公告版位

Bewise Inc. www.tool-tool.com Reference source from the internet.

一.可转位刀具刀片型号编制标准

1.可转位车刀型号表示规则

  GB/T5343.1,它等效采用ISO5680-1989。它适用于可转位外圆车刀、端面车刀、防形车刀及拼装复合刀具的模块刀头的型号编制。其型号也是由按规定顺序排列的一组字母和数字代号所组成。

2.可转位带孔铣刀型号表示规则

   它是在ISO7406-1986的基础上制订的。它适用于可转位面铣刀、三面刃(槽)铣刀、套式立铣刀及圆柱形铣刀型号的编制。其型号由11个 号位组成(面铣刀只有10个号位,没有第11个号位)。前1~4号位表明刀体的特征。波折号后边的号位表示刀片装夹方式和刀片特征。

3.可转位带柄铣刀型号表示规则

  它是在国际标准ISO7848-1986的基础上制订的。它的型号也由11个号位组成。其中有5个号位表示刀体的特征,两个号位表示柄部的特征,另外4个号位则表示刀片的装夹方法及其切削刃长度的特征。

4.可转位刀片型号表示规则

   GB2076-87,等效ISO1832-85,国内外硬质合金厂生产的切削用可转位刀片(包括车刀片和铣刀片)的型号都符合这个标准。它是由 给定意义的字母和数字代号,按一定顺序排列的十个号位组成。其中第8和第9个号位分别表示切削刃截面形状和刀片切削方向,只有在需要的情况下才予标出。

二.可转位刀片标准

1.GB2079-87(代替GB2079-80)无孔的硬质合金可转位刀片:此标准等采用国际标 准ISO0883-1995。标准中规定了 TNUN、TNGN、TPUN、TPGN、SNUN、SNGN、SPUN、SPGN、TPUR、TPMR、SPUR、SPMR共12种类型刀片的系列尺 寸。

2.GB2077-87(代替GB2077-80)硬质合金可转位刀片圆角半径:此标准等效采用国际标准ISO3286-1976。标准规定刀尖圆角半径rε的尺寸系列为0.2、0.4、0.8、1.6、2.0、2.4、3.2mm。

3. GB2078-78(代替GB2078-80)带圆孔的硬质合金可转位刀片:此标准等效采用国际标准ISO3364-1985。标准中规定了 TNUM、TNMM、TNUG、TNMG、TNUA、TNMA、ENUM、FNMM、WNUM、SNUM、SNMM、SNUG、SNMG、SNUA、 SNMA、CNUM、CNMM、CNUG、CNMG、CNUA、CNMA、DNUM、DNMM、DNUG、DNMG、DNUA、DNMA、VNUM、 VNMM、VNUG、VNMG、VNUA、VNMA、RNUM、RNMM共36种类型的带圆孔硬质合金刀片尺寸系列。

4. GB2081-87(代替GB2081-80)硬质合金可转位铣刀片:此标准等效采用国际标准ISO3365-1985。此标准规定了 SNAN、SNCN、SNKN、SPAN、SPCN、SPKN、SECN、TPAN、TPCN、TPKN、TECN、FPCN、LPEX共13种类型的可 转位铣刀片系列尺寸。

5.GB2080-87(代替GB2080-80)沉孔硬质合金可转位刀片:此标准等效采用国际标准 ISO6987/1-1993。标准中规定了 TCMW、TCMT、WCMW、WCMT、SCMW、SCMT、CCMW、CCMT、DCMW、DCMT、RCMW、RCMT共12种类型的沉孔硬质合金 可转位刀片系列尺寸。

三.可转位铣刀标准:

1.可转位立铣刀国家标准GB5340-85:它是参照国际标准ISO6262/1-1982和ISO6263/2-1982制订的。有削平型直柄立铣刀和莫氏锥柄立铣刀两部分。

2.可转位三面刃铣刀国家标准GB5341-85:它是参照国际标准ISO6986-1983制订的。


3.可转位面铣刀国家标准GB5342-85:它是参照国际标准ISO6462-1983制订的。

4.可转位螺旋立铣刀:标准规定了直径32~100mm直柄或锥柄的立铣刀。因其刃部较长,由沿螺旋线方向排列的多片硬质合金可转位刀片相互交错搭接而成,适用于粗铣。


BW Bewise Inc. Willy Chen willy@tool-tool.com bw@tool-tool.com www.tool-tool.com skype:willy_chen_bw mobile:0937-618-190 Head &Administration Office No.13,Shiang Shang 2nd St., West Chiu Taichung,Taiwan 40356 TEL:+886 4 24710048 / FAX:+886 4 2471 4839 N.Branch 5F,No.460,Fu Shin North Rd.,Taipei,Taiwan S.Branch No.24,Sec.1,Chia Pu East Rd.,Taipao City,Chiayi Hsien,Taiwan

Welcome to BW tool world! We are an experienced tool maker specialized in cutting tools. We focus on what you need and endeavor to research the best cutter to satisfy users demand. Our customers involve wide range of industries, like mold & die, aerospace, electronic, machinery, etc. We are professional expert in cutting field. We would like to solve every problem from you. Please feel free to contact us, its our pleasure to serve for you. BW product including: cutting toolaerospace tool .HSS Cutting toolCarbide end millsCarbide cutting toolNAS Cutting toolCarbide end millAerospace cutting toolФрезерыCarbide drillHigh speed steelMilling cutterCVDD(Chemical Vapor Deposition Diamond )PCBN (Polycrystalline Cubic Boron Nitride) Core drillTapered end millsCVD Diamond Tools Inserts’PCD Edge-Beveling Cutter(Golden Finger’PCD V-Cutter’PCD Wood tools’PCD Cutting tools’PCD Circular Saw Blade’PVDD End Mills’diamond tool Single Crystal Diamond Metric end millsMiniature end millsСпециальные режущие инструменты Пустотелое сверло Pilot reamerFraisesFresas con mango PCD (Polycrystalline diamond) FreseElectronics cutterStep drillMetal cutting sawDouble margin drillGun barrelAngle milling cutterCarbide burrsCarbide tipped cutterChamfering toolIC card engraving cutterSide cutterNAS toolDIN toolSpecial toolMetal slitting sawsShell end millsSide and face milling cuttersSide chip clearance sawsLong end millsStub roughing end millsDovetail milling cuttersCarbide slot drillsCarbide torus cuttersAngel carbide end millsCarbide torus cuttersCarbide ball-nosed slot drillsMould cutterTool manufacturer.

Bewise Inc. www.tool-tool.com

BW специализируется в научных исследованиях и разработках, и снабжаем самым высокотехнологичным карбидовым материалом для поставки режущих / фрезеровочных инструментов для почвы, воздушного пространства и электронной индустрии. В нашу основную продукцию входит твердый карбид / быстрорежущая сталь, а также двигатели, микроэлектрические дрели, IC картонорезальные машины, фрезы для гравирования, режущие пилы, фрезеры-расширители, фрезеры-расширители с резцом, дрели, резаки форм для шлицевого вала / звездочки роликовой цепи, и специальные нано инструменты. Пожалуйста, посетите сайт www.tool-tool.com для получения большей информации.

BW is specialized in R&D and sourcing the most advanced carbide material with high-tech coating to supply cutting / milling tool for mould & die, aero space and electronic industry. Our main products include solid carbide / HSS end mills, micro electronic drill, IC card cutter, engraving cutter, shell end mills, cutting saw, reamer, thread reamer, leading drill, involute gear cutter for spur wheel, rack and worm milling cutter, thread milling cutter, form cutters for spline shaft/roller chain sprocket, and special tool, with nano grade. Please visit our web www.tool-tool.com for more info.

beeway 發表在 痞客邦 留言(0) 人氣()

Bewise Inc. www.tool-tool.com Reference source from the internet.

在煤矿机械中存在用不锈钢和高温合金钢加工制作的一些零部件,这些零件在加工过程中存在一定的难度,现在就一些问题进行探讨。
1 不锈钢的切 削加工性
不锈钢按金相组织分有铁素体、马氏体、奥氏体3种。铁素体、马氏体不锈钢的主要成分以Cr为主,经常在淬火—回火或退火状态下使用,综合机械性能适中,切 削加工一般不太难。奥氏体不锈钢的成分以Cr、Ni等元素为主,淬火后呈奥氏体组织,切削加工性比较差,主要表现在:
塑性大,加工硬化很严重,易生成积屑瘤使加工表面质量恶化,切削力约比45钢高25%。加工表面硬化程度及硬化层深度大。
导热系数小,只为45钢的1/3,因此产生的热量多,且又不易传出,造成切削温度高。
切削温度高,加工硬化严重,加上钢中碳化物形成硬质夹杂物,又易与刀具发生冷焊,故刀具磨损快。
2 高温合金钢的切削加工性
高温合金钢按其化学成分有Fe基、Ni基、Co基3种,并含有许多高熔点合金元素,它们与其他合金构成纯度高、组织致密的奥氏体合金。有些元素又与非金属 元素C、N、O等结合成比重小,熔点高的高硬度化合物,还能形成一些具有一定韧性的高硬度的金属间化合物,同时有些合金元素进入固溶体,使基体强化。高温 合金经长期时效后,又能从固溶体中析出硬质相,进一步使晶格歪扭,这不仅增大了塑性变形阻力,而且由于硬质颗粒的存在,加剧了刀具的磨损。高温合金钢的加 工有如下特性:
强度较高又由于抵抗塑性变形的能力强,所以切削力很大。
硬度较高,尤其高温硬度高于其他金属材料,加工时由于塑性变形而进一步硬化。
导热系数小,只为45钢的1/3~1/4。
合金中的高硬度化合物构成硬质点,进一步加剧刀具的磨损。
在中、低切削速度下,易与刀具发生冷焊。在高温下又使刀具发生剧烈的扩散磨损。
3 结语
YT类硬质合金刀具不宜用于加工奥氏体不锈钢和高温合金钢,因为YT类硬质合金中的Ti元素易与工件材料中的Ti元素发生亲和而导致冷焊,在高温下还加剧 了扩散磨损,一般宜采用YG类、YH类或YW类硬质合金。加工奥氏体不锈钢时,宜采用较大的前角(一般g0=15 ~30°)与中等的切削速度(v=50~80m/min)。加工高温合金钢时,宜采用偏小前角(g0=0~10°)以提高切削刃的强度,与偏低的切削速度 (v=30~50m/min)。不论加工奥氏体不锈钢或高温合金钢,切削深度和进给量均宜适当增大,避免切削刃和刀尖划过硬化层,对切削液应采用极压切削 油或极压乳化液,同时采用喷雾冷却办法,以降低切削温度。

