公告版位

Bewise Inc.   www.tool-tool.com      

Reference source from the internet.   
In every machining system, one simply can't ignore the important role that cutting tools play. Oftentimes, the quality of a finished product would rely on the quality of the cutting tools. The quality and the performance of cutting tools would also directly affect a machining system's overall productivity. It is because of their importance that manufacturers would take into consideration several criteria before eventually buying a piece of cutting tool for their machining system. Included in these criteria are the tools ability to last long under rigorous operating conditions and their capability to perform at very high speeds. Also important is the tool's resistance to wear and tear, including resistance to breakage, edge and flank wear, cratering or top wear, chipping, built-up edge (BUE), deformation, and thermal cracking.

1. Kinds Of Tools

As the demand for better cutting tools increase, cutting tool suppliers also continuously develop products that can pass manufacturers' demands. Through the years, a lot of materials for the manufacture of cutting tools have been experimented upon; some have passed the standards while others were simply dropped. Today, there are only two types of cutting tools heavily favored in the machining industry: high speed steel (HSS) cutting tools and carbide cutting tools; and it seems that carbide cutting tools have slightly overtaken the other in popularity. So, what advantages do carbide cutting tools have over their HSS counterparts? Considering their lead in popularity, it is clear that the benefits of carbide cutting tools outnumber that of HSS cutting tools. And we'll understand these benefits better if we know what carbide really is.

2. What is Carbide?

In chemistry, carbides refer to any group of compounds made up of carbon and one other element that can be a metal, boron, or silicon. There are actually many compounds belonging to this group, among the more popular of which includes:

- Calcium Carbide
- Aluminum Carbide
- Silicon Carbide
- Tungsten Carbide
- Iron Carbide

3. Industrial Uses of Carbide

In the 20th century, carbides have been used for a lot of industrial applications. Carbides used in industrial applications are often called cemented carbide products and are classified in three major grades:

- Wear grades
Used primarily in dies, machine and tool guides

- Impact grades
Higher shock resistance carbide products used for dies, particularly for stamping and forming

- Cutting tool grades
Carbide tools used for cutting

4. Carbide Cutting Tools

Cutting tool grades of carbides are further subdivided into two groups: cast-iron carbides and steel-grade carbides. As their name implies, cast-iron carbides are specifically made for cutting cast-iron materials. These carbides are more resistant to abrasive wear, protecting the carbide cutting tool from edge wear due to the high abrasiveness of cast-iron. Steel-grade carbides, on the other hand, are specially made to resist cratering and heat deformation that may be caused by the long chips of steel on higher cutting speeds. Whichever grade of carbide is used in a carbide cutting tool, the main carbide material used in its manufacture is tungsten carbide (WC) with a cobalt binder. Tungsten carbide is well known for its hardness and resistance to abrasive wear. Cobalt, on the other hand, is used to further toughen the tool's surface.


5. Other Variants

Aside from tungsten carbide and cobalt, other alloying materials are added in the manufacture of carbide cutting tools. Among them is titanium carbide and tantalum carbide. Titanium carbide helps the carbide cutting tool to resist cratering while tantalum carbide can reduce heat deformations in the tool. Also commonly used in the cutting industry today are coated carbide cutting tools. Aside from the basic carbide materials, titanium carbide, titanium nitride, ceramic coating, diamond coating or titanium carbonitride are used as coating materials. The different coating materials aid the carbide cutting tool differently, although they are generally used to further toughen the cutting tool.

6. Benefits of Carbide Cutting Tools

- Toughness
- Exceptional resistance to abrasion
- Superior wear resistance
- Resistance to cratering
- Resistance to thermal deformations

- High modulus of elasticity
- Chemical inertness
- Torsional strength twice that of HSS
- Compressive strength

Welcome to BW tool world!  We are an experienced tool maker specialized in cutting tools.  We focus on what you need and endeavor to research the best cutter to satisfy users’ demand.  Our customers involve wide range of industries, like mold & die, aerospace, electronic, machinery, ,,,etc.  We are professional expert in cutting field.  We would like to solve every problem from you.  Please feel free to contact us, it’s our pleasure to serve for you.     BW product including: utting toolaerospace tool .HSS Cutting toolCarbide end millsCarbide cutting toolNAS Cutting toolCarbide end millAerospace cutting toolCarbide drillHigh speed steelMilling cutterCore drillTaperd end millsMetric end millsMiniature end millsPilot reamerElectronics cutterStep drillMetal cutting sawDouble margin drillGun barrelAngle milling cutterCarbide burrsCarbide tipped cutterChamfering toolIC card engraving cutterSide cutterNAS toolDIN toolSpecial toolMetal slitting sawsShell end millsSide and face milling cuttersSide chip clearance sawsLong end millsStub roughing end millsDovetail milling cuttersCarbide slot drillsCarbide torus cuttersAngeled carbide end millsCarbide torus cuttersCarbide ball-noseed slot drillsMould cutterTool manufacturer.

