()

BW Aviation Cutting Tools www.tool-tool.com

碧威股份有限公司
www.tool-tool.com
航太刀具、鑽頭、階梯鑽頭、鉸刀、銑刀

Welcome to BW tool world!  We are an experienced tool maker specialized in cutting tools.  We focus on what you need and endeavor to research the best cutter to satisfy users’ demand.  Our customers involve wide range of industries, like mold & die, aerospace, electronic, machinery, ,,,etc.  We are professional expert in cutting field.  We would like to solve every problem from you.  Please feel free to contact us, it’s our pleasure to serve for you.     BW product including: utting toolaerospace tool .HSS Cutting toolCarbide end millsCarbide cutting toolNAS Cutting toolCarbide end millAerospace cutting toolCarbide drillHigh speed steelMilling cutterCore drillTaperd end millsMetric end millsMiniature end millsPilot reamerElectronics cutterStep drillMetal cutting sawDouble margin drillGun barrelAngle milling cutterCarbide burrsCarbide tipped cutterChamfering toolIC card engraving cutterSide cutterNAS toolDIN toolSpecial toolMetal slitting sawsShell end millsSide and face milling cuttersSide chip clearance sawsLong end millsStub roughing end millsDovetail milling cuttersCarbide slot drillsCarbide torus cuttersAngeled carbide end millsCarbide torus cuttersCarbide ball-noseed slot drillsMould cutterTool manufacturer.

Bewise Inc.   www.tool-tool.com      

Bewise Inc.
www.tool-tool.com

BW碧威股份有限公司針對客戶端改善切削方式、提供專業切削CNC數控刀具專業能力、製造客戶需求如:Cutting tool、切削刀具、HSS Cutting toolCarbide end millsCarbide cutting toolNAS Cutting toolCarbide end millAerospace cutting toolCarbide drillHigh speed steelMilling cutterCore drill、鎢鋼銑刀、航太刀具、鎢鋼鑽頭、高速剛、鉸刀、中心鑽頭、Taperd end mills、斜度銑刀、Metric end mills、公制銑刀、Miniature end mills、微小徑銑刀、鎢鋼切削刀具、Pilot reamer、領先鉸刀、Electronics cutter、電子用切削刀具、Step drill、階梯鑽頭、Metal cutting saw、金屬圓鋸片、Double margin drill、領先階梯鑽頭、Gun barrelAngle milling cutter、角度銑刀、Carbide burrs、滾磨刀、Carbide tipped cutter、銲刃刀具、Chamfering tool、倒角銑刀、IC card engraving cutterIC晶片卡刀、Side cutter、側銑刀、NAS toolDIN tool、德國規範切削刀具、Special tool、特殊刀具、Metal slitting sawsShell end mills、滾筒銑刀、Side and face milling cuttersSide chip clearance saws、交叉齒側銑刀、Long end mills、長刃銑刀、Stub roughing end mills、粗齒銑刀、Dovetail milling cutters、鳩尾刀具、Carbide slot drillsCarbide torus cutters、鎢鋼圓鼻銑刀、Angeled carbide end mills、角度鎢鋼銑刀、Carbide torus cutters、短刃平銑刀、Carbide ball-noseed slot drills、鎢鋼球頭銑刀、Mould cutter、模具用刀具、BW微型渦流管槍、Tool manufacturer、刀具製造商等相關切削刀具、以服務客戶改善工廠加工條件、爭加競爭力。

歡迎尋購~~~

碧威股份有限公司www.tool-tool.com

beeway 發表在 痞客邦 留言(0) 人氣()

