公告版位

Bewise Inc. www.tool-tool.com Reference source from the internet.

聚 丙烯是通用塑料中用量较大的品种之一,具有密度小, 刚性好,耐挠曲,耐化学腐蚀,绝缘性好等优点。它的不足之处是低温冲击性能较差、易老化、成型收缩率大。通过改性可以改善聚丙烯的低温冲击性能、成型收缩 和热老化性能。使聚丙烯的使用范围大辐度扩大,在很多场合取代传统的工程塑料。聚丙烯原料来源充足,价格便宜,因而近年来在塑料改性行业中聚丙烯改性占据 首位,成为改性塑料的主要品种,越来越受到人们的重视。
聚丙烯改性料的收缩率控制是聚丙烯改性的一个重要方面。收缩率控制的好对聚丙烯改性料的推广使用有重要意义,同时也是保证产品质量的一个重要方面。特别是利用改性聚丙烯取代传统的工程塑料,收缩率这一点显得十分重要。
聚丙烯改性在国内已经有成熟的技术,对聚丙烯改性理化性能的研究报导也很多,但对收缩率问题则很少有专门的报导。本人集多年的实践经验就聚丙烯改性料的收缩率控制问题做了一些探讨。

1. 试验部分
1.1 试验原料
聚丙烯(PP) 辽阳石油化纤总公司; 高密度聚乙烯(HDPE) 辽阳石油化纤总公司
POE 美国杜邦公司; EPDM 荷兰DSM公司; SBS 岳阳石化总厂
玻纤 上海耀华; 碳酸钙 营口大石桥; 滑石粉 海城金新
云母粉 河北; 助剂 市售 ; 低密度聚乙烯(LDPE) 燕山石化
1.2 试验设备及仪器
挤出机 TM40MVC/D-40 意大利MARIS; 注塑机 TP120T 北京信冠机械设备制造有限公司
熔融指数仪 μPXRZ-400C 吉林大学科教仪器厂; 卡尺; 检测方法: ASTM D955
1.3 试样制备和检测方法
原料混合----挤出造粒----注塑打样(放置24h)----收缩率检测(环境温度为23℃)
注塑条件:温度170℃---190℃ 压力 80


2. 结果讨论
聚丙烯的收缩成型大是聚丙烯本身的一大缺点,这主要是由于聚丙烯的高结晶度所致。结晶后的聚丙烯比重增大、 体积缩小。结晶度为0%和100%时其比重分别为0.851和0.936。因此纯PP的成型收缩一般在1.7---2.2之间。控制聚丙烯的成型收缩率主 要是控制其原料成型时的结晶度:结晶度越小其成型收缩率也越小;反之,结晶度越高则成型收缩率也越大。
在聚丙烯改性塑料中,由于各种改性剂的加入都不同程度的破坏了聚丙烯原有的结晶度,从而改变了聚丙烯原有的成型收缩率。
2.1 橡胶对聚丙烯收缩率的影响
图1所示橡胶对PP改性料成型收缩率的影响。从图中可以看出随橡胶含量的增大,成型收缩率呈下降趋势。这主要是由于橡胶的加入破坏了聚丙烯自身的结晶度,从而导致成型收缩率的下降,而且三种弹性体POE、EPDM、SBS对成型收缩率影响也有差异。

a: POE b:EPDM c:SBS a:滑石粉 b:CaCO3 c:云母粉


2.2 矿物填充对聚丙烯改性料成型收缩率的影响
聚丙烯用的矿物填加剂主要有碳酸钙、滑石粉、云母粉等。各种矿物填加剂对 聚丙烯成型收缩率的影响如图2所示,从图中可以看出矿物填加剂对PP改性料成型收缩率的影响比较明显。矿物填加剂对聚丙烯改性料成型收缩率的影响主要有三 个方面:一是矿物填加剂本身不收缩,它的加入从整体比例上降低了聚丙烯改性料的收缩率;二是矿物填加剂的加入必然影响聚丙烯的结晶度,从而影响收缩率;三 是微细的矿物剂加入后,起到一种成核剂的作用,改变了聚丙烯的结构状态,防大的球晶的形成,也影响聚丙烯的成型收缩率。
2.3 玻璃纤维对聚丙烯改性料成型收缩率的影响
玻璃纤维对聚丙烯改性料成型收缩率的影响最大。如图3所示,当玻璃纤维的含量达到30%时以上时,其聚丙烯改性料的成型收缩率从1.8下降至0.5,而且 表面处理过的玻纤对成型收缩率影响大于未进行处理的玻纤。玻纤的加入一则破坏了聚丙烯的结晶度,影响收缩率,更重要的是玻璃纤维限制了聚丙烯的结晶收缩。

a:表面未处理 b:表面进行处理 a:LDPE b:HDPE

2. 4 聚乙烯的加入对聚丙烯成型收缩率的影响
如图4所示为聚乙烯加入聚丙烯中对成型收缩率和影响。从图中可以看出聚乙烯的加入也影响聚丙烯改性料的成型收缩率。虽然聚乙烯也是一种高结晶度的塑料,成型收缩率也很大,但在加入聚丙烯中后相互都不同程度地破坏了各自的结晶度,使整体成型收缩率下降。
2.5 聚丙烯自身MFI的变化对成型收缩率的影响
聚丙烯的成型收缩率受其结晶度的影响,而结晶度又受其自身分子量大小的影响。当MFI增大时,分子量减小,其结晶速度增大,成型收缩率增大。如图5所示为聚丙烯MFI变化时对成型收缩率的影响。
2.6 几种改性剂对聚丙烯成型收缩率影响的比较
各种改性剂对聚丙烯改性料成型收缩率的影响如表1所示,从表中可以看出各种改性剂对聚丙烯改性料成型收缩率的影响都不一样,玻纤影响最大。
聚丙烯改性料的成型收缩率由于加入的改性剂不一样,成型收缩率是不一样的。在试验中我们发现,几种改性剂并用时效果又不一样,影响因素很多。如改性剂在聚 丙烯中的分散程度、矿物改性剂自身的粒径、各种矿物填加剂的表面处理情况等,都对成型收缩率有影响。此外,在成型过程中注塑机的成型工艺对成型收缩率的影 响也很大。如注塑温度和注塑压力的变化对成型收缩率都有影响。

3.结论
3.1聚丙烯改性料的成型收缩率较纯聚丙烯小,基本是纯聚丙烯的40%--70%之间。各种改性剂对聚丙烯改性料成型收缩率影响不同。影响顺序大致为:玻纤>矿物质>弹性体>聚乙烯。
3.2改变聚丙烯的结晶度是控制聚丙烯改性料成型收缩率的关键所在。
3.3成型收缩率的控制是一个复杂的过程,既要保证产品质量,又要控制收缩率,需几个方面同时考虑。


BW Bewise Inc. Willy Chen willy@tool-tool.com bw@tool-tool.com www.tool-tool.com skype:willy_chen_bw mobile:0937-618-190 Head &Administration Office No.13,Shiang Shang 2nd St., West Chiu Taichung,Taiwan 40356 TEL:+886 4 24710048 / FAX:+886 4 2471 4839 N.Branch 5F,No.460,Fu Shin North Rd.,Taipei,Taiwan S.Branch No.24,Sec.1,Chia Pu East Rd.,Taipao City,Chiayi Hsien,Taiwan

Welcome to BW tool world! We are an experienced tool maker specialized in cutting tools. We focus on what you need and endeavor to research the best cutter to satisfy users demand. Our customers involve wide range of industries, like mold & die, aerospace, electronic, machinery, etc. We are professional expert in cutting field. We would like to solve every problem from you. Please feel free to contact us, its our pleasure to serve for you. BW product including: cutting toolaerospace tool .HSS Cutting toolCarbide end millsCarbide cutting toolNAS Cutting toolCarbide end millAerospace cutting toolФрезерыCarbide drillHigh speed steelMilling cutterCVDD(Chemical Vapor Deposition Diamond )PCBN (Polycrystalline Cubic Boron Nitride) Core drillTapered end millsCVD Diamond Tools Inserts’PCD Edge-Beveling Cutter(Golden Finger’PCD V-Cutter’PCD Wood tools’PCD Cutting tools’PCD Circular Saw Blade’PVDD End Mills’diamond tool Single Crystal Diamond Metric end millsMiniature end millsСпециальные режущие инструменты Пустотелое сверло Pilot reamerFraisesFresas con mango PCD (Polycrystalline diamond) FreseElectronics cutterStep drillMetal cutting sawDouble margin drillGun barrelAngle milling cutterCarbide burrsCarbide tipped cutterChamfering toolIC card engraving cutterSide cutterNAS toolDIN toolSpecial toolMetal slitting sawsShell end millsSide and face milling cuttersSide chip clearance sawsLong end millsStub roughing end millsDovetail milling cuttersCarbide slot drillsCarbide torus cuttersAngel carbide end millsCarbide torus cuttersCarbide ball-nosed slot drillsMould cutterTool manufacturer.