Bewise Inc.   www.tool-tool.com      

beeway 發表在 痞客邦 留言(0) 人氣()

Bewise Inc.   www.tool-tool.com      

Reference source from the internet.    
The challenges involved in designing machine tools, cutting tools and fixtures to effectively mill features on miniature molds and microcomponents are daunting. The same could be said for optimizing tool paths for a tool that a machine operator probably won’t be able to see or hear while it’s in cut. Unlike standard milling operations, there’s no way that a machine operator can tell just how a tool is behaving while cutting in order to make the necessary changes to optimize the process. In addition, the toolpath strategies that might be suitable for “typical” milling work do not always scale down elegantly to work for micromilling applications.
probe

Still, there is an increasing demand for small part machining of medical, electronics and optic components. Recognizing this trend, the Fraunhofer Institute for Production Technology (IPT) in Aachen, Germany, recently sponsored a micromilling research project that brought together machine tool equipment manufacturers and mold makers with the goal of developing effective micromoldmaking strategies and processes. The struggle in creating NC software for micromilling has been effectively calculating tool motions with a tolerance of 0.1 micron. Cimatron (Novi, Michigan) is one software company that took part in the IPT project. The result was upgrading Cimatron E NC software to include a variety of functions for micromilling work.

Uri Shakked, a product manager for Cimatron who specializes in micromilling, offers the following five considerations when generating tool paths for micromilling applications.

1) Develop machining strategies appropriate for micromilling. Similarities between high speed machining (HSM) and micromilling do exist, such as avoiding sharp tool motions. When approaching corners, tool paths should be rounded, and the amount of that roundness depends on the machine tool and the feed rate. When micromilling, rounding becomes virtually useless below a certain value. Rounding of 0.2 mm, for example, is too large because typical micromilling stepovers are extremely small (approximately 0.01 mm). In this example, the roundness value is 20 times that of the stepover value, which means there would be wide gaps between sequential passes, high scallop height and poor surface quality.

The zero-overlap trochoidal method developed by Cimatron offers a way to clean such ridges. This method machines all relevant areas in a trochoidal style, but in order to prevent double-machining, tool back motions are raised from the workpiece surface in the Z axis. The tool then plunges tangent to the tool path on succeeding forward motions (see image on the following page).
Milling with cutting tools that measure 0.1 mm
Milling with cutting tools that measure 0.1 mm in diameter, such as the one shown here, creates challenges for both equipment and programming software.

HSM uses high cutting feeds to allow the chip to remove the heat that results from cutting; high spindle speeds to generate high cutting feeds; and high feed rates to reduce machining time and allow cutting with small stepover values. The feed rate, though, is limited by the tool’s maximum chip size per cutting edge. Because micromilling cutting tools have such small diameters, the spindle speed is often too slow to produce a high cutting feed, which, in turn, limits the maximum attainable feed rate. For example, to maintain a cutting feed of 100 meters per minute with a 10-mm cutter, the spindle should rotate at approximately 3,200 rpm. For a 0.1-mm cutter, the spindle would have to rotate at 320,000 rpm. Such a high spindle speed currently isn’t available. The maximum cutting feed possible with a 0.1 mm cutter is approximately 15 meters per minute—far from being considered HSM.

2) Conventional milling is generally more effective than climb milling. The decision whether to use conventional or climb milling for micromilling applications depends largely on the part feature being machined. Considering the delicate features typically found on micromolds and microcomponents, conventional milling is generally the milling method of choice.

Conventional milling is best suited for micromilling when the tool is long or the workpiece wall is very thin. As a cutting edge starts a conventional milling cut, the chip size is essentially zero and becomes thicker as the tool rotates. As the cutting edge penetrates the material, the force between them builds and the cutting edge tends to be drawn into the workpiece. This provides for a stable cutting condition that is well-suited for soft materials and delicate features.

However, conventional milling can potentially damage the tool’s cutting edge. As the cutting edge finishes the cut, it pushes away from the material. As it rotates back into a cut, it digs into the material. This causes the force on the cutting edge to rapidly change directions, shortening tool life.

In climb milling, the cutter engages the material at maximum chip size, and the tool and the part tend to push away from each other. The machine tool, workpiece and cutting tool must be robust enough so that vibrations are not introduced. Otherwise, cutting tool life would be shortened and surface quality would be poor.
tool back motions
Ridges that remain when milling a tight radius can be cleaned using a zero-overlap trochoidal tool path. In this method, tool back motions are raised from the workpiece in the Z axis and the tool then plunges tangent to the tool path on succeeding forward motions to create a better surface finish.