BW Bewise Inc. Willy Chen willy@tool-tool.com bw@tool-tool.com www.tool-tool.com skype:willy_chen_bw mobile:0937-618-190 Head &Administration Office No.13,Shiang Shang 2nd St., West Chiu Taichung,Taiwan 40356 TEL:+886 4 24710048 / FAX:+886 4 2471 4839 N.Branch 5F,No.460,Fu Shin North Rd.,Taipei,Taiwan S.Branch No.24,Sec.1,Chia Pu East Rd.,Taipao City,Chiayi Hsien,Taiwan

Welcome to BW tool world! We are an experienced tool maker specialized in cutting tools. We focus on what you need and endeavor to research the best cutter to satisfy users demand. Our customers involve wide range of industries, like mold & die, aerospace, electronic, machinery, etc. We are professional expert in cutting field. We would like to solve every problem from you. Please feel free to contact us, its our pleasure to serve for you. BW product including: cutting toolaerospace tool .HSS Cutting toolCarbide end millsCarbide cutting toolNAS Cutting toolCarbide end millAerospace cutting toolФрезерыCarbide drillHigh speed steelMilling cutterCVDD(Chemical Vapor Deposition Diamond )PCBN (Polycrystalline Cubic Boron Nitride) Core drillTapered end millsCVD Diamond Tools Inserts’PCD Edge-Beveling Cutter(Golden Finger’PCD V-Cutter’PCD Wood tools’PCD Cutting tools’PCD Circular Saw Blade’PVDD End Mills’diamond tool Single Crystal Diamond Metric end millsMiniature end millsСпециальные режущие инструменты Пустотелое сверло Pilot reamerFraisesFresas con mango PCD (Polycrystalline diamond) FreseElectronics cutterStep drillMetal cutting sawDouble margin drillGun barrelAngle milling cutterCarbide burrsCarbide tipped cutterChamfering toolIC card engraving cutterSide cutterNAS toolDIN toolSpecial toolMetal slitting sawsShell end millsSide and face milling cuttersSide chip clearance sawsLong end millsStub roughing end millsDovetail milling cuttersCarbide slot drillsCarbide torus cuttersAngel carbide end millsCarbide torus cuttersCarbide ball-nosed slot drillsMould cutterTool manufacturer.

Bewise Inc. www.tool-tool.com

BW специализируется в научных исследованиях и разработках, и снабжаем самым высокотехнологичным карбидовым материалом для поставки режущих / фрезеровочных инструментов для почвы, воздушного пространства и электронной индустрии. В нашу основную продукцию входит твердый карбид / быстрорежущая сталь, а также двигатели, микроэлектрические дрели, IC картонорезальные машины, фрезы для гравирования, режущие пилы, фрезеры-расширители, фрезеры-расширители с резцом, дрели, резаки форм для шлицевого вала / звездочки роликовой цепи, и специальные нано инструменты. Пожалуйста, посетите сайт www.tool-tool.com для получения большей информации.

BW is specialized in R&D and sourcing the most advanced carbide material with high-tech coating to supply cutting / milling tool for mould & die, aero space and electronic industry. Our main products include solid carbide / HSS end mills, micro electronic drill, IC card cutter, engraving cutter, shell end mills, cutting saw, reamer, thread reamer, leading drill, involute gear cutter for spur wheel, rack and worm milling cutter, thread milling cutter, form cutters for spline shaft/roller chain sprocket, and special tool, with nano grade. Please visit our web www.tool-tool.com for more info.

beeway 發表在 痞客邦 留言(0) 人氣()

Bewise Inc. www.tool-tool.com Reference source from the internet.
类别 标准名称 标准号 与国际标准的关系
普通螺纹 普通螺纹 基本牙型 GB/T192-1981 与ISO68等效
普通螺纹 直径与螺距系列 GB/T193-1981 与ISO261等效
普通螺纹 基本尺寸 GB/T196-1981 与ISO724等效
普通螺纹 公差与配合 GB/T197-1981 与ISO965/1等效
普通螺纹 偏差表 GB/T2516-1981 与ISO965/3等效
商品紧固 件的普通螺纹选用系列 JB/T7912-1999 与ISO262等效
商品紧固 件的中等精度普通螺纹极限尺寸 GB/T9145-1988 与ISO965/2等效
光学螺纹 光学仪器 特种细牙螺纹 ZBN30006-1988 -
光学仪器 用目镜螺纹 JB/T8204-1995
光学仪器用短牙螺纹 JB/T5450-1991
紧配合螺纹 过渡配合 螺纹 GB/T1167-1996 -
过盈配合 螺纹 GB/T1181-1998
小螺纹 小螺纹牙 型 GB/T1505 4.1-1994 与ISO1501等效
小螺纹直 径与螺距系列 GB/T1505 4.2-1994
小螺纹基 本尺寸 GB/T1505 4.3-1994
小螺纹公差 GB/T15054.4-1994
小螺纹极限尺寸 GB/T15054.5-1994
MJ螺纹 MJ螺纹基 本牙型 GJB/T3.1-1982 ISO5855
MJ螺纹螺 栓与螺母螺纹的尺寸与公差 GJB/T3.2-1982
MJ螺纹管 路件螺纹的尺寸与公差 GJB/T3.3-1985
MJ螺纹结 构件的尺寸与公差 GJB/T3.4-1985
MJ螺纹计 算公式 GJB/T3.5-1985
MJ螺纹首尾 GJB52-1985
梯形螺纹 梯形螺纹 牙型 GB/T5796 .1-1986 与ISO2901等效
梯形螺纹 直径与螺距系列 GB/T5796 .2-1986 与ISO2902等效
梯形螺纹 基本尺寸 GB/T5796 .3-1986 与ISO2904等效
梯形螺纹 公差 GB/T5796 .4-1986 与ISO2903等效
梯形螺纹 极限尺寸 GB/T12359-1990 -
机床梯形 螺纹丝杠、螺母技术条件 JB/T2886-1992
锻钢阀门 用短牙梯形螺纹 JB/TQ374-1985
锯齿形螺纹 锯齿形(3 °、30°)螺纹牙型 GB/T13576.1-1992 -
锯齿形(3 °、30°)螺纹直径与螺距系列 GB/T13576.2-1992
锯齿形(3 °、30°)螺纹基本尺寸 GB/T13576.3-1992
锯齿形(3 °、30°)螺纹公差 GB/T13576.4-1992
水压机45 °锯齿形螺纹牙型与基本尺寸 JB2076-1984
管螺纹 用螺纹密 封的管螺纹 GB/T7306-1987 与ISO7/1等效
非螺纹密 封的管螺纹 GB/T7307-1987 与ISO228/1等效
60°圆锥 管螺纹 GB/T12716-1991 -
米制锥螺 纹 GB/T1415-1992
管路旋入 端用普通螺纹尺寸系列 GB/T1414-1978
气瓶专用螺纹 GB/T8335-1998
通用基准 螺纹术语 GB/T1479 1-1993 与ISO5408等效


BW Bewise Inc. Willy Chen willy@tool-tool.com bw@tool-tool.com www.tool-tool.com skype:willy_chen_bw mobile:0937-618-190 Head &Administration Office No.13,Shiang Shang 2nd St., West Chiu Taichung,Taiwan 40356 TEL:+886 4 24710048 / FAX:+886 4 2471 4839 N.Branch 5F,No.460,Fu Shin North Rd.,Taipei,Taiwan S.Branch No.24,Sec.1,Chia Pu East Rd.,Taipao City,Chiayi Hsien,Taiwan

Welcome to BW tool world! We are an experienced tool maker specialized in cutting tools. We focus on what you need and endeavor to research the best cutter to satisfy users demand. Our customers involve wide range of industries, like mold & die, aerospace, electronic, machinery, etc. We are professional expert in cutting field. We would like to solve every problem from you. Please feel free to contact us, its our pleasure to serve for you. BW product including: cutting toolaerospace tool .HSS Cutting toolCarbide end millsCarbide cutting toolNAS Cutting toolCarbide end millAerospace cutting toolФрезерыCarbide drillHigh speed steelMilling cutterCVDD(Chemical Vapor Deposition Diamond )PCBN (Polycrystalline Cubic Boron Nitride) Core drillTapered end millsCVD Diamond Tools Inserts’PCD Edge-Beveling Cutter(Golden Finger’PCD V-Cutter’PCD Wood tools’PCD Cutting tools’PCD Circular Saw Blade’PVDD End Mills’diamond tool Single Crystal Diamond Metric end millsMiniature end millsСпециальные режущие инструменты Пустотелое сверло Pilot reamerFraisesFresas con mango PCD (Polycrystalline diamond) FreseElectronics cutterStep drillMetal cutting sawDouble margin drillGun barrelAngle milling cutterCarbide burrsCarbide tipped cutterChamfering toolIC card engraving cutterSide cutterNAS toolDIN toolSpecial toolMetal slitting sawsShell end millsSide and face milling cuttersSide chip clearance sawsLong end millsStub roughing end millsDovetail milling cuttersCarbide slot drillsCarbide torus cuttersAngel carbide end millsCarbide torus cuttersCarbide ball-nosed slot drillsMould cutterTool manufacturer.

Bewise Inc. www.tool-tool.com

BW специализируется в научных исследованиях и разработках, и снабжаем самым высокотехнологичным карбидовым материалом для поставки режущих / фрезеровочных инструментов для почвы, воздушного пространства и электронной индустрии. В нашу основную продукцию входит твердый карбид / быстрорежущая сталь, а также двигатели, микроэлектрические дрели, IC картонорезальные машины, фрезы для гравирования, режущие пилы, фрезеры-расширители, фрезеры-расширители с резцом, дрели, резаки форм для шлицевого вала / звездочки роликовой цепи, и специальные нано инструменты. Пожалуйста, посетите сайт www.tool-tool.com для получения большей информации.

BW is specialized in R&D and sourcing the most advanced carbide material with high-tech coating to supply cutting / milling tool for mould & die, aero space and electronic industry. Our main products include solid carbide / HSS end mills, micro electronic drill, IC card cutter, engraving cutter, shell end mills, cutting saw, reamer, thread reamer, leading drill, involute gear cutter for spur wheel, rack and worm milling cutter, thread milling cutter, form cutters for spline shaft/roller chain sprocket, and special tool, with nano grade. Please visit our web www.tool-tool.com for more info.

beeway 發表在 痞客邦 留言(0) 人氣()

Bewise Inc. www.tool-tool.com Reference source from the internet.

