公告版位
二氧化矽拋光液應用參數

二氧化矽拋光液介紹:

BW二氧化矽拋光液是以高純矽粉為原料,在催化劑作用下,通過熱水解的方法生產。產品具有細微性可控、純度高、拋光速率高的優勢,廣泛用於納米級的化學機械拋光。

beeway 發表在 痞客邦 留言(0) 人氣()

二氧化矽拋光液-石材研磨拋光測試案例

此案例為碧威協助一石材加工客戶測試研磨石材,市面氧化矽拋光液產品甚多,此客戶也嘗試過多家拋光液,但研磨後表面光澤度都達不了客戶要求,客戶要求研磨後表面光澤度需達90以上的二氧化矽(二氧化硅)拋光液,碧威所生產氧化矽拋光液廣泛用於精密光學器件、藍寶石片…精密拋光為多,而未嘗試過石材研磨拋光,故碧威工程師特地前往與客戶接觸了解加工需求後並協助,在此案例碧威所提供的鹼性二氧化矽拋光液是以高純矽粉為原料,在催化劑作用下,通過熱水解的方法生產。廣泛用於奈米級的化學機械拋光...

請點選觀看完整案例內容>>>

碧威為專業的刀具,銑刀,鎢鋼,切削刀具製造商,致力於製造優秀的產品,在客製化刀具方面的經驗十分豐富,並擅於幫助客戶解決各式各樣之刀具切削面臨之問題,對各種刀具材質切削刀具鍍模都非常瞭解透徹,可選用常見的鎢鋼高速鋼或是近來詢問度極高的鑽石刀具

碧威銑刀熱門產品圓鋸片鎢鋼刀鋸片木工鋸片鎢鋼刀具側銑刀

機械類則有對刀具加工非常有幫助的冷風槍渦流管槍,並有最新設計和技術的粉末成型機

碧威是在刀具製造

beeway 發表在 痞客邦 留言(0) 人氣()

刀具切割-單刃銑刀鋁板切割應用案例

刀具切割-單刃銑刀鋁板切割應用案例

碧威工程師深入再了解客戶使用狀況及刀具狀況,發現客戶加工操作時,切割深度過深,以至於排屑溝槽累積鋁屑過多無法順利排屑而造成加工工件毛邊,甚至斷刀情形。工廠加工為求速度,而忽略切割深度問題,然而卻易造成刀具損耗及工件NG,因而間接增長工件加工時數,反而得不償失,這也是我們一直以來在跟客戶溝通建立的觀念,使用刀具一定要掌握兩大要點—“刀具選擇要正確及刀具使用方式要正確”,加工效率效益自然就會提升。

碧威單刃刀具優點:

  • 單刃刀具再研磨時,比較不會與砂輪做干涉動作。
  • 單刃刀具溝深可以提高到 50%~40%排屑容屑量。
  • 單刃刀具在尖端剖頭刃口可調整依需求增加或減少銳利度來增加加工效果。

圖一:刀具切割-單刃銑刀鋁板切割應用案例 圖二:刀具切割-單刃銑刀鋁板切割應用案例圖二:刀具切割-單刃銑刀鋁板切割應用案例

碧威為專業的刀具,銑刀,鎢鋼,切削刀具製造商,致力於製造優秀的產品,在客製化刀具方面的經驗十分豐富,並擅於幫助客戶解決各式各樣之刀具切削面臨之問題,對各種刀具材質切削刀具鍍模都非常瞭解透徹,可選用常見的鎢鋼高速鋼或是近來詢問度極高的鑽石刀具

碧威銑刀熱門產品圓鋸片鎢鋼刀鋸片木工鋸片鎢鋼刀具側銑刀

機械類則有對刀具加工非常有幫助的冷風槍渦流管槍,並有最新設計和技術的粉末成型機

碧威是在刀具製造機械工具業界中具有足夠水準的製造供應商!

beeway 發表在 痞客邦 留言(0) 人氣()

切削刀具材料比較表

此份切削刀具材料比較表中包含了以下八種切削刀具材料在各種屬性下之比較表:

beeway 發表在 痞客邦 留言(0) 人氣()


Indium tin oxide (ITO, or tin-doped indium oxide) is a solid solution of indium(III) oxide (In2O3) and tin(IV) oxide (SnO2), typically 90% In2O3, 10% SnO2 by weight. It is transparent and colorless in thin layers while in bulk form it is yellowish to grey. In the infrared region of the spectrum it is a metal-like mirror.


Indium tin oxide is one of the most widely used transparent conducting oxides because of its two chief properties, its electrical conductivity and optical transparency, as well as the ease with which it can be deposited as a thin film. As with all transparent conducting films, a compromise must be made between conductivity and transparency, since increasing the thickness and increasing the concentration of charge carriers will increase the material's conductivity, but decrease its transparency.


