公告版位

bw1 

Bewise Inc. www.tool-tool.com Reference source from the internet.

グラフェン (graphene) とは、1原子の厚さのsp2結 合炭素原子のシート。炭素原子とその結合からできた蜂の巣のような六角形格子構造を とっている。名称の由来はグ ラファイト (GRAPHITE) と「ENE」から。グラファイト自体もグラフェンシートが多数積み重なってできている。

グラ フェンの炭素間結 合距離は約0.142nm。炭素同素体(グ ラファイト、カー ボンナノチューブフ ラーレンなど)の基本的な構造である。無限に大きな芳 香族分子とみなすこともでき、平面的な多 環芳香族炭化水素の極限がグラフェンである。

完全なグラフェンは、六角形セルの集合のみからなり、五角形や七角形のセルは格子欠 陥となる。五 角形のセルが孤立して存在するときには、平面はコーン上にとがってしまう(12個の五角形セルはフ ラーレンを作る)同じように七角形の セルが孤立したものはシートをサドル型に曲げる。五角形や七角形セルの導入を制御することで、en:NanoBudのような、さまざまな形状を生 み出すことができる。1層からなるカーボンナノチュー ブは筒型のグラフェンとみることができる(6個の五角形セルからなるグラフェンの半球キャップが末端についていることもある)。

電気輸 送

実験結果から、グラフェン中の電子移動度は、 室温で15,000cm2V-1s-1と 驚くほど高い。加えて実験から電 気伝導度が対称であることが分かっており、これは電子とホールの 移動度がほぼ同じであることを示唆している。移動度が10Kから100Kの範囲で温度にほとんど依存しないことから、格子欠陥が散乱の主な原因であると思わ れる。グラフェン中の音響フォ ノンによる散乱のために、室温での移動度は200,000cm2V-1s-1(キャ リア密度が10-12cm-2のとき)に制限されるが、これに対応する抵 抗は10-6Ω・cmである。この値は、室温で の抵抗が最も小さい物質であるよ りも小さい抵抗値である。しかし二 酸化ケイ素基板上のグラフェンでは、室温でグラフェン自身の音響フォノンによる散乱よりも、基板の光 学フォノンによる電子散乱の影響が大きく、移動度は 40,000cm2V-1s-1ま で制限される。

ディ ラックポイント近傍ではキャ リア密度がゼロであるにもかかわらず、グラフェンは4e2 / hのオーダーの最小電気伝導 度を示す。この最小電気伝導度の起源はいまだにはっきりしていない。しかし、グラフェンシートを引きはがしたり、SiO2基板にイ オン化した不純物を 混入したりすることで、キャリアの水溜りを局在させることができ伝導するようになる。いくつかの理論は、最小伝導度が4e2 / hΠであることを説 明するが、ほとんどの推定は4e2 / hか それ以上のオーダーである上、不純物の濃度に依存する。

最近の実験により、化学的ドー パントがグラフェン中のキャリアの移動度に影響を与えることが証明されてきている。Schedinらは、さま ざまな気体種(あるものはア クセプターとなり、あるものはドナーで ある)をグラフェンにドーピングし、真空中でグラフェンをゆっくりと加熱することにより、ドープ前のグラフェン構造が再現することを発見した。 Schedinらは、ドーパント濃度が1012cm-2を超える場合でも、 キャリアの移動度には目立った変化は無かったと報告している。Chenらは、超 高真空・低温でカ リウムをグラフェンにドープし、予想通りカリウムイオンがグラフェン中で荷電不純物として振舞い、移動度を20- foldほど減少させることを発見している。グラフェンを熱してカリウムを除去することにより、減少した移動度は元に戻すことが可能である。

光 学特性

その独特な電気的特性により、グラフェンは炭素原子の1層構造でありながら予想以上に不透明度が高い。グラフェンの白色光の吸収 率はπα 〜 2.3%という驚くほど単純な値になる。ここでα微 細構造定数である。これは実験的に確かめられている事実ではあるが、微細構造定数の測定に使えるほど正確な測定ではない。

スピ ン輸送

グラフェンは、ス ピン軌道相互作用が小さく、また炭素の核 磁気モーメントが無視できることから、ス ピントロニクスの理想的な材料と考えられている。室温での電気的なス ピン流の導入・検波が最近示された。室温で1マイクロメートル以上のス ピンコヒーレンス長も観測されており、低温ではスピン流の向きを電気的なゲートで制御することもできている。

磁場効果

高い移動度と最小電気伝導度に加えて、グラフェンは磁場中で非常に興味深い振る舞いをする。グラフェンは通常の量 子ホール効果とは系列が1 / 2だけずれた異 常量子ホール効果を起こす。すなわちホー ル伝導率clip_image001で ある。ここでNラ ンダウ準位のインデックスで、二つの谷とスピンの二重縮退により4の 因子が生ずる。この特徴的な振る舞いは室温でも観測されうる。二重層グラフェンも量子ホール効果を示すが、二重層グラフェンで起こるのは正常量子ホール効 果であり、clip_image002で ある。最初のプ ラトーであるN = 0は存在しないことから、二重層グラフェンは中性点で金属的になっていることが示唆される。

グ ラフェンではベ リー位相として知られる π だけの位相のずれが見られる。ベリー位相はディラックポイント近傍でキャリアの有 効質量がゼロになることから生ずる。グラフェン中のShubnikov-de Haas振動の温度依存性の研究から、エ ネルギー-波数分散関係では有効質量ゼロとして振舞うキャリアが、有限のサ イクロトロン質量を持つことが分かった。

擬相対論

グラフェンの電気的特性は、伝統的なタ イトバインディングモデルで説明される。このモデルでは波数clip_image003の 電子のエネルギーは次のように書ける。

clip_image004

ここでclip_image005は 最近接原子にホップするエネルギー、格 子定数clip_image006分 散関係のプラスとマイナスの符号は、それぞれ伝導帯価 電子帯に対応している。伝導帯と価電子帯は、K-valuesと呼ばれる6点で接しているが、6点のうち独立なの は2点のみで、残りは対称性から等価である。K点の近傍ではエネルギーは波数に線形となるが、これは相 対論的粒子の分散関係に類似している。さらに、格子の単位胞が 2原子からなるため、波動関数は実効的に2ス ピノル構造まで持つ。結果として、低エネルギーで電子はディ ラック方程式と形式的に等価な方程式で書き表せる。さらにこの擬相対論的な記述はカ イラル極限、すなわち静 止質量M0が ゼロの極限に制限されているため、興味深いさまざまな特性が生ずる。

clip_image007

ここでclip_image008は グラフェンのフェ ルミ速度であり、ディラック理論の光速に 代わるものである。clip_image009パ ウリ行列のベクトルであり、clip_image010は 電子の二成分波動関数。Eはエネルギーである。

歡迎來到BewiseInc.的世界,首先恭喜您來到這接受新的資訊讓產業更有競爭力,我們 是提供專業刀具製造商,應對客戶高品質的刀具需求,我們可以協助客戶滿足您對產業的不同要求,我們有能力達到非常卓越的客戶需求品質,這是現有相關技術無 法比擬的,我們成功的滿足了各行各業的要求,包括:精密HSS DIN切削刀具協助客戶設計刀具流程DIN or JIS 鎢鋼切削刀具設計NAS986 NAS965 NAS897 NAS937orNAS907 航太切削刀具,NAS航太刀具設計超高硬度的切削刀具醫療配件刀具設計複合式再研磨機PCD地板專用企口鑽石組合刀 具粉末造粒成型機主機版專用頂級電桿PCD V-Cut捨棄式圓鋸片組粉末成型機主機版專用頂級電汽車業刀具設計電子產業鑽石刀具木工產業鑽石刀具銑刀與切斷複合再研磨機銑刀與鑽頭複合再研磨機銑刀與螺絲攻複合再研磨機等等。我們的產品涵蓋了從民生 刀具到工業級的刀具設計;從微細刀具到大型刀具;從小型生產到大型量產;全自動整合;我們的技術可提供您連續生產的效能,我們整體的服務及卓越的技術,恭 迎您親自體驗!!

BW Bewise Inc. Willy Chen willy@tool-tool.com bw@tool-tool.com www.tool-tool.com skype:willy_chen_bw mobile:0937-618-190 Head &Administration Office No.13,Shiang Shang 2nd St., West Chiu Taichung,Taiwan 40356 http://www.tool-tool.com / FAX:+886 4 2471 4839 N.Branch 5F,No.460,Fu Shin North Rd.,Taipei,Taiwan S.Branch No.24,Sec.1,Chia Pu East Rd.,Taipao City,Chiayi Hsien,Taiwan

Welcome to BW tool world! We are an experienced tool maker specialized in cutting tools. We focus on what you need and endeavor to research the best cutter to satisfy users demand. Our customers involve wide range of industries, like mold & die, aerospace, electronic, machinery, etc. We are professional expert in cutting field. We would like to solve every problem from you. Please feel free to contact us, its our pleasure to serve for you. BW product including: cutting toolaerospace tool .HSS  DIN Cutting toolCarbide end millsCarbide cutting toolNAS Cutting toolNAS986 NAS965 NAS897 NAS937orNAS907 Cutting Tools,Carbide end milldisc milling cutter,Aerospace cutting toolhss drillФрезерыCarbide drillHigh speed steelCompound SharpenerMilling cutterINDUCTORS FOR PCDCVDD(Chemical Vapor Deposition Diamond )’PCBN (Polycrystalline Cubic Boron Nitride) Core drillTapered end millsCVD Diamond Tools Inserts’PCD Edge-Beveling Cutter(Golden FingerPCD V-CutterPCD Wood toolsPCD Cutting toolsPCD Circular Saw BladePVDD End Millsdiamond tool. INDUCTORS FOR PCD . POWDER FORMING MACHINE Single Crystal Diamond Metric end millsMiniature end millsСпециальные режущие инструменты Пустотелое сверло Pilot reamerFraisesFresas con mango PCD (Polycrystalline diamond) ‘FresePOWDER FORMING MACHINEElectronics cutterStep drillMetal cutting sawDouble margin drillGun barrelAngle milling cutterCarbide burrsCarbide tipped cutterChamfering toolIC card engraving cutterSide cutterStaple CutterPCD diamond cutter specialized in grooving floorsV-Cut PCD Circular Diamond Tipped Saw Blade with Indexable Insert PCD Diamond Tool Saw Blade with Indexable InsertNAS toolDIN or JIS toolSpecial toolMetal slitting sawsShell end millsSide and face milling cuttersSide chip clearance sawsLong end millsend mill grinderdrill grindersharpenerStub roughing end millsDovetail milling cuttersCarbide slot drillsCarbide torus cuttersAngel carbide end millsCarbide torus cuttersCarbide ball-nosed slot drillsMould cutterTool manufacturer.

Bewise Inc. www.tool-tool.com

よ うこそBewise Inc.の 世界へお越し下さいませ、先ず御目出度たいのは新たな

情報を受け取って頂き、もっと各産業に競争力プラス展開。

弊 社は専門なエンドミルの製造メーカーで、客先に色んな分野のニーズ

豊富な パリエーションを満足させ、特にハイテク品質要求にサポート致します。

弊社は各領域に供給できる内容は:

(1)精密HSSエンドミルのR&D

(2)Carbide Cutting tools設計

(3)鎢鋼エンドミル設計

(4)航空エンドミル設計

(5)超高硬度エンドミル

(6)ダイヤモンドエンドミ ル

(7)医療用品エン ドミル設計

(8)自動車部品&材料加工向けエンドミル設計

弊社の製品の供給調達機能は:

(1)生活産業~ハイテク工業までのエンドミル設計

(2)ミクロエ ンドミル~大型エンドミル供給

(3)小Lot生産~大量発注対応供給

(4)オートメーション整備調達

(5)スポット対応~流れ生産対応

弊社の 全般供給体制及び技術自慢の総合専門製造メーカーに貴方のご体験を御待ちしております。

Bewise Inc. talaşlı imalat sanayinde en fazla kullanılan ve üç eksende (x,y,z) talaş kaldırabilen freze takımlarından olan Parmak Freze imalatçısıdır. Çok geniş ürün yelpazesine sahip olan firmanın başlıca ürünlerini Karbür Parmak Frezeler, Kalıpçı Frezeleri, Kaba Talaş Frezeleri, Konik Alın Frezeler, Köşe Radyüs Frezeler, İki Ağızlı Kısa ve Uzun Küresel Frezeler, İç Bükey Frezeler vb. şeklinde sıralayabiliriz.