本文提出了对刀具几何角度综合剖析的思路。使学生既能加深对单个角度的理解;又能进一步理解角度之间的联系和同名角度的异同点。从而整体把握刀具几何角度概念和意义。
关键词:刀具  角度 剖析
在《刀具》课程中,刀具几何角度这部分内容属于教学重点。因为它是各类刀具设计、选择、使用、刃磨的基础知识。如果不掌握刀具的几何角度,就不能很好地学 习后续课程。同时,刀具几何角度又是该课程的教学难点。因为,角度分析是空间概念不易理解;而且角度又多,各有功用;角度之间又有换算关系等。教学时学生 感到头绪繁多、眼花缭乱,会产生畏难心理。一些学生可能就望而却步,甚至放弃学习,影响学业。
其实,刀具几何角度的学习,有其脉络和条理。学生只要掌握其内在规律,按照一定的方法深入理解。就可以由表及里、由浅入深、由此及彼,从而达到整体把握刀具几何角度的全貌和实质。为以后的学习和工作打下扎实的基础。
一、理解基本角度
——理解角度明定义 辅助平面是关键
基本角度分别是:在正交平面内的前角、后角;在切削平面内的刃倾角;在基面内的主偏角、副偏角。教学时很多学生感到一时难以掌握。关键在于未能重视和领会坐标平面和测量平面的概念。而只是死记硬背角度定义,结果只是停留在表面上的记忆而已。
其实首先应明了刀具是放在一定的测量系内确定角度的。例如:正交平面测量系包括基面、切削平面、正交平面等。对于某一平面的理解,如基面定义是:过切削刃上选定点,垂直于假定主运动方向的平面。理解时必须把握两点:

1)基面是过切削刃上的选定点;

2)垂直于假定主运动方向。
所谓假定主运动方向:即是假定装刀高度在工件的中心高上。这时主运动方向是垂直向下的。此时定义的基面是一个通过主刀刃上选定点的水平面。同理,切削平面 是一个通过主刀刃上选定点的且垂直于基面的一个铅垂面。而正交平面是同时垂直于基面和切削平面的一个剖面。三个辅助平面在空间是两两垂直。
必须清楚三个辅助平面在空间的方位以及相互位置关系。由此不难理解基本角度。比如,在正交平面内:前刀面与基面的夹角为前角;后刀面与切削平面的夹角为后角。所以学习基本角度的前提是理解辅助平面。
二、派生角度
——角度之间有联系 明确数量和功用

派生角度是:刀尖角、楔角。因为前角、后角和楔角之和等于90°。楔角数值随前角、后角的变化而变化;又因为主偏角、副偏角和刀尖角之和等于180°。刀 尖角数值随着主偏角、副偏角的变化而变化。这是角度数值之间的对应关系。但无论楔角还是刀尖角都是有其自身的意义和功用。决不是可有可无的。比如:车削螺 纹时,刀尖角的准确与否直接影响螺纹的牙形角;还有,刀尖角、楔角的大小对刀刃的强度有极大的影响。
三、转换角度

——测量面间转换角 对应关系要清楚
在不同的测量面内,都可以定义前角或后角。例如:在正交平面、法平面、切深平面、进给平面内都有其对应的前角和后角。
各个不同的测量面内定义的角度有其独立的意义和功用。这是因为各种刀具的加工特点不同,需要在不同的剖面内分析角度。比如:车削外圆时,一般在正交平面内分析车刀后角大小;而钻孔时,就需要在端剖面内分析麻花钻的后角大小。

各个测量 面内的同名角度在数值上又有一定的联系。必须让学生理解其中的异同点。比如:车刀的正交前角和法向前角的关系如下:

γo =γn × cosλs ; 当λs=0°时: γo=γn  此时法向前角就是正交前角 。
而λs≠0°时,γo≠γn 在齿轮和螺纹加工时,会影响工件的加工精度。
四、工作角度
——工作角度是变值 辅助平面随着变
刀具的标志角度是静态角度,是唯一确定的。而动态角度即工作角度却随不同的工作条件而变化。

比如:车削外圆时:
工作前角=γ0+μ

工作后角=α0-μ
现在单从切削运动去分析μ值的变化。
因为实际车削时,存在进给运动(尤其在加工大螺距螺纹时)。这时应以合成切削运动定义基面和切削平面。成为工作基面和工作切削平面。工作基面的定义是:通 过切削刃选定点垂直于合成切削速度方向的平面。工作切削平面定义是:通过切削刃选定点与切削刃相切,且垂直于工作基面的平面。相对原先标注角度时的基面和 切削平面倾斜了一个μ值的角度。

这样,在车削大螺距的螺纹时,可能由于工作后角的减小,而使刀刃无法切入工件。

五、衍生角度
1、过渡刃偏角

在主刀刃上再磨出一条长度较短的过渡刃。即形成过渡刃和主刀刃双重刀刃。主刀刃成为折线状过渡刃担任部分切削任务。过渡刃的偏角一般是主偏角数值的一半。目的是减轻主刀刃负担,同时增加刀头切削部分的强度。因此可以提高切削用量,增加刀具的耐用度。
2、修光刃偏角
在主、副刀刃之间,还可以磨出修光刃。实际上修光刃是副刀刃的极端形式。修光刃的作用与副刀刃相似,但因为修光刃偏角一般取0°~3°,长度为2倍的走刀量左右。因此能大大降低加工表面的粗糙度,提高加工质量。
3、负倒棱前角
在主刀刃上磨出负倒棱。其倒棱角度一般为-15°~ -20°。倒棱在主刀刃上,但在前角相反方向,且属于负前角性质。目的是增加主刀刃强度,提高刀具耐用度。选择时应和前角一起考虑。
刀具 的几何角度在选择和使用时,不是孤立地分析某一角度,而是需要综合考虑相关角度的互补和制约关系。所以我们需要对刀具几何角度进行综合分析,才能最大限度地发挥刀具的潜力。达到优质、高产、低消耗的生产要求。


BW Bewise Inc. Willy Chen willy@tool-tool.com bw@tool-tool.com www.tool-tool.com skype:willy_chen_bw mobile:0937-618-190 Head &Administration Office No.13,Shiang Shang 2nd St., West Chiu Taichung,Taiwan 40356 TEL:+886 4 24710048 / FAX:+886 4 2471 4839 N.Branch 5F,No.460,Fu Shin North Rd.,Taipei,Taiwan S.Branch No.24,Sec.1,Chia Pu East Rd.,Taipao City,Chiayi Hsien,Taiwan

Welcome to BW tool world! We are an experienced tool maker specialized in cutting tools. We focus on what you need and endeavor to research the best cutter to satisfy users demand. Our customers involve wide range of industries, like mold & die, aerospace, electronic, machinery, etc. We are professional expert in cutting field. We would like to solve every problem from you. Please feel free to contact us, its our pleasure to serve for you. BW product including: cutting toolaerospace tool .HSS Cutting toolCarbide end millsCarbide cutting toolNAS Cutting toolCarbide end millAerospace cutting toolФрезерыCarbide drillHigh speed steelMilling cutterCVDD(Chemical Vapor Deposition Diamond )PCBN (Polycrystalline Cubic Boron Nitride) Core drillTapered end millsCVD Diamond Tools Inserts’PCD Edge-Beveling Cutter(Golden Finger’PCD V-Cutter’PCD Wood tools’PCD Cutting tools’PCD Circular Saw Blade’PVDD End Mills’diamond tool Single Crystal Diamond Metric end millsMiniature end millsСпециальные режущие инструменты Пустотелое сверло Pilot reamerFraisesFresas con mango PCD (Polycrystalline diamond) FreseElectronics cutterStep drillMetal cutting sawDouble margin drillGun barrelAngle milling cutterCarbide burrsCarbide tipped cutterChamfering toolIC card engraving cutterSide cutterNAS toolDIN toolSpecial toolMetal slitting sawsShell end millsSide and face milling cuttersSide chip clearance sawsLong end millsStub roughing end millsDovetail milling cuttersCarbide slot drillsCarbide torus cuttersAngel carbide end millsCarbide torus cuttersCarbide ball-nosed slot drillsMould cutterTool manufacturer.

Bewise Inc. www.tool-tool.com

BW специализируется в научных исследованиях и разработках, и снабжаем самым высокотехнологичным карбидовым материалом для поставки режущих / фрезеровочных инструментов для почвы, воздушного пространства и электронной индустрии. В нашу основную продукцию входит твердый карбид / быстрорежущая сталь, а также двигатели, микроэлектрические дрели, IC картонорезальные машины, фрезы для гравирования, режущие пилы, фрезеры-расширители, фрезеры-расширители с резцом, дрели, резаки форм для шлицевого вала / звездочки роликовой цепи, и специальные нано инструменты. Пожалуйста, посетите сайт www.tool-tool.com для получения большей информации.

BW is specialized in R&D and sourcing the most advanced carbide material with high-tech coating to supply cutting / milling tool for mould & die, aero space and electronic industry. Our main products include solid carbide / HSS end mills, micro electronic drill, IC card cutter, engraving cutter, shell end mills, cutting saw, reamer, thread reamer, leading drill, involute gear cutter for spur wheel, rack and worm milling cutter, thread milling cutter, form cutters for spline shaft/roller chain sprocket, and special tool, with nano grade. Please visit our web www.tool-tool.com for more info.

beeway 發表在 痞客邦 留言(0) 人氣()

Bewise Inc. www.tool-tool.com Reference source from the internet.

1 前言
纳米改性Ti(C,N)基金属陶瓷与传统Ti(C,N)基金属陶瓷相比,具有优良的综合性能,因而被广泛用作刀具材料。随着制造技术的发展,金属陶瓷强度 和韧性得到不断提高,刀具的抗塑性变形和抗崩刃性能也有所改善;并且,刀具的高温强度和高温硬度、导热性和耐冲击性也都有所提高,使其不仅可用于钢材和铸 铁的精加工,而且可成为粗加工、铣削等断续切削适宜的刀具材料。当前,铣刀的使用量仅次于车刀和钻头,随着数控机床和专用铣床的普及,铣刀的使用量越来越 大。由于铣削过程采用大进给量的倾向日趋加强,因此,加工条件也越来越恶劣,对铣削刀片用刀具材料的稳定性要求越来越高。另外,用于断续铣削的铣刀与连续 切削的车刀相比,铣刀在使用中因承受反复的冲击容易发生脆性破损。为此,研制和开发高强韧性铣削刀片,特别是用纳米改性Ti(C,N)基金属陶瓷刀具材料 就显得尤为必要。目前,在国内尽管已有许多有关铣削刀片用刀具材料的报道。但是,对铣削刀片用纳米改性金属陶瓷的研究还未见报道。本文即研究铣削用纳米改 性金属陶瓷的显微组织和力学性能,为其下一步用作铣刀刀具材料提供理论指导。
2 实验方法
1) 材料制备
铣削刀片用纳米改性金属陶瓷试样的化学成分如表1所示。首先,用ZB220-T型超声波对纳米TiN粉进行分散,混料后加入适量无水乙醇并置于QM-1F 行星式球磨机上进行球磨24h。待混合料干燥后,加入一定量的汽油橡胶溶液进行造粒,然后,在约200MPa压力下模压成形,最后,在1440℃温度下真 空烧结1h。
铣削用纳米改性金属陶瓷试样的化学成分