3) Combined roughing/finishing operations may be necessary. Roughing and finishing passes are traditionally performed as separate operations, using different spindle speeds, feed rates and depth of cut. However, this might not be possible when micromilling, especially when machining tall, thin walls or bosses on miniature parts. The wall thickness after a roughing operation will not provide sufficient support for the finishing operation, causing the walls to vibrate or possibly fracture during finish milling. At the very least, wall surface finish would be unacceptable.

When micromilling, cutting thin walls, roughing and finishing should be combined into a single operation, cutting layer-by-layer down the Z axis on alternating sides of the wall. The cutter should be tilted away from the wall to guarantee a single contact point between the cutter and the wall.


4) Constant tool load should be maintained. In standard moldmaking applications, a machine operator will often manually adjust feed rates, change tools if needed or manually edit the tool path to make it more efficient. Because of the miniature size of the part and tools used in micromilling, an operator has no practical way to see or hear what’s going on during the machining process. That’s why the micromilling software must be able to accurately maintain a constant chip load throughout the cut.

Cimatron software recognizes actual remaining stock and uses that knowledge to make adjustments depending on the tool load throughout the entire process. This quickens machining time while protecting the delicate micromilling tools from breaking. During a roughing operation, in which the workpiece shape is changed dramatically, the software simulates the remaining stock after each layer. This enables the tool to go into locations that were cleaned by previous layers, thus allowing short tools to cut into deep areas.

During a clean-up operation, the system can detect excessive material and automatically apply re-roughing operations. The re-roughing motions prevent tool breakage, maintain constant tool load and deliver higher surface quality. Depending on how much material is removed, the software will automatically make changes to the feed rate or possibly divide the tool path into several down passes.

5) Be mindful of CAD/CAM translation problems. Data translation errors between separate CAD and CAM packages adversely affect machining accuracy, and these inaccuracies are exacerbated when micromilling. Integrated CAD/CAM packages eliminate such data translations. For example, a translation error resulting in a 0.005-mm gap between two surfaces on a relatively large part might not be problematic because the part could be polished. Polishing often isn’t possible on miniature molds or microcomponents, so a gap of the same size on a micromilled part would clearly be visible.

Almost any CAM programming job requires some geometry-mending procedures, which means CAM software should include built-in CAD capabilities. When making a mold, cooling and ejector holes are typically capped to prevent the cutting tool from machining into them. Also, surfaces must be extended to protect areas that will be machined in another setup and a draft angle will be applied. The ability, or inability, to create or modify part geometry impacts the way the tool path is programmed.

This CAD-for-tooling work should be done by a toolmaker who knows the needs of the machining process, such as the NC programmer. In many cases, only during the programming process does it become clear that a certain geometry modification is required.

Welcome to BW tool world!  We are an experienced tool maker specialized in cutting tools.  We focus on what you need and endeavor to research the best cutter to satisfy users’ demand.  Our customers involve wide range of industries, like mold & die, aerospace, electronic, machinery, ,,,etc.  We are professional expert in cutting field.  We would like to solve every problem from you.  Please feel free to contact us, it’s our pleasure to serve for you.     BW product including: utting toolaerospace tool .HSS Cutting toolCarbide end millsCarbide cutting toolNAS Cutting toolCarbide end millAerospace cutting toolCarbide drillHigh speed steelMilling cutterCore drillTaperd end millsMetric end millsMiniature end millsPilot reamerElectronics cutterStep drillMetal cutting sawDouble margin drillGun barrelAngle milling cutterCarbide burrsCarbide tipped cutterChamfering toolIC card engraving cutterSide cutterNAS toolDIN toolSpecial toolMetal slitting sawsShell end millsSide and face milling cuttersSide chip clearance sawsLong end millsStub roughing end millsDovetail milling cuttersCarbide slot drillsCarbide torus cuttersAngeled carbide end millsCarbide torus cuttersCarbide ball-noseed slot drillsMould cutterTool manufacturer.

Bewise Inc.   www.tool-tool.com      

beeway 發表在 痞客邦 留言(0) 人氣()

碧威股份有限公司
www.tool-tool.com
轉述:
La compañía española Gamesa participa en el programa 747LCF con Boeing en todo el análisis de ingeniería y desarrollo de la “swing zone”. Esta sección es una estructura muy compleja por la cual el fuselaje trasero se abre para permitir la carga y descarga de las estructuras de materiales compuestos más grandes del 787, como las alas o el fuselaje.