BW специализируется в научных исследованиях и разработках, и снабжаем самым высокотехнологичным карбидовым материалом для поставки режущих / фрезеровочных инструментов для почвы, воздушного пространства и электронной индустрии. В нашу основную продукцию входит твердый карбид / быстрорежущая сталь, а также двигатели, микроэлектрические дрели, IC картонорезальные машины, фрезы для гравирования, режущие пилы, фрезеры-расширители, фрезеры-расширители с резцом, дрели, резаки форм для шлицевого вала / звездочки роликовой цепи, и специальные нано инструменты. Пожалуйста, посетите сайт  www.tool-tool.com  для получения большей информации.

BW is specialized in R&D and sourcing the most advanced carbide material with high-tech coating to supply cutting / milling tool for mould & die, aero space and electronic industry. Our main products include solid carbide / HSS end mills, micro electronic drill, IC card cutter, engraving cutter, shell end mills, cutting saw, reamer, thread reamer, leading drill, involute gear cutter for spur wheel, rack and worm milling cutter, thread milling cutter, form cutters for spline shaft/roller chain sprocket, and special tool, with nano grade. Please visit our web  www.tool-tool.com  for more info.

 

beeway 發表在 痞客邦 留言(1) 人氣()

bw1 Bewise Inc. www.tool-tool.com Reference source from the internet.

Graphene is a one-atom-thick planar sheet of sp2-bonded carbon atoms that are densely packed in a honeycomb crystal lattice. It can be visualized as an atomic-scale chicken wire made of carbon atoms and their bonds. The name comes from graphite + -ene; graphite itself consists of many graphene sheets stacked together.

The carbon-carbon bond length in graphene is about 0.142 nm. Graphene is the basic structural element of some carbon allotropes including graphite, carbon nanotubes and fullerenes. It can also be considered as an infinitely large aromatic molecule, the limiting case of the family of flat polycyclic aromatic hydrocarbons called graphenes.

clip_image002

Image of graphene in a transmission electron microscope.

Description

A simple, non-technical definition has been given in a recent review on graphene:

Graphene is a flat monolayer of carbon atoms tightly packed into a two-dimensional (2D) honeycomb lattice, and is a basic building block for graphitic materials of all other dimensionalities. It can be wrapped up into 0D fullerenes, rolled into 1D nanotubes or stacked into 3D graphite.[1]

Previously, graphene was also defined in the chemical literature as follows:

A single carbon layer of the graphitic structure can be considered as the final member of the series naphthalene, anthracene, coronene, etc. and the term graphene should therefore be used to designate the individual carbon layers in graphite intercalation compounds. Use of the term "graphene layer" is also considered for the general terminology of carbons.[2]

The IUPAC compendium of technology states: "previously, descriptions such as graphite layers, carbon layers, or carbon sheets have been used for the term graphene...it is not correct to use for a single layer a term which includes the term graphite, which would imply a three-dimensional structure. The term graphene should be used only when the reactions, structural relations or other properties of individual layers are discussed." In this regard, graphene has been referred to as an infinite alternant (only six-member carbon ring) polycyclic aromatic hydrocarbon (PAH). The largest molecule of this type consists of 222 atoms and is 10 benzene rings across.[3] It has proven difficult to synthesize even slightly bigger molecules, and they still remain "a dream of many organic and polymer chemists".[4] Furthermore, ab initio calculations show that a graphene sheet is thermodynamically unstable with respect to other fullerene structures if its size is less than about 10 nm (“graphene is the least stable structure until about 6000 atoms”[5]).[improper synthesis?]

Also, a definition of "isolated or free standing graphene" has recently been proposed: "graphene is a single atomic plane of graphite, which—and this is essential—is sufficiently isolated from its environment to be considered free-standing."[6] This definition is narrower than the definitions given above and refers to cleaved, transferred and suspended graphene monolayers. Other forms of graphene, such as graphene grown on various metals, can also become free-standing if transferred to, e.g., SiO2 or suspended. A new example of isolated graphene is graphene on SiC after its passivation with hydrogen.[7]

Occurrence and production

Graphene is essentially an isolated atomic plane of graphite. Therefore, from this perspective, graphene has been known since the invention of X-ray crystallography. Graphene planes become even better separated in intercalated graphite compounds. In 2004 physicists from University of Manchester and Institute for Microelectronics Technology, Chernogolovka, Russia, found a way to isolate individual graphene planes by using Scotch tape and they also measured electronic properties of the obtained flakes and showed their fantastic quality.[8] In 2005 the same Manchester group together with researchers from the Columbia University (see the History chapter below) demonstrated that quasiparticles in graphene were massless Dirac fermions. These discoveries led to the explosion of interest in graphene.

Since then, hundreds of researchers have entered the area and, naturally, they carried out the extensive search for relevant earlier papers. The first literature review was given by the Manchester pioneers themselves[1]. They cite several papers in which graphene or ultra-thin graphitic layers were epitaxially grown on various substrates. Also, they point out at a number of pre-2004 reports in which intercalated graphite compounds were studied in a transmission electron microscope. In the latter case, researchers occasionally observed extremely thin graphitic flakes ("few-layer graphene" and possibly even individual layers). The oldest such observation was recently discovered by Rodney Ruoff in a 1962 German-language magazine [9]. It is now well known that tiny fragments of graphene sheets are produced (along with quantities of other debris) whenever graphite is abraded, such as when drawing a line with a pencil.[10] There was little interest in this graphitic residue before 2004/05 and, therefore, the discovery of graphene is often attributed to Andre Geim and colleagues [11] who introduced graphene in its modern incarnation, although it may be argued that this is as accurate as attributing the discovery of America to Columbus.

A couple of years ago, graphene produced by exfoliation was one of the most expensive materials on Earth, with a sample that can be placed at the cross section of a human hair costing more than $1,000 as of April 2008 (about $100,000,000/cm2).[10] Since then, exfoliation procedures were scaled up, and now companies sell graphene by ton.[12] On the other hand, the price of epitaxial graphene on silicon carbide is dominated by the substrate price, which is approximately $100/cm2 as of 2009. Even cheaper graphene has been produced by transfer from nickel by Korean researchers,[13] with wafer sizes up to 30" reported.[citation needed]

In the literature, specifically that of surface science community, graphene has also been commonly referred to as monolayer graphite. This community has intensely studied epitaxial graphene on various surfaces (over 300 articles prior to 2004). In some cases, these graphene layers are coupled to the surfaces weakly enough (by Van der Waals forces) to retain the two dimensional electronic band structure of isolated graphene,[14][15] as also happens[8] with exfoliated graphene flakes with regard to silicon dioxide. An example of weakly coupled epitaxial graphene is the one grown on silicon carbide (see below).

Drawing method

In 2004, the British researchers obtained graphene by mechanical exfoliation of graphite. They used Scotch tape to repeatedly split graphite crystals into increasingly thinner pieces. The tape with attached optically transparent flakes was dissolved in acetone and, after a few further steps, the flakes including monolayers were sedimented on a Si wafer. Individual atomic planes were then hunted in an optical microscope. A year later, the researchers simplified the technique and started using dry deposition, avoiding the stage when graphene floated in a liquid. Relatively large crystallites (first, only a few microns in size but, eventually, larger than 1 mm and visible by a naked eye) were obtained by the technique. It is often referred to as a scotch tape or drawing method. The latter name appeared because the dry deposition resembles drawing with a piece of graphite.[16] The key for the success probably was the use of high throughput visual recognition of graphene on a proper chosen substrate, which provides a small but noticeable optical contrast. For an example of what graphene looks like, see its photograph below.

The isolation of graphene led to the current research boom. Previously, free-standing atomic planes were often "presumed not to exist"[8] because they are thermodynamically unstable on a nm scale[5] and, if unsupported, have a tendency to scroll and buckle[4]. It is currently believed that intrinsic microscopic roughening on the scale of 1 nm could be important for the stability of purely 2D crystals.[17].

It is interesting to note (see Talk:Graphene) that there were a number of previous attempts to make atomically thin graphitic films by using exfoliation techniques similar to the drawing method. Multilayer samples down to 10  nm in thickness were obtained. These efforts were reviewed in [1]. Furthermore, a couple of very old papers was recently unearthed,[9] in which researchers tried to isolate graphene, starting with intercalated compounds (see History and experimental discovery). These papers reported the observation of very thin graphitic fragments (possibly, monolayers) by transmission electron microscopy. Neither of the earlier observations was sufficient to "spark the graphene gold rush", until the Science paper did so by reporting not only macroscopic samples of extracted atomic planes but, importantly, their unusual properties such as the bipolar transistor effect, ballistic transport of charges, large quantum oscillations, etc. The discovery of such interesting qualities intrinsic to graphene gave an immediate boost to further research, and several groups quickly repeated the initial result and moved further. These breakthroughs also helped to attract attention to other production techniques such as epitaxial growth of ultra-thin graphitic films. In particular, it has later been found that graphene monolayers grown on SiC and Ir are weakly coupled to these substrates (how weakly remains debated) and the graphene-substrate interaction can be passivated further.

Not only graphene but also free-standing atomic planes of boron nitride, mica, dichalcogenides and complex oxides were obtained by using the drawing method Unlike graphene, the other 2D materials have so far attracted surprisingly little attention.

Epitaxial growth on silicon carbide

Yet another method is to heat silicon carbide to high temperatures (>1100 °C) to reduce it to graphene.[19] This process produces a sample size that is dependent upon the size of the SiC substrate used. The face of the silicon carbide used for graphene creation, the silicon-terminated or carbon-terminated, highly influences the thickness, mobility and carrier density of the graphene.

Many important graphene properties have been identified in graphene produced by this method. For example, the electronic band-structure (so-called Dirac cone structure) has been first visualized in this material. Weak anti-localization is observed in this material and not in exfoliated graphene produced by the pencil trace method. Extremely large, temperature independent mobilities have been observed in SiC epitaxial graphene. They approach those in exfoliated graphene placed on silicon oxide but still much lower than mobilities in suspended graphene produced by the drawing method. It was recently shown that even without being transferred graphene on SiC exhibits the properties of massless Dirac fermions such as the anomalous quantum Hall effect[24][25][26][27][28].

The weak van der Waals forces that provide the cohesion of multilayer graphene stacks do not always affect the electronic properties of the individual graphene layers in the stack. That is, while the electronic properties of certain multilayered epitaxial graphenes are identical to that of a single graphene layer,[29] in other cases the properties are affected [20][21] as they are for graphene layers in bulk graphite. This effect is theoretically well understood and is related to the symmetry of the interlayer interactions.[29]

Epitaxial graphene on silicon carbide can be patterned using standard microelectronics methods. The possibility of large integrated electronics on SiC epitaxial graphene was first proposed in 2004[30] by researchers at the Georgia Institute of Technology, only a couple of months after the discovery of isolated graphene made the drawing method. (A patent for graphene based electronics was applied for in 2003 and issued in 2006). Since then, important advances have been made. In 2008, researchers at MIT Lincoln Lab have produced hundreds of transistors on a single chip and in 2009, very high frequency transistors have been produced at the Hughes Research Laboratories on monolayer graphene on silicon carbide.