试样序号 各试样化学成分(wt%)

TiN(nm) WC TiC Mo Co Ni C

a 10 15 Rest 4 12 12 1.0

b 6 8 16

c 15 6 18

d 6 10 14

e 4 14 14





2) 组织观察



试样表面经1µm金刚石抛光膏抛光后,用m(HF):n(HCI)=1:1的混合酸进行长时间热腐蚀后并用清水冲洗干净,然后,在HITACHI X-650型扫描电镜上观察显微组织。断口形貌观察在LEO-1530VP型扫描电镜上进行。



3) 抗弯测试三点弯曲实验



在MTS801-23型试验机上进行。试样尺寸为30mm×5mm×5mm;跨距为20mm,压头速度为1mm/min。实验采用单边切口梁法测断裂韧 性,试样尺寸为30mm×5mm×2.5mm,试样切口用金刚石刀片切出宽0.15~0.20mm的缺口,切口深度a为0.5mm,切口尖端曲率半径在 0.1~0.2mm之间,跨距为20mm,加载速率为0.05mm/min。用此方法计算试样的断裂韧性KIC的公式为





KIC=Y 3PL a½



2bh2





式中Y=1.93-3.07(a/h)+14.53(a/h)2-25.11(a/h)3+25.8(a/h)4



3 结果与讨论



1) Mo添加量对显微组织的影响



由图1可以看出,铣削刀片用纳米改性金属陶瓷的组织仍为陶瓷相和金属相两相;基体组织中较粗大的陶瓷相呈芯/壳结构,即TiC芯外包覆有一层硬质相 (Ti,Mo,W)(C,N)即“SS”相)。环形相(“SS”相)形成能有效抑制基体Ti(C,N)晶粒的长大,从而提高了材料的力学性能;它的形成是 由于WC、Mo2C及Ti(C,N)向液相中溶解和在粗Ti(C,N)颗粒上再析出的结果。



(a) 12Ni-12Co-4Mo (b) 16Ni-8Co-6Mo (c) 18Ni-6Co-15Mo



研究表明,向Ti(C,N)基金属陶瓷中添加Mo能改善液态金属Ni对基体的润湿性和抑制烧结时碳化物晶粒的长大,并且能提高Ti(C,N)基金属陶瓷的 高温抗弯强度Q5R。在TiC-Ni-Mo系中,当Ni中Mo含量达10wt%时能完全润湿TiC颗粒(接触角q=0°。由图1可见,随Mo添加量的增 加,TiC基金属陶瓷的组织明显细化。这是因为Mo能抑制烧结时碳化物相晶粒的长大,这与润湿性的改善有关;在完全润湿的条件下,碳化物颗粒不出现聚集再 结晶,这种见解现在已经得到普遍承认。此外,在烧结温度下,Mo向TiC颗粒扩散,并取代TiC晶格中的Ti,在TiC颗粒表面上形成(Ti,Mo), 固溶体,这就减少了纯TiC颗粒接触,并防止纯TiC颗粒聚集长大。这同样是造成TiC基金属陶瓷晶粒更细和组织更均匀的另一个重要原因。特别由图1 (c)可以看出,当Mo含量达15wt%时,对TiC基金属陶瓷的组织细化效果要更加显著。由Hall-Petch公式可知,金属陶瓷组织的细化可以明显 提高材料的屈服强度,这为其下一步用作刀具材料奠定了良好的基础。



在腐蚀掉组织中大部分金属粘结相后,可见许多诸如TiC、WC等异种亚微米碳化物和纳米TiN颗粒随机分布于各陶瓷相颗粒之间。据文献报道,这些分布于 TiC/TiC的两相或三相晶界上的纳米TiN和异种亚微米碳化物颗粒,一方面,起到固溶强化金属粘结相的作用,另一方面,能起到有效钉扎TiC晶界和粘 结相中位错的作用,使TiC晶界和位错难以运动,从而在一定程度上阻碍金属陶瓷的晶粒异常长大,这样整个基体中TiC晶粒也可得到明显的细化,使金属陶瓷 的整体组织趋于均匀化。



2) 金属粘结相力学性能的影响



无论采用单相金属Ni 还是采用复相Ni-Co做金属粘结相,金属陶瓷的抗弯强度(σbb)和断裂韧性(KIC)都随粘结相含量的增加而升高,而硬度(HRC)则随粘结相含量增 加而降低。但是,采用(Ni+Co)复相粘结时,金属陶瓷的力学性能要优于单相Ni粘结的金属陶瓷性能。



(a) 粘结相含量对强度影响 (b) 粘结相含量对硬度影响 (c) 粘结相含量对断裂韧性影响



粘结相含量和类型对金属陶瓷力学性能的影响



用(Ni+Co)复合粘结相使金属陶瓷力学性能提高的原因主要还是与显微结构的改善有关。由于Co有着比Ni更高的韧性,而且适当添加Co可以改善粘结相 对硬质相的润湿性,所以在采用相同的烧结工艺时,含Co金属陶瓷的断裂韧性和致密度比完全用Ni作粘结相的要高。但是,由于Co价格比较昂贵,因此,Co 添加量较多时对成本不利。



3) 断口形貌分析

随着粘结相含量的增加,断口形貌也随着变化。断裂模式以沿晶断裂为主。这是由于裂纹沿晶界扩展所需的能量较少的缘故。但对较粗大的陶瓷相,存在着解理断裂。从断口还可以看出,金属相存在着明显撕裂的痕迹(撕裂棱)和小碳化物颗粒从金属粘结相中拔出后留下的韧窝。



(a) 12Ni-12Co-4Mo (b) 14Ni-10Co-6Mo (c) 14Ni-14Co-4Mo



4 结论



1) 铣削刀片用纳米改性金属陶瓷组织仍由陶瓷相和金属相构成,其中粗大的陶瓷相为芯/壳结构,即Ti(C,N)芯外包覆有一层硬质相(Ti,Mo,W)(C,N)(即“SS”相)。

2) Mo的加入能明显细化金属陶瓷基体组织,使强度和硬度增加。但Mo量的添加过多对改善断裂韧性是不利的。

3) 抗弯强度和断裂韧性都随粘结相含量增加而增加,硬度则呈相反规律。沿晶断裂为主要的断裂模式。

BW Bewise Inc. Willy Chen willy@tool-tool.com bw@tool-tool.com www.tool-tool.com skype:willy_chen_bw mobile:0937-618-190 Head &Administration Office No.13,Shiang Shang 2nd St., West Chiu Taichung,Taiwan 40356 TEL:+886 4 24710048 / FAX:+886 4 2471 4839 N.Branch 5F,No.460,Fu Shin North Rd.,Taipei,Taiwan S.Branch No.24,Sec.1,Chia Pu East Rd.,Taipao City,Chiayi Hsien,Taiwan

Welcome to BW tool world! We are an experienced tool maker specialized in cutting tools. We focus on what you need and endeavor to research the best cutter to satisfy users demand. Our customers involve wide range of industries, like mold & die, aerospace, electronic, machinery, etc. We are professional expert in cutting field. We would like to solve every problem from you. Please feel free to contact us, its our pleasure to serve for you. BW product including: cutting toolaerospace tool .HSS Cutting toolCarbide end millsCarbide cutting toolNAS Cutting toolCarbide end millAerospace cutting toolФрезерыCarbide drillHigh speed steelMilling cutterCVDD(Chemical Vapor Deposition Diamond )PCBN (Polycrystalline Cubic Boron Nitride) Core drillTapered end millsCVD Diamond Tools Inserts’PCD Edge-Beveling Cutter(Golden Finger’PCD V-Cutter’PCD Wood tools’PCD Cutting tools’PCD Circular Saw Blade’PVDD End Mills’diamond tool Single Crystal Diamond Metric end millsMiniature end millsСпециальные режущие инструменты Пустотелое сверло Pilot reamerFraisesFresas con mango PCD (Polycrystalline diamond) FreseElectronics cutterStep drillMetal cutting sawDouble margin drillGun barrelAngle milling cutterCarbide burrsCarbide tipped cutterChamfering toolIC card engraving cutterSide cutterNAS toolDIN toolSpecial toolMetal slitting sawsShell end millsSide and face milling cuttersSide chip clearance sawsLong end millsStub roughing end millsDovetail milling cuttersCarbide slot drillsCarbide torus cuttersAngel carbide end millsCarbide torus cuttersCarbide ball-nosed slot drillsMould cutterTool manufacturer.

Bewise Inc. www.tool-tool.com

BW специализируется в научных исследованиях и разработках, и снабжаем самым высокотехнологичным карбидовым материалом для поставки режущих / фрезеровочных инструментов для почвы, воздушного пространства и электронной индустрии. В нашу основную продукцию входит твердый карбид / быстрорежущая сталь, а также двигатели, микроэлектрические дрели, IC картонорезальные машины, фрезы для гравирования, режущие пилы, фрезеры-расширители, фрезеры-расширители с резцом, дрели, резаки форм для шлицевого вала / звездочки роликовой цепи, и специальные нано инструменты. Пожалуйста, посетите сайт www.tool-tool.com для получения большей информации.

BW is specialized in R&D and sourcing the most advanced carbide material with high-tech coating to supply cutting / milling tool for mould & die, aero space and electronic industry. Our main products include solid carbide / HSS end mills, micro electronic drill, IC card cutter, engraving cutter, shell end mills, cutting saw, reamer, thread reamer, leading drill, involute gear cutter for spur wheel, rack and worm milling cutter, thread milling cutter, form cutters for spline shaft/roller chain sprocket, and special tool, with nano grade. Please visit our web www.tool-tool.com for more info.

beeway 發表在 痞客邦 留言(0) 人氣()

Bewise Inc. www.tool-tool.com Reference source from the internet.