Thin films of indium tin oxide are most commonly deposited on surfaces by electron beam evaporation, physical vapor deposition, or a range of sputter deposition techniques.


Common uses


ITO is mainly used to make transparent conductive coatings for liquid crystal displays, flat panel displays, plasma displays, touch panels, electronic ink applications, organic light-emitting diodes, solar cells, antistatic coatings and EMI shieldings. In organic light-emitting diodes, ITO is used as the anode (hole injection layer).


ITO has been used as a conductive material in the plastic electroluminescent lamp of toy Star Wars type lightsabers.[1]


ITO is also used for various optical coatings, most notably infrared-reflecting coatings (hot mirrors) for architectural, automotive, and sodium vapor lamp glasses. Other uses include gas sensors, antireflection coatings, electrowetting on dielectrics, and Bragg reflectors for VCSEL lasers.


ITO was used as a sensor coating in the later Kodak DCS cameras, starting with the Kodak DCS 520, as a means of increasing blue channel response.[2] It is reportedly used as a sensor coating in the Canon 400D/XTi and Sony Alpha DSLR-A100[citation needed].


ITO thin film strain gauges can operate at temperatures up to 1400 °C and can be used in harsh environments, e.g. gas turbines, jet engines, and rocket engines.[3]


[edit] Material and spectral properties


ITO is a heavily-doped n-type semiconductor with a large bandgap. Because of the bandgap, it is mostly transparent in the visible part of the spectrum. In the ultraviolet, it is opaque because of band-to-band absorption (a UV photon can excite an electron from the valence band to the conduction band). In the near infrared, it also opaque, because of free carrier absorption (an infrared photon can excite an electron from near the bottom of the conduction band to higher within the conduction band).


Alternatives


 


This section needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed. (April 2011)


Because of high cost and limited supply of indium, the fragility and lack of flexibility of ITO layers, and the costly layer deposition requiring vacuum, alternatives are being sought. Carbon nanotube conductive coatings are a prospective replacement.[4][5] As another carbon-based alternative, films of graphene are flexible and have been shown to allow 90% transparency with a lower electrical resistance than standard ITO.[6] Thin metal films are also seen as a potential replacement material. Inherently conductive polymers (ICPs) are also being developed for some ITO applications. Typically the conductivity is lower for conducting polymers, such as polyaniline and PEDOT:PSS, than inorganic materials, but they are more flexible, less expensive and more environmentally friendly in processing and manufacture. Other, inorganic alternatives include aluminium, gallium or indium—doped zinc oxide (AZO, GZO or IZO).


[edit] Constraints and trade-offs


 


This section does not cite any references or sources. Please help improve this section by adding citations to reliable sources. Unsourced material may be challenged and removed. (April 2011)


The main concern about ITO is the cost. ITO can be priced at several times that of aluminium zinc oxide (AZO). AZO is a common choice of transparent conducting oxide (TCO) because of cost and relatively good optical transmission performance in the solar spectrum. However, ITO does consistently defeat AZO in almost every performance category including chemical resistance to moisture. ITO is not affected by moisture and it can survive in a CIGS cell for 25–30 years on a rooftop. While the sputtering target or evaporative material that is used to deposit the ITO is significantly more costly than AZO, consider that the amount of material placed on each cell is quite small. Therefore the cost penalty per cell is quite small too.


[edit] Benefits


 


 


 


 


Surface morphology changes in Al:ZnO and i-/Al:ZnO upon dump heat (DH) exposure (optical interferometry)[7]


The primary advantage of ITO compared to AZO as a transparent conductor for LCDs is that ITO can be precisely etched into fine patterns.[8] AZO cannot be etched as precisely: It is so sensitive to acid that it tends to get over-etched by an acid treatment.[8]


Another benefit of ITO compared to AZO is that if moisture does penetrate, ITO will degrade less than AZO.[7]


[edit] Research examples


ITO can be used in nanotechnology to provide a path to a new generation of solar cells. Solar cells made with these devices have the potential to provide low-cost, ultra-lightweight, and flexible cells with a wide range of applications. Because of the nanoscale dimensions of the nanorods, quantum-size effects influence their optical properties. By tailoring the size of the rods, they can be made to absorb light within a specific narrow band of colors. By stacking several cells with different sized rods, a broad range of wavelengths across the solar spectrum can be collected and converted to energy. Moreover, the nanoscale volume of the rods leads to a significant reduction in the amount of semiconductor material needed compared to a conventional cell.[9]