Epitaxial growth on metal substrates

This method uses the atomic structure of a metal substrate to seed the growth of the graphene (epitaxial growth). Graphene grown on ruthenium doesn't typically yield a sample with a uniform thickness of graphene layers, and bonding between the bottom graphene layer and the substrate may affect the properties of the carbon layers. Graphene grown on iridium on the other hand is very weakly bonded, uniform in thickness, and can be made highly ordered. Like on many other substrates, graphene on iridium is slightly rippled. Due to the long-range order of these ripples generation of minigaps in the electronic band-structure (Dirac cone) becomes visible.[34] High-quality sheets of few layer graphene exceeding 1 cm2 (0.2 sq in) in area have been synthesized via chemical vapor deposition on thin nickel films. These sheets have been successfully transferred to various substrates, demonstrating viability for numerous electronic applications. An improvement of this technique has been found in copper foil where the growth automatically stops after a single graphene layer, and arbitrarily large graphene films can be created.[35]

Hydrazine reduction

Researchers have developed a method of placing graphene oxide paper in a solution of pure hydrazine (a chemical compound of nitrogen and hydrogen), which reduces the graphene oxide paper into single-layer graphene.[36]

Sodium reduction of ethanol

A recent publication has described a process for producing gram-quantities of graphene, by the reduction of ethanol by sodium metal, followed by pyrolysis of the ethoxide product, and washing with water to remove sodium salts.[37]

From nanotubes

Experimental methods for the production of graphene ribbons are reported consisting of cutting open nanotubes.[38] In one such method multi walled carbon nanotubes are cut open in solution by action of potassium permanganate and sulfuric acid.[39] In another method graphene nanoribbons are produced by plasma etching of nanotubes partly embedded in a polymer film [40]

Atomic structure

The atomic structure of isolated, single-layer graphene was studied by transmission electron microscopy (TEM) on sheets of graphene suspended between bars of a metallic grid.[17] Electron diffraction patterns showed the expected hexagonal lattice of graphene. Suspended graphene also showed "rippling" of the flat sheet, with amplitude of about one nanometer. These ripples may be intrinsic to graphene as a result of the instability of two-dimensional crystals,[1][41][42] or may be extrinsic, originating from the ubiquitous dirt seen in all TEM images of graphene. Atomic resolution real-space images of isolated, single-layer graphene on silicon dioxide substrates were obtained[43][44] by scanning tunneling microscopy. Graphene processed using lithographic techniques is covered by photoresist residue, which must be cleaned to obtain atomic-resolution images.[43] Such residue may be the "adsorbates" observed in TEM images, and may explain the rippling of suspended graphene. Rippling of graphene on the silicon dioxide surface was determined by conformation of graphene to the underlying silicon dioxide, and not an intrinsic effect.[43]

Graphene sheets in solid form (density > 1 g/cm3) usually show evidence in diffraction for graphite's 0.34 nm (002) layering. This is true even of some single-walled carbon nanostructures.[45] However, unlayered graphene with only (hk0) rings has been found in the core of presolar graphite onions.[46] Transmission electron microscope studies show faceting at defects in flat graphene sheets,[47] and suggest a possible role in this unlayered-graphene for two-dimensional dendritic crystallization from a melt.

Electronic properties

clip_image003

clip_image004

GNR band structure for zig-zag type. Tightbinding calculations show that zigzag type is always metallic.

clip_image005

GNR band structure for arm-chair type. Tightbinding calculations show that armchair type can be semiconducting or metallic depending on width (chirality).

Graphene is quite different from most conventional three-dimensional materials. Intrinsic graphene is a semi-metal or zero-gap semiconductor. Understanding the electronic structure of graphene is the starting point for finding the band structure of graphite. It was realized early on that the E-k relation is linear for low energies near the six corners of the two-dimensional hexagonal Brillouin zone, leading to zero effective mass for electrons and holes.[48] [49] Due to this linear (or “conical") dispersion relation at low energies, electrons and holes near these six points, two of which are inequivalent, behave like relativistic particles described by the Dirac equation for spin 1/2 particles.[50][51] Hence, the electrons and holes are called Dirac fermions, and the six corners of the Brillouin zone are called the Dirac points.[50] The equation describing the E-k relation is clip_image006; where the Fermi velocity vF ~ 106 m/s.[51]

Electronic transport

Experimental results from transport measurements show that graphene has a remarkably high electron mobility at room temperature, with reported values in excess of 15,000 cm2V−1s−1.[1] Additionally, the symmetry of the experimentally measured conductance indicates that the mobilities for holes and electrons should be nearly the same.[49] The mobility is nearly independent of temperature between 10 K and 100 K,[52][53][54] which implies that the dominant scattering mechanism is defect scattering. Scattering by the acoustic phonons of graphene places intrinsic limits on the room temperature mobility to 200,000 cm2V−1s−1 at a carrier density of 1012 cm−2.[54][55] The corresponding resistivity of the graphene sheet would be 10−6 Ω·cm, less than the resistivity of silver, the lowest resistivity substance known at room temperature.[56] However, for graphene on silicon dioxide substrates, scattering of electrons by optical phonons of the substrate is a larger effect at room temperature than scattering by graphene’s own phonons, and limits the mobility to 40,000 cm2 V−1s−1.[54]

Despite the zero carrier density near the Dirac points, graphene exhibits a minimum conductivity on the order of 4e2/h. The origin of this minimum conductivity is still unclear. However, rippling of the graphene sheet or ionized impurities in the SiO2 substrate may lead to local puddles of carriers that allow conduction.[49] Several theories suggest that the minimum conductivity should be 4e2/πh; however, most measurements are of order 4e2/h or greater[1] and depend on impurity concentration.[57]

Recent experiments have probed the influence of chemical dopants on the carrier mobility in graphene.[57][58] Schedin et al. doped graphene with various gaseous species (some acceptors, some donors), and found the initial undoped state of a graphene structure can be recovered by gently heating the graphene in vacuum. They reported that even for chemical dopant concentrations in excess of 1012 cm−2 there is no observable change in the carrier mobility.[58] Chen, et al. doped graphene with potassium in ultra high vacuum at low temperature. They found that potassium ions act as expected for charged impurities in graphene,[59] and can reduce the mobility 20-fold.[57] The mobility reduction is reversible on heating the graphene to remove the potassium.

Due to its two-dimensional property, charge fractionalization (where the apparent charge of individual psuedoparticles in low-dimensional systems is less than a single quantum[60]) is thought to occur in graphene. It may therefore be a suitable material for the construction of quantum computers using anyonic circuits.[61][62]

Optical properties

clip_image007

Photograph of graphene in transmitted light. This one atom thick crystal can be seen with the naked eye because it absorbs approximately 2.3% of white light, which is π times fine-structure constant.

Graphene's unique electronic properties produce an unexpectedly high opacity for an atomic monolayer, with a startlingly simple value: it absorbs πα ≈ 2.3% of white light, where α is the fine-structure constant.[63] This is "a consequence of the unusual low-energy electronic structure of monolayer graphene that features electron and hole conical bands meeting each other at the Dirac point ... [which] is qualitatively different from more common quadratic massive bands".[64] Based on the Slonczewski-Weiss-McClure (SWMcC) band model of graphite, the interatomic distance, hopping value and frequency cancel when the optical conductance is calculated using the Fresnel equations in the thin-film limit.

This has been confirmed experimentally, but the measurement is not precise enough to improve on other techniques for determining the fine-structure constant.[65]

Recently it has been demonstrated that the bandgap of graphene can be tuned from 0 to 0.25 eV (about 5 micron wavelength) by applying voltage to a dual-gate bilayer graphene field-effect transistor (FET) at room temperature.[66]. The optical response of graphene nanoribbons has also been shown to be tunable into the terahertz regime by an applied magnetic field [67]

Saturable absorption

It is further confirmed that such unique absorption could become saturated when the input optical intensity is above a threshold value. This nonlinear optical behavior is termed saturable absorption and the threshold value is called the saturation fluency. Graphene can be saturated readily under strong excitation over the visible to near-infrared region, due to the universal optical absorption and zero band gap. This has relevance for the mode locking of fiber lasers, where fullband mode locking has been achieved by graphene based saturable absorber. Due to this special property, graphene has wide application in ultrafast photonics.[68][69]

Spin transport

Graphene is thought to be an ideal material for spintronics due to small spin-orbit interaction and near absence of nuclear magnetic moments in carbon. Electrical spin-current injection and detection in graphene was recently demonstrated up to room temperature.[70][71][72] Spin coherence length above 1 micron at room temperature was observed,[70] and control of the spin current polarity with an electrical gate was observed at low temperature.[71]

Anomalous quantum Hall effect

The quantum Hall effect is relevant for accurate measuring standards of electrical quantities, and in 1985 Klaus von Klitzing received the Nobel prize for its discovery. The effect concerns the dependence of a transverse conductivity on a magnetic field, which is perpendicular to a current-carrying stripe. Usually the phenomenon, the quantization of the so-called Hall conductivity σxy at integer multiples of the basic quantity e2/h (where e is the elementary electric charge and h is Planck's constant) can be observed only in very clean Si or GaAs solids, and at very low temperatures around 3 K, and at very high magnetic fields.

Graphene in contrast, besides its high mobility and minimum conductivity, and because of certain pseudo-relativistic peculiarities to be mentioned below, shows particularly interesting behavior just in the presence of a magnetic field and just with respect to the conductivity-quantization: it displays an anomalous quantum Hall effect with the sequence of steps shifted by 1/2 with respect to the standard sequence, and with an additional factor of 4. Thus, in graphene the Hall conductivity is clip_image008, where n is the above-mentioned integer "Landau level" index, and the double valley and double spin degeneracies give the factor of 4.[1] Moreover, in graphene these remarkable anomalies can even be measured at room temperature, i.e. at roughly 20 °C.[52] This anomalous behavior is a direct result of the emergent massless Dirac electrons in graphene. In a magnetic field, their spectrum has a Landau level with energy precisely at the Dirac point. This level is a consequence of the Atiyah-Singer index theorem. and is half-filled in neutral graphene,[50] leading to the "+1/2" in the Hall conductivity.[73] Bilayer graphene also shows the quantum Hall effect, but with the standard sequence, i.e. with clip_image009i.e. with only one of the two anomalies. Interestingly, concerning the second anomaly, the first plateau at N = 0 is absent, indicating that bilayer graphene stays metallic at the neutrality point.[1]

Unlike normal metals, the longitudinal resistance of graphene shows maxima rather than minima for integral values of the Landau filling factor in measurements of the Shubnikov-de Haas oscillations, which show a phase shift of π, known as Berry’s phase.[49][52] The Berry’s phase arises due to the zero effective carrier mass near the Dirac points.[74] Study of the temperature dependence of the Shubnikov-de Haas oscillations in graphene reveals that the carriers have a non-zero cyclotron mass, despite their zero effective mass from the E-k relation.[52]

Nanostripes: Spin-polarized edge currents

Nanostripes of graphene (in the "zig-zag" orientation), at low temperatures, show spin-polarized metallic edge currents, which also suggests applications in the new field of spintronics. (In the "armchair" orientation, the edges behave like semiconductors.[75])

Graphene oxide

Further information: Graphite Oxide

By disbursing oxidized and chemically processed graphite in water, and using paper-making techniques, the monolayer flakes form a single sheet and bond very powerfully. These sheets, called graphene oxide paper have a measured tensile modulus of 32 GPa.[76] The peculiar chemical property of graphite oxide is related to the functional groups attached to graphene sheets. They even can significantly change the pathway of polymerization and similar chemical processes.[77]

Chemical modification

Soluble fragments of graphene can be prepared in the laboratory[78] through chemical modification of graphite. First, microcrystalline graphite is treated with a strongly acidic mixture of sulfuric acid and nitric acid. A series of steps involving oxidation and exfoliation result in small graphene plates with carboxyl groups at their edges. These are converted to acid chloride groups by treatment with thionyl chloride; next, they are converted to the corresponding graphene amide via treatment with octadecylamine. The resulting material (circular graphene layers of 5.3 angstrom thickness) is soluble in tetrahydrofuran, tetrachloromethane, and dichloroethane.