用切削工具(包括刀具磨具磨料)把坯料或工件上 多餘的材料層切去成為切屑﹐使工件獲得規定的幾何形狀﹑尺寸和表面質量的加工方法。任何切削加工都必須具備3個基本條件﹕切削工具﹑工件和切削運動。切削 工具應有刃口﹐其材質必須比工件堅硬。不同的刀具結構和切削運動形式構成不同的切削方法。用刃形和刃數都固定的刀具進行切削的方法有車削鑽削鏜削銑削刨削拉削鋸切等﹔用刃形和刃數都不固定的磨具或磨料進行切削的方法有磨削研磨珩磨拋光等。
切削加工是機械製造中最主要的加工方法。雖然毛坯製造精度不斷提高﹐精鑄﹑精鍛﹑擠壓﹑粉末冶金等加工工藝應用日廣﹐但由於切削加工的適應範圍廣﹐且能達到很高的精度和很低的表面粗糙度﹐在機械製造工藝中仍佔有重要地位。
簡史 切削加工的歷史可追溯到原始人創造石劈﹑骨鑽等勞動工具的舊石器時期。在中國﹐早在商代中期(公元前13世紀)﹐就已能用研磨的方法加工銅鏡﹔商代晚期(公元前12世紀)﹐曾用青銅鑽頭在 卜骨上鑽孔﹔西漢時期(公元前 206~公元23)﹐就已使用杆鑽和管鑽﹐用加砂研磨的方法在“金縷玉衣”的4000多塊堅硬的玉片上鑽了 18000多個直徑1~2毫米的孔。17世紀中葉﹐中國開始利用畜力代替人力驅動刀具進行切削加工。如公元1668年﹐曾在畜力驅動的裝置上﹐用多齒刀具 銑削天文儀上直徑達2丈(古丈)的大銅環(圖1 畜力驅動銑削大銅環(1668) 顯示圖片)﹐然後再用磨石進行精加工。18世紀後半期的英國工業革命開始後﹐由於蒸汽機和近代機床的發明﹐切削加工開始用蒸汽機作為動力。到19世紀70年代﹐切削加工中又開始使用電力。對金屬切削原理的研究始於19世紀50年代﹐對磨削原理的研究始於19世紀80年代。此後各種新的刀具材料相繼出現。19世紀末出現的高速鋼刀具﹐使刀具許用的切削速度比碳素工具鋼和合金工具鋼刀具提高兩倍以上﹐達到25米/分左右。1923年出現的硬質合金刀具﹐使切削速度比高速鋼刀具又提高兩倍左右。30年代以後出現的金屬陶瓷(見陶瓷)和超硬材料(人造金剛石和立方氮化硼)﹐進一步提高了切削速度和加工精度。隨著機床和刀具不斷發展﹐切削加工的精度﹑效率和自動化程度不斷提高﹐應用範圍也日益擴大﹐從而促進了現代機械製造業的發展。
分類 金屬材料的切削加工有許多分類方法。常見的有以下3種。
按工藝特徵區分 切削加工的工藝特徵決定於切削工具的結構以及切削工具與工件的相對運動形式。按工藝特徵﹐切削加工一般可分為﹕車削﹑銑削﹑鑽削﹑鏜削﹑鉸削﹑刨削﹑插削﹑拉削﹑鋸切﹑磨削﹑研磨﹑珩磨﹑超精加工﹑拋光﹑齒輪加工蝸輪加工螺紋加工超精密加工鉗工刮削等。
按材料切除率和加工精度區分 可分為﹕粗加工﹕用大的切削深度﹐經一次或少數幾次走刀從工件上切去大部分或全部加工餘量﹐如粗車﹑粗刨﹑粗銑﹑鑽削和鋸切等﹐粗加工加工效率高而加工精度較低﹐一般用作預先加工﹐有時也可作最終加工。半精加工﹕一般作為粗加工與精加工之間的中間工序﹐但對工件上精度和表面粗糙度要求不高的部位﹐也可以作為最終加工。精加工﹕用精細切削的方式使加工表面達到較高的精度和表面質量﹐如精車﹑精刨﹑精鉸﹑精磨等。精加工一般是最終加工。精整加工﹕在精加工後進行﹐其目的是為了獲得更小的表面粗糙度﹐並稍微提高精度。精整加工的加工餘量小﹐如珩磨﹑研磨﹑超精磨削和超精加工等。修飾加工﹕目的是為了減小表面粗糙度﹐以提高防蝕﹑防塵性能和改善外觀﹐而並不要求提高精度﹐如拋光﹑砂光等。超精密加工﹕航天﹑激光﹑電子﹑核能等尖端技術領域中需要某些特別精密的零件﹐其精度高達IT4以上﹐表面粗糙度不大於 R a 0.01微米。這就需要採取特殊措施進行超精密加工﹐如鏡面車削﹑鏡面磨削﹑軟磨粒機械化學拋光等。
按表面形成方法區分 切削加工時﹐工件的已加工表面是依靠切削工具和工件作相對運動來獲得的。按表面形成方法﹐切削加工可分為 3類。刀尖軌跡法﹕依靠刀尖相對於工件表面的運動軌跡來獲得工件所要求的表面幾何形狀﹐如車削外圓﹑刨削平面﹑磨削外圓﹑用靠模車削成形面等(圖2 刀尖軌跡法 顯示圖片)。刀尖的運動軌跡取決於機床所提供的切削工具與工件的相對運動。成形刀具法﹕簡稱成形法﹐用與工件的最終表面輪廓相匹配的成形刀具或成形砂輪等加工出成形面。此時機床的部分成形運動被刀刃的幾何形狀所代替﹐如成形車削﹑成形銑削和成形磨削等(圖3 成形刀具法 顯示圖片)。由於成形刀具的製造比較困難﹐機床-夾具-工件-刀具所形成的工藝系統所能承受的切削力有限﹐成形法一般只用於加工短的成形面。展成法﹕又稱滾切法﹐加工時切削工具與工件作相對展成運動﹐刀具(或砂輪)和工件的瞬心線相互作純滾動﹐兩者之間保持確定的速比關係﹐所獲得加工表面就是刀刃在這種運動中的包絡面。齒輪加工中的滾齒﹑插齒﹑剃齒﹑珩齒和磨齒(不包括成形磨齒)等均屬展成法加工(圖4 展成法(滾切法) 顯示圖片)。
有些切削加工兼有刀尖軌跡法和成形刀具法的特點﹐如螺紋車削。
加工精度和表面粗糙度 各類切削加工方法所能達到的精度和表面粗糙度等級見表 各類切削加工所能達到的精度和表面粗糙度等級 顯示圖片
提高切削加工質量的途徑 切削加工質量主要是指工件的加工精度(包括尺寸﹑幾何形狀和各表面間相互位置)和表面質量(包括表面粗糙度﹑殘餘應力和表面硬化)。隨著技術的進步﹐切削 加工的質量不斷提高。18世紀後期﹐切削加工精度以毫米計﹔20世紀初﹐切削加工精度最高已達0.01毫米﹔至50年代﹐切削加工精度最高已達微米級 ﹔70年代﹐切削加工精度又提高到0.1微米。影響切削加工質量的主要因素有機床﹑刀具﹑夾具﹑工件毛坯﹑工藝方法和加工環境等方面。要提高切削加工質量 ﹐必須對上述各方面採取適當措施﹐如減小機床工作誤差﹑正確選用切削工具﹑提高毛坯質量﹑合理安排工藝﹑改善環境條件等。
減小機床工作誤差 通常採用的方法有﹕選用具有足夠精度和剛度的機床。必要時可以採取補償校正的方法﹐如在螺紋磨床滾齒機上﹐根據事先測得的機床傳動鏈誤差加裝誤差校正裝置﹐以校正機床的傳動系統誤差。採用機床夾具來保證加工精度﹐如利用鏜模加工箱體上的孔系﹐使孔距精度由鏜模決定而不受機床定位誤差的影響。防止機床熱變形對加工精度的影響。消除機床內部振源和採取隔振措施﹐以減少振動對加工精度和粗糙度的影響。提高機床自動化程度﹐如採用主動測量或自動控制系統﹐以減少加工過程中的人為誤差。
正確選用切削工具 應採用耐磨性好的刀具﹐合理選用刀具幾何參數﹐並仔細地研磨刃口﹐使其光滑而鋒利。例如用磨具加工﹐一般選用較細﹑較硬磨粒的磨具﹐砂輪要正確和及時地修整。
提高毛坯質量 工件毛坯要具有均勻的材質和加工餘量﹐同時採用適當的熱處理﹐如時效處理退火正火調質等措施以消減內應力﹐並改善材料的切削加工性。
合理安排工藝 採用合理的工藝程序﹔正確選用切削用量﹐以減小切削力和切削熱的影響﹐並防止產生自激振動﹔選用合適的切削液對切削區進行充分冷卻和潤滑﹔選擇工件的安裝定位基準和夾緊方式時﹐注意減小安裝誤差和工件變形。
改善環境條件 保持加工環境清潔﹔對外部振源和熱源採取隔離措施﹔精密加工在恆溫﹑恆濕和防塵的條件下進行。
提高切削加工效率的途徑 提高切削用量以提高材料切除率﹐是提高切削加工效率的基本途徑。常用的高效切削加工方法有高速切削﹑強力切削﹑等離子弧加熱切削和振動切削。
高速切削 一般指採用硬質合金刀具所能達到的切削速度的切削加工。磨削速度在45米/秒以上的切削稱為高速磨削。採用高速切削(或磨削)既可提高效率﹐又可減小表面 粗糙度。用硬質合金刀具高速車削普通鋼材的切削速度可達200米/分﹔用陶瓷刀具可達500米/分﹔用金剛石刀具車削有色金屬的切削速度可達 900米/分。實驗室中試驗的超高速切削的速度可達4000米/分以上。60年代以來﹐磨削速度已從 30米/秒左右逐步提高到45﹑60﹑80以至 100米/秒﹔實驗室中的磨削速度已達200米/秒。高速切削(或磨削)要求機床具有高轉速﹑高剛度﹑大功率和抗振性好的工藝系統﹔要求刀具有合理的幾何 參數和方便的緊固方式﹐還需考慮安全可靠的斷屑方法。
強力切削 指大進給或大切深的切削加工﹐一般用於車削和磨削(見緩進給磨削)。 強力車削的主要特點是車刀除主切削刃外﹐還有一個平行於工件已加工表面的副切削刃同時參與切削﹐故可把進給量比一般車削提高幾倍甚至十幾倍。在一般機床上 ﹐只要功率足夠和工藝系統剛度好就可實行強力切削。與高速切削比較﹐強力切削的切削溫度較低﹐刀具壽命較長﹐切削效率較高﹔缺點是加工表面較粗糙。強力切 削時﹐徑向切削力很大﹐故不適於加工細長工件。
等離子弧加熱切削 利用等離子弧的高溫把工件切削區的局部瞬時加熱到800~900℃的切削方法﹐常採用陶瓷刀具﹐適用於加工大件。切削時要根據工件的材質﹑尺寸以及切削速 度﹑切削深度和進給量來調整等離子弧的加熱強度。適當調整後﹐可使工件已加工表面的溫度保持在 150℃以下而不致發生金相組織變化。這種方法適於加工淬硬工件和難加工金屬材料的切削。材料切除率可提高2~20倍﹐成本降低30~85%。
振動切削 沿刀具進給方向附加低頻或高頻振動的切削加工﹐可以提高切削效率。低頻振動切削具有很好的斷屑效果﹐可不用斷屑裝置﹐使刀刃強度增加﹐切削時的總功率消耗 比帶有斷屑裝置的普通切削降低40%左右。高頻振動切削也稱超聲波振動切削﹐有助於減小刀具與工件之間的摩擦﹐降低切削溫度﹐減小刀具的黏著磨損﹐從而提高切削效率和加工表面質量﹐刀具壽命約可提高40%。
非金屬材料的切削加工 對木材﹑塑料﹑橡膠﹑玻璃大理石﹑花崗石等非金屬材料的切削加工﹐雖與金屬材料的切削類似﹐但所用刀具﹑設備和切削用量等各有特點。
木材切削加工 木材製品的切削加工主要在各種木工機床上進行﹐其方法主要有﹕鋸切﹑刨切﹑車削﹑銑削﹑鑽削和砂光等。
木材的鋸切通常採用木工圓鋸機或木工帶鋸機(見木工鋸機)。兩者都可用不同鋸齒形狀的刀具(鋸片或鋸帶)進行截料﹑剖料或切榫。帶鋸切的鋸縫較窄﹐窄帶鋸切還能切割曲面和不規則的形狀。
刨削通常用木工平刨床或木工壓刨床(見木工刨床)。兩者都可用旋轉的刨刀刨削平面或型面﹐其中壓刨床加工可得到較高的尺寸精度。當表面的光潔程度要求較高時可用木工精光刨。
木料的外圓一般在木工車床上車削。
木料的開榫﹑開槽﹑刻模和各種型面的加工﹐可用成形銑刀在木工銑床上銑削。
鑽孔可用木工鑽頭﹑麻花鑽頭或扁鑽﹐在台鑽或木工鑽床上進行。小孔也可用手電鑽加工。
木料表面的精整可用木工砂光機。平面砂光可用帶式砂光機﹔各種型面的砂光可用滾筒式砂光機﹔端面砂光和邊角倒棱可用盤式砂光機。也可用木工車床或木工鑽床砂光。
木料加工的切削速度比金屬切削高得多﹐所以刀具的刃口都較薄而鋒利﹐進給量也較大。如鋸切速度常達40~60米/秒﹔車削或刨削時﹐刀具前角常達30°~35°﹐切削速度達60~100米/秒﹐故出屑量很大。切削時一般不用切削液﹐乾切下來的大量木屑可用抽風機吸走。高速旋轉的木工機床一般都設有機動進給和安全防護裝置﹐但不少木材的切削加工仍需用手動進給﹐因此必須特別注意操作安全。
塑料切削加工 塑料的剛度比金屬差﹐易彎曲變形﹐尤其是熱塑性塑料導熱性差﹐易昇溫軟化。故切削塑料時﹐宜用高速鋼或硬質合金刀具﹐選用小的進給量(0.1~0.5 毫米/轉)和高的切削速度﹐並用壓縮空氣冷卻。若刀具鋒利﹐角度合適(一般前角為10°~30°﹐後角為5°~15°)﹐可產生帶狀切屑﹐易於帶走熱量。 若短屑和粉塵太多則會使刀具變鈍並污染機床﹐這時需要對機床上外露的零件和導軌進行保護。切削賽璐珞時﹐容易著火﹐必須用水冷卻。
車削酚醛塑料﹑氨基塑料和膠布板等熱固性塑料時﹐宜用硬質合金刀具﹐切削速度宜用 80~150米/分﹔車削聚氯乙烯或尼龍﹑電木等熱塑性塑料時﹐切削速度可達200~600米/分。
銑削塑料時﹐採用高速鋼刀具﹐切削速度一般為35~100米/分﹔採用硬質合金刀具﹐切削速度可提高2~3倍。
塑料鑽孔可用螺旋角較大的麻花鑽頭﹐孔徑大於30毫米時﹐可用套料鑽。採用高速鋼鑽頭時﹐常用切削速度為40~80米/分。由於塑料有膨縮性﹐鑽孔時所用鑽頭直徑應比要求的孔徑加大0.05~0.1毫米。鑽孔時﹐塑料下面要墊硬木板﹐以阻止鑽頭出口處孔壁周圍的塑料碎落。
刨削和插削的切削速度低﹐一般不宜用於切削塑料﹐但也可用木工刨床進行整平和倒棱等工作。攻絲時可採用溝槽較寬的高速鋼絲錐﹐並用油潤滑﹔外螺紋可用螺紋 梳刀切削。對尼龍﹑電木和膠木等熱固性塑料﹐可以用組織疏鬆的白剛玉或碳化硅砂輪磨削﹐也可用砂布(紙)砂光﹐但需用水冷卻。由於熱塑性塑料的磨屑容易堵 塞砂輪﹐一般不宜磨削。
橡膠切削加工 車削硬橡膠工件時﹐可用刃口鋒利的硬質合金車刀(前角為12°40°﹐後角為10°~20°)﹐採用150~400米/分的切削速度﹐可以乾車﹐也可用水或壓縮空氣冷卻。如用高速鋼刀具車削﹐切削速度要低些。
硬橡膠鑽孔可用頂角為80°左右的硬質合金或高速鋼麻花鑽頭乾鑽。當鑽削孔徑為10~20毫米時﹐切削速度可取21~24米/分。硬橡膠工件也可用鬆而軟的砂輪磨削。
玻璃切削加工 玻璃(包括鍺﹑硅等半導體材料)的硬度高而脆性大。對玻璃的切削加工常用切割﹑鑽孔﹑研磨和拋光等方法。
對厚度在 3毫米以下的玻璃板﹐最簡單的切割方法是﹕用金剛石或其他堅硬物質在玻璃表面手工刻劃﹐利用刻痕處的應力集中﹐即可用手摺斷。
玻璃的機械切割一般採用薄鐵板(或不鏽鋼薄片)製成的圓鋸片﹐並在切削過程中加磨料和水。常用的磨料是粒度為 400號左右的碳化硅或金剛石。當需要把圓棒形的半導體錠料切割成 0.4毫米左右厚度的晶片時﹐有採用環形圓鋸片﹐利用其內圓周對棒狀錠料進行切割的﹐切割0.4毫米厚度的晶片﹐切縫寬約為0.1~0.2毫米。方形晶片 平面的切割常採用薄片砂輪直接劃出劃痕後摺斷﹐圓形晶片也可採用超聲波切割。
研磨和拋光玻璃的工作原理與金屬的相似。研磨後的玻璃表面是半透明的細毛面﹐必須經過拋光後才能成為透明的光澤表面。研磨壓力一般取1000~3000帕 ﹐磨料可用粒度為W5~20號的石英砂﹑剛玉﹑碳化硅或碳化硼﹐水與磨料之比約為 1﹕2。玻璃研磨後﹐平整的毛面常留有平均深度為4~5微米的凹凸層﹐且有個別裂紋深入表裡﹐故拋光時常需去除厚達20微米玻璃層﹐這個厚度約為研磨去除 量的1/10左右﹐但拋光所需的時間遠比研磨長(數小時到數十小時)。拋光盤的材料通常採用毛氈﹑呢絨或塑料﹐所用磨料是粒度W5號以下的氧化鐵(紅粉) ﹑氧化鈰和氧化鋯等微粉(直徑 5微米以下)。研磨時加等量的水製成懸浮液作為拋光劑﹐在 5~20℃的環境溫度下工作效果較好。
在玻璃上鑽削大孔或中孔時﹐一般用端部開槽的銅管或鋼管作為鑽頭﹐在30米/分的切削速度下進行﹐同時在鑽削部位注入碳化硅或金剛石磨料和潤滑油。鑽孔時 ﹐玻璃必須用毛氈或橡膠墊平﹐以防壓碎。對孔徑5毫米以下的小孔常採用衝擊鑽孔法﹐即用硬質合金圓鑿以2000轉/分左右的轉速﹐同時通過電磁振盪器使圓 鑿給玻璃表面以6千赫的振動衝擊﹐這種方法的效率很高﹐只要10秒鐘就可鑽出孔徑2毫米﹑深5毫米的小孔。對方孔和異形孔採用超聲波(18~24千赫)加 工最為方便。
玻璃的外圓加工一般用碳化硅砂輪磨削﹐也可用金剛石車刀或負前角的硬質合金車刀在2000轉/分左右的轉速下進行車削。
石料切削加工 對大理石﹑花崗石和混凝土等堅硬材料的加工主要用切割﹑車削﹑鑽孔﹑刨削﹑研磨和拋光等方法。切割時可用圓鋸片加磨料和水﹔外圓和端面可採用負前角的硬質 合金車刀以10~30米/分的切削速度車削。鑽孔可用硬質合金鑽頭﹐切削速度為4~7米/分。大的石料平面可用硬質合金刨刀或滾切刨刀刨削﹔精密平滑的表 面可用三塊互為基準對研的方法或磨削和拋光的方法獲得。