Boeing ha anunciado hoy que ha seleccionado a Evergreen International Airlines para operar la flota de aviones 747 “Large Cargo Freigter” (LFC - Carguero de Gran Capacidad), compuesta por aviones 747-400 especialmente modificados para el transporte de grandes estructuras de los nuevos Boeing 787 Dreamliner.

Evergreen International Airlines (EIA), una filial de Evergreen International Aviation, operará rutas entre Estados Unidos y Japón. Evergreen ha seleccionado a Cargolux como empresa subcontratada para operar las rutas desde Europa. Además, Evergreen ha elegido a la americana Sojitz Corp. para coordinar la logística y otros servicios para las rutas japonesas.

Boeing utilizará tres 747 LCF como principal medio de transporte de las grandes estructuras del 787 desde las instalaciones de sus proveedores en todo el mundo hasta la planta de Boeing en Everett, Washington, para su ensamblaje final.

Los aviones 747 se están modificando en la sede de Evergreen Aviation Tehnologies Corp., en Taipei, Taiwán. La modificación del primer avión comenzó el pasado mes de junio y su desarrollo progresa favorablemente. El primer vuelo está previsto para mediados de 2006 seguido de los vuelos de prueba y la certificación. El primer LCF entrará en servicio en 2007 como apoyo a la producción del Dreamliner.

Welcome to BW tool world!  We are an experienced tool maker specialized in cutting tools.  We focus on what you need and endeavor to research the best cutter to satisfy users’ demand.  Our customers involve wide range of industries, like mold & die, aerospace, electronic, machinery, ,,,etc.  We are professional expert in cutting field.  We would like to solve every problem from you.  Please feel free to contact us, it’s our pleasure to serve for you.     BW product including: utting toolaerospace tool .HSS Cutting toolCarbide end millsCarbide cutting toolNAS Cutting toolCarbide end millAerospace cutting toolCarbide drillHigh speed steelMilling cutterCore drillTaperd end millsMetric end millsMiniature end millsPilot reamerElectronics cutterStep drillMetal cutting sawDouble margin drillGun barrelAngle milling cutterCarbide burrsCarbide tipped cutterChamfering toolIC card engraving cutterSide cutterNAS toolDIN toolSpecial toolMetal slitting sawsShell end millsSide and face milling cuttersSide chip clearance sawsLong end millsStub roughing end millsDovetail milling cuttersCarbide slot drillsCarbide torus cuttersAngeled carbide end millsCarbide torus cuttersCarbide ball-noseed slot drillsMould cutterTool manufacturer.

Bewise Inc.   www.tool-tool.com      

beeway 發表在 痞客邦 留言(0) 人氣()

碧威股份有限公司
www.tool-tool.com
轉述;http://www.diamond-infos.com/zuanshi_jiagong/zuanshi_zhengshu.html

出现日期
钻石
钻石钻石证书开始于1970年,它的出现深深地触动了这一行业的习俗和惯例。
钻石
钻石特征
钻石
钻石证书从被我们的行业所认同开始具有它的价值。下面有一份拥有知名声誉的实验室列表。
钻石
证书钻石注明了被鉴定钻石的特征,因此我们可以找到以下信息:
钻石上面加工钻的质量。
钻石净度。
钻石颜色,荧光强度。
钻石比率。
钻石修饰度。
钻石尺寸:直径,高度或厚度,腰部的最小和最大直径。
钻石钻石的结构缺陷应该在证书上被注明:例如:激光孔痕迹或者《毛坯》痕迹(未被加工的天然状态)。
钻石
钻石实验室往往有它们自己的特点,有一些实验室鉴定钻石的比率,而其它的就不鉴定 (比如GIA和LFG);有一些实验室提供封装钻石的可能性(比如HRD和IGI),而其 它的就不提供。不同的实验室鉴定钻石的时间会有很大的不同,可以从24小时一直 到几个星期。费用也从几百元到几千元不等,这取决于钻石的质量以及我们所要求的证书类型。
钻石
钻石一旦被鉴定,宝石就可以按要求被封装,钻石将被装在一个透明的盒子里,这样就不 会再有可能的质疑:在买这样的一颗钻石之前应先检查封条。买主因此可以清楚地知道所购买的是什么。
钻石
钻石证书编号的激光刻写一些年来,在腰部或台面上用激光刻写证书编号正在得到发展。这个可选项目可以使 带有证书钻石的身份验明更为确切。号码的刻写非常不引人注目,肉眼无法看到,需使用10 X倍放大镜。
钻石完全可以在腰部刻写除号码以外的其它内容,例如一个小的句子:《我爱你》或者 《送我的小妮 》等等...一些公司可以提供这样的个性化服务,费用在千元上下。
钻石
钻石注意这些词汇:《Clarity enhanced》和《Color enhanced》有时会出现在证书上。Clarity enhanced意味着您正面对着一颗为提高净度而被人为改变净度的钻石,这个词汇通常被记录在证书的《说明》中 (英语为《Comments》),钻石的价格会因此下降很多。Color enhanced意味着您正面对着一颗为提高颜色 等级而被人为改变颜色的钻石,这个词汇通常也会被记录在证书的 《说明》中或标注在《Color》一行,钻石的价格也会因此下降很多。
钻石
钻石鉴定实验室
钻石
钻石世界上有很多鉴定实验室,其中最知名的一些有:
钻石GIA (美国宝石学院Gemological Institute of America)
- 办公室:美国、意大利、中国、日本、韩国、泰国、英国、俄罗斯。
- 网站:GIA
钻石
钻石HRD (钻石高阶层议会Hoge Raad voor Diamant)
- 办公室:比利时。
- 网站:HRD
钻石
钻石IGI (国际宝石学院International Gemmological Institute)
- 办公室:比利时、美国、印度、泰国、日本。
- 网站:IGI
钻石
钻石LFG (法国宝石实验室Laboratoire Français de Gemmologie),也被称作《钻石、珍珠、宝石国家检测中心Service Public du Contrôle des Diamants, Perles Fines et Pierres Précieuses》,是所有宝石实验室中的元老。
- 办公室:法国。
- 网站:LFG
钻石
钻石AGS (美国宝石协会American Gem Society)
- 办公室:美国。
- 网站:AGS
钻石
钻石证书样本
钻石
GIA证书:点击放大 HRD证书:点击放大 IGI证书:点击放大 AGS证书:点击放大
GIA HRD IGI AGS
钻石
钻石彩色钻石(Fancy Color)证书
GIA彩色钻石证书:点击放大
GIA彩色钻石