Full hydrogenation from both sides of graphene sheet results in graphane, but partial hydrogenation leads to hydrogenated graphene[79]

Thermal properties

The near-room temperature thermal conductivity of graphene was recently measured to be between (4.84±0.44) ×103 to (5.30±0.48) ×103 Wm−1K−1. These measurements, made by a non-contact optical technique, are in excess of those measured for carbon nanotubes or diamond. It can be shown by using the Wiedemann-Franz law, that the thermal conduction is phonon-dominated.[80] However, for a gated graphene strip, an applied gate bias causing a Fermi energy shift much larger than kBT can cause the electronic contribution to increase and dominate over the phonon contribution at low temperatures. The ballistic thermal conductance of graphene is isotropic.[81]

Potential for this high conductivity can be seen by considering graphite, a 3D version of graphene that has basal plane thermal conductivity of over a 1000 W/mK (comparable to diamond). In graphite, the c-axis (out of plane) thermal conductivity is over a factor of ~100 smaller due to the weak binding forces between basal planes as well as the larger lattice spacing.[82] In addition, the ballistic thermal conductance of a graphene is shown to give the lower limit of the ballistic thermal conductances, per unit circumference, length of carbon nanotubes.[83]

Despite its 2-D nature, graphene has 3 acoustic phonon modes. The two in-plane modes (LA, TA) have a linear dispersion relation, whereas the out of plane mode (ZA) has a quadratic dispersion relation. Due to this, the T2 dependent thermal conductivity contribution of the linear modes is dominated at low temperatures by the T1.5 contribution of the out of plane mode.[83] Some graphene phonon bands display negative Grüneisen parameters.[84] At low temperatures (where most optical modes with positive Grüneisen parameters are still not excited) the contribution from the negative Grüneisen parameters will be dominant and thermal expansion coefficient (which is directly proportional to Grüneisen parameters) negative. The lowest negative Grüneisen parameters correspond to the lowest transversal acoustic ZA modes. Phonon frequencies for such modes increase with the in-plane lattice parameter since atoms in the layer upon stretching will be less free to move in the z direction. This is similar to the behavior of a string which is being stretched will have vibrations of smaller amplitude and higher frequency. This phenomenon, named "membrane effect", was predicted by Lifshitz in 1952.[85]

Mechanical properties

As of 2009, graphene appears to be one of the strongest materials ever tested. Measurements have shown that graphene has a breaking strength 200 times greater than steel.[86] However, the process of separating it from graphite, where it occurs naturally, will require some technological development before it is economical enough to be used in industrial processes,[87] though this may be changing soon.[88]

Using an atomic force microscope (AFM), the spring constant of suspended graphene sheets has been measured. Graphene sheets, held together by van der Waals forces, were suspended over silicon dioxide cavities where an AFM tip was probed to test its mechanical properties. Its spring constant was in the range 1-5 N/m and the Young's modulus was 0.5 TPa, which differs from that of the bulk graphite. These high values make graphene very strong and rigid. These intrinsic properties could lead to using graphene for NEMS applications such as pressure sensors and resonators.[89]

As is true of all materials, regions of graphene are subject to thermal and quantum fluctuations in relative displacement. Although the amplitude of these fluctuations is bounded in 3D structures (even in the limit of infinite size), the Mermin-Wagner theorem shows that the amplitude of long-wavelength fluctuations will grow logarithmically with the scale of a 2D structure, and would therefore be unbounded in structures of infinite size. Local deformation and elastic strain are negligibly affected by this long-range divergence in relative displacement. It is believed that a sufficiently large 2D structure, in the absence of applied lateral tension, will bend and crumple to form a fluctuating 3D structure. Researchers have observed ripples in suspended layers of graphene,[17] and it has been proposed that the ripples are caused by thermal fluctuations in the material. As a consequence of these dynamical deformations, it is debatable whether graphene is truly a 2D structure.[1][41][42]

Single molecule gas detection

Graphene makes an excellent sensor due to its 2D structure. The fact that its entire volume is exposed to its surrounding makes it very efficient to detect adsorbed molecules. Molecule detection is indirect: as a gas molecule adsorbs to the surface of graphene, the location of adsorption experiences a local change in electrical resistance. While this effect occurs in other materials, graphene is superior due to its high electrical conductivity (even when few carriers are present) and low noise which makes this change in resistance detectable.[58]

Graphene nanoribbons

Graphene nanoribbons (GNRs) are essentially single layers of graphene that are cut in a particular pattern to give it certain electrical properties. Depending on how the un-bonded edges are configured, they can either be in a zigzag or armchair configuration. Calculations based on tight binding predict that zigzag GNRs are always metallic while armchairs can be either metallic or semiconducting, depending on their width. However, recent density functional theory calculations show that armchair nanoribbons are semiconducting with an energy gap scaling with the inverse of the GNR width.[90] Indeed, experimental results show that the energy gaps do increase with decreasing GNR width.[91] However, as of February 2008, no experimental results have measured the energy gap of a GNR and identified the exact edge structure. Zigzag nanoribbons are also semiconducting and present spin polarized edges. Their 2D structure, high electrical and thermal conductivity, and low noise also make GNRs a possible alternative to copper for integrated circuit interconnects. Some research is also being done to create quantum dots by changing the width of GNRs at select points along the ribbon, creating quantum confinement.[92]

willy@tool-tool.com bw@tool-tool.com www.tool-tool.com skype:willy_chen_bw mobile:0937-618-190 Head &Administration Office No.13,Shiang Shang 2nd St., West Chiu Taichung,Taiwan 40356 http://www.tool-tool.com / FAX:+886 4 2471 4839 N.Branch 5F,No.460,Fu Shin North Rd.,Taipei,Taiwan S.Branch No.24,Sec.1,Chia Pu East Rd.,Taipao City,Chiayi Hsien,Taiwan

Welcome to BW tool world! We are an experienced tool maker specialized in cutting tools. We focus on what you need and endeavor to research the best cutter to satisfy users demand. Our customers involve wide range of industries, like mold & die, aerospace, electronic, machinery, etc. We are professional expert in cutting field. We would like to solve every problem from you. Please feel free to contact us, its our pleasure to serve for you. BW product including: cutting toolaerospace tool .HSS  DIN Cutting toolCarbide end millsCarbide cutting toolNAS Cutting toolNAS986 NAS965 NAS897 NAS937orNAS907 Cutting Tools,Carbide end milldisc milling cutter,Aerospace cutting toolhss drillФрезерыCarbide drillHigh speed steelCompound SharpenerMilling cutterINDUCTORS FOR PCDCVDD(Chemical Vapor Deposition Diamond )’PCBN (Polycrystalline Cubic Boron Nitride) Core drillTapered end millsCVD Diamond Tools Inserts’PCD Edge-Beveling Cutter(Golden FingerPCD V-CutterPCD Wood toolsPCD Cutting toolsPCD Circular Saw BladePVDD End Millsdiamond tool. INDUCTORS FOR PCD . POWDER FORMING MACHINE Single Crystal Diamond Metric end millsMiniature end millsСпециальные режущие инструменты Пустотелое сверло Pilot reamerFraisesFresas con mango PCD (Polycrystalline diamond) ‘FresePOWDER FORMING MACHINEElectronics cutterStep drillMetal cutting sawDouble margin drillGun barrelAngle milling cutterCarbide burrsCarbide tipped cutterChamfering toolIC card engraving cutterSide cutterStaple CutterPCD diamond cutter specialized in grooving floorsV-Cut PCD Circular Diamond Tipped Saw Blade with Indexable Insert PCD Diamond Tool Saw Blade with Indexable InsertNAS toolDIN or JIS toolSpecial toolMetal slitting sawsShell end millsSide and face milling cuttersSide chip clearance sawsLong end millsend mill grinderdrill grindersharpenerStub roughing end millsDovetail milling cuttersCarbide slot drillsCarbide torus cuttersAngel carbide end millsCarbide torus cuttersCarbide ball-nosed slot drillsMould cutterTool manufacturer.

Bewise Inc. www.tool-tool.com

 

beeway 發表在 痞客邦 留言(0) 人氣()

碧威信封-背面~1 

Bewise Inc. www.tool-tool.com Reference source from the internet.

石墨烯是由原子構 成的二維晶體,碳原子排列與石 墨的單原子層一樣(蜂窩狀--英語:'honeycomb')。

Graphene(石墨烯) 是其英文名,石墨烯的命名來自英文的 graphite(石墨) + -ene(烯類結尾),有人使用「單層石墨」作為稱呼。 [2] 我們暫且將它稱為(石墨烯)。[3] 石墨就是許多石墨烯薄膜堆疊而成。石墨烯是的sp2雜化碳原子形成的厚度僅為單層原子的排列成蜂窩狀六角平面晶體。在石墨烯中,碳碳鍵長為0.142納 米。石墨烯是構成下列碳同素異型體的基本單元:例如:石墨,碳納米管和富勒烯。

Graphene(石墨烯)在2004年被曼 徹斯特大學A.K.Geim 領導研究組發現。[4] [5]. Geim 和他的同事偶然中發現了一種簡單易行的新途徑製備石墨烯。他們將石墨片放置在塑料膠帶中, 摺疊膠帶粘住石墨薄片的兩側,撕開膠帶,薄片也隨之一分為二。不斷重複這一過程,就可以得到越來越薄的石墨薄片,而其中部分樣品僅由一層碳原子構成——他 們製得了石墨烯。當然,僅僅是製備是不夠的。如果將其放置在鍍有在一定厚度的氧化硅的硅片上。 利用光的干涉效應,他們可以很容易在顯微鏡下找到這些石墨烯。近期,學者研究石墨烯在各種不同材料基底表面的可見度和對比度,同時也提供一種簡單易行可見 度增強方法。[6]

石墨烯簡介

完美的石墨烯是二維的, 它只包括六邊形(等角六邊形); 如果有五邊形和七邊形存在,那麼他們構成石墨烯的缺陷。如果少量的五角形會使石墨烯翹曲入形狀; 12個五角形的會形成富勒烯(fullerene)。

碳 納米管(nanotube)也被認為是捲成圓桶的石墨烯[7]; 另外石墨烯還被做成彈 道輸運電晶體(ballistic transistor)並且吸引了大批科學家的興趣 。在2006年3月, 佐 治亞理工學院(Georgia Institute of Technology) 研究員宣布, 他們成功地製造了石墨烯平 面場效應電晶體並觀測到了量子干涉效應。並基於此研究出根據石墨烯為基礎的電路. [8]

石墨烯的問世引起了全世界的研究熱潮。它不僅是已知材料中最薄的一種,還非常牢固堅硬;作為單質,它在室溫下傳遞電子的速度比已知導體都 快。石墨烯 在原子尺度上結構非常特殊,必須用相對論量子物理學(relativistic quantum physics)才能描繪。   石墨烯結構非常穩定,碳碳鍵僅為1.42埃。石墨烯中各碳原子之間的連接非常柔韌,當施加外部機械力時,碳原子面就彎曲變形,從而使碳原子不必重新排 列來適應外力,也就保持了結構穩定。這種穩定的晶格結構使碳原子具有優秀的導熱性。另外,石墨烯中的電子在軌道中移動時,不會因晶格缺陷或引入外來原子而 發生散射。由於原子間作用力十分強,在常溫下,即使周圍碳原子發生擠撞,石墨烯中電子受到的干擾也非常小。

目前有三種方法製備石墨烯,一 種是加熱SiC的方法另一種是輕微摩擦法或撕膠帶法 [9]. 第三種是化學分散法.[10].