BW Bewise Inc. Willy Chen willy@tool-tool.com bw@tool-tool.com www.tool-tool.com skype:willy_chen_bw mobile:0937-618-190 Head &Administration Office No.13,Shiang Shang 2nd St., West Chiu Taichung,Taiwan 40356 TEL:+886 4 24710048 / FAX:+886 4 2471 4839 N.Branch 5F,No.460,Fu Shin North Rd.,Taipei,Taiwan S.Branch No.24,Sec.1,Chia Pu East Rd.,Taipao City,Chiayi Hsien,Taiwan

Welcome to BW tool world! We are an experienced tool maker specialized in cutting tools. We focus on what you need and endeavor to research the best cutter to satisfy users demand. Our customers involve wide range of industries, like mold & die, aerospace, electronic, machinery, etc. We are professional expert in cutting field. We would like to solve every problem from you. Please feel free to contact us, its our pleasure to serve for you. BW product including: cutting toolaerospace tool .HSS Cutting toolCarbide end millsCarbide cutting toolNAS Cutting toolCarbide end millAerospace cutting toolФрезерыCarbide drillHigh speed steelMilling cutterCVDD(Chemical Vapor Deposition Diamond )PCBN (Polycrystalline Cubic Boron Nitride) Core drillTapered end millsCVD Diamond Tools Inserts’PCD Edge-Beveling Cutter(Golden Finger’PCD V-Cutter’PCD Wood tools’PCD Cutting tools’PCD Circular Saw Blade’PVDD End Mills’diamond tool Single Crystal Diamond Metric end millsMiniature end millsСпециальные режущие инструменты Пустотелое сверло Pilot reamerFraisesFresas con mango PCD (Polycrystalline diamond) FreseElectronics cutterStep drillMetal cutting sawDouble margin drillGun barrelAngle milling cutterCarbide burrsCarbide tipped cutterChamfering toolIC card engraving cutterSide cutterNAS toolDIN toolSpecial toolMetal slitting sawsShell end millsSide and face milling cuttersSide chip clearance sawsLong end millsStub roughing end millsDovetail milling cuttersCarbide slot drillsCarbide torus cuttersAngel carbide end millsCarbide torus cuttersCarbide ball-nosed slot drillsMould cutterTool manufacturer.