Bewise Inc. www.tool-tool.com

BW специализируется в научных исследованиях и разработках, и снабжаем самым высокотехнологичным карбидовым материалом для поставки режущих / фрезеровочных инструментов для почвы, воздушного пространства и электронной индустрии. В нашу основную продукцию входит твердый карбид / быстрорежущая сталь, а также двигатели, микроэлектрические дрели, IC картонорезальные машины, фрезы для гравирования, режущие пилы, фрезеры-расширители, фрезеры-расширители с резцом, дрели, резаки форм для шлицевого вала / звездочки роликовой цепи, и специальные нано инструменты. Пожалуйста, посетите сайт www.tool-tool.com для получения большей информации.

BW is specialized in R&D and sourcing the most advanced carbide material with high-tech coating to supply cutting / milling tool for mould & die, aero space and electronic industry. Our main products include solid carbide / HSS end mills, micro electronic drill, IC card cutter, engraving cutter, shell end mills, cutting saw, reamer, thread reamer, leading drill, involute gear cutter for spur wheel, rack and worm milling cutter, thread milling cutter, form cutters for spline shaft/roller chain sprocket, and special tool, with nano grade. Please visit our web www.tool-tool.com for more info.

beeway 發表在 痞客邦 留言(0) 人氣()

Bewise Inc. www.tool-tool.com Reference source from the internet.

塑 料电子零部件大都采用注射成型,由于这些塑料件本身具有较高的设计精度,使用特殊的工程塑料加工,对这些塑料 件不能采用常规的注射成型,而必须采用精密注射成型工艺技术。为了保证这些精密塑料件的性能、质量与可靠性及长期使用的稳定性,注射成型出质量较高、符合 产品设计要求的塑料制品,必须对塑料材料、注塑设备与模具设计及注塑工艺以及注塑现场管理进行完善。

我们通常说的精密注塑成型是指注塑制 品的外型精度应满足严格的尺寸公差、形位公差和表面粗糙度。要进行精密注塑必须有许多相关的条件,而最本质的 是塑料材料、注塑模具、注塑工艺和注塑设备这四项基本因素。设计塑料制品时,应首先选定工程塑料材料,而能进行精密注塑的工程塑料又必须选用那些力学性能 高、尺寸稳定、抗蠕变性能好、耐环境应力开裂的材料。其次应根据所选择的塑料材料、成品尺寸精度、件重、质量要求以及预想的模具结构选用适用的注塑机。在 加工过程中,影响精密注塑制品的因素主要来自模具的温度、注塑工艺控制,以及生产现场的环境温度和湿度变化幅度及后天产品退火处理等方面。

就 精密注塑而言,模具是用以取得符合质量要求的精密塑料制品的关键之一,精密注塑用的模具应切实符合制品尺寸、精度及形状的要求,模具材料应严格 选取。但即使模具的精度、尺寸一致,其模塑的塑料制品之实际尺寸也会因收缩量差异而不一致。因此,有效地控制塑料制品的收缩率在精密注塑技术中就显得十分 重要。

注塑模具设计得合理与否会直接影响塑料制品的收缩率,由于模具型腔尺寸是由塑料制品尺寸加上所估算的收缩率求得的,而收缩率则是由 塑料生产厂家或 工程塑料手册推荐的一个范围内的数值,它不仅与模具的浇口形式、浇口位置与分布有关,而且与工程塑料的结晶取向性(各向异性)、塑料制品的形状、尺寸、到 浇口的距离及位置有关,同时和模具冷却分布系统紧密相关。影响塑料收缩率的主要有热收缩、相变收缩、取向收缩、压缩收缩与弹性回复等因素,而这些影响因素 与精密注塑制品的成型条件或操作条件有关。因此,在设计模具时必须考虑这些影响因素与注塑条件的关系及其表观因素,如注塑压力与模腔压力及充模速度、注射 熔体温度与模具温度、模具结构及浇口形式与分布,以及浇口截面积、制品壁厚、塑料材料中增强填料的含量、塑料材料的结晶度与取向性等因素的影响。上述因素 的影响也因塑料材料不同、其它成型条件如温度、湿度、继续结晶化、成型后的内应力、注塑机的变化而不同。

由于注塑过程是把塑料从固态(粉 料或粒料)向液态(熔体)又向固态(制品)转变的过程。从粒料到熔体,再由熔体到制品,中间要经过温度场、应力 场、流场以及密度场等的作用,在这些场的共同作用下,不同的塑料(热固性或热塑性、结晶性或非结晶性、增强型或非增强型等)具有不同的聚合物结构形态和流 变性能。凡是影响到上述"场"的因素必将会影响到塑料制品的物理力学性能、尺寸、形状、精度与外观质量。这样,工艺因素与聚合物的性能、结构形态和塑料制 品之间的内在联系会通过塑料制品表现出来。分析清楚这些内在的联系,对合理地拟定注塑加工工艺、合理地设计并按图纸制造模具、乃至合理选择注塑加工设备都 有重要意义。精密注塑与普通注塑在注塑压力和注射速率上也有区别,精密注塑常采用高压或超高压注射、高速注射以获得较小的成型收缩率。综合上述各种原因, 设计精密注塑模具时除考虑一般模具的设计要素外,还须考虑以下几点:①采用适当的模具尺寸公差;②防止产生成型收缩率误差;③防止发生注塑变形;④防止发 生脱模变形;⑤使模具制造误差降至最小;⑥防止模具精度的误差;⑦保持模具精度。
收缩率会因注塑压力而发生变化,因此,对于单型腔模具,型腔内的 模腔压力应尽量一致;至于多型腔模具,型腔之间的模腔压力应相差很小。在单型 腔多浇口或多型腔多浇口的情况下,必须以相同的注塑压力注射,使型腔压力一致。为此,必须确保使浇口位置均衡。为了使型腔内的模腔压力一致,最好使浇口入 口处的压力保持一致。浇口处压力的均衡与流道中的流动阻力有关。所以,在浇口压力达到均衡之前,应先使流通均衡。

由于熔体温度和模具温度对实际收缩率产生影响,因此在设计精密注塑模具型腔时,为了便于确定成型条件,必须注意型腔的排列。因为熔融塑料把热量带入模具,而模具的温度梯度分布一般是围绕在型腔的周围,呈以主流道为中心的同心圆形状。

因 此,流道均衡、型腔排列和以主流道为中心的同心圆状排列等设计措施,对减小各型腔之间的收缩率误差、扩大成型条件的允许范围以及降低成本都是必 要的。精密注塑模具的型腔排列方式应满足流道均衡和以主流道为中心排列两方面的要求,且必须采用以主流道为对称线的型腔排列方式,否则会造成各型腔的收缩 率差异。

由于模具温度对成型收缩率的影响很大,同时也直接影响注塑制品的力学性能,还会引起制品表面发花等各种成型缺陷,因此必须使摸具 保持在规定的温度 范围内,而且还要使模具温度不随时间变化而变化。多型腔模具的各型腔之间的温差也不得发生变化。为此,在模具设计中必须采取对模具加热或冷却的温度控制措 施,且为了使模具各型腔间的温差尽量缩小,必须注意温控-冷却回路的设计。在型腔、型芯温控回路中,主要有串联冷却与并联冷却两种连接方式。

从 热交换效率来看,冷却水的流动应呈紊流。但是在并联冷却回路中,成为分流的一条回路中的流量比在串联冷却回路中的流量小,这样可能会形成层流, 而且实际进入每条回路中的流量也不一定相同。由于进入各回路的冷却水温度相同,各型腔的温度也应相同,但实际上因各回路中的流量不同,且每条回路的冷却能 力也不相同,致使各模腔的温度也不可能一致。采用串联冷却回路的缺点是冷却水的流动阻力大,最前面的型腔入口处的冷却水温度同最后型腔入口处的冷却水温度 有明显的差别。冷却水出入口的温差因流量的大小而变化。对于加工.塑料件的小型精密注塑模具而言,一般从降低模具成本考虑,采用串联冷却回路较适宜。如果 所使用的模温调节控制仪(机)的性能能在2℃内控制冷却水的流量,则各型腔的温差最大也可保持在2℃范围内。