撕膠帶法/輕微摩擦法

最普通的是微機械分離法,直接將石墨烯薄片從較大的晶體上剪裁下來。 2004年Geim等用這種方法製備出了單層石墨烯,並可以在外界環境下穩定存在。典型製備方法是用另外一種材料膨化或者引入缺陷的熱解石墨進行摩擦,體 相石墨的表面會產生絮片狀的晶體,在這些絮片狀的晶體中含有單層的石墨烯。但缺點是此法是利用摩擦石墨表面獲得的薄片來篩選出單層的石墨烯薄片,其尺寸不 易控制,無法可靠地製造長度足供應用的石墨薄片樣本。

碳化硅表面外延生長

該法是通過加熱單晶SiC脫除Si,在單 晶(0001) 面上分解出石墨烯片層。[11] 具體過程是:將經氧氣或氫氣刻蝕處理得到的樣品在高真空下通過電子轟擊加熱,除去氧化物。用俄歇電子能譜確定表面的氧化物完全被移除後,將樣品加熱使之溫 度升高至1250~1450℃後恆溫1min~20min,從而形成極薄的石墨層,經過幾年的探索,Berger等人已經能可控地製備出單層或是多層石墨 烯。在C-terminated表面比較容易得到高達100層的多層石墨烯。其厚度由加熱溫度決定,製備大面積具有單一厚度的石墨烯比較困難。

金 屬表面生長

  取向附生法是利用生長基質原子結構「種」出石墨烯,首先讓碳原子在1150℃下滲入釕,然後冷卻,冷卻到850℃後,之 前吸收的大量碳原子就會 浮到釕表面,鏡片形狀的單層的碳原子「孤島」 布滿了整個基質表面,最終它們可長成完整的一層石 墨烯。第一層覆蓋 8 0 %後,第二層開始生長。底層的石墨烯會與釕產生強烈的交互作用,而第二層後就幾乎與釕完全分離,只剩下弱電耦合,得到的單層石墨烯薄片表現令人滿意。但採 用這種方法生產的石墨烯薄片往往厚度不均勻,且石墨烯和基質之間的黏合會影響碳層的特性。另外Peter W.Sutter等使用的基質是稀有金屬釕。

氧 化減薄石墨片法

石墨烯也可以通過加熱氧化的辦法一層一層的減薄石墨片,從而得到單、雙層石墨烯。 [12]

氨還原法

化學分散法.[

解納米管法

Figure 3. 石墨烯的能帶結構

在發現graphene以前,大多數(如果不是所有的 話)物理學家認為,熱 力學漲落不允許任何二維晶體在有限溫度下存在。所以,它的發現立即震撼了凝 聚態物理界。雖然理論和實驗界都認為完美的二維結構無法在非絕對零度穩定存在,但是單層石墨烯在實驗中被製備出來。這些可能歸結於 graphene在納米級別上的微觀扭曲。[14]

Graphene還表現出了異常的整數量 子霍爾效應。其霍爾電導=2e²/h,6e²/h,10e²/h.... 為量 子電導的奇數倍,且可以在室溫下觀測到。這個行為已被科學家解釋為「電子在graphene里遵守相 對論量子力學,沒有靜質量(massless electron)」。

2007年,先後三篇文章聲稱在graphene的p-n或p-n-p結中觀察到了分數量子霍爾效應行為。物理 理論家已經解釋了這一現象。[15][16][17] 2009年,美國兩個實驗小組分別在graphene中觀測到了填充數為1/3的分數量 子霍爾效應[18] [19]日 前,Geim教授對於石墨烯研究進展和未來展望撰寫了文章。[20][21]

氧化石墨烯(graphene oxide)

通過對石墨烯進行氧化及化工處理,然後使他們漂浮在水中,石墨烯會剝落 並形成有強力鍵的單層。這些被稱為氧 化石墨烯的層狀材料被測量到具有32 GPa拉 伸模數[22]

單分子探測

石墨烯獨特的二維特點使之在傳感器領域具有光明的應用前景。巨大的表面積使之對周圍的環境非常敏感。即使 是一個氣體分子吸附或釋放都可以檢測到。當 然這目前檢測可以分為直接和間接檢測。通過TEM可以直接觀測到單原子的吸附和釋放過程。[23] 通過測量霍爾效應的辦法通過霍爾電阻的變化間接檢測單原子的吸附和釋放過程。[24]

石墨烯良好的導電性能和透光性能使之在透明導電電極方面有非常好的應用前景。比如觸摸屏, 液 晶顯示, 有 機光伏電池, and 有 機發光二極管. 特別是,石墨烯對比此前常用材料摻 銦氧化錫有無比的機械強度和卓越的柔韌性。 [25][26]

目前,已有通過化學氣相沉積的辦法將石墨烯製成光伏器件的陽極,並得到高達1.71%能量轉換效率。[27]

場發射源及其真空電子器件

早在2002年,垂直於基底表面的石墨烯納米牆就被成功製備出來。[28] 它被看作是非常優良場致發無線電子源材料。[29] 最近關於單片石墨烯的電場致電子發射效應也見諸報道。

clip_image003

Graphene is an atomic-scale honeycomb lattice made of carbon atoms.

clip_image004

Image of graphene in a transmission electron microscope.

歡迎來到Bewise Inc.的世界,首先恭喜您來到這接受新的資訊讓產業更有競爭力,我們是提供專業刀具製造商,應對客戶高品質的刀具需求, 我們可以協助客戶滿足您對產業的不同要求,我們有能力達到非常卓越的客戶需求品質,這是現有相關技術無法比擬的,我們成功的滿足了各行各業的要求,包括:精密HSS DIN切削刀具協助客戶設計刀具流程DIN or JIS 鎢鋼切削刀具設計NAS986 NAS965 NAS897 NAS937orNAS907 航太切削刀具,NAS航太刀具設計超高硬度的切削刀具醫療配件刀具設計複合式再研磨機PCD地板專用企口鑽石組合刀 具粉末造粒成型機主機版專用頂級電桿PCD V-Cut捨棄式圓鋸片組粉末成型機主機版專用頂級電汽車業刀具設計電子產業鑽石刀具木工產業鑽石刀具銑刀與切斷複合再研磨機銑刀與鑽頭複合再研磨機銑刀與螺絲攻複合再研磨機等等。我們的產品涵蓋了從民生 刀具到工業級的刀具設計;從微細刀具到大型刀具;從小型生產到大型量產;全自動整合;我們的技術可提供您連續生產的效能,我們整體的服務及卓越的技術,恭 迎您親自體驗!!

BW Bewise Inc. Willy Chen willy@tool-tool.com bw@tool-tool.com www.tool-tool.com skype:willy_chen_bw mobile:0937-618-190 Head &Administration Office No.13,Shiang Shang 2nd St., West Chiu Taichung,Taiwan 40356 http://www.tool-tool.com / FAX:+886 4 2471 4839 N.Branch 5F,No.460,Fu Shin North Rd.,Taipei,Taiwan S.Branch No.24,Sec.1,Chia Pu East Rd.,Taipao City,Chiayi Hsien,Taiwan

Welcome to BW tool world! We are an experienced tool maker specialized in cutting tools. We focus on what you need and endeavor to research the best cutter to satisfy users demand. Our customers involve wide range of industries, like mold & die, aerospace, electronic, machinery, etc. We are professional expert in cutting field. We would like to solve every problem from you. Please feel free to contact us, its our pleasure to serve for you. BW product including: cutting toolaerospace tool .HSS  DIN Cutting toolCarbide end millsCarbide cutting toolNAS Cutting toolNAS986 NAS965 NAS897 NAS937orNAS907 Cutting Tools,Carbide end milldisc milling cutter,Aerospace cutting toolhss drillФрезерыCarbide drillHigh speed steelCompound SharpenerMilling cutterINDUCTORS FOR PCDCVDD(Chemical Vapor Deposition Diamond )’PCBN (Polycrystalline Cubic Boron Nitride) Core drillTapered end millsCVD Diamond Tools Inserts’PCD Edge-Beveling Cutter(Golden FingerPCD V-CutterPCD Wood toolsPCD Cutting toolsPCD Circular Saw BladePVDD End Millsdiamond tool. INDUCTORS FOR PCD . POWDER FORMING MACHINE Single Crystal Diamond Metric end millsMiniature end millsСпециальные режущие инструменты Пустотелое сверло Pilot reamerFraisesFresas con mango PCD (Polycrystalline diamond) ‘FresePOWDER FORMING MACHINEElectronics cutterStep drillMetal cutting sawDouble margin drillGun barrelAngle milling cutterCarbide burrsCarbide tipped cutterChamfering toolIC card engraving cutterSide cutterStaple CutterPCD diamond cutter specialized in grooving floorsV-Cut PCD Circular Diamond Tipped Saw Blade with Indexable Insert PCD Diamond Tool Saw Blade with Indexable InsertNAS toolDIN or JIS toolSpecial toolMetal slitting sawsShell end millsSide and face milling cuttersSide chip clearance sawsLong end millsend mill grinderdrill grindersharpenerStub roughing end millsDovetail milling cuttersCarbide slot drillsCarbide torus cuttersAngel carbide end millsCarbide torus cuttersCarbide ball-nosed slot drillsMould cutterTool manufacturer.

 

beeway 發表在 痞客邦 留言(0) 人氣()

bw1

Bewise Inc. www.tool-tool.com Reference source from the internet.

clip_image001

‧CIGS型金屬薄膜太陽能電池剖面示意圖

CIGS 型太陽能電池是依賴 n 型的硫化鎘 ( CdS ),

與吸收光線的 p 型 CIGS 層之間的異質接面 ( heterojunction ) ,來運作的。

超過 99 % 撞擊到薄膜的光線,會在大約第一個微米以內即被吸收,

而 高 CIGS 吸收係數的薄膜可降低載子在到達 p-n 接面之前就會因重新結合而損失掉的風險。

CIGS型兼具效率與成本

近 幾年來由於矽原料價格飛漲,造成 c-Si 太陽能電池的成本不斷飆升,

於是矽薄膜太陽能電池廠如雨後春筍般不斷設立,

而 CIGS 型金屬薄膜太陽能電池不同於矽薄膜型,無論在效率上、

成本上皆是目前表現優良的薄膜型太陽能電池,

CIGS 型在高溫環境下由於其金屬薄膜特性更能表現出其穩定的發電效率;

此外,由於其可吸收光譜長,在清晨以及黃昏時,

所產生 的發電量特別優於矽基型薄膜太陽能電 池。

CIGS具有以下特色:

在陽光不足及不能直接照射的地方能維持高轉換 率。

矽 晶圓或矽薄膜在使用初期轉換效率會衰 減,CIGS 使用後會有金屬自然時效的優點,轉換效率不減反增。基板改變為不銹鋼箔或高分子材即可 roll-to-roll 生產,大幅降低生產成本,產品更輕更薄並能彎曲。

CIGS具有以下優點:

低成本

CIGS 太陽能電池是一種完全不使用矽晶為材料的太陽能電池,有別於傳統矽晶圓原料成本的高昂,CIGS 薄膜太陽能電池相對而言可減省成本高達數十倍以上,厚度僅為傳統矽基太陽能電池的 1/100 ,避開原料短缺的問題後,可望有效解決昂貴的太陽能電池所造成普遍性購買意願低落的現象,進而早日實現乾淨能源的夢想。

高效率

CIGS 太陽能電池是由銅銦鎵硒等四種原料製成,轉換效能普遍達 10%,NREL 曾在實驗室做出 19.9% 的高轉換效率,大面積模組達 13%,Heliovolt 大約 12.2%,Global Solar 大約 14%,而IBM宣稱其投入將可邁進 15% 的高轉換效率太陽能電池的量產。

 

歡迎來到Bewise Inc.的世界,首先恭喜您來到這接受新的資訊讓產業更有競爭力,我們是提供專業刀具製造商,應對客戶高品質的刀具需求, 我們可以協助客戶滿足您對產業的不同要求,我們有能力達到非常卓越的客戶需求品質,這是現有相關技術無法比擬的,我們成功的滿足了各行各業的要求,包括:精密HSS DIN切削刀具協助客戶設計刀具流程DIN or JIS 鎢鋼切削刀具設計NAS986 NAS965 NAS897 NAS937orNAS907 航太切削刀具,NAS航太刀具設計超高硬度的切削刀具醫療配件刀具設計複合式再研磨機PCD地板專用企口鑽石組合刀 具粉末造粒成型機主機版專用頂級電桿PCD V-Cut捨棄式圓鋸片組粉末成型機主機版專用頂級電汽車業刀具設計電子產業鑽石刀具木工產業鑽石刀具銑刀與切斷複合再研磨機銑刀與鑽頭複合再研磨機銑刀與螺絲攻複合再研磨機等等。我們的產品涵蓋了從民生 刀具到工業級的刀具設計;從微細刀具到大型刀具;從小型生產到大型量產;全自動整合;我們的技術可提供您連續生產的效能,我們整體的服務及卓越的技術,恭 迎您親自體驗!!