BW Shell End Mills www.tool-tool.com

碧威股份有限公司
www.tool-tool.com
銲刃式銑刀、機械鉸刀、側銑刀、滾筒銑刀

Bewise Inc.
www.tool-tool.com

BW碧威股份有限公司針對客戶端改善切削方式、提供專業切削CNC數控刀具專業能力、製造客戶需求如:Cutting tool、切削刀具、HSS Cutting toolCarbide end millsCarbide cutting toolNAS Cutting toolCarbide end millAerospace cutting toolCarbide drillHigh speed steelMilling cutterCore drill、鎢鋼銑刀、航太刀具、鎢鋼鑽頭、高速剛、鉸刀、中心鑽頭、Taperd end mills、斜度銑刀、Metric end mills、公制銑刀、Miniature end mills、微小徑銑刀、鎢鋼切削刀具、Pilot reamer、領先鉸刀、Electronics cutter、電子用切削刀具、Step drill、階梯鑽頭、Metal cutting saw、金屬圓鋸片、Double margin drill、領先階梯鑽頭、Gun barrelAngle milling cutter、角度銑刀、Carbide burrs、滾磨刀、Carbide tipped cutter、銲刃刀具、Chamfering tool、倒角銑刀、IC card engraving cutterIC晶片卡刀、Side cutter、側銑刀、NAS toolDIN tool、德國規範切削刀具、Special tool、特殊刀具、Metal slitting sawsShell end mills、滾筒銑刀、Side and face milling cuttersSide chip clearance saws、交叉齒側銑刀、Long end mills、長刃銑刀、Stub roughing end mills、粗齒銑刀、Dovetail milling cutters、鳩尾刀具、Carbide slot drillsCarbide torus cutters、鎢鋼圓鼻銑刀、Angeled carbide end mills、角度鎢鋼銑刀、Carbide torus cutters、短刃平銑刀、Carbide ball-noseed slot drills、鎢鋼球頭銑刀、Mould cutter、模具用刀具、BW微型渦流管槍、Tool manufacturer、刀具製造商等相關切削刀具、以服務客戶改善工廠加工條件、爭加競爭力。

歡迎尋購~~~

碧威股份有限公司www.tool-tool.com

beeway 發表在 痞客邦 留言(0) 人氣()

Bewise Inc.   www.tool-tool.com      

Reference source from the internet.

In every machining system, one simply can't ignore the important role that cutting tools play. Oftentimes, the quality of a finished product would rely on the quality of the cutting tools. The quality and the performance of cutting tools would also directly affect a machining system's overall productivity. It is because of their importance that manufacturers would take into consideration several criteria before eventually buying a piece of cutting tool for their machining system. Included in these criteria are the tools ability to last long under rigorous operating conditions and their capability to perform at very high speeds. Also important is the tool's resistance to wear and tear, including resistance to breakage, edge and flank wear, cratering or top wear, chipping, built-up edge (BUE), deformation, and thermal cracking.

1. Kinds Of Tools

As the demand for better cutting tools increase, cutting tool suppliers also continuously develop products that can pass manufacturers' demands. Through the years, a lot of materials for the manufacture of cutting tools have been experimented upon; some have passed the standards while others were simply dropped. Today, there are only two types of cutting tools heavily favored in the machining industry: high speed steel (HSS) cutting tools and carbide cutting tools; and it seems that carbide cutting tools have slightly overtaken the other in popularity. So, what advantages do carbide cutting tools have over their HSS counterparts? Considering their lead in popularity, it is clear that the benefits of carbide cutting tools outnumber that of HSS cutting tools. And we'll understand these benefits better if we know what carbide really is.

2. What is Carbide?

In chemistry, carbides refer to any group of compounds made up of carbon and one other element that can be a metal, boron, or silicon. There are actually many compounds belonging to this group, among the more popular of which includes:

- Calcium Carbide
- Aluminum Carbide
- Silicon Carbide
- Tungsten Carbide
- Iron Carbide

3. Industrial Uses of Carbide

In the 20th century, carbides have been used for a lot of industrial applications. Carbides used in industrial applications are often called cemented carbide products and are classified in three major grades:

- Wear grades
Used primarily in dies, machine and tool guides

- Impact grades
Higher shock resistance carbide products used for dies, particularly for stamping and forming

- Cutting tool grades
Carbide tools used for cutting

4. Carbide Cutting Tools

Cutting tool grades of carbides are further subdivided into two groups: cast-iron carbides and steel-grade carbides. As their name implies, cast-iron carbides are specifically made for cutting cast-iron materials. These carbides are more resistant to abrasive wear, protecting the carbide cutting tool from edge wear due to the high abrasiveness of cast-iron. Steel-grade carbides, on the other hand, are specially made to resist cratering and heat deformation that may be caused by the long chips of steel on higher cutting speeds. Whichever grade of carbide is used in a carbide cutting tool, the main carbide material used in its manufacture is tungsten carbide (WC) with a cobalt binder. Tungsten carbide is well known for its hardness and resistance to abrasive wear. Cobalt, on the other hand, is used to further toughen the tool's surface.


5. Other Variants

Aside from tungsten carbide and cobalt, other alloying materials are added in the manufacture of carbide cutting tools. Among them is titanium carbide and tantalum carbide. Titanium carbide helps the carbide cutting tool to resist cratering while tantalum carbide can reduce heat deformations in the tool. Also commonly used in the cutting industry today are coated carbide cutting tools. Aside from the basic carbide materials, titanium carbide, titanium nitride, ceramic coating, diamond coating or titanium carbonitride are used as coating materials. The different coating materials aid the carbide cutting tool differently, although they are generally used to further toughen the cutting tool.