BW碧威股份有限公司針對客戶端改善切削方式、提供專業切削CNC數控刀具專業能力、製造客戶需求如:Cutting tool、切削刀具、HSS Cutting toolCarbide end millsCarbide cutting toolNAS Cutting toolCarbide end millAerospace cutting toolCarbide drillHigh speed steelMilling cutterCore drill、鎢鋼銑刀、航太刀具、鎢鋼鑽頭、高速剛、鉸刀、中心鑽頭、Taperd end mills、斜度銑刀、Metric end mills、公制銑刀、Miniature end mills、微小徑銑刀、鎢鋼切削刀具、Pilot reamer、領先鉸刀、Electronics cutter、電子用切削刀具、Step drill、階梯鑽頭、Metal cutting saw、金屬圓鋸片、Double margin drill、領先階梯鑽頭、Gun barrelAngle milling cutter、角度銑刀、Carbide burrs、滾磨刀、Carbide tipped cutter、銲刃刀具、Chamfering tool、倒角銑刀、IC card engraving cutterIC晶片卡刀、Side cutter、側銑刀、NAS toolDIN tool、德國規範切削刀具、Special tool、特殊刀具、Metal slitting sawsShell end mills、滾筒銑刀、Side and face milling cuttersSide chip clearance saws、交叉齒側銑刀、Long end mills、長刃銑刀、Stub roughing end mills、粗齒銑刀、Dovetail milling cutters、鳩尾刀具、Carbide slot drillsCarbide torus cutters、鎢鋼圓鼻銑刀、Angeled carbide end mills、角度鎢鋼銑刀、Carbide torus cutters、短刃平銑刀、Carbide ball-noseed slot drills、鎢鋼球頭銑刀、Mould cutter、模具用刀具、BW微型渦流管槍、Tool manufacturer、刀具製造商等相關切削刀具、以服務客戶改善工廠加工條件、爭加競爭力。

歡迎尋購~~~

碧威股份有限公司www.tool-tool.com

beeway 發表在 痞客邦 留言(0) 人氣()

碧威股份有限公司
www.tool-tool.com
轉述:

钻石交易所
钻石
点击放大位于安特卫普的钻石交易所图片钻石主要的加工钻石交易所位于:安特卫普、伦敦、纽约、特拉维夫、孟买、上海、香港。世界加工钻 贸易的一半以上经由安特卫普。(点击图片放大)
钻石
钻石安特卫普钻石区主要分解为四个各具特色的交易所:
点击放大安特卫普钻石区图片 钻石Anwerp Diamond Bourse. Beurs voor Diamanthandel: 加工钻。
钻石Diamond Club: 加工钻和毛坯钻。
钻石Vrijediamanthandel: 加工钻和毛坯钻。
钻石DiamantKring: 毛坯钻。
钻石这一地区处在当地警察和私人警察的严密监视之下。
钻石成为这些交易所成员的条件相当的严格。
钻石
上海钻石交易钻石上海钻石交易所Shanghai Diamond Exchange (SDE): 位于金茂大厦内的上海钻石交易所成立于2000年10月,是经国务院批准的国 家级钻石交易场所。交易所按照国际规则运作,实行会员制的封闭式管理。交易所 内硬件设施齐备,政府机构、服务机构一应俱全。目前拥有130多名会员。如果您希 望了解更多有关上海钻石交易所的信息,可以进入它的网站。
钻石
香港钻石总汇Diamond Federation of Hong Kong (DFHK) 香港钻石总汇于2000年1月1日由香港钻石入口商会及香港钻石会两大商会合并而成, 致力于钻石的批发、零售及加工。目前拥有350多名会员。如果您希望了解更多有关 香港钻石总汇的信息,可以进入它的网站。
钻石

BW碧威股份有限公司針對客戶端改善切削方式、提供專業切削CNC數控刀具專業能力、製造客戶需求如:Cutting tool、切削刀具、HSS Cutting toolCarbide end millsCarbide cutting toolNAS Cutting toolCarbide end millAerospace cutting toolCarbide drillHigh speed steelMilling cutterCore drill、鎢鋼銑刀、航太刀具、鎢鋼鑽頭、高速剛、鉸刀、中心鑽頭、Taperd end mills、斜度銑刀、Metric end mills、公制銑刀、Miniature end mills、微小徑銑刀、鎢鋼切削刀具、Pilot reamer、領先鉸刀、Electronics cutter、電子用切削刀具、Step drill、階梯鑽頭、Metal cutting saw、金屬圓鋸片、Double margin drill、領先階梯鑽頭、Gun barrelAngle milling cutter、角度銑刀、Carbide burrs、滾磨刀、Carbide tipped cutter、銲刃刀具、Chamfering tool、倒角銑刀、IC card engraving cutterIC晶片卡刀、Side cutter、側銑刀、NAS toolDIN tool、德國規範切削刀具、Special tool、特殊刀具、Metal slitting sawsShell end mills、滾筒銑刀、Side and face milling cuttersSide chip clearance saws、交叉齒側銑刀、Long end mills、長刃銑刀、Stub roughing end mills、粗齒銑刀、Dovetail milling cutters、鳩尾刀具、Carbide slot drillsCarbide torus cutters、鎢鋼圓鼻銑刀、Angeled carbide end mills、角度鎢鋼銑刀、Carbide torus cutters、短刃平銑刀、Carbide ball-noseed slot drills、鎢鋼球頭銑刀、Mould cutter、模具用刀具、BW微型渦流管槍、Tool manufacturer、刀具製造商等相關切削刀具、以服務客戶改善工廠加工條件、爭加競爭力。

歡迎尋購~~~

碧威股份有限公司www.tool-tool.com

beeway 發表在 痞客邦 留言(0) 人氣()

碧威股份有限公司
www.tool-tool.com
轉述:

交易所
钻石
钻石加工钻贸易主要通过钻石交易所来完成,世界上存在着二十个左右的钻石交易所(加 工钻石交易所 + 毛坯钻石交易所),其中有四个位于比利时的安特卫普。将近一半 的加工钻供应来自安特卫普市场。钻石商、中间商和加工业者汇集在这些交易所进 行钻石的买卖。世界上主要的钻石中心有:安特卫普、伦敦、纽约、特拉维夫、孟买等等...
钻石
钻石影响因素
钻石
钻石时尚:珠宝首饰业在这方面发挥着主要作用,为了引领钻石价格只需大规模地推出一些首饰系列。
钻石经济形势:当经济形势不太乐观时,我们会看到人们转而购买一些低质量的钻石,这 无疑会缩小不同质量钻石间的价格差异。
钻石证书:证书的出现使得钻石不再只为珠宝商所专用,而是也可以作为一种经济上的投 资。受欢迎的高质量钻石必然会使它们的价格得到攀升。