BW Bewise Inc. Willy Chen willy@tool-tool.com bw@tool-tool.com www.tool-tool.com skype:willy_chen_bw mobile:0937-618-190 Head &Administration Office No.13,Shiang Shang 2nd St., West Chiu Taichung,Taiwan 40356 http://www.tool-tool.com / FAX:+886 4 2471 4839 N.Branch 5F,No.460,Fu Shin North Rd.,Taipei,Taiwan S.Branch No.24,Sec.1,Chia Pu East Rd.,Taipao City,Chiayi Hsien,Taiwan

Welcome to BW tool world! We are an experienced tool maker specialized in cutting tools. We focus on what you need and endeavor to research the best cutter to satisfy users demand. Our customers involve wide range of industries, like mold & die, aerospace, electronic, machinery, etc. We are professional expert in cutting field. We would like to solve every problem from you. Please feel free to contact us, its our pleasure to serve for you. BW product including: cutting toolaerospace tool .HSS  DIN Cutting toolCarbide end millsCarbide cutting toolNAS Cutting toolNAS986 NAS965 NAS897 NAS937orNAS907 Cutting Tools,Carbide end milldisc milling cutter,Aerospace cutting toolhss drillФрезерыCarbide drillHigh speed steelCompound SharpenerMilling cutterINDUCTORS FOR PCDCVDD(Chemical Vapor Deposition Diamond )’PCBN (Polycrystalline Cubic Boron Nitride) Core drillTapered end millsCVD Diamond Tools Inserts’PCD Edge-Beveling Cutter(Golden FingerPCD V-CutterPCD Wood toolsPCD Cutting toolsPCD Circular Saw BladePVDD End Millsdiamond tool. INDUCTORS FOR PCD . POWDER FORMING MACHINE Single Crystal Diamond Metric end millsMiniature end millsСпециальные режущие инструменты Пустотелое сверло Pilot reamerFraisesFresas con mango PCD (Polycrystalline diamond) ‘FresePOWDER FORMING MACHINEElectronics cutterStep drillMetal cutting sawDouble margin drillGun barrelAngle milling cutterCarbide burrsCarbide tipped cutterChamfering toolIC card engraving cutterSide cutterStaple CutterPCD diamond cutter specialized in grooving floorsV-Cut PCD Circular Diamond Tipped Saw Blade with Indexable Insert PCD Diamond Tool Saw Blade with Indexable InsertNAS toolDIN or JIS toolSpecial toolMetal slitting sawsShell end millsSide and face milling cuttersSide chip clearance sawsLong end millsend mill grinderdrill grindersharpenerStub roughing end millsDovetail milling cuttersCarbide slot drillsCarbide torus cuttersAngel carbide end millsCarbide torus cuttersCarbide ball-nosed slot drillsMould cutterTool manufacturer.

Bewise Inc. www.tool-tool.com

よ うこそBewise Inc.の 世界へお越し下さいませ、先ず御目出度たいのは新たな

情報を受け取って頂き、もっと各産業に競争力プラス展開。

弊 社は専門なエンドミルの製造メーカーで、客先に色んな分野のニーズ

豊富な パリエーションを満足させ、特にハイテク品質要求にサポート致します。

弊社は各領域に供給できる内容は:

(1)精密HSSエンドミルのR&D

(2)Carbide Cutting tools設計

(3)鎢鋼エンドミル設計

(4)航空エンドミル設計

(5)超高硬度エンドミル

(6)ダイヤモンドエンドミ ル

(7)医療用品エン ドミル設計

(8)自動車部品&材料加工向けエンドミル設計

弊社の製品の供給調達機能は:

(1)生活産業~ハイテク工業までのエンドミル設計

(2)ミクロエ ンドミル~大型エンドミル供給

(3)小Lot生産~大量発注対応供給

(4)オートメーション整備調達

(5)スポット対応~流れ生産対応

弊社の 全般供給体制及び技術自慢の総合専門製造メーカーに貴方のご体験を御待ちしております。

Bewise Inc. talaşlı imalat sanayinde en fazla kullanılan ve üç eksende (x,y,z) talaş kaldırabilen freze takımlarından olan Parmak Freze imalatçısıdır. Çok geniş ürün yelpazesine sahip olan firmanın başlıca ürünlerini Karbür Parmak Frezeler, Kalıpçı Frezeleri, Kaba Talaş Frezeleri, Konik Alın Frezeler, Köşe Radyüs Frezeler, İki Ağızlı Kısa ve Uzun Küresel Frezeler, İç Bükey Frezeler vb. şeklinde sıralayabiliriz.

BW специализируется в научных исследованиях и разработках, и снабжаем самым высокотехнологичным карбидовым материалом для поставки режущих / фрезеровочных инструментов для почвы, воздушного пространства и электронной индустрии. В нашу основную продукцию входит твердый карбид / быстрорежущая сталь, а также двигатели, микроэлектрические дрели, IC картонорезальные машины, фрезы для гравирования, режущие пилы, фрезеры-расширители, фрезеры-расширители с резцом, дрели, резаки форм для шлицевого вала / звездочки роликовой цепи, и специальные нано инструменты. Пожалуйста, посетите сайт  www.tool-tool.com  для получения большей информации.

BW is specialized in R&D and sourcing the most advanced carbide material with high-tech coating to supply cutting / milling tool for mould & die, aero space and electronic industry. Our main products include solid carbide / HSS end mills, micro electronic drill, IC card cutter, engraving cutter, shell end mills, cutting saw, reamer, thread reamer, leading drill, involute gear cutter for spur wheel, rack and worm milling cutter, thread milling cutter, form cutters for spline shaft/roller chain sprocket, and special tool, with nano grade. Please visit our web  www.tool-tool.com  for more info.

 

beeway 發表在 痞客邦 留言(0) 人氣()

bw1 Bewise Inc. www.tool-tool.com Reference source from the internet.

太陽能產業快速成長,最直接影響的是上游料源市場,多晶矽缺料問題使料源 成為選擇太陽能技術路線的重要考量,薄膜太陽能因消耗料源數量少,成為第2代太陽能技術興起的最大訴求,例如近年來矽薄膜太陽能即以無缺料問題因素,吸引 大量業者投入。

分析料源因素,不僅需考量其應用市場,現有產能是否可滿足短期所需,從中長期角度來看,因太陽光電市場未來仍有相當大的成 長空間,地球上相關料源的蘊藏量是否可滿足長期需求,也是必須探討的重點。

CIGS 太陽能使用銅(Copper)、銦(Indium)、鎵(Gallium)、硒(Selenium)等元素所合成的半導體化合物,其中,銦、鎵為存在於其 他基本金屬礦藏中的微量金屬,由於全球每年產量有限,被視為CIGS太陽能的關鍵料源,尤其銦金屬需求近年因面板產業興起而增加,價格已倍數翻漲,銦的料 源短缺問題,普遍被外界視為是CIGS太陽能發展的障礙。

銦、鎵為CIGS太陽能關鍵料源

clip_image001

 

 

歡迎來到Bewise Inc.的世界,首先恭 喜您來到這接受新的資訊讓產業更有競爭力,我們是提供專業刀具製造商,應對客戶高品質的刀具需求,我們可以協助客戶滿足您對產業的不同要 求,我們有能力達到非常卓越的客戶需求品質,這是現有相關技術無法比擬的,我們成功的滿足了各行各業的要求,包括:精密HSS DIN切削刀具協助客戶設計刀具流程DIN or JIS 鎢鋼切削刀具設計NAS986 NAS965 NAS897 NAS937orNAS907 航太切削刀具,NAS航太刀具設計超高硬度的切削刀具醫療配件刀具設計複合式再研磨機PCD地板專用企口鑽石組合刀 具粉末造粒成型機主機版專用頂級電桿PCD V-Cut捨棄式圓鋸片組粉末成型機主機版專用頂級電汽車業刀具設計電子產業鑽石刀具木工產業鑽石刀具銑刀與切斷複合再研磨機銑刀與鑽頭複合再研磨機銑刀與螺絲攻複合再研磨機等等。我們的產品涵蓋了從民生 刀具到工業級的刀具設計;從微細刀具到大型刀具;從小型生產到大型量產;全自動整合;我們的技術可提供您連續生產的效能,我們整體的服務及卓越的技術,恭 迎您親自體驗!!

BW Bewise Inc. Willy Chen willy@tool-tool.com bw@tool-tool.com www.tool-tool.com skype:willy_chen_bw mobile:0937-618-190 Head &Administration Office No.13,Shiang Shang 2nd St., West Chiu Taichung,Taiwan 40356 http://www.tool-tool.com / FAX:+886 4 2471 4839 N.Branch 5F,No.460,Fu Shin North Rd.,Taipei,Taiwan S.Branch No.24,Sec.1,Chia Pu East Rd.,Taipao City,Chiayi Hsien,Taiwan

Welcome to BW tool world! We are an experienced tool maker specialized in cutting tools. We focus on what you need and endeavor to research the best cutter to satisfy users demand. Our customers involve wide range of industries, like mold & die, aerospace, electronic, machinery, etc. We are professional expert in cutting field. We would like to solve every problem from you. Please feel free to contact us, its our pleasure to serve for you. BW product including: cutting toolaerospace tool .HSS  DIN Cutting toolCarbide end millsCarbide cutting toolNAS Cutting toolNAS986 NAS965 NAS897 NAS937orNAS907 Cutting Tools,Carbide end milldisc milling cutter,Aerospace cutting toolhss drillФрезерыCarbide drillHigh speed steelCompound SharpenerMilling cutterINDUCTORS FOR PCDCVDD(Chemical Vapor Deposition Diamond )’PCBN (Polycrystalline Cubic Boron Nitride) Core drillTapered end millsCVD Diamond Tools Inserts’PCD Edge-Beveling Cutter(Golden FingerPCD V-CutterPCD Wood toolsPCD Cutting toolsPCD Circular Saw BladePVDD End Millsdiamond tool. INDUCTORS FOR PCD . POWDER FORMING MACHINE Single Crystal Diamond Metric end millsMiniature end millsСпециальные режущие инструменты Пустотелое сверло Pilot reamerFraisesFresas con mango PCD (Polycrystalline diamond) ‘FresePOWDER FORMING MACHINEElectronics cutterStep drillMetal cutting sawDouble margin drillGun barrelAngle milling cutterCarbide burrsCarbide tipped cutterChamfering toolIC card engraving cutterSide cutterStaple CutterPCD diamond cutter specialized in grooving floorsV-Cut PCD Circular Diamond Tipped Saw Blade with Indexable Insert PCD Diamond Tool Saw Blade with Indexable InsertNAS toolDIN or JIS toolSpecial toolMetal slitting sawsShell end millsSide and face milling cuttersSide chip clearance sawsLong end millsend mill grinderdrill grindersharpenerStub roughing end millsDovetail milling cuttersCarbide slot drillsCarbide torus cuttersAngel carbide end millsCarbide torus cuttersCarbide ball-nosed slot drillsMould cutterTool manufacturer.

Bewise Inc. www.tool-tool.com

よ うこそBewise Inc.の 世界へお越し下さいませ、先ず御目出度たいのは新たな

情報を受け取って頂き、もっと各産業に競争力プラス展開。

弊 社は専門なエンドミルの製造メーカーで、客先に色んな分野のニーズ

豊富な パリエーションを満足させ、特にハイテク品質要求にサポート致します。

弊社は各領域に供給できる内容は:

(1)精密HSSエンドミルのR&D

(2)Carbide Cutting tools設計

(3)鎢鋼エンドミル設計

(4)航空エンドミル設計

(5)超高硬度エンドミル

(6)ダイヤモンドエンドミ ル

(7)医療用品エン ドミル設計

(8)自動車部品&材料加工向けエンドミル設計

弊社の製品の供給調達機能は:

(1)生活産業~ハイテク工業までのエンドミル設計

(2)ミクロエ ンドミル~大型エンドミル供給

(3)小Lot生産~大量発注対応供給

(4)オートメーション整備調達

(5)スポット対応~流れ生産対応

弊社の 全般供給体制及び技術自慢の総合専門製造メーカーに貴方のご体験を御待ちしております。

Bewise Inc. talaşlı imalat sanayinde en fazla kullanılan ve üç eksende (x,y,z) talaş kaldırabilen freze takımlarından olan Parmak Freze imalatçısıdır. Çok geniş ürün yelpazesine sahip olan firmanın başlıca ürünlerini Karbür Parmak Frezeler, Kalıpçı Frezeleri, Kaba Talaş Frezeleri, Konik Alın Frezeler, Köşe Radyüs Frezeler, İki Ağızlı Kısa ve Uzun Küresel Frezeler, İç Bükey Frezeler vb. şeklinde sıralayabiliriz.

BW специализируется в научных исследованиях и разработках, и снабжаем самым высокотехнологичным карбидовым материалом для поставки режущих / фрезеровочных инструментов для почвы, воздушного пространства и электронной индустрии. В нашу основную продукцию входит твердый карбид / быстрорежущая сталь, а также двигатели, микроэлектрические дрели, IC картонорезальные машины, фрезы для гравирования, режущие пилы, фрезеры-расширители, фрезеры-расширители с резцом, дрели, резаки форм для шлицевого вала / звездочки роликовой цепи, и специальные нано инструменты. Пожалуйста, посетите сайт  www.tool-tool.com  для получения большей информации.