引用出處: 


http://en.wikipedia.org/wiki/Indium_tin_oxide







beeway 發表在 痞客邦 留言(0) 人氣()

精密微小切削刀具的製備工藝

微小徑切削刀具的製備工藝是制約微細切削技術發展的難點之一。精密微細機械磨削和電火花線電極磨削(WEDG)、聚焦離子束濺射(FIB)等特種加工方法是目前主要的微細刀具製備技術。

(1)精密微小磨削工藝

磨削工藝是比較成熟的刀具製備和修整方法。微小刀具的精密磨削工藝主要採用金剛石砂輪,能夠實現高速鋼和硬質合金材料的高效成形。該工藝的要點是:為防止小直徑刀具折斷,應合理確定刃磨時的磨削壓力。通過對砂輪施加振動,可以顯著減小磨削力和最小成形直徑。

精密微小磨削工藝在一定程度上可以滿足微小切削刀具的製備要求,但受磨削力的影響,能夠穩定獲得的刀具最小直徑受到侷限。另外,刃磨工藝容易造成刀具表面劃痕和刃口缺陷,將直接影響加工表面質量和精度水平;磨削熱應力容易引起刀具表層微觀結構的變化;微小立銑刀的同心度和直徑偏離等製造誤差有可能大於微細切削的單齒進給量,成形精度有待提高。

(2)電火花線電極磨削工藝

電火花線電極磨削(WEDG)工藝的材料蝕除機理與普通電火花加工相同,電極和工件的運動原理為:線狀電極在導向器上連續移動,導向器沿工件徑向作微進給,而工件隨主軸旋轉的同時作軸向進給。該運動方式的主要優點是:線電極與工件之間為點接觸,容易實現微能放電;線電極始終沿導向器勻速運動,可以忽略線電極損耗對加工精度的影響。

通過控制工件的旋轉與分度,配合軸向的精密進給控制,WEDG工藝可以加工圓柱、圓錐、棱柱、螺旋槽、平面等多種截面形狀。該方法的主要優點是:刀具成形過程中無機械力作用,成形的尺寸精度和形狀精度較高,為微細刀具製備提供了一種有效方法。

(3)聚焦離子束濺射工藝

聚焦離子束濺射工藝是一種顯微加工技術,同樣可以用於微細刀具的製備,其基本原理為:選擇原子量較大的液態金屬鎵(原子量為69.72,其原子質量遠遠大於電子的質量)作為離子源,在離子柱頂端施加高密度的電場,形成數十keV的高能離子束,通過靜電透鏡將離子束聚焦為亞微米直徑的斑點,然後控制聚焦後的鎵離子束對工件進行轟擊,將鎵離子的動量傳遞給工件中的原子或分子,產生濺射效應從而實現材料的去除。通常每個入射鎵離子可以去除3~5個工件原子,可以精確控制材料的去除量。利用聚焦離子束濺射工藝,可以對硬質合金、高速鋼、單晶金剛石等材料進行顯微加工。

與精密磨削相比,基於聚焦離子束濺射的刀具成形過程沒有機械力的作用,刀具在製造過程中不會破損,能夠製備出具有極小特徵尺寸的微細刀具。

(4)激光加工工藝

為了克服聚焦離子束濺射工藝成形效率較低的問題,德國卡爾斯魯厄大學對採用激光加工工藝進行微小刀具製備進行了探索。該工藝同樣無機械力作用,加工過程中無振動,刀具不產生變形,加工成本較低。目前存在的問題是成形表面較粗糙,加工表面質量有待提高。

文章參考來源 - 三工數控工具

碧威為專業的刀具,銑刀,鎢鋼,切削刀具製造商,致力於製造優秀的產品,在客製化刀具方面的經驗十分豐富,並擅於幫助客戶解決各式各樣之刀具切削面臨之問題,對各種刀具材質切削刀具鍍模都非常瞭解透徹,可選用常見的鎢鋼高速鋼或是近來詢問度極高的鑽石刀具

碧威銑刀熱門產品圓鋸片鎢鋼刀鋸片木工鋸片鎢鋼刀具側銑刀

機械類則有對刀具加工非常有幫助的冷風槍渦流管槍,並有最新設計和技術的粉末成型機

碧威是在刀具製造機械工具業界中具有足夠水準的製造供應商!

beeway 發表在 痞客邦 留言(0) 人氣()

刀具選擇-加工HRC50以上淬火料如何選擇刀具

很多淬火後的模具要求較高及難度較大,所以使用一般硬質合金銑刀精度達不到,那麼加工淬火料刀具的選擇應注意本文提出的幾點。

beeway 發表在 痞客邦 留言(0) 人氣()