6. Benefits of Carbide Cutting Tools

- Toughness
- Exceptional resistance to abrasion
- Superior wear resistance
- Resistance to cratering
- Resistance to thermal deformations

- High modulus of elasticity
- Chemical inertness
- Torsional strength twice that of HSS
- Compressive strength

Welcome to BW tool world!  We are an experienced tool maker specialized in cutting tools.  We focus on what you need and endeavor to research the best cutter to satisfy users’ demand.  Our customers involve wide range of industries, like mold & die, aerospace, electronic, machinery, ,,,etc.  We are professional expert in cutting field.  We would like to solve every problem from you.  Please feel free to contact us, it’s our pleasure to serve for you.     BW product including: utting toolaerospace tool .HSS Cutting toolCarbide end millsCarbide cutting toolNAS Cutting toolCarbide end millAerospace cutting toolCarbide drillHigh speed steelMilling cutterCore drillTaperd end millsMetric end millsMiniature end millsPilot reamerElectronics cutterStep drillMetal cutting sawDouble margin drillGun barrelAngle milling cutterCarbide burrsCarbide tipped cutterChamfering toolIC card engraving cutterSide cutterNAS toolDIN toolSpecial toolMetal slitting sawsShell end millsSide and face milling cuttersSide chip clearance sawsLong end millsStub roughing end millsDovetail milling cuttersCarbide slot drillsCarbide torus cuttersAngeled carbide end millsCarbide torus cuttersCarbide ball-noseed slot drillsMould cutterTool manufacturer.

Bewise Inc.   www.tool-tool.com      

beeway 發表在 痞客邦 留言(0) 人氣()

Bewise Inc.   www.tool-tool.com      

Reference source from the internet.

The challenges involved in designing machine tools, cutting tools and fixtures to effectively mill features on miniature molds and microcomponents are daunting. The same could be said for optimizing tool paths for a tool that a machine operator probably won’t be able to see or hear while it’s in cut. Unlike standard milling operations, there’s no way that a machine operator can tell just how a tool is behaving while cutting in order to make the necessary changes to optimize the process. In addition, the toolpath strategies that might be suitable for “typical” milling work do not always scale down elegantly to work for micromilling applications.
probe

Still, there is an increasing demand for small part machining of medical, electronics and optic components. Recognizing this trend, the Fraunhofer Institute for Production Technology (IPT) in Aachen, Germany, recently sponsored a micromilling research project that brought together machine tool equipment manufacturers and mold makers with the goal of developing effective micromoldmaking strategies and processes. The struggle in creating NC software for micromilling has been effectively calculating tool motions with a tolerance of 0.1 micron. Cimatron (Novi, Michigan) is one software company that took part in the IPT project. The result was upgrading Cimatron E NC software to include a variety of functions for micromilling work.

Uri Shakked, a product manager for Cimatron who specializes in micromilling, offers the following five considerations when generating tool paths for micromilling applications.

1) Develop machining strategies appropriate for micromilling. Similarities between high speed machining (HSM) and micromilling do exist, such as avoiding sharp tool motions. When approaching corners, tool paths should be rounded, and the amount of that roundness depends on the machine tool and the feed rate. When micromilling, rounding becomes virtually useless below a certain value. Rounding of 0.2 mm, for example, is too large because typical micromilling stepovers are extremely small (approximately 0.01 mm). In this example, the roundness value is 20 times that of the stepover value, which means there would be wide gaps between sequential passes, high scallop height and poor surface quality.

The zero-overlap trochoidal method developed by Cimatron offers a way to clean such ridges. This method machines all relevant areas in a trochoidal style, but in order to prevent double-machining, tool back motions are raised from the workpiece surface in the Z axis. The tool then plunges tangent to the tool path on succeeding forward motions (see image on the following page).
Milling with cutting tools that measure 0.1 mm
Milling with cutting tools that measure 0.1 mm in diameter, such as the one shown here, creates challenges for both equipment and programming software.