模具型腔和型芯应有各自的冷 却水回路系统。在冷却回路的设计上,由于从型腔和型芯上所摄取的热量不同,回路结构的热阻力也不一样,型腔与型芯入口 处的水温会产生很大的温差。若采用同一系统,冷却回路设计也较困难。一般.塑料件用的小型注塑模具型芯都很小,采用冷却水系统有很大的困难。如有可能,可 以采用被青铜材料制造型芯,对实心铍青铜型芯则可采用插入式冷却的方法。另外,在对注塑制品采取防止翘曲的对策时,也希望型腔与型芯之间保持一定的温差。 因此设汁型腔与型芯的冷却回路时应能分别进行温度的调节和控制。为了保持在注塑压力、锁模力下的模具精度,设计模具结构时必须考虑对型腔零件进行磨削、研 磨和抛光等加工的可行性。尽管型腔、型芯的加工已经达到高精度的要求,而且收缩率也同所预计的一样,但由于成型时的中心偏移,其所成型的制品内侧、外侧的 相关尺寸都很难达到塑料零部件的设计要求。为了保持动、定模型腔在分型面上的尺寸精度,除了设置常规模具所常用的导柱、导套定中心外,还必须加装锥形定位 销或楔形块等定位以确保定位精度准确、可靠。

精密注塑技术是塑料零部件的主要和关键生产技术,而精密注塑模具的设计是这项生产技术的主要 部分,合理地设计精密注塑模具是获得精密制品的基础和 必要前提。通过合理地确定模具的尺寸与公差、采取防止注塑制品产生收缩率误差、注塑变形、脱模变形、溢边等,以及确保模具精度等技术措施,并采用正确的精 密注塑工艺、适用的工程塑料材料和精密的注塑设备,使之达到最佳的匹配!

BW Bewise Inc. Willy Chen willy@tool-tool.com bw@tool-tool.com www.tool-tool.com skype:willy_chen_bw mobile:0937-618-190 Head &Administration Office No.13,Shiang Shang 2nd St., West Chiu Taichung,Taiwan 40356 TEL:+886 4 24710048 / FAX:+886 4 2471 4839 N.Branch 5F,No.460,Fu Shin North Rd.,Taipei,Taiwan S.Branch No.24,Sec.1,Chia Pu East Rd.,Taipao City,Chiayi Hsien,Taiwan

Welcome to BW tool world! We are an experienced tool maker specialized in cutting tools. We focus on what you need and endeavor to research the best cutter to satisfy users demand. Our customers involve wide range of industries, like mold & die, aerospace, electronic, machinery, etc. We are professional expert in cutting field. We would like to solve every problem from you. Please feel free to contact us, its our pleasure to serve for you. BW product including: cutting toolaerospace tool .HSS Cutting toolCarbide end millsCarbide cutting toolNAS Cutting toolCarbide end millAerospace cutting toolФрезерыCarbide drillHigh speed steelMilling cutterCVDD(Chemical Vapor Deposition Diamond )PCBN (Polycrystalline Cubic Boron Nitride) Core drillTapered end millsCVD Diamond Tools Inserts’PCD Edge-Beveling Cutter(Golden Finger’PCD V-Cutter’PCD Wood tools’PCD Cutting tools’PCD Circular Saw Blade’PVDD End Mills’diamond tool Single Crystal Diamond Metric end millsMiniature end millsСпециальные режущие инструменты Пустотелое сверло Pilot reamerFraisesFresas con mango PCD (Polycrystalline diamond) FreseElectronics cutterStep drillMetal cutting sawDouble margin drillGun barrelAngle milling cutterCarbide burrsCarbide tipped cutterChamfering toolIC card engraving cutterSide cutterNAS toolDIN toolSpecial toolMetal slitting sawsShell end millsSide and face milling cuttersSide chip clearance sawsLong end millsStub roughing end millsDovetail milling cuttersCarbide slot drillsCarbide torus cuttersAngel carbide end millsCarbide torus cuttersCarbide ball-nosed slot drillsMould cutterTool manufacturer.

Bewise Inc. www.tool-tool.com

BW специализируется в научных исследованиях и разработках, и снабжаем самым высокотехнологичным карбидовым материалом для поставки режущих / фрезеровочных инструментов для почвы, воздушного пространства и электронной индустрии. В нашу основную продукцию входит твердый карбид / быстрорежущая сталь, а также двигатели, микроэлектрические дрели, IC картонорезальные машины, фрезы для гравирования, режущие пилы, фрезеры-расширители, фрезеры-расширители с резцом, дрели, резаки форм для шлицевого вала / звездочки роликовой цепи, и специальные нано инструменты. Пожалуйста, посетите сайт www.tool-tool.com для получения большей информации.

BW is specialized in R&D and sourcing the most advanced carbide material with high-tech coating to supply cutting / milling tool for mould & die, aero space and electronic industry. Our main products include solid carbide / HSS end mills, micro electronic drill, IC card cutter, engraving cutter, shell end mills, cutting saw, reamer, thread reamer, leading drill, involute gear cutter for spur wheel, rack and worm milling cutter, thread milling cutter, form cutters for spline shaft/roller chain sprocket, and special tool, with nano grade. Please visit our web www.tool-tool.com for more info.

beeway 發表在 痞客邦 留言(0) 人氣()

Bewise Inc. www.tool-tool.com Reference source from the internet.
dwa wieńce wirnikowe turbiny

dwa wieńce wirnikowe turbiny

Turbina (z łac. turbo, burza, trąba powietrzna) – silnik przepływowy wykorzystujący energię przepływającego płynu do wytwarzania energii mechanicznej. Elementem wirnika oddziałującym z płynem są w specjalnie ukształtowane łopatki.

Budowa [edytuj]

Podstawowym elementem każdej turbiny jest łopatka, która jest przymocowana do piasty, tarczy lub bębna. Łopatki są przymocowane na całym obwodzie bębna lub tarczy, tworząc tak zwany wieniec łopatkowy lub palisadę łopatkową. Piasta, bęben bądź tarcza jest osadzona na wale; czasem są one wykonane jako jeden element. Wał razem z piastą / tarczą / bębnem i wieńcem łopatkowym stanowią wirnik turbiny, na którym generowany jest moment obrotowy w wyniku przepływu gazu bądź cieczy, odprowadzany wałem do maszyny napędzanej. W turbinach cieplnych (zwłaszcza w turbinach wielostopniowych) zwykle wieniec wirnikowy musi mieć przed sobą nieruchomy wieniec kierowniczy zwany też w skrócie kierownicą, który ma za zadanie odpowiednio przyspieszyć i ukierunkować czynnik napływający na łopatki wirnika. Kierownica, podobnie jak wirnik, składa się z łopatek i jest ona nieruchomo przymocowana do korpusu turbiny. Nie może ona stykać się z wirnikiem, a przepływ gazu / cieczy między ruchomym wałem wirnika i nieruchomą kierowniczą ograniczony jest dzięki zastosowaniu odpowiednich uszczelnień, zwykle labiryntowych. W turbinach cieplnych osiowych wieniec kierowniczy wraz z wieńcem wirnikowym stanowi jeden stopień turbiny osiowej. Ich liczba może być różna, najczęściej od kilku do kilkudziesięciu. Jedynie turbiny wiatrowe i wodne są wykonane jako jednostopniowe. Jeśli do dyspozycji mamy energię kinetyczną czynnika, to nie jest potrzebna kierownica. Turbina w takim przypadku składa się z jednego wieńca wirnikowego, co ma miejsce w przypadku turbin wiatrowych i niektórych odmianach turbin wodnych.

W turbinie cieplnej liczba łopatek wieńca wirnikowego jest na ogół inna niż w wieńcu kierowniczym. Całość jest zamknięta w korpusie pojedynczym lub podwójnym (podwójny jest stosowany w częściach wysokoprężnych turbin parowych w celu zmniejszenia naprężeń pochodzących od wysokiego ciśnienia pary). Wirnik jest osadzony na łożyskach ślizgowych (w przypadku dużych turbin cieplnych pracujących na ziemi), bądź tocznych (dla konstrukcji trakcyjnych i lotniczych) oraz turbin wiatrowych i wodnych. W turbinach cieplnych, zwłaszcza parowych, różnice ciśnień miedzy czynnikiem a otoczeniem, są znaczne. Przejścia wału tych turbin przez korpus są uszczelniane uszczelnieniami labiryntowymi.