Bewise Inc. www.tool-tool.com

BW специализируется в научных исследованиях и разработках, и снабжаем самым высокотехнологичным карбидовым материалом для поставки режущих / фрезеровочных инструментов для почвы, воздушного пространства и электронной индустрии. В нашу основную продукцию входит твердый карбид / быстрорежущая сталь, а также двигатели, микроэлектрические дрели, IC картонорезальные машины, фрезы для гравирования, режущие пилы, фрезеры-расширители, фрезеры-расширители с резцом, дрели, резаки форм для шлицевого вала / звездочки роликовой цепи, и специальные нано инструменты. Пожалуйста, посетите сайт www.tool-tool.com для получения большей информации.

BW is specialized in R&D and sourcing the most advanced carbide material with high-tech coating to supply cutting / milling tool for mould & die, aero space and electronic industry. Our main products include solid carbide / HSS end mills, micro electronic drill, IC card cutter, engraving cutter, shell end mills, cutting saw, reamer, thread reamer, leading drill, involute gear cutter for spur wheel, rack and worm milling cutter, thread milling cutter, form cutters for spline shaft/roller chain sprocket, and special tool, with nano grade. Please visit our web www.tool-tool.com for more info.

beeway 發表在 痞客邦 留言(0) 人氣()

Bewise Inc. www.tool-tool.com Reference source from the internet.

Iz Wikipedije, proste enciklopedije

Skoči na: navigacija, iskanje
Pridobivanje surovega jekla

Pridobivanje surovega jekla

Jêklo je železova zlitina, pri katerih je poleg samega železa najpomembnejši zlitinski element ogljik. Ogljika je v jeklih razmeroma malo, lahko pa so dodani še drugi legirni elementi. Njegov masni delež je navadno manjši kot 2 %. Kljub temu ima najpomembnejši vpliv na uporabne lastnosti jekel.

Najpogostejša so ogljikova jekla. To so jekla, ki poleg železa vsebujejo le ogljik ter manjše količine mangana, silicija in aluminija. Slednje tri elemente dodamo z namenom, da bi zmanjšali ali povsem izničili negativen vpliv nečistoč, kot so žveplo, fosfor, kisik in dušik. Druga skupina jekel so legirana jekla. Ta – za razliko od ogljikovih jekel - vsebujejo še znatne količine kroma, niklja, molibdena ali katerega drugega elementa. Posebna legirana jekla, ki so znana kot nerjavna, vsebujejo najmanj 11,5 % kroma. Orodna jekla so posebna vrsta jekel. Namenjena so odrezovanju in oblikovanju kovinskih in nekovinskih materialov v želeno obliko. Nekatera jekla dobijo svojo končno obliko z litjem (jeklena litina), medtem ko večino jekel oblikujemo v končno obliko z gnetenjem (preoblikovanjem) in jih lahko prištevamo h gnetnim zlitinam.


[uredi] Lastnosti jekel

Jeklena vrv

Jeklena vrv

Jeklo je elastično, modul elastičnosti E znaša od 2,0 do 2,2×105 N/mm². Čisto železo ima trdoto le 60 HV. S postopki toplotne obdelave dosegamo v jeklu trdote tudi do 800 HV, s postopki toplotno kemične obdelave pa tudi vrednosti 2000 HV. Natezna trdnost čistega železa znaša približno 200 N/mm², jekla pa tudi do 4000 N/mm²

[uredi] Zgodovina

Načrtovana in nenaključna proizvodnja jekla poteka iz predhodno pridobljenega železa. Ker je jeklo zlitina železa in ogljika, pri zgodovini jekla dejansko obravnavamo železo. Danes večino železa pretvorijo v jeklo.

Železa, za razliko od nekaterih drugih kovin kot so zlato, srebro in platina, v naravi ne najdemo v elementarni obliki, ampak navadno v kombinaciji s kisikom in žveplom. Z obdelavo iz železove rude odstranimo kisik in dodamo ogljik ali druge elemente za izboljšanje lastnosti materiala.

Težavo pri pridobivanju železa v preteklosti je predstavljalo predvsem visoko tališče železa, pri katerem je možno iz rude izločiti kisik. Tališča, ki znaša 1535°C, ni bilo možno doseči z odprtim ognjem, ki je lahko dosegel temperaturo do največ 1100°C. Človek je poznal železovo rudo, vendar je ni znal obdelovati.

[uredi] Do 20. stol. pr.n.št.

Najstarejše najdbe, ki kažejo prve znake uporabe železa, izhajajo iz starega Egipta in Mezopotamije in datirajo okoli 4000 let pr.n.št. Egipčani in Sumerci so v tem času iz železa izdelovali nakit, konice sulic in bodala. Železo, ki so ga obdelovali, vsebuje več kot 6% niklja, tako kot snov meteoritov, kar nakazuje, da je izvor tega železa nezemeljski oz. iz meteoritov. Nikelj-železo je bilo primerno za obdelavo, ne da bi ga bilo potrebno predhodno segreti do temperature tališča čistega žleza.

Prve najdbe železnih predmetov, ki ne vsebujejo niklja in so zemeljskega izvora, so iz obdobja med 3000 in 2000 let pr.n.št. ter izhajajo iz Anatolije (danes Turčije), Egipta in Mezopotamije. Manjše kepe železa so našli v talilnicah bakra, kar podpira teorijo, da je bilo to železo stranski produkt proizvodnje bakra.

Z vpihovanjem zraka skozi votle cevi, so v pečeh dosegali višje temperature ognja (do 1200°C), hkrati pa se je temperatura tališča železove rude, z dodajanjem ogljika v obliki oglja, znižala. Tako so iz železove rude dobili grude stopljenega železa ali t.i. železov cvet. Ne glede na to ali so železov cvet dobili kot stranski produkt ali z načrtno proizvodnjo, so v tem obdobju železovo rudo že lahko obdelovali. Ogret železov cvet so nadalje obdelovali s kladivom, da so se znebili neželenih primesi.

[uredi] Od 20. stol. pr.n.št. do 14. stol. n.št.

Dosedanja odkritja damascenskega (s kovanjem vzorčasto okrašenega) jekla iz 20. stol. pr.n.št. izhajajo iz območja nekdanje Anatolije. Civilizaciji Hetitov iz Anatolije pripisujejo najstarejšo proizvodnjo jekla. Železo so mehanično ločili od ostalih snovi v železovi rudi in kovali vroče železo pri 800°C, s čimer so dodatno izločili nečistoče v obliki tekoče žlindre. Tako so dobili kovano železo. Hetiti so iz jekla izdelovali orožje ali pa ga uporabljali kot menjalno sredstvo za srebro z Asirci.

Egipčani so svoje železne premete vrednotili zadosti, da so jih pokopavali v grobnice. Egipčanski vladar Tutankamon, ki je umrl leta 1323 pr. n. št. je bil pokopan z železnim bodalom.

Starim Grkom in Rimljanom je bil proces pridelave jekla tako zanimiv, da so ga opisovali celo pisatelji. Homerjeve pesnitve (cca 880 let pr.n.št.), Herodotova »Zgodovina« (446 let pr.n.št.), Aristotel (350 let pr.n.št.) in Plinijeva »Zgodovina narave« (leta 77) opisujejo procese pridelave jekla. Grki in Rimljani so jeklo uporabljali predvsem za meče. Kljub visoki natezni trdnosti ga niso uporabljali v konstrukcijske namene. Čeprav bi lahko izdelovali dolge traverze, je vse kar najdemo, nekaj majhnih nosilcev v kopališčih iz kovanega železa.

Indijci so za damasciranje uporabljali jeklo imenovano Wootz. To jeklo so pričeli proizvajati okoli 3. stol. pr.n.št. na jugu Indije in je vsebovalo veliko ogljika. Wootz so dobili tako, da so železovo rudo karbonizirali, da so jo lahko stalili, zatem pa še dekarbonizirali, do stopnje vsebovanega ogljika od 1% do 1,6%. Jeklo so nato v obliki materiala in končnih izdelkov izvažali v Evropo, Kitajsko, Arabski svet in Bližnji vzhod, kljub temu pa je postopek izdelave zelo kvalitetnega jekla Wootz ostal skrivnost vse do prenehanja njegove proizvodnje v 17. stol. n. št.

Kitajci, ki so železo in jeklo pričeli uporabljati približno 1000 let kasneje kot Hetiti, so močno razširili uporabo te kovine. Uporabljali so jo za orodje, orožje, posodo, kuhinjske pripomočke in tudi v konstrukcijske namene. Prvi železni viseči most so konstruirali in izvedli Kitajci. Njihovo prečiščevanje staljenega surovega železa in kovaško obdelovanje, je bilo okoli 500 let pr.n.št. zelo razvito, saj so enako tehnologijo Evropejci pričeli uporabljati šele 2000 let kasneje.

[uredi] Od 15 stol. n.št. do 19 stol. n.št.

V Evropi lito železo do 14. stol. ni bilo cenjeno. S pričetkom uporabe jekla za topove, pa se je zanimanje za železovo rudo povečalo. Pomemben pobudnik razvoja je bila tudi železnica s svojimi potrebami. Železničarji so potrebovali kvalitetnejši material za tirnice, ki so jih sicer morali menjavati vsakih 6 mesecev in so bile vzrok za številne nesreče.

Povečana pridelava jekla je terjala porabo velikih količin oglja, kar je pomenilo ogromno krčenje gozdov, zato je v 17. stol. prišlo do zamenjave oglja s premogom, vendar je premog vseboval žveplo, kar je naredilo jeklo krhko. Rešitev so našli pivovarji, ki jim je, pri uporabi premoga za varjenje piva, nezaželeno žveplo dajalo smrdljiv priokus pivu. Žvepla so se znebili tako, da so premog pekli, tako da je ostal čisti ogljik. Švedski kemik Torbern Olof Bergman je leta 1781 v svoji znanstveni razpravi Disseratatio Chemica de Analysi Ferri razkril pomembno vlogo ogljika v železni zlitini in determiniral kompozicijo litega železa, jekla in surovega železa. Odslej je bila razlika med železom in jeklom jasno določena.