HSM uses high cutting feeds to allow the chip to remove the heat that results from cutting; high spindle speeds to generate high cutting feeds; and high feed rates to reduce machining time and allow cutting with small stepover values. The feed rate, though, is limited by the tool’s maximum chip size per cutting edge. Because micromilling cutting tools have such small diameters, the spindle speed is often too slow to produce a high cutting feed, which, in turn, limits the maximum attainable feed rate. For example, to maintain a cutting feed of 100 meters per minute with a 10-mm cutter, the spindle should rotate at approximately 3,200 rpm. For a 0.1-mm cutter, the spindle would have to rotate at 320,000 rpm. Such a high spindle speed currently isn’t available. The maximum cutting feed possible with a 0.1 mm cutter is approximately 15 meters per minute—far from being considered HSM.

2) Conventional milling is generally more effective than climb milling. The decision whether to use conventional or climb milling for micromilling applications depends largely on the part feature being machined. Considering the delicate features typically found on micromolds and microcomponents, conventional milling is generally the milling method of choice.

Conventional milling is best suited for micromilling when the tool is long or the workpiece wall is very thin. As a cutting edge starts a conventional milling cut, the chip size is essentially zero and becomes thicker as the tool rotates. As the cutting edge penetrates the material, the force between them builds and the cutting edge tends to be drawn into the workpiece. This provides for a stable cutting condition that is well-suited for soft materials and delicate features.

However, conventional milling can potentially damage the tool’s cutting edge. As the cutting edge finishes the cut, it pushes away from the material. As it rotates back into a cut, it digs into the material. This causes the force on the cutting edge to rapidly change directions, shortening tool life.

In climb milling, the cutter engages the material at maximum chip size, and the tool and the part tend to push away from each other. The machine tool, workpiece and cutting tool must be robust enough so that vibrations are not introduced. Otherwise, cutting tool life would be shortened and surface quality would be poor.
tool back motions
Ridges that remain when milling a tight radius can be cleaned using a zero-overlap trochoidal tool path. In this method, tool back motions are raised from the workpiece in the Z axis and the tool then plunges tangent to the tool path on succeeding forward motions to create a better surface finish.

3) Combined roughing/finishing operations may be necessary. Roughing and finishing passes are traditionally performed as separate operations, using different spindle speeds, feed rates and depth of cut. However, this might not be possible when micromilling, especially when machining tall, thin walls or bosses on miniature parts. The wall thickness after a roughing operation will not provide sufficient support for the finishing operation, causing the walls to vibrate or possibly fracture during finish milling. At the very least, wall surface finish would be unacceptable.

When micromilling, cutting thin walls, roughing and finishing should be combined into a single operation, cutting layer-by-layer down the Z axis on alternating sides of the wall. The cutter should be tilted away from the wall to guarantee a single contact point between the cutter and the wall.


4) Constant tool load should be maintained. In standard moldmaking applications, a machine operator will often manually adjust feed rates, change tools if needed or manually edit the tool path to make it more efficient. Because of the miniature size of the part and tools used in micromilling, an operator has no practical way to see or hear what’s going on during the machining process. That’s why the micromilling software must be able to accurately maintain a constant chip load throughout the cut.

Cimatron software recognizes actual remaining stock and uses that knowledge to make adjustments depending on the tool load throughout the entire process. This quickens machining time while protecting the delicate micromilling tools from breaking. During a roughing operation, in which the workpiece shape is changed dramatically, the software simulates the remaining stock after each layer. This enables the tool to go into locations that were cleaned by previous layers, thus allowing short tools to cut into deep areas.

During a clean-up operation, the system can detect excessive material and automatically apply re-roughing operations. The re-roughing motions prevent tool breakage, maintain constant tool load and deliver higher surface quality. Depending on how much material is removed, the software will automatically make changes to the feed rate or possibly divide the tool path into several down passes.

5) Be mindful of CAD/CAM translation problems. Data translation errors between separate CAD and CAM packages adversely affect machining accuracy, and these inaccuracies are exacerbated when micromilling. Integrated CAD/CAM packages eliminate such data translations. For example, a translation error resulting in a 0.005-mm gap between two surfaces on a relatively large part might not be problematic because the part could be polished. Polishing often isn’t possible on miniature molds or microcomponents, so a gap of the same size on a micromilled part would clearly be visible.

Almost any CAM programming job requires some geometry-mending procedures, which means CAM software should include built-in CAD capabilities. When making a mold, cooling and ejector holes are typically capped to prevent the cutting tool from machining into them. Also, surfaces must be extended to protect areas that will be machined in another setup and a draft angle will be applied. The ability, or inability, to create or modify part geometry impacts the way the tool path is programmed.