Zasada działania [edytuj]

Czynnik termodynamiczny (którym może być para wodna, spaliny, powietrze albo inny gaz) lub czynnik nieściśliwy (np. woda, ścieki, solanka, lub inna ciecz) przy odpowiedniej prędkości napływa na łopatki turbiny pod odpowiednim kątem. Płyn jakoby "dmuchając" w palisadę łopatek powoduje wygenerowanie siły działającej na pewnym promieniu. Na wale powstaje moment obrotowy, który można wykorzystać do napędu czegokolwiek. Turbina napędzana parą wodną nazywa się turbiną parową. Turbina napędzana gazami spalinowymi albo innymi (ale nie parą wodną) nazywa się turbiną gazową. Turbina napędzana powietrzem (wiatrem) nazywana jest wiatrową, a napędzana wodą – turbiną wodną (więcej rodzajów turbin znajdziesz w rozdziale "klasyfikacja" na końcu tego artykułu).

Jeśli mamy do dyspozycji czynnik poruszający się z odpowiednio dużą prędkością (wiatr, wartka rzeka), to przy pomocy odpowiednio ukształtowanych łopatek (łopat) wirnika możemy zamienić energię kinetyczną tego czynnika na mechaniczną. Jeśli prędkość czynnika jest za mała, aby wywierać na elementy wirnika odpowiednią siłę, wtedy potrzebna będzie kierownica (np. w turbinach wodnych, parowych, gazowych) i odpowiednia różnica ciśnień na wlocie i wylocie turbiny. Łopatki kierownicy tworzą zwężające się kanały przyspieszające i odpowiednio ukierunkowujące płyn. Jeśli czynnikiem jest gaz, to w kierownicy dochodzi do jego ekspansji i rozprężania, i jednoczesnego spadku entalpii czynnika. Entalpia zamieniana jest bowiem na energię kinetyczną. Jeśli konstruktor ma do dyspozycji duży spadek entalpii, to konieczne staje się zastosowanie wielu stopni, a w każdym z nich zamieniana jest pewna ilość entalpii na energię mechaniczną.

W turbinie wielostopniowej czynnik po przejściu przez wieniec wirnikowy zmienia swój kierunek, a jego prędkość bezwzględna jest stosunkowo mała (bo w wirniku nastąpiła zamiana energii kinetycznej na mechaniczną). Zadaniem łopatek kierowniczych kolejnego stopnia jest ponowne przyspieszenie czynnika i nadanie mu wymaganego kąta napływu na następny wieniec wirnikowy.

Jeśli ekspansja czynnika zachodzi także w wirniku, to mamy do czynienia ze stopniem reakcyjnym. W stopniu akcyjnym zdecydowana większość ekspansji (a dokładniej spadku entalpii) zachodzi w wieńcu kierowniczym. Jeśli turbina składa się ze stopni akcyjnych, nazywana jest akcyjną, jeśli z reakcyjnych – reakcyjną. Podział turbin na akcyjne i reakcyjne jest raczej umowny i w rzeczywistości reakcyjność stopni może być różna.

W turbinie osiowej czynnik przepływa przez kolejne stopnie w kierunku zbliżonym od osiowego. Zmiana średniego promienia przemian energetycznych jest niewielka. W turbinie odśrodkowej czynnik przepływa przez kanały międzyłopatkowe kierownicy i wirnika w kierunku promieniowym. I w tym przypadku turbina może składać się z jednego lub większej liczby stopni, a ich liczba będzie zależeć od rozporządzalnego spadku entalpii. Każdy następny stopień "pracuje" przy większych prędkościach unoszenia, bo promień jest coraz większy. Turbiny budowane są zwykle jako osiowe, rozwiązania promieniowe należą do rzadkości.

Przy projektowaniu stopni turbinowych korzysta się z zagadnień termodynamiki i mechaniki płynów. Przede wszystkim zastosowanie tu mają trzy podstawowe równania: równanie zachowania energii, równanie ilości ruchu i równanie ciągłości.

Rozprężanie w turbinie cieplnej. 1- początek ekspansji; 2s- koniec ekspansji izentropowej; 2- koniec ekspansji rzeczywistej; p1- ciśnienie przed turbiną; p2- ciśnienie za turbiną
Rozprężanie w turbinie cieplnej. 1- początek ekspansji; 2s- koniec ekspansji izentropowej; 2- koniec ekspansji rzeczywistej; p1- ciśnienie przed turbiną; p2- ciśnienie za turbiną

Powyższe wykresy ciśnienie – objętość (p-v) i entalpia – entropia (i-s) przedstawiają ekspansję adiabatyczną, jaka zachodzi w turbinie. Dotyczą one turbin cieplnych (parowych i gazowych). Czynnik rozpręża się od ciśnienia p1 do ciśnienia p2, co obrazują odpowiadające im izobary. Cieńsza niebieska linia to proces idealnego (beztarciowego) rozprężania adiabatycznego (izentropowego) od punktu 1 do 2s. Czarna grubsza linia to rzeczywiste (uwzględniające tarcie wewnętrzne) rozprężanie od punktu 1 do 2. Różnica tych dwóch przemian jest zawarta w sprawności wewnętrznej turbiny. Natomiast różnica entalpii na drodze przemiany 1-2s to otrzymana praca ekspansji izentropowej (adiabaty odwracalnej) a różnica entalpii 1-2 to praca ekspansji rzeczywistej (adiabaty nieodwracalnej).

Podstawowe parametry turbiny [edytuj]

Moc mechaniczna (dla turbin cieplnych)

 N= \dot{m} \left(i_{1}-i_{2}-\frac{c_2^2}2\right) \eta _{m}

gdzie:

\dot{m}masowe natężenie przepływu czynnika, [kg/s]
i1entalpia czynnika przed turbiną, [J/kg]
i2 – entalpia czynnika za turbiną, [J/kg]
c2- prędkość bezwzględna czynnika na wylocie z ostatniego stopnia, [m/s]
ηm- sprawność mechaniczna.

Dla założonych jednostek, wynik obliczeń będzie podany w watwch [W].

Największe turbiny parowe osiągają moce ponad 1 GW. Najmniejsze konstrukcje to mikroturbiny gazowe wielkości puszki napoju osiągające moc 1 kW.

Sprawność wewnętrzna (dla turbin cieplnych)

 \eta_{i}={i_1-i_2\over i_1 - i_{2s}}

gdzie:

i1entalpia czynnika przed turbiną
i2 – entalpia czynnika za turbiną
i2s – entalpia czynnika za turbiną po ekspansji izentropowej

Zawiera się ona zwykle w zakresie 85%...92%

Prędkość obrotowa n, [obr./s] lub [obr./min], zależna od wymagań napędzanej maszyny. W elektrowniach cieplnych maszyną napędzaną jest generator elektryczny (zwykle synchroniczny, rzadziej asynchroniczny). Dla częstotliwości sieci elektrycznej stosowanej w Europie 50 Hz prędkość obrotowa synchroniczna wynosi 3000 obr./min (generator z jedną parą biegunów), 1500 (dwie pary biegunów), 1000 (trzy pary biegunów), itd. Generator synchroniczny może obracać się tylko z prędkością synchroniczną, generator asynchroniczny z prędkością nieznacznie większą (o poślizg). W Stanach Zjednoczonych stosowana jest częstotliwość sieci 60 Hz, więc prędkość synchroniczna wyniesie 3600 obr./min (jedna para biegunów) i odpowiednio mniej dla większej ilości biegunów. Wynika z tego, że prędkość obrotowa generatora elektrycznego współpracującego z siecią elektryczną jest ograniczona. Jeśli turbina miałaby się obracać z prędkością większą (co jest korzystne ze względów aerodynamicznych), konieczne byłoby zastosowanie reduktorów, co jest możliwe tylko przy stosunkowo niewielkich mocach.