Britanski izumitelj Henry Bessemer, je izumil tehniko masovne proizvodnje jekla in jo leta 1855 patentiral. Bessemer je med projektiranjem topovskih izstrelkov za Britansko vojsko, prišel na idejo, da bi iz poceni železne zlitine odstranjevali ogljik, namesto da so ga dodajali dragemu nizko karbonskemu surovemu jeklu. Bessemerjev postopek je zajemal vpihovanje zraka pod velikim pritiskom (s pomočjo parnega stroja) v staljeno surovo železo, kar je imelo dvojni učinek: kisik je nase vezal ogljik in se izločil kot ogljikov dioksid, hkrati pa je oksidacija dobavljala toploto, ki je bila potreba za ohranjanje taline, saj se je z zniževanjem ravni ogljika poviševala talilna temperatura. Odkritje je pomenilo pričetek poceni industrijske proizvodnje jekla.

Nemški inženir Carl Wilhelm Siemens je leta 1856 predstavil izboljšavo talilne peči. Iznašel je regeneracijski postopek, na osnovi katerega sta Francoza Emile in Pierre Martin leta 1864 konstruirala in patentirala peč. Ta je dobila ime Siemens-Martinova peč. Pri teh pečeh se uporablja postopek regeneracije toplote tako, da se v plamenih pečeh temperatura bistveno zviša s predogrevanjem zraka in generatorskega plina, ki služi kot gorivo. S konvektorskim postopkom se proizvajajo kisla in bazična jekla glede na vrsto obloge v konvektorjih, kjer se poleg grodlja tali tudi staro železo. Možnost uporabe starega železa pri proizvodnji novega, je pomenila pomemben korak naprej v jeklarski industriji.

Angleža Percy Carlyle Gilchrist in Sidney Gilchrist Thomassta leta 1878 modificirala Bessemerjev proces. Z dodajanjem apnenca ali dolomita sta iz taline odstranila fosfor in žveplo. Možnost odstranjevanja nečistoč je pomenil novo prelomnico, saj sta postali Angleška in Nemška železova ruda, ki sta vsebovali veliko fosforja, prav tako uporabi za pridelavo kvalitetnega jekla, kot je bila prej Švedska ruda. Proces je poimenovan po izumitelju Thomasov proces.

Po številnih poizkusih izumiteljev v 19 stol. je elektropeči leta 1900 razvil Francoz Paul L.T. Heroult. V elektropečeh je s pomočjo oglenih elektrod tik nad surovinami ustvarjen električni oblok, ki tali surovine ter zgoreva ogljik. Pri tem postopku ni bilo potrebno dovajati zraka, zato se v talini niso ustvarjali dodatni zračni mehurčki. Elektroobločni postopek je omogočil izdelavo visokokakovostnih in posebnih vrst jekel, ki so jih uporabljali za orodja in vzmetnice. Osnovna pomanjkljivost električnih peči je visoka količina porabljene energije.

[uredi] Od 20. stol. n.št. do danes

V začetku 20. stol. je bila ukinjena uporaba litega in surovega železa v konstrukcijske namene, zaradi njegove neenotne kompozicije. V skladu s tedanjimi predpisi, je bilo pri gradnji dovoljeno uporabljati le jeklo. Konstrukcijsko jeklo je bil material specifičnih oblik, zanesljive kemične sestave in točno določene trdote, kar pa je zagotavljalo primerno stopnjo varnosti konstrukcije.

Jeklo je material, ki je prisoten pri vsej arhitekturi 20. stoletja: v ploščah, vezivih, vijakih, žebljih, v obliki palic in mrež kot armatura v betonu. Konstrukcijsko jeklo je omogočilo razvoj hitro postavljivih poslovnih objektov, strehe velikih razponov brez vmesnih nosilcev in gradnjo nebotičnikov.

Pomemben napredek v jeklarski industriji je bilo odkritje nerjavečega jekla. Anglež Harry Brearley ga je prvič proizvedel z dodajanjem kroma železu v električni peči leta 1913. Po njegovem odhodu iz Brown Firth laboratorijev je z raziskavami nadaljeval dr. William H. Hatfield, ki je leta 1924 izumil, še danes najbolj razširjeno vrsto nerjavečega jekla, t.i. »18/8« – jeklo, katerega 18% teže predstavlja krom in 8% teže je niklja.

Danes se večina konstrukcijskega jekla proizvaja s procesom imenovanim osnovni oksidacijski postopek (BOS – ang. Basic oxygen steelmaking), ki je izboljšana metoda Bessemerjevega procesa v t.i. LD–konverteju, ki je poimenovan po dveh Avstrijskih krajih – Linz in Donawitz. Postopek je razvilo in prvič predstavilo Avstrijsko podjetje Voestalpine AG leta 1952. Z vpihovanjem čistega kisika na surovo železo, se temperatura dvigne do 1700°C, zniža se raven ogljika in pridobivamo nizko karbonsko jeklo. Bistvena izboljšava od Bessemerjevega postopka je uporaba kisika namesto zraka, ki skupaj z modernim prečiščevalnim procesom zagotavlja dobro zrnavost in dobro varljiv material, z enakomerno trdnostjo in žilavostjo.

Leta 1952 je bila ustanovljena Evropska skupnost za premog in jeklo, z namenom zagotoviti rekonstrukcijo ključnih industrij po drugi svetovni vojni. Proces je bil za obe panogi zelo zahteven, vendar se je le tako oblikovala vitka, fit in moderna jeklarska industrija. Jeklo je postalo moderen material z vznemirljivo (razburljivo) prihodnostjo. Danes je jeklo najbolj recikliran material na svetu. Ocenjujemo, da je od novo proizvedenega jekla, približno 42,3% recikliranega materiala. Vso jeklo, ki je na razpolago se reciklira. Dolga življenjska doba in uporaba v konstrukcijske namene pomeni zaloge za recikliranje v prihodnosti, toda da bi zapolnili današnje potrebe je potrebno proizvajati tudi jeklo iz železove rude.

[uredi] Sistematika jekel

Tehnična železa, med katere spada jeklo, so med kovinami po uporabnosti najbolj razširjena. Gospodarska in tehnična uporabnost ni le v veliki količini, temveč tudi v izredno visoki uporabnosti lastnosti. Lastnosti jekel spreminjamo predvsem z legiranjem, s plastičnim preoblikovanjem v toplem in hladnem ter s toplotno obdelavo. Tako je mogoče natezno trdnost spreminjati od 200 do 4000 N/mm2, magnetne lastnosti pa od feromagnetnih do paramagnetnih. Korozijsko obstojnost lahko prilagajamo najrazličnejšim zahtevam, prav tako tudi tehnološke lastnosti. Jeklo lahko oblikujemo v vročem z ulivanjem, kovanjem, valjanjem in stiskanjem; v hladnem pa z valjanjem, vlečenjem, stiskanjem in z odrezovanjem. Jekla lahko izdelujemo tudi s postopki prašne metalurgije. Jeklene dele lahko spajamo z varjenjem, lotanjem, kovičenjem, vijačenjem.

[uredi] Razdelitev jekel

[uredi] glede na kemično sestavo


[uredi] glede na vrsto uporabe

[uredi] Neporušitvene preiskave

s temi preiskavami odkrivamo napake v materialu ne da bi ga uničili in ga kasneje lahko vgradimo v kakšno napravo. Najbolj sta razširjeni dve metodi: preiskava z ultrazvokom in preiskava z rentgenskimi žarki

[uredi] Literatura

[uredi] Glej tudi


BW Bewise Inc. Willy Chen willy@tool-tool.com bw@tool-tool.com www.tool-tool.com skype:willy_chen_bw mobile:0937-618-190 Head &Administration Office No.13,Shiang Shang 2nd St., West Chiu Taichung,Taiwan 40356 TEL:+886 4 24710048 / FAX:+886 4 2471 4839 N.Branch 5F,No.460,Fu Shin North Rd.,Taipei,Taiwan S.Branch No.24,Sec.1,Chia Pu East Rd.,Taipao City,Chiayi Hsien,Taiwan

Welcome to BW tool world! We are an experienced tool maker specialized in cutting tools. We focus on what you need and endeavor to research the best cutter to satisfy users demand. Our customers involve wide range of industries, like mold & die, aerospace, electronic, machinery, etc. We are professional expert in cutting field. We would like to solve every problem from you. Please feel free to contact us, its our pleasure to serve for you. BW product including: cutting toolaerospace tool .HSS Cutting toolCarbide end millsCarbide cutting toolNAS Cutting toolCarbide end millAerospace cutting toolФрезерыCarbide drillHigh speed steelMilling cutterCVDD(Chemical Vapor Deposition Diamond )PCBN (Polycrystalline Cubic Boron Nitride) Core drillTapered end millsCVD Diamond Tools Inserts’PCD Edge-Beveling Cutter(Golden Finger’PCD V-Cutter’PCD Wood tools’PCD Cutting tools’PCD Circular Saw Blade’PVDD End Mills’diamond tool Single Crystal Diamond Metric end millsMiniature end millsСпециальные режущие инструменты Пустотелое сверло Pilot reamerFraisesFresas con mango PCD (Polycrystalline diamond) FreseElectronics cutterStep drillMetal cutting sawDouble margin drillGun barrelAngle milling cutterCarbide burrsCarbide tipped cutterChamfering toolIC card engraving cutterSide cutterNAS toolDIN toolSpecial toolMetal slitting sawsShell end millsSide and face milling cuttersSide chip clearance sawsLong end millsStub roughing end millsDovetail milling cuttersCarbide slot drillsCarbide torus cuttersAngel carbide end millsCarbide torus cuttersCarbide ball-nosed slot drillsMould cutterTool manufacturer.

Bewise Inc. www.tool-tool.com

BW специализируется в научных исследованиях и разработках, и снабжаем самым высокотехнологичным карбидовым материалом для поставки режущих / фрезеровочных инструментов для почвы, воздушного пространства и электронной индустрии. В нашу основную продукцию входит твердый карбид / быстрорежущая сталь, а также двигатели, микроэлектрические дрели, IC картонорезальные машины, фрезы для гравирования, режущие пилы, фрезеры-расширители, фрезеры-расширители с резцом, дрели, резаки форм для шлицевого вала / звездочки роликовой цепи, и специальные нано инструменты. Пожалуйста, посетите сайт www.tool-tool.com для получения большей информации.

BW is specialized in R&D and sourcing the most advanced carbide material with high-tech coating to supply cutting / milling tool for mould & die, aero space and electronic industry. Our main products include solid carbide / HSS end mills, micro electronic drill, IC card cutter, engraving cutter, shell end mills, cutting saw, reamer, thread reamer, leading drill, involute gear cutter for spur wheel, rack and worm milling cutter, thread milling cutter, form cutters for spline shaft/roller chain sprocket, and special tool, with nano grade. Please visit our web www.tool-tool.com for more info.

beeway 發表在 痞客邦 留言(0) 人氣()