BW is specialized in R&D and sourcing the most advanced carbide material with high-tech coating to supply cutting / milling tool for mould & die, aero space and electronic industry. Our main products include solid carbide / HSS end mills, micro electronic drill, IC card cutter, engraving cutter, shell end mills, cutting saw, reamer, thread reamer, leading drill, involute gear cutter for spur wheel, rack and worm milling cutter, thread milling cutter, form cutters for spline shaft/roller chain sprocket, and special tool, with nano grade. Please visit our web  www.tool-tool.com  for more info.

 

beeway 發表在 痞客邦 留言(0) 人氣()

bw1 Bewise Inc. www.tool-tool.com Reference source from the internet.

作者:駐芝加哥科技組
文章來源:2006年10月3日,CNET News.com
發佈時間:2006/10/11


太陽 能產業前景十分看好,它的主要製材有矽和銅銦硒化鎵(copper indium gallium selenide, 簡稱CIGS)兩種,它們可以將吸收的太陽光轉變為電源。人們目前正在爭論那種材料未來會獨霸市場。目前,矽晶圓製造的太陽能電池板在市場上的佔有率超過 了百分之九十。
遺憾的是,矽太陽能電池板造價相對的十分昂貴,如果沒有財務補貼的話,還是從電力線網 (grid) 取得電源比較便宜。多晶矽晶圓(polysilicon)目前缺貨,大概要到2008年才能紓緩。缺貨嚴重的限制了它的發展和銷售。
支持 使用CIGS的人說,採用CIGS製造的太陽能電池板遠比矽電池板要便宜。CIGS材料可以噴在金屬薄片、塑膠、玻璃上,也可與水泥或其他建材混合使用。 可以想像,如果使用CIGS,整幢房屋或是建築物的外部將可能變成一部太陽能發電機。
CIGS也不像其他的薄膜材料,長期在太陽光照射下 效率會降低。
Martin Roscheisen是Nanosolar的執行長,他認為聰明的投資者可以對矽作短期的投資,但是長期投資則應該選擇薄膜,特別是CIGS。 Nanosolar是一個新的太陽能電產品製造廠,該公司己經募集到一億美金的創投基金,準備興建一座能夠生產4.3億瓦特的CIGS太陽能電池板工廠。
Roscheisen 並指出,「Nanosolar生產的半導體會比市上現有的產品要薄100倍,我們將低成本的材料和低成本的製造過程結合在一起。矽的成本實在太高了」。
Shell 是全球最大的太陽能產品製造商之一,今年初,Shell將它的矽太陽能部門賣掉轉而全心發展CIGS。Shell對CIGS抱著十足的信心才會這樣做。
矽 是所有已知材料中被人研究最多的材料之一,矽半導體業在矽產品的製造技術及降低處理時間的進展,都可直接應用到矽太陽能電池的製造上面。其他的能源如太陽 熱能源、光伏染料,功能和成本都無法與矽電池相提並論。
B.J. Stanberry是研發CIGS的HelioVolt公司執行長,他說,鋼鐵、水泥、矽是歷史上三種被人研究最多的材料,它們在市場中已經佔了優勢,傻 子才會預測矽很快會被淘汰。但是由於矽缺貨,給了薄膜一個大好的商機。Stanberry預測十年內,CIGS會在市場上佔有一席重要的地位。
太 陽能電池板的產量因為市場的需求而達到創記錄的高點,矽和CIGS兩種不同的太陽能電池板可能會同時在市場上並存多年。
矽的優點與缺點
矽 太陽能電池的追隨者承認矽材料並非十全十美。前史丹福大學教授Dick Swanson也是SunPower的創辦人,他說,理論上,矽太陽能電池能夠將吸收的太陽光的29%轉變為電源。他說,如果一個完美的電池,能夠純粹依 據矽物理特性產生電源,沒有其他任何的能源損耗和漏電,這種電池實際上的轉電效率應在25% - 26%之間。
SunPower目前銷售 的太陽能電池板平均效率是20%,該公司即將上市的新產品效率則可以達到22%,這種高效率來自該公司電池板的設計。SunPower將電源接點放在電池 板的後面或下方,增加了電池板表面接受太陽光照射的面積。另外,矽太陽能電池放置在一個反射層的上面,使穿過電池板的光可以反射回來,被矽電池吸收並作有 效的再利用。

 

歡迎來到Bewise Inc.的 世界,首先恭喜您來到這接受新的資訊讓產業更有競爭力,我們是提供專業刀具製造商,應對客戶高品質的刀具需求,我們可以協助客戶滿足您對產 業的不同要求,我們有能力達到非常卓越的客戶需求品質,這是現有相關技術無法比擬的,我們成功的滿足了各行各業的要求,包括:精密HSS DIN切削刀具協助客戶設計刀具流程DIN or JIS 鎢鋼切削刀具設計NAS986 NAS965 NAS897 NAS937orNAS907 航太切削刀具,NAS航太刀具設計超高硬度的切削刀具醫療配件刀具設計複合式再研磨機PCD地板專用企口鑽石組合刀 具粉末造粒成型機主機版專用頂級電桿PCD V-Cut捨棄式圓鋸片組粉末成型機主機版專用頂級電汽車業刀具設計電子產業鑽石刀具木工產業鑽石刀具銑刀與切斷複合再研磨機銑刀與鑽頭複合再研磨機銑刀與螺絲攻複合再研磨機等等。我們的產品涵蓋了從民生 刀具到工業級的刀具設計;從微細刀具到大型刀具;從小型生產到大型量產;全自動整合;我們的技術可提供您連續生產的效能,我們整體的服務及卓越的技術,恭 迎您親自體驗!!

BW Bewise Inc. Willy Chen willy@tool-tool.com bw@tool-tool.com www.tool-tool.com skype:willy_chen_bw mobile:0937-618-190 Head &Administration Office No.13,Shiang Shang 2nd St., West Chiu Taichung,Taiwan 40356 http://www.tool-tool.com / FAX:+886 4 2471 4839 N.Branch 5F,No.460,Fu Shin North Rd.,Taipei,Taiwan S.Branch No.24,Sec.1,Chia Pu East Rd.,Taipao City,Chiayi Hsien,Taiwan

Welcome to BW tool world! We are an experienced tool maker specialized in cutting tools. We focus on what you need and endeavor to research the best cutter to satisfy users demand. Our customers involve wide range of industries, like mold & die, aerospace, electronic, machinery, etc. We are professional expert in cutting field. We would like to solve every problem from you. Please feel free to contact us, its our pleasure to serve for you. BW product including: cutting toolaerospace tool .HSS  DIN Cutting toolCarbide end millsCarbide cutting toolNAS Cutting toolNAS986 NAS965 NAS897 NAS937orNAS907 Cutting Tools,Carbide end milldisc milling cutter,Aerospace cutting toolhss drillФрезерыCarbide drillHigh speed steelCompound SharpenerMilling cutterINDUCTORS FOR PCDCVDD(Chemical Vapor Deposition Diamond )’PCBN (Polycrystalline Cubic Boron Nitride) Core drillTapered end millsCVD Diamond Tools Inserts’PCD Edge-Beveling Cutter(Golden FingerPCD V-CutterPCD Wood toolsPCD Cutting toolsPCD Circular Saw BladePVDD End Millsdiamond tool. INDUCTORS FOR PCD . POWDER FORMING MACHINE Single Crystal Diamond Metric end millsMiniature end millsСпециальные режущие инструменты Пустотелое сверло Pilot reamerFraisesFresas con mango PCD (Polycrystalline diamond) ‘FresePOWDER FORMING MACHINEElectronics cutterStep drillMetal cutting sawDouble margin drillGun barrelAngle milling cutterCarbide burrsCarbide tipped cutterChamfering toolIC card engraving cutterSide cutterStaple CutterPCD diamond cutter specialized in grooving floorsV-Cut PCD Circular Diamond Tipped Saw Blade with Indexable Insert PCD Diamond Tool Saw Blade with Indexable InsertNAS toolDIN or JIS toolSpecial toolMetal slitting sawsShell end millsSide and face milling cuttersSide chip clearance sawsLong end millsend mill grinderdrill grindersharpenerStub roughing end millsDovetail milling cuttersCarbide slot drillsCarbide torus cuttersAngel carbide end millsCarbide torus cuttersCarbide ball-nosed slot drillsMould cutterTool manufacturer.

Bewise Inc. www.tool-tool.com

よ うこそBewise Inc.の 世界へお越し下さいませ、先ず御目出度たいのは新たな

情報を受け取って頂き、もっと各産業に競争力プラス展開。

弊 社は専門なエンドミルの製造メーカーで、客先に色んな分野のニーズ

豊富な パリエーションを満足させ、特にハイテク品質要求にサポート致します。

弊社は各領域に供給できる内容は:

(1)精密HSSエンドミルのR&D

(2)Carbide Cutting tools設計

(3)鎢鋼エンドミル設計

(4)航空エンドミル設計

(5)超高硬度エンドミル

(6)ダイヤモンドエンドミ ル

(7)医療用品エン ドミル設計

(8)自動車部品&材料加工向けエンドミル設計

弊社の製品の供給調達機能は:

(1)生活産業~ハイテク工業までのエンドミル設計

(2)ミクロエ ンドミル~大型エンドミル供給

(3)小Lot生産~大量発注対応供給

(4)オートメーション整備調達

(5)スポット対応~流れ生産対応

弊社の 全般供給体制及び技術自慢の総合専門製造メーカーに貴方のご体験を御待ちしております。

Bewise Inc. talaşlı imalat sanayinde en fazla kullanılan ve üç eksende (x,y,z) talaş kaldırabilen freze takımlarından olan Parmak Freze imalatçısıdır. Çok geniş ürün yelpazesine sahip olan firmanın başlıca ürünlerini Karbür Parmak Frezeler, Kalıpçı Frezeleri, Kaba Talaş Frezeleri, Konik Alın Frezeler, Köşe Radyüs Frezeler, İki Ağızlı Kısa ve Uzun Küresel Frezeler, İç Bükey Frezeler vb. şeklinde sıralayabiliriz.

BW специализируется в научных исследованиях и разработках, и снабжаем самым высокотехнологичным карбидовым материалом для поставки режущих / фрезеровочных инструментов для почвы, воздушного пространства и электронной индустрии. В нашу основную продукцию входит твердый карбид / быстрорежущая сталь, а также двигатели, микроэлектрические дрели, IC картонорезальные машины, фрезы для гравирования, режущие пилы, фрезеры-расширители, фрезеры-расширители с резцом, дрели, резаки форм для шлицевого вала / звездочки роликовой цепи, и специальные нано инструменты. Пожалуйста, посетите сайт  www.tool-tool.com  для получения большей информации.

BW is specialized in R&D and sourcing the most advanced carbide material with high-tech coating to supply cutting / milling tool for mould & die, aero space and electronic industry. Our main products include solid carbide / HSS end mills, micro electronic drill, IC card cutter, engraving cutter, shell end mills, cutting saw, reamer, thread reamer, leading drill, involute gear cutter for spur wheel, rack and worm milling cutter, thread milling cutter, form cutters for spline shaft/roller chain sprocket, and special tool, with nano grade. Please visit our web  www.tool-tool.com  for more info.

 

beeway 發表在 痞客邦 留言(0) 人氣()

碧威-火山-a5dm

Bewise Inc. www.tool-tool.com Reference source from the internet.