Jeśli maszyną napędzaną nie jest generator elektryczny współpracujący z siecią elektryczną, lecz inna maszyna, np. sprężarka, pompa, generator elektryczny nie współpracujący z siecią sztywną, mini-obrabiarka, to prędkość obrotowa może być inna. Zwykle korzystna jest prędkość obrotowa znacznie większa (zależy ona silnie od średnicy podziałowej stopnia), i może osiągać prędkości oborotwe rzędu kilku – kilkunastu tysięcy obr./min, a w turbosprężarkach może przekraczać nawet 100 tys. obr./min. Dobór prędkości obrotowej uwarunkowany jest wtedy zwykle maksymalną sprawnością wewnętrzną turbiny, ewentualnie sprawnością maszyny odbierającej moc.

Dopuszczalna temperatura czynnika przed turbinąT (lub T3 w turbinach gazowych). Podnoszenie tego parametru jest podstawowym sposobem podniesienia sprawności cieplnej i mocy jednostkowej układów turbogazowych. Ograniczenie stanowi żarowytrzymałość materiałów wykorzystywanych na łopatki pierwszego stopnia turbiny. Dzisiejszy stan techniki umożliwia stosowanie materiałów odpornych na temperatury ok. 1000°C. Aby zastosować wyższe temperatury czynnika na wlocie do turbiny konieczne jest zastosowanie chłodzenia łopatek kierowniczych i wirnikowych pierwszych stopni. Do chłodzenia wykorzystywane jest powietrze pobierane z wylotu sprężarki. Przepływa ono minikanalikami wewnątrz łopatek, po czym wypływa w pobliżu krawędzi nataracia tworząc dodatkowo cienki film powietrzny, zmniejszając intensywność nagrzewania się materiału od czynnika. Zastosowanie chłodzenia łopatek umożliwiło wzrost temperatury czynnika do ponad 1400°C. Drogie materiały i bardzo skomplikowana technologia wykonania łopatek turbiny gazowej są przyczyną wysokich kosztów wysokosprawnych układów turbogazowych.

Ciśnienie czynnika na wlocie do turbinyp (zwykle dla turbin cieplnych). Jego wartość optymalna jest inna dla układu turbiny gazowej i parowej. Wynika to z mocy pobieranej przez sprężarkę bądź pompę zasilającą. W przypadku układu gazowego moc sprężarki jest mocno zależna od sprężu całkowitego. Początkowy wzrost sprężu całkowitego będzie powodował wzrost mocy mechanicznej wytwarzanej w turbinie, co wpłynie korzystnie na sprawność i moc jednostkową układu. Jednak zbyt wysoki spręż spowoduje zbyt dużą konsumpcję mocy mechanicznej generowanej w turbinie przez sprężarkę, co może spowodować spadek mocy jednostkowej i sprawności układu. Wynika z tego, że istnieje pewna optymalna wartość sprężu w układzie gazowym, a więc i optymalna wartość ciśnienia czynnika na wlocie do turbiny. Zależna jest ona od wielu parametrów układu, m.in. od temperatury czynnika na wlocie do turbiny, konfiguracji układu, sprawności wewnętrznych sprężarki i turbiny, składu chemicznego gazu sprężanego w sprężarce i rozprężanego w turbinie, i innych. W zaawansowanych technologiczne układach turbogazowych ciśnienie czynnika na wlocie do turbiny osiąga zwykle wartość w zakresie od 1 do 3 MPa.

Wzrost ciśnienia pary na wlocie do turbiny parowej ma prawie zawsze korzystne działanie na sprawność i moc jednostkową układu. Wysokie ciśnienie uzyskiwane jest przed kotłem parowym, czyli po stronie wodnej. Możliwe jest więc zastosowanie pompy wodnej. Podnoszenie ciśnienia wody jest stosunkowo mało energochłonne, a sama pompa jest wielokrotnie mniejsza i tańsza od sprężarki. Uzyskanie wysokiego ciśnienia jest więc stosunkowo proste i powoduje zużycie niewielkiej części mocy mechanicznej pozyskiwanej z wału turbiny parowej. W układzie parowym ciśnienie maksymalne ograniczone jest zwykle konstrukcją kotła parowego. Wzrost ciśnienia powoduje bowiem konieczność stosowania coraz grubszych ścianek wszystkich elementów wymieniających ciepło, a to z kolei prowadzi do wzrostu kosztów kotła, zmniejsza elastyczność oraz zwiększa problemy termowytrzumałościowe. W powszechnie stosowanych w polskiej energetyce cieplnej układach parowych ciśnienia pary na wlocie do turbiny zawierają się w granicach od 10 do 20 MPa. W najbardziej zaawansowanych układach stosowane są ciśnienia rzędu 30 MPa. W układach parowych ciśnienie na wlocie do turbiny jest więc wielokrotnie wyższe, niż w układach gazowych.

W przypadku turbin wodnych podnoszenie ciśnienia na wlocie jest stosunkowo trudne, gdyż wiąże się z koniecznością zwiększenia spadu.

Ciśnienie czynnika na wylocie z turbiny. W turbinach cieplnych, wodnych i wiatrowych obniżanie ciśnienia na wylocie z turbiny zwiększa rozporządzalny spadek energii całkowitej czynnika. Im większy jest ten spadek, tym większą moc jednostkową i sprawność możemy uzyskać w wyniku konwersji energii. Metoda obniżania ciśnienia czynnika na wylocie z turbiny jest zależna od rodzaju turbiny. W turbinach parowych niskie ciśnienie pary na wylocie z turbiny uzyskiwane jest w wyniku skraplania pary w niskich temperaturach, dzięki czemu uzyskiwana jest tzw. próżnia w skraplaczu (im niższa temperatura medium chłodzącego skraplacz, tym niższe ciśnienie można uzyskać). W turbinach gazowych obniżenie ciśnienia wylotowego jest uzyskiwane poprzez zastosowanie dyfuzora wylotowego, ale jego oddziaływanie daje nizbyt duże możliwości. Dyfuzory wylotowe stosowane są również w turbinach wodnych. Także w turbinach wiatrowych stosowane są dyfuzory, ale na znacznie mniejszą skalę, gdyż w tym przypadku komplikuje się bardzo konstrukcja całego układu, zwłaszcza systemu naprowadzania na wiatr.

Zastosowanie i cechy [edytuj]

Istotnie idea działania turbiny jest bardzo prosta i była znana już w czasach starożytnych. Jej pierwowzorem było koło wodne lub wiatrak. Za pierwszą konkretną osobę, która opisała jej działanie uważa się Herona z Aleksandrii żyjącego w II wieku n.e. Pierwsze turbiny podobne współczesnym pojawiły się w latach osiemdziesiątych XIX wieku skonstruowane niezależnie przez Parsonsa i de Lavala w układach parowych.

Turbina w porównaniu do innych silników posiada dużą moc przy stosunkowo niewielkiej masie i rozmiarach. Jest to główna przyczyna stosowania jej w lotnictwie gdzie zależy konstruktorom na lekkości i miniaturyzacji. Silniki rakietowe mają co prawda większe moce, ale ich zużycie paliwa dyskwalifikuje je w większości rozwiązań. Obecnie pozycja turbin (gazowych) w lotnictwie jest dominująca. Krótko mówiąc turbina jest wszędzie tam gdzie potrzeba dużej mocy i małego silnika. Dotyczy to tylko turbiny gazowej, ponieważ turbina parowa wraz z całą siłownią jest często zbyt dużym obiektem by montować ją w pojazdach. Turbina spalinowa także jest szeroko stosowana na okrętach takich jak korwety, fregaty, niszczyciele. Sporadycznie jest też używana do napędu pociągów m.in. prototyp pociągu TGV a nawet czołgów (M1 Abrams; T-80).

Obecnie coraz bardziej w trosce o ekologię zwiększa się udział turbin wiatrowych i wodnych w produkcji energii elektrycznej. Do ich napędu nie wykorzystuje się żadnych paliw. Ale w energetyce turbina zawsze miała ugruntowaną pozycję. Parowe turbiny napędzają generatory w elektrowniach jądrowych i opalanych węglem a także napędzane są parą ze źródeł geotermalnych. Tutaj między innymi wykorzystuje się cechę, że turbina parowa to silnik o spalaniu zewnętrznym. W kotle można spalać teoretycznie wszystko co nadaje się jako paliwo i dzięki temu podgrzewać parę. Obecnie większość światowej energii elektrycznej pochodzi z elektrowni na paliwa kopalne, w których pracują turbiny parowe. W okrętownictwie turbiny parowe spotyka się jako elementy napędów głównych jednostek z napędem atomowym oraz jako maszyny pomocnicze w obiegach z kotłami utylizacyjnymi.