This CAD-for-tooling work should be done by a toolmaker who knows the needs of the machining process, such as the NC programmer. In many cases, only during the programming process does it become clear that a certain geometry modification is required.

Welcome to BW tool world!  We are an experienced tool maker specialized in cutting tools.  We focus on what you need and endeavor to research the best cutter to satisfy users’ demand.  Our customers involve wide range of industries, like mold & die, aerospace, electronic, machinery, ,,,etc.  We are professional expert in cutting field.  We would like to solve every problem from you.  Please feel free to contact us, it’s our pleasure to serve for you.     BW product including: utting toolaerospace tool .HSS Cutting toolCarbide end millsCarbide cutting toolNAS Cutting toolCarbide end millAerospace cutting toolCarbide drillHigh speed steelMilling cutterCore drillTaperd end millsMetric end millsMiniature end millsPilot reamerElectronics cutterStep drillMetal cutting sawDouble margin drillGun barrelAngle milling cutterCarbide burrsCarbide tipped cutterChamfering toolIC card engraving cutterSide cutterNAS toolDIN toolSpecial toolMetal slitting sawsShell end millsSide and face milling cuttersSide chip clearance sawsLong end millsStub roughing end millsDovetail milling cuttersCarbide slot drillsCarbide torus cuttersAngeled carbide end millsCarbide torus cuttersCarbide ball-noseed slot drillsMould cutterTool manufacturer.

Bewise Inc.   www.tool-tool.com      

beeway 發表在 痞客邦 留言(0) 人氣()

Bewise Inc.   www.tool-tool.com      

Reference source from the internet.

La compañía española Gamesa participa en el programa 747LCF con Boeing en todo el análisis de ingeniería y desarrollo de la “swing zone”. Esta sección es una estructura muy compleja por la cual el fuselaje trasero se abre para permitir la carga y descarga de las estructuras de materiales compuestos más grandes del 787, como las alas o el fuselaje.


Boeing ha anunciado hoy que ha seleccionado a Evergreen International Airlines para operar la flota de aviones 747 “Large Cargo Freigter” (LFC - Carguero de Gran Capacidad), compuesta por aviones 747-400 especialmente modificados para el transporte de grandes estructuras de los nuevos Boeing 787 Dreamliner.

Evergreen International Airlines (EIA), una filial de Evergreen International Aviation, operará rutas entre Estados Unidos y Japón. Evergreen ha seleccionado a Cargolux como empresa subcontratada para operar las rutas desde Europa. Además, Evergreen ha elegido a la americana Sojitz Corp. para coordinar la logística y otros servicios para las rutas japonesas.

Boeing utilizará tres 747 LCF como principal medio de transporte de las grandes estructuras del 787 desde las instalaciones de sus proveedores en todo el mundo hasta la planta de Boeing en Everett, Washington, para su ensamblaje final.

Los aviones 747 se están modificando en la sede de Evergreen Aviation Tehnologies Corp., en Taipei, Taiwán. La modificación del primer avión comenzó el pasado mes de junio y su desarrollo progresa favorablemente. El primer vuelo está previsto para mediados de 2006 seguido de los vuelos de prueba y la certificación. El primer LCF entrará en servicio en 2007 como apoyo a la producción del Dreamliner.

Welcome to BW tool world!  We are an experienced tool maker specialized in cutting tools.  We focus on what you need and endeavor to research the best cutter to satisfy users’ demand.  Our customers involve wide range of industries, like mold & die, aerospace, electronic, machinery, ,,,etc.  We are professional expert in cutting field.  We would like to solve every problem from you.  Please feel free to contact us, it’s our pleasure to serve for you.     BW product including: utting toolaerospace tool .HSS Cutting toolCarbide end millsCarbide cutting toolNAS Cutting toolCarbide end millAerospace cutting toolCarbide drillHigh speed steelMilling cutterCore drillTaperd end millsMetric end millsMiniature end millsPilot reamerElectronics cutterStep drillMetal cutting sawDouble margin drillGun barrelAngle milling cutterCarbide burrsCarbide tipped cutterChamfering toolIC card engraving cutterSide cutterNAS toolDIN toolSpecial toolMetal slitting sawsShell end millsSide and face milling cuttersSide chip clearance sawsLong end millsStub roughing end millsDovetail milling cuttersCarbide slot drillsCarbide torus cuttersAngeled carbide end millsCarbide torus cuttersCarbide ball-noseed slot drillsMould cutterTool manufacturer.

Bewise Inc.   www.tool-tool.com      

beeway 發表在 痞客邦 留言(0) 人氣()