BW碧威股份有限公司針對客戶端改善切削方式、提供專業切削CNC數控刀具專業能力、製造客戶需求如:Cutting tool、切削刀具、HSS Cutting toolCarbide end millsCarbide cutting toolNAS Cutting toolCarbide end millAerospace cutting toolCarbide drillHigh speed steelMilling cutterCore drill、鎢鋼銑刀、航太刀具、鎢鋼鑽頭、高速剛、鉸刀、中心鑽頭、Taperd end mills、斜度銑刀、Metric end mills、公制銑刀、Miniature end mills、微小徑銑刀、鎢鋼切削刀具、Pilot reamer、領先鉸刀、Electronics cutter、電子用切削刀具、Step drill、階梯鑽頭、Metal cutting saw、金屬圓鋸片、Double margin drill、領先階梯鑽頭、Gun barrelAngle milling cutter、角度銑刀、Carbide burrs、滾磨刀、Carbide tipped cutter、銲刃刀具、Chamfering tool、倒角銑刀、IC card engraving cutterIC晶片卡刀、Side cutter、側銑刀、NAS toolDIN tool、德國規範切削刀具、Special tool、特殊刀具、Metal slitting sawsShell end mills、滾筒銑刀、Side and face milling cuttersSide chip clearance saws、交叉齒側銑刀、Long end mills、長刃銑刀、Stub roughing end mills、粗齒銑刀、Dovetail milling cutters、鳩尾刀具、Carbide slot drillsCarbide torus cutters、鎢鋼圓鼻銑刀、Angeled carbide end mills、角度鎢鋼銑刀、Carbide torus cutters、短刃平銑刀、Carbide ball-noseed slot drills、鎢鋼球頭銑刀、Mould cutter、模具用刀具、BW微型渦流管槍、Tool manufacturer、刀具製造商等相關切削刀具、以服務客戶改善工廠加工條件、爭加競爭力。

歡迎尋購~~~

碧威股份有限公司www.tool-tool.com

beeway 發表在 痞客邦 留言(0) 人氣()

碧威股份有限公司
www.tool-tool.com
轉述:
简述
钻石
钻石宝石:类似钻石一样的天然宝石,例如:石英、蓝宝石、绿柱石、黄玉、锆石。
钻石仿造宝石:是一些材料通过它们的外观和颜色模仿天然宝石,但它们并不拥有天然宝 石的光学和物理特性。例如:各种密度的玻璃。
钻石合成宝石:由人工制造并与它们的天然对等物拥有同样的化学组成、原子结构和物理 特性的宝石,例如:合成金红石、合成蓝宝石、合成尖晶石。
钻石人造宝石 :由人工制造且不具有天然对等物的宝石,例如:钛酸锶、钇铝石榴石(YAG)等等...
钻石双层- 拼合:拼合宝石是由两部分或几部分晶质或非晶质体通过拼贴或其它人工方法组合而成的宝石,而非天然而成。
钻石
钻石仿造宝石
钻石
钻石仿造宝石:是一些材料通过它们的外观和颜色模仿天然宝石,但它们并不拥有天然宝 石的光学和物理特性。
钻石主要的仿宝石:
钻石久远的:
钻石玻璃
钻石石榴石-玻璃拼合石
钻石远的:
钻石合成刚玉
钻石合成尖晶石
钻石钻石-钻石拼合石
钻石二战后:
钻石合成金红石(《titania》)
钻石钛酸锶(《fabulite》)
钻石钇铝石榴石(《Yag》)
钻石一些短暂的产品(《libonat》、《galliant》、《KTN》、等等...)
钻石合成氧化锆(《CZ》)
钻石Yag和CZ拥有一些其它的不同称呼,例如:Diemlite、Gemolite、Blue River、Djevalite、Burmalite...
钻石
钻石识别:
钻石光学特性:低折射率的仿宝石容易使光线通过。
钻石耐磨性:仿宝石普遍拥有一些《软》棱。
钻石硬度:钻石不会被刚玉划伤,而碳化硅也不会!
钻石小仪器:
钻石反射仪:通过测试宝石在红外线下的反射能力可确定其是否为钻石。但某些材料会得 到与钻石是相同的结果(钛铁矿...)。
钻石导热仪:用于测试宝石的导热性。注意导热性好的材料(金、银)以及小质量的宝石 (低于0.05 ct)和合成刚玉,它们都是很好的导热体。
钻石钻石测试仪:可以检测或辨别钻石的便携仪器。注意检测宝石的不同部位(例如:台 面 + 亭部),也要注意那些无法检测亭部的镶嵌宝石,因为存在着拼合石的可能性。
钻石识别仿宝石最简单的方法是在一张足够白的纸上划一条黑线,将待测宝石的台面置于 黑线上。如果我们看到黑线透过了宝石,就说明我们正面对着一颗仿宝石。但要注 意立方氧化锆、合成金红石、钛酸锶某些拼合石可以躲避这条规则
钻石仿宝石被镶嵌时,由于静电使其看上去有些像玻璃。当我们的手指掠过时会使其变得黯淡。
钻石
钻石合成宝石
钻石
钻石合成宝石:是指由人工部分或全部晶化并与它们的天然对等物有着同样光学和物理特性的宝石。
钻石为了从真正的钻石中辨别出合成宝石,有一个很简单的方法,那就是将待测宝石的底 部向上使其蒙上一层哈汽。与合成宝石相比钻石表面的水汽会更快的消失。最好能用一颗真正的钻石作为测试宝石时的参考。
钻石碳硅石最好的钻石替代品,它不太容易在首饰上被识别,因此不要犹豫从托子上取 下宝石以便能够准确的测试。折射率:2.65到2.69。硬度:9.25。密度:3.21。导热性:很高。
钻石立方氧化锆是处于第二位的钻石替代品,然而它有比钻石更高的密度,也就是具有同 样的质量时个头比钻石小。它的硬度也不同于钻石,位于摩氏级别的8至8.5。折射 率:2.16。密度:6。色散度:0.060。硬度:8.5。
钻石市场上有一种小仪器叫《反射仪》(英 文为《reflectivity meter》),它可以检测宝 石所反射的光线品质和数量。我们也可以通过对照仪器所提供的折射率表获得宝石 的折射率。我们可以检测如下的一些主要钻石替代品:合成碳硅石、立方氧化锆、 合成尖晶石、合成蓝宝石、YAG 、高型锆石、钛酸锶等等...
钻石
钻石《双层》拼合石
钻石
钻石拼合石:
钻石拼合宝石是由两部分或几部分晶质或非晶质体通过拼贴或其它人工方法组合而成的宝 石,而非天然而成。它的组成部分可以是宝石或半宝石,也可以是合成宝石或一些化学产品。
钻石拼合石样例:
钻石石榴石-玻璃拼合石。一层薄的石榴石粘贴在仍处在熔融状态下的一块玻璃上。整体 被切割成石榴石位于上部的宝石形状。石榴石的红色消失,拼合体的颜色由玻璃所 提供。甚至无色的玻璃也会带来一个无色的石榴石-玻璃拼合体。
钻石
钻石祖母绿的仿造(双层拼合)
仿祖母绿 仿祖母绿 仿祖母绿
钻石
钻石钻石的仿造(双层拼合) 钻石红宝石的仿造(三层拼合)
仿钻石 仿红宝石
钻石
钻石识别:
钻石把宝石倒置于白色背景下,用肉眼观察,会看到一个红圈。而对于红色或深色的宝石, 这个圈是不会暴露出来的。
钻石石榴石比玻璃鲜艳,这是由于石榴石的参差边缘所造成的。
钻石通过熔融粘合会在接触面形成一些泡。石榴石中的针状金红石是可以被观察到的,它 们是一颗天然宝石的信号。泡-针的组合是石榴石-玻璃拼合石的证据。
钻石还有其它的样例,比如珐琅拼合石。