Cechą cenioną przez konstruktorów jest stałość momentu obrotowego na wale, czym przykładowo nie mogą się pochwalić silniki tłokowe. Zatem nie ma takich problemów jak drgania skrętne i innych z tym związanych. Turbina posiada mało elementów ruchomych. Łożyskowanie pojedynczego wału wirnika nie nastręcza takich problemów jak łożyskowanie wału korbowego w silniku tłokowym. Prędkość obrotowa turbin jest bardzo duża. Na przykład wiele turbin elektrownianych pracuje przy 3000 obr./min. W elektrowniach nie stosuje się przekładni, ale w pojazdach często potrzebna jest przekładnia redukcyjna pośrednicząca w połączeniu: urządzenie napędzane – turbina. To czy duża prędkość wirowania jest wadą czy zaletą zależy od zastosowania, aczkolwiek ta prędkość oraz operowanie dużymi mocami były jednymi z przyczyn szybszego rozwoju automatyki. Parametry, z jakimi pracują turbiny wymagają ścisłego nadzoru. Nawet mała usterka w obiegu siłowni może spowodować poważne uszkodzenia. Często przy nadzorze turbiny człowiek nie potrafiłby zareagować dostatecznie szybko na przekroczenie dopuszczalnych zakresów działania. Dlatego wraz z rozwojem turbin doskonaliły się także układy ich sterowania, z tego względu automatyka odgrywa dużą rolę w regulacji turbin.

Do wad turbin zaliczają się spore wymogi co do technologii wykonania. Jak już zostało wspomniane do produkcji łopatek (pierwszych stopni) używa się wysokiej klasy materiałów. Ważna jest także precyzja konstrukcji, co ma istotne znaczenie przy dużych prędkościach obrotowych. Do napędu turbin gazowych potrzeba czystego paliwa. Silniki tłokowe akceptują o wiele więcej paliw, więc mają na tym polu przewagę. Kolejną wadą turbin jest wytwarzany przez nie hałas. Odgrywa on raczej rolę tylko w turbinach niezabezpieczonych tłumikami tak jak w silnikach turboodrzutowych. Wadą turbiny parowej jest konieczność instalowania razem z nią kotła i skraplacza, co znacznie zwiększa rozmiary całego zespołu napędowego.

Zastosowanie turbin jest bardzo szerokie. Obecnie turbina wywalczyła sobie miejsce w wielu dziedzinach, ale też musiała ustąpić (kiedyś więcej statków było napędzanych turbinami parowymi). Turbosprężarka w silnikach spalinowych jest natomiast doskonałym przykładem uzupełniania się turbin i silników tłokowych. Turbiny stanowią napęd wielu urządzeń a w nazwie danego urządzenia charakteryzuje się ich obecność jak na przykład: turbosprężarka, turbogenerator, turbopompa.

Turbiny pracują w turbozespołach (czasem zwanymi też siłowniami) razem z maszynami napędzanymi i urządzeniami pomocniczymi. W istocie dopiero cały turbozespół stanowi silnik. Urządzenia mające wpływ na parametry czynnika są elementami obiegu termodynamicznego turbiny. Oto najprostsze układy turbin cieplnych. Drogę czynnika przedstawiono pojedynczą linią; linia podwójna symbolizuje wał.

TP – turbina parowa; K – kocioł parowy; S – skraplacz; P – pompa zasilająca
TP – turbina parowa; K – kocioł parowy; S – skraplacz; P – pompa zasilająca
Najprostszy układ turbiny parowej, pracujący wg obiegu Clausiusa – Rankine'a.
TG – turbina; SP – sprężarka; KS – komora spalania
TG – turbina; SP – sprężarka; KS – komora spalania
Najprostszy układ turbiny gazowej, pracujący wg obiegu Braytona-Joule'a.
układ parowo-gazowy; WP – wytwornica pary (kocioł odzyskowy)
układ parowo-gazowy; WP – wytwornica pary (kocioł odzyskowy)
Układ gazowo-parowy – połączenie dwóch powyższych koncepcji. Traktowany jako siłownia, ale niekoniecznie jako jeden silnik. Jest aktualnie najsprawniejszą siłownią cieplną, której sprawność sięga blisko 60%, choć nadal najsprawniejszym pojedynczym silnikiem cieplnym jest silnik tłokowy wolnoobrotowy.


BW Bewise Inc. Willy Chen willy@tool-tool.com bw@tool-tool.com www.tool-tool.com skype:willy_chen_bw mobile:0937-618-190 Head &Administration Office No.13,Shiang Shang 2nd St., West Chiu Taichung,Taiwan 40356 TEL:+886 4 24710048 / FAX:+886 4 2471 4839 N.Branch 5F,No.460,Fu Shin North Rd.,Taipei,Taiwan S.Branch No.24,Sec.1,Chia Pu East Rd.,Taipao City,Chiayi Hsien,Taiwan

Welcome to BW tool world! We are an experienced tool maker specialized in cutting tools. We focus on what you need and endeavor to research the best cutter to satisfy users demand. Our customers involve wide range of industries, like mold & die, aerospace, electronic, machinery, etc. We are professional expert in cutting field. We would like to solve every problem from you. Please feel free to contact us, its our pleasure to serve for you. BW product including: cutting toolaerospace tool .HSS Cutting toolCarbide end millsCarbide cutting toolNAS Cutting toolCarbide end millAerospace cutting toolФрезерыCarbide drillHigh speed steelMilling cutterCVDD(Chemical Vapor Deposition Diamond )PCBN (Polycrystalline Cubic Boron Nitride) Core drillTapered end millsCVD Diamond Tools Inserts’PCD Edge-Beveling Cutter(Golden Finger’PCD V-Cutter’PCD Wood tools’PCD Cutting tools’PCD Circular Saw Blade’PVDD End Mills’diamond tool Single Crystal Diamond Metric end millsMiniature end millsСпециальные режущие инструменты Пустотелое сверло Pilot reamerFraisesFresas con mango PCD (Polycrystalline diamond) FreseElectronics cutterStep drillMetal cutting sawDouble margin drillGun barrelAngle milling cutterCarbide burrsCarbide tipped cutterChamfering toolIC card engraving cutterSide cutterNAS toolDIN toolSpecial toolMetal slitting sawsShell end millsSide and face milling cuttersSide chip clearance sawsLong end millsStub roughing end millsDovetail milling cuttersCarbide slot drillsCarbide torus cuttersAngel carbide end millsCarbide torus cuttersCarbide ball-nosed slot drillsMould cutterTool manufacturer.

Bewise Inc. www.tool-tool.com

BW специализируется в научных исследованиях и разработках, и снабжаем самым высокотехнологичным карбидовым материалом для поставки режущих / фрезеровочных инструментов для почвы, воздушного пространства и электронной индустрии. В нашу основную продукцию входит твердый карбид / быстрорежущая сталь, а также двигатели, микроэлектрические дрели, IC картонорезальные машины, фрезы для гравирования, режущие пилы, фрезеры-расширители, фрезеры-расширители с резцом, дрели, резаки форм для шлицевого вала / звездочки роликовой цепи, и специальные нано инструменты. Пожалуйста, посетите сайт www.tool-tool.com для получения большей информации.

BW is specialized in R&D and sourcing the most advanced carbide material with high-tech coating to supply cutting / milling tool for mould & die, aero space and electronic industry. Our main products include solid carbide / HSS end mills, micro electronic drill, IC card cutter, engraving cutter, shell end mills, cutting saw, reamer, thread reamer, leading drill, involute gear cutter for spur wheel, rack and worm milling cutter, thread milling cutter, form cutters for spline shaft/roller chain sprocket, and special tool, with nano grade. Please visit our web www.tool-tool.com for more info.

beeway 發表在 痞客邦 留言(0) 人氣()

Bewise Inc. www.tool-tool.com Reference source from the internet.

Turbina é um equipamento construído para converter energia mecânica e térmica contida em um fluido, em trabalho de eixo. Os principais tipos encontrados são:

A forma construtiva básica é a mesma para todos os tipos: um rotor dotado de um certo número de pás ou palhetas, ligados a um eixo que gira sobre um conjunto de mancais de deslizamento ou mancais de pastilha (mancais de rolamento, por questões de durabilidade não são usados).
As turbinas podem ser usadas para movimentar um outro equipamento mecânico rotativo, como uma bomba, compressor ou ventilador, ou podem ser usadas para a geração de eletricidade e nesse caso são ligadas a um gerador.