陶瓷合金為黑色陶瓷,硬度為clip_image00294 . 5~95,耐磨性良好,化學安定性好,紅熱硬度高、軔性稍差、橫向破壞強度為130~135 ×clip_image004psi 。用於切削硬度極高之Gasite 鑄鐵(表面硬度clip_image00670 ,內部硬度clip_image006[1]60 )、高週波硬化之米漢納鑄鐵(Meehanite GB/GC)。切削速度可達400 ~ 600m / min 。陶瓷合金之熱安定性及化學安定性較碳化物為佳,因為陶瓷合金的主要成份TiC對Fe的溶解度比碳化物的主要成分WC對Fe的溶解度低。
陶瓷合金 的切創特性:
(一) 可用與陶瓷刀具相同的切削速度,約為碳化物的2 -4 倍。

(二) 耐凹陷及刀腹磨耗。
(三) 加工面的粗度比用碳化物車刀者良好。
(四) 可用於粗車削黑皮,不會引起剝離。
(五) 能切削鑄鐵、鋼、非鐵金屬等各種材料。
(六) 可以硬焊。
(七) 再研磨的容易程度與碳化物刀具相若。
9. 氮化硼刀具
氮化硼(CBN, Cubic Boron Nitride)刀具是由一層人造氮化硼結晶和碳化鎢基材緊密燒結砌合在一起,然後以高溫及高壓的燒結過程製成。
氮化硼是目前已知硬度僅次於鑽石 的刀具材料,有很好的化學安定性,不會和鐵、鈷、鎳等金屬產生親和現象,因此專門加工一些經過硬化處理,硬度在clip_image006[2]45以上的硬鋼、高速鋼、不鐫鋼、冷激鑄鐵等及一些高溫合金等難切削的 太空材料。
氮化硼刀具在切削所謂難切削的材料等,能比傳統研磨快速,切除材料的速度可以高達數十倍之多。氮化硼如果切削角度和刀刃形狀設計正確時 相當耐衝擊,也可以做斷續車削或粗重切削鑄件不規則表面、銹皮等。
難切削材料的加工,一旦切削速度加快時,刀刃部位的溫度快速上升,對大部分的切 削刀具材料都是致命傷,但對氮化硼卻不受影響。氮化硼刀具在1830clip_image010 時,尚可維持相當程度的紅熱硬度及強度,也不會有氧化的情形,更不會在高溫時與鐵、鈷、鎳等金屬產生親和作用。某公司人造CBN Borazon 氮化硼刀具材料的特性:抗折力105 ×clip_image012psi ,彈性係數125 ×clip_image004[1]psi ,硬Knoop3500 kg/clip_image015,熱傳導1~2 watts / cmclip_image017K 。
氮化硼刀具使用時注意事項如下:
1. 機器的剛性和工件夾持的穩定性要良好,刀具懸空要短。

2. 不適合切削軟材料,適合切削硬化鋼、鑄鐵和硬軔太空金屬。

3. 儘可能使用負傾角設計。
4. 選用較大的側刃角,至少15clip_image017[1]較好。
5. 使用充足的切削劑。
6. 切削耐熱合金等工件之邊綠必須事先倒角,以避免切削時工件邊緣造成破裂的現象。
7. 一有顫振,立即停止切削,並檢查原因。
8. 刀刃的形狀必須特別小心注意選用:
(1)油石細磨小圓角0.03~0.05mm,用於連續切削的精車和細車。
(2)油石細磨小圓角 0.07~0.0 12mm,用於半精車。

(3) 10clip_image017[2]刀刃倒角,用於斷續切削。倒角的寬度必須大於進給率。

通 常的建議值為10clip_image017[3]× 0.4mm寬。
(4)刀刃倒角加上油石細磨的小圓角刀刃處 理,用於惡劣情況之切削。
9. 表2 -11 示切削數據建議值,在應用上可以使用表中之數據做為起點,再配合實際狀況予於修正。

表2 -11 氮化硼刀具的切削數據建議值

clip_image022

10. 人造鑽石刀具
鑽石做為金屬切削刀 具,近年來已將昂貴的單晶體鑽石(天然鑽石)改為多晶體鑽石(人造鑽石)。一般天然鑽石在使用之前,必須先找到結晶線的方向才能發揮其「硬」的效果。 ComPax 人造鑽石是沒有結晶方向線的燒結體,不會有軟、硬並存的面。
人造鑽石刀具是一層極細的鑽石晶粒燒結砌合在碳化鎢的基座上,經由超高 壓及超高溫處理而成。製造時雖沒有使用結合劑,但碳化鎢內少量之鈷會擴散到表面,當做超硬被覆的結合劑。而碳化鎢的基座會很有效地支撐具有硬度和耐磨性的 人造鑽石層。
人造鑽石刀具以切削矽鋁合金、銅、青銅合金、巴比合金、石墨、玻璃纖維等比較軟質材料的精細加工為主。它不適合切削鐵類金屬,因為大 部分的鐵金屬在高溫狀況下會與鑽石產生親和作用。人造鑽石刀具使用時注意事項如下:
(1) 特別注意機器的剛性和工件夾持的穩定性,若刀具顫振將縮短其壽命,工件表面不良。
(2) 可以濕式或乾式切削,但以濕式為佳。切削劑使用一般的水溶性油、浮劑等。因此種切削劑的冷卻性和潤滑性可減少切削熱和膠結刀刃問題。
(3) 人造鑽石刀具的切削角度,通常和碳化鎢車刀的角度相同。唯主要切削比較軟的材料,因此切削角度都正角。讓角應儘量小

表2 -12 人造鑽石之切削數據建議值

clip_image024

表2 -13 各種刀具材料的特性

clip_image026

,最好不超過15clip_image017[4]。過大的讓角將使鑽石層因得不到碳化鎢基座的支撐,而會導致刀具碎裂。 刀鼻半徑則比碳化鎢刀具大,如此可產生更好的表面粗糙度。因為刀刃的銳利度,雖然增加刀鼻半徑,並不會帶來較大的切削阻力。
(四) 切削數據建議值如表2 -12 示。在應用上,可以使用表中提供之數據作為起點,再配合實際狀況作某種修正。

 

歡迎來到Bewise Inc.的世界,首先恭喜您來到這接受新的資訊讓產業更有競爭力, 我們是提供專業刀具製造商,應對客戶高品質的刀具需求,我們可以協助客戶滿足您對產業的不同要求,我們有能力達到非常卓越的客戶需求品質,這是現有相關技 術無法比擬的,我們成功的滿足了各行各業的要求,包括:精密HSS DIN切削刀具協助客戶設計刀具流程DIN or JIS 鎢鋼切削刀具設計NAS986 NAS965 NAS897 NAS937orNAS907 航太切削刀具,NAS航太刀具設計超高硬度的切削刀具醫療配件刀具設計複合式再研磨機PCD地板專用企口鑽石組合刀 具粉末造粒成型機主機版專用頂級電桿PCD V-Cut捨棄式圓鋸片組粉末成型機主機版專用頂級電汽車業刀具設計電子產業鑽石刀具木工產業鑽石刀具銑刀與切斷複合再研磨機銑刀與鑽頭複合再研磨機銑刀與螺絲攻複合再研磨機等等。我們的產品涵蓋了從民生 刀具到工業級的刀具設計;從微細刀具到大型刀具;從小型生產到大型量產;全自動整合;我們的技術可提供您連續生產的效能,我們整體的服務及卓越的技術,恭 迎您親自體驗!!

BW Bewise Inc. Willy Chen willy@tool-tool.com bw@tool-tool.com www.tool-tool.com skype:willy_chen_bw mobile:0937-618-190 Head &Administration Office No.13,Shiang Shang 2nd St., West Chiu Taichung,Taiwan 40356 http://www.tool-tool.com / FAX:+886 4 2471 4839 N.Branch 5F,No.460,Fu Shin North Rd.,Taipei,Taiwan S.Branch No.24,Sec.1,Chia Pu East Rd.,Taipao City,Chiayi Hsien,Taiwan

Welcome to BW tool world! We are an experienced tool maker specialized in cutting tools. We focus on what you need and endeavor to research the best cutter to satisfy users demand. Our customers involve wide range of industries, like mold & die, aerospace, electronic, machinery, etc. We are professional expert in cutting field. We would like to solve every problem from you. Please feel free to contact us, its our pleasure to serve for you. BW product including: cutting toolaerospace tool .HSS  DIN Cutting toolCarbide end millsCarbide cutting toolNAS Cutting toolNAS986 NAS965 NAS897 NAS937orNAS907 Cutting Tools,Carbide end milldisc milling cutter,Aerospace cutting toolhss drillФрезерыCarbide drillHigh speed steelCompound SharpenerMilling cutterINDUCTORS FOR PCDCVDD(Chemical Vapor Deposition Diamond )’PCBN (Polycrystalline Cubic Boron Nitride) Core drillTapered end millsCVD Diamond Tools Inserts’PCD Edge-Beveling Cutter(Golden FingerPCD V-CutterPCD Wood toolsPCD Cutting toolsPCD Circular Saw BladePVDD End Millsdiamond tool. INDUCTORS FOR PCD . POWDER FORMING MACHINE Single Crystal Diamond Metric end millsMiniature end millsСпециальные режущие инструменты Пустотелое сверло Pilot reamerFraisesFresas con mango PCD (Polycrystalline diamond) ‘FresePOWDER FORMING MACHINEElectronics cutterStep drillMetal cutting sawDouble margin drillGun barrelAngle milling cutterCarbide burrsCarbide tipped cutterChamfering toolIC card engraving cutterSide cutterStaple CutterPCD diamond cutter specialized in grooving floorsV-Cut PCD Circular Diamond Tipped Saw Blade with Indexable Insert PCD Diamond Tool Saw Blade with Indexable InsertNAS toolDIN or JIS toolSpecial toolMetal slitting sawsShell end millsSide and face milling cuttersSide chip clearance sawsLong end millsend mill grinderdrill grindersharpenerStub roughing end millsDovetail milling cuttersCarbide slot drillsCarbide torus cuttersAngel carbide end millsCarbide torus cuttersCarbide ball-nosed slot drillsMould cutterTool manufacturer.

Bewise Inc. www.tool-tool.com

よ うこそBewise Inc.の 世界へお越し下さいませ、先ず御目出度たいのは新たな

情報を受け取って頂き、もっと各産業に競争力プラス展開。

弊 社は専門なエンドミルの製造メーカーで、客先に色んな分野のニーズ

豊富な パリエーションを満足させ、特にハイテク品質要求にサポート致します。

弊社は各領域に供給できる内容は:

(1)精密HSSエンドミルのR&D

(2)Carbide Cutting tools設計

(3)鎢鋼エンドミル設計

(4)航空エンドミル設計

(5)超高硬度エンドミル

(6)ダイヤモンドエンドミ ル

(7)医療用品エン ドミル設計

(8)自動車部品&材料加工向けエンドミル設計

弊社の製品の供給調達機能は:

(1)生活産業~ハイテク工業までのエンドミル設計

(2)ミクロエ ンドミル~大型エンドミル供給

(3)小Lot生産~大量発注対応供給

(4)オートメーション整備調達

(5)スポット対応~流れ生産対応

弊社の 全般供給体制及び技術自慢の総合専門製造メーカーに貴方のご体験を御待ちしております。

Bewise Inc. talaşlı imalat sanayinde en fazla kullanılan ve üç eksende (x,y,z) talaş kaldırabilen freze takımlarından olan Parmak Freze imalatçısıdır. Çok geniş ürün yelpazesine sahip olan firmanın başlıca ürünlerini Karbür Parmak Frezeler, Kalıpçı Frezeleri, Kaba Talaş Frezeleri, Konik Alın Frezeler, Köşe Radyüs Frezeler, İki Ağızlı Kısa ve Uzun Küresel Frezeler, İç Bükey Frezeler vb. şeklinde sıralayabiliriz.

BW специализируется в научных исследованиях и разработках, и снабжаем самым высокотехнологичным карбидовым материалом для поставки режущих / фрезеровочных инструментов для почвы, воздушного пространства и электронной индустрии. В нашу основную продукцию входит твердый карбид / быстрорежущая сталь, а также двигатели, микроэлектрические дрели, IC картонорезальные машины, фрезы для гравирования, режущие пилы, фрезеры-расширители, фрезеры-расширители с резцом, дрели, резаки форм для шлицевого вала / звездочки роликовой цепи, и специальные нано инструменты. Пожалуйста, посетите сайт  www.tool-tool.com  для получения большей информации.

BW is specialized in R&D and sourcing the most advanced carbide material with high-tech coating to supply cutting / milling tool for mould & die, aero space and electronic industry. Our main products include solid carbide / HSS end mills, micro electronic drill, IC card cutter, engraving cutter, shell end mills, cutting saw, reamer, thread reamer, leading drill, involute gear cutter for spur wheel, rack and worm milling cutter, thread milling cutter, form cutters for spline shaft/roller chain sprocket, and special tool, with nano grade. Please visit our web  www.tool-tool.com  for more info.

 

beeway 發表在 痞客邦 留言(0) 人氣()