BW碧威股份有限公司針對客戶端改善切削方式、提供專業切削CNC數控刀具專業能力、製造客戶需求如:Cutting tool、切削刀具、HSS Cutting toolCarbide end millsCarbide cutting toolNAS Cutting toolCarbide end millAerospace cutting toolCarbide drillHigh speed steelMilling cutterCore drill、鎢鋼銑刀、航太刀具、鎢鋼鑽頭、高速剛、鉸刀、中心鑽頭、Taperd end mills、斜度銑刀、Metric end mills、公制銑刀、Miniature end mills、微小徑銑刀、鎢鋼切削刀具、Pilot reamer、領先鉸刀、Electronics cutter、電子用切削刀具、Step drill、階梯鑽頭、Metal cutting saw、金屬圓鋸片、Double margin drill、領先階梯鑽頭、Gun barrelAngle milling cutter、角度銑刀、Carbide burrs、滾磨刀、Carbide tipped cutter、銲刃刀具、Chamfering tool、倒角銑刀、IC card engraving cutterIC晶片卡刀、Side cutter、側銑刀、NAS toolDIN tool、德國規範切削刀具、Special tool、特殊刀具、Metal slitting sawsShell end mills、滾筒銑刀、Side and face milling cuttersSide chip clearance saws、交叉齒側銑刀、Long end mills、長刃銑刀、Stub roughing end mills、粗齒銑刀、Dovetail milling cutters、鳩尾刀具、Carbide slot drillsCarbide torus cutters、鎢鋼圓鼻銑刀、Angeled carbide end mills、角度鎢鋼銑刀、Carbide torus cutters、短刃平銑刀、Carbide ball-noseed slot drills、鎢鋼球頭銑刀、Mould cutter、模具用刀具、BW微型渦流管槍、Tool manufacturer、刀具製造商等相關切削刀具、以服務客戶改善工廠加工條件、爭加競爭力。

歡迎尋購~~~

碧威股份有限公司www.tool-tool.com

beeway 發表在 痞客邦 留言(0) 人氣()