Também tem aplicação na área de propulsão naval, ou aeronáutica.

Todos os tipos podem ter uma rotação fixa ou variável, dentro de uma determinada faixa. Contudo, quando são usadas para geração de energia elétrica, a rotação costuma ser mantida num valor fixo para manter a frequência da rede constante.

A principal diferença entre os diversos tipos é o fluido de trabalho. Em decorrência disso, é claro, há outras, tais como a temperatura máxima de operação, a potência máxima, a vazão mássica de fluido, a pressão de trabalho e os detalhes construtivos e dimensões.

As maiores já construídas em termos de dimensões são as turbinas hidráulicas; as que trabalham a maiores temperaturas são as turbinas a gás, e as que são submetidas a maior pressão são as turbinas a vapor.

Todos os tipos possuem aplicação em uma ampla faixa de potência, que pode variar de 300 kW, para acionamento de ventiladores, até 1200 MW, estas últimas em instalações nucleares.

As turbinas tem 2 aspectos principais que as caracterizam:

  • Potência
  • Eficiência


BW Bewise Inc. Willy Chen willy@tool-tool.com bw@tool-tool.com www.tool-tool.com skype:willy_chen_bw mobile:0937-618-190 Head &Administration Office No.13,Shiang Shang 2nd St., West Chiu Taichung,Taiwan 40356 TEL:+886 4 24710048 / FAX:+886 4 2471 4839 N.Branch 5F,No.460,Fu Shin North Rd.,Taipei,Taiwan S.Branch No.24,Sec.1,Chia Pu East Rd.,Taipao City,Chiayi Hsien,Taiwan

Welcome to BW tool world! We are an experienced tool maker specialized in cutting tools. We focus on what you need and endeavor to research the best cutter to satisfy users demand. Our customers involve wide range of industries, like mold & die, aerospace, electronic, machinery, etc. We are professional expert in cutting field. We would like to solve every problem from you. Please feel free to contact us, its our pleasure to serve for you. BW product including: cutting toolaerospace tool .HSS Cutting toolCarbide end millsCarbide cutting toolNAS Cutting toolCarbide end millAerospace cutting toolФрезерыCarbide drillHigh speed steelMilling cutterCVDD(Chemical Vapor Deposition Diamond )PCBN (Polycrystalline Cubic Boron Nitride) Core drillTapered end millsCVD Diamond Tools Inserts’PCD Edge-Beveling Cutter(Golden Finger’PCD V-Cutter’PCD Wood tools’PCD Cutting tools’PCD Circular Saw Blade’PVDD End Mills’diamond tool Single Crystal Diamond Metric end millsMiniature end millsСпециальные режущие инструменты Пустотелое сверло Pilot reamerFraisesFresas con mango PCD (Polycrystalline diamond) FreseElectronics cutterStep drillMetal cutting sawDouble margin drillGun barrelAngle milling cutterCarbide burrsCarbide tipped cutterChamfering toolIC card engraving cutterSide cutterNAS toolDIN toolSpecial toolMetal slitting sawsShell end millsSide and face milling cuttersSide chip clearance sawsLong end millsStub roughing end millsDovetail milling cuttersCarbide slot drillsCarbide torus cuttersAngel carbide end millsCarbide torus cuttersCarbide ball-nosed slot drillsMould cutterTool manufacturer.

Bewise Inc. www.tool-tool.com

BW специализируется в научных исследованиях и разработках, и снабжаем самым высокотехнологичным карбидовым материалом для поставки режущих / фрезеровочных инструментов для почвы, воздушного пространства и электронной индустрии. В нашу основную продукцию входит твердый карбид / быстрорежущая сталь, а также двигатели, микроэлектрические дрели, IC картонорезальные машины, фрезы для гравирования, режущие пилы, фрезеры-расширители, фрезеры-расширители с резцом, дрели, резаки форм для шлицевого вала / звездочки роликовой цепи, и специальные нано инструменты. Пожалуйста, посетите сайт www.tool-tool.com для получения большей информации.

BW is specialized in R&D and sourcing the most advanced carbide material with high-tech coating to supply cutting / milling tool for mould & die, aero space and electronic industry. Our main products include solid carbide / HSS end mills, micro electronic drill, IC card cutter, engraving cutter, shell end mills, cutting saw, reamer, thread reamer, leading drill, involute gear cutter for spur wheel, rack and worm milling cutter, thread milling cutter, form cutters for spline shaft/roller chain sprocket, and special tool, with nano grade. Please visit our web www.tool-tool.com for more info.

beeway 發表在 痞客邦 留言(0) 人氣()

Bewise Inc. www.tool-tool.com Reference source from the internet.

Turbina é um equipamento construído para converter energia mecânica e térmica contida em um fluido, em trabalho de eixo. Os principais tipos encontrados são:

A forma construtiva básica é a mesma para todos os tipos: um rotor dotado de um certo número de pás ou palhetas, ligados a um eixo que gira sobre um conjunto de mancais de deslizamento ou mancais de pastilha (mancais de rolamento, por questões de durabilidade não são usados).
As turbinas podem ser usadas para movimentar um outro equipamento mecânico rotativo, como uma bomba, compressor ou ventilador, ou podem ser usadas para a geração de eletricidade e nesse caso são ligadas a um gerador.

Também tem aplicação na área de propulsão naval, ou aeronáutica.

Todos os tipos podem ter uma rotação fixa ou variável, dentro de uma determinada faixa. Contudo, quando são usadas para geração de energia elétrica, a rotação costuma ser mantida num valor fixo para manter a frequência da rede constante.

A principal diferença entre os diversos tipos é o fluido de trabalho. Em decorrência disso, é claro, há outras, tais como a temperatura máxima de operação, a potência máxima, a vazão mássica de fluido, a pressão de trabalho e os detalhes construtivos e dimensões.

As maiores já construídas em termos de dimensões são as turbinas hidráulicas; as que trabalham a maiores temperaturas são as turbinas a gás, e as que são submetidas a maior pressão são as turbinas a vapor.

Todos os tipos possuem aplicação em uma ampla faixa de potência, que pode variar de 300 kW, para acionamento de ventiladores, até 1200 MW, estas últimas em instalações nucleares.

As turbinas tem 2 aspectos principais que as caracterizam:

  • Potência
  • Eficiência


BW Bewise Inc. Willy Chen willy@tool-tool.com bw@tool-tool.com www.tool-tool.com skype:willy_chen_bw mobile:0937-618-190 Head &Administration Office No.13,Shiang Shang 2nd St., West Chiu Taichung,Taiwan 40356 TEL:+886 4 24710048 / FAX:+886 4 2471 4839 N.Branch 5F,No.460,Fu Shin North Rd.,Taipei,Taiwan S.Branch No.24,Sec.1,Chia Pu East Rd.,Taipao City,Chiayi Hsien,Taiwan

Welcome to BW tool world! We are an experienced tool maker specialized in cutting tools. We focus on what you need and endeavor to research the best cutter to satisfy users demand. Our customers involve wide range of industries, like mold & die, aerospace, electronic, machinery, etc. We are professional expert in cutting field. We would like to solve every problem from you. Please feel free to contact us, its our pleasure to serve for you. BW product including: cutting toolaerospace tool .HSS Cutting toolCarbide end millsCarbide cutting toolNAS Cutting toolCarbide end millAerospace cutting toolФрезерыCarbide drillHigh speed steelMilling cutterCVDD(Chemical Vapor Deposition Diamond )PCBN (Polycrystalline Cubic Boron Nitride) Core drillTapered end millsCVD Diamond Tools Inserts’PCD Edge-Beveling Cutter(Golden Finger’PCD V-Cutter’PCD Wood tools’PCD Cutting tools’PCD Circular Saw Blade’PVDD End Mills’diamond tool Single Crystal Diamond Metric end millsMiniature end millsСпециальные режущие инструменты Пустотелое сверло Pilot reamerFraisesFresas con mango PCD (Polycrystalline diamond) FreseElectronics cutterStep drillMetal cutting sawDouble margin drillGun barrelAngle milling cutterCarbide burrsCarbide tipped cutterChamfering toolIC card engraving cutterSide cutterNAS toolDIN toolSpecial toolMetal slitting sawsShell end millsSide and face milling cuttersSide chip clearance sawsLong end millsStub roughing end millsDovetail milling cuttersCarbide slot drillsCarbide torus cuttersAngel carbide end millsCarbide torus cuttersCarbide ball-nosed slot drillsMould cutterTool manufacturer.

Bewise Inc. www.tool-tool.com

BW специализируется в научных исследованиях и разработках, и снабжаем самым высокотехнологичным карбидовым материалом для поставки режущих / фрезеровочных инструментов для почвы, воздушного пространства и электронной индустрии. В нашу основную продукцию входит твердый карбид / быстрорежущая сталь, а также двигатели, микроэлектрические дрели, IC картонорезальные машины, фрезы для гравирования, режущие пилы, фрезеры-расширители, фрезеры-расширители с резцом, дрели, резаки форм для шлицевого вала / звездочки роликовой цепи, и специальные нано инструменты. Пожалуйста, посетите сайт www.tool-tool.com для получения большей информации.

BW is specialized in R&D and sourcing the most advanced carbide material with high-tech coating to supply cutting / milling tool for mould & die, aero space and electronic industry. Our main products include solid carbide / HSS end mills, micro electronic drill, IC card cutter, engraving cutter, shell end mills, cutting saw, reamer, thread reamer, leading drill, involute gear cutter for spur wheel, rack and worm milling cutter, thread milling cutter, form cutters for spline shaft/roller chain sprocket, and special tool, with nano grade. Please visit our web www.tool-tool.com for more info.

beeway 發表在 痞客邦 留言(0) 人氣()

Bewise Inc. www.tool-tool.com Reference source from the internet.
Монтаж паровой турбины, произведённой Siemens, Германия.

Монтаж паровой турбины, произведённой Siemens, Германия.

Турби́на (фр. turbine от лат. turbo вихрь, вращение)— двигатель с вращательным движением рабочего органа (ротора), преобразующий кинетическую энергию в механическую работу при помощи подводимого рабочего тела — пара, газа, воды. Струя рабочего тела воздействует на лопатки, закреплённые по окружности ротора, и приводит их в движение.

Применяется для получения электрического тока на тепловых и атомных электростанциях, в качестве двигателей на морском, наземном и воздушном транспорте, как составная часть гидродинамической передачи.

Устройство, подобное турбине, но имеющее привод вращения лопаток от вала - компрессор или насос.


BW Bewise Inc. Willy Chen willy@tool-tool.com bw@tool-tool.com www.tool-tool.com skype:willy_chen_bw mobile:0937-618-190 Head &Administration Office No.13,Shiang Shang 2nd St., West Chiu Taichung,Taiwan 40356 TEL:+886 4 24710048 / FAX:+886 4 2471 4839 N.Branch 5F,No.460,Fu Shin North Rd.,Taipei,Taiwan S.Branch No.24,Sec.1,Chia Pu East Rd.,Taipao City,Chiayi Hsien,Taiwan

Welcome to BW tool world! We are an experienced tool maker specialized in cutting tools. We focus on what you need and endeavor to research the best cutter to satisfy users demand. Our customers involve wide range of industries, like mold & die, aerospace, electronic, machinery, etc. We are professional expert in cutting field. We would like to solve every problem from you. Please feel free to contact us, its our pleasure to serve for you. BW product including: cutting toolaerospace tool .HSS Cutting toolCarbide end millsCarbide cutting toolNAS Cutting toolCarbide end millAerospace cutting toolФрезерыCarbide drillHigh speed steelMilling cutterCVDD(Chemical Vapor Deposition Diamond )PCBN (Polycrystalline Cubic Boron Nitride) Core drillTapered end millsCVD Diamond Tools Inserts’PCD Edge-Beveling Cutter(Golden Finger’PCD V-Cutter’PCD Wood tools’PCD Cutting tools’PCD Circular Saw Blade’PVDD End Mills’diamond tool Single Crystal Diamond Metric end millsMiniature end millsСпециальные режущие инструменты Пустотелое сверло Pilot reamerFraisesFresas con mango PCD (Polycrystalline diamond) FreseElectronics cutterStep drillMetal cutting sawDouble margin drillGun barrelAngle milling cutterCarbide burrsCarbide tipped cutterChamfering toolIC card engraving cutterSide cutterNAS toolDIN toolSpecial toolMetal slitting sawsShell end millsSide and face milling cuttersSide chip clearance sawsLong end millsStub roughing end millsDovetail milling cuttersCarbide slot drillsCarbide torus cuttersAngel carbide end millsCarbide torus cuttersCarbide ball-nosed slot drillsMould cutterTool manufacturer.

Bewise Inc. www.tool-tool.com

BW специализируется в научных исследованиях и разработках, и снабжаем самым высокотехнологичным карбидовым материалом для поставки режущих / фрезеровочных инструментов для почвы, воздушного пространства и электронной индустрии. В нашу основную продукцию входит твердый карбид / быстрорежущая сталь, а также двигатели, микроэлектрические дрели, IC картонорезальные машины, фрезы для гравирования, режущие пилы, фрезеры-расширители, фрезеры-расширители с резцом, дрели, резаки форм для шлицевого вала / звездочки роликовой цепи, и специальные нано инструменты. Пожалуйста, посетите сайт www.tool-tool.com для получения большей информации.

BW is specialized in R&D and sourcing the most advanced carbide material with high-tech coating to supply cutting / milling tool for mould & die, aero space and electronic industry. Our main products include solid carbide / HSS end mills, micro electronic drill, IC card cutter, engraving cutter, shell end mills, cutting saw, reamer, thread reamer, leading drill, involute gear cutter for spur wheel, rack and worm milling cutter, thread milling cutter, form cutters for spline shaft/roller chain sprocket, and special tool, with nano grade. Please visit our web www.tool-tool.com for more info.

beeway 發表在 痞客邦 留言(0) 人氣()

Bewise Inc. www.tool-tool.com Reference source from the internet.
A Siemens steam turbine with the case opened.

A Siemens steam turbine with the case opened.

A turbine is a rotary engine that extracts energy from a fluid flow.

The simplest turbines have one moving part, a rotor assembly, which is a shaft with blades attached. The moving fluid acts on the blades, or the blades react to the flow, so that they rotate and give energy to the rotor. Early turbine examples are windmills and water wheels.

Gas, steam, and water turbines usually have a casing around the blades that focuses and controls the fluid.


[change] Theory of operation

A working fluid contains potential energy (pressure head) and kinetic energy (velocity head). The fluid may be compressible or incompressible. Several physical principles are employed by turbines to collect this energy:

Impulse turbines

Newton's Second Law of Motion explains the result of that action.




Reaction turbines

Newton's Third Law of Motion explains the result of that action.

BW Bewise Inc. Willy Chen willy@tool-tool.com bw@tool-tool.com www.tool-tool.com skype:willy_chen_bw mobile:0937-618-190 Head &Administration Office No.13,Shiang Shang 2nd St., West Chiu Taichung,Taiwan 40356 TEL:+886 4 24710048 / FAX:+886 4 2471 4839 N.Branch 5F,No.460,Fu Shin North Rd.,Taipei,Taiwan S.Branch No.24,Sec.1,Chia Pu East Rd.,Taipao City,Chiayi Hsien,Taiwan

Welcome to BW tool world! We are an experienced tool maker specialized in cutting tools. We focus on what you need and endeavor to research the best cutter to satisfy users demand. Our customers involve wide range of industries, like mold & die, aerospace, electronic, machinery, etc. We are professional expert in cutting field. We would like to solve every problem from you. Please feel free to contact us, its our pleasure to serve for you. BW product including: cutting toolaerospace tool .HSS Cutting toolCarbide end millsCarbide cutting toolNAS Cutting toolCarbide end millAerospace cutting toolФрезерыCarbide drillHigh speed steelMilling cutterCVDD(Chemical Vapor Deposition Diamond )PCBN (Polycrystalline Cubic Boron Nitride) Core drillTapered end millsCVD Diamond Tools Inserts’PCD Edge-Beveling Cutter(Golden Finger’PCD V-Cutter’PCD Wood tools’PCD Cutting tools’PCD Circular Saw Blade’PVDD End Mills’diamond tool Single Crystal Diamond Metric end millsMiniature end millsСпециальные режущие инструменты Пустотелое сверло Pilot reamerFraisesFresas con mango PCD (Polycrystalline diamond) FreseElectronics cutterStep drillMetal cutting sawDouble margin drillGun barrelAngle milling cutterCarbide burrsCarbide tipped cutterChamfering toolIC card engraving cutterSide cutterNAS toolDIN toolSpecial toolMetal slitting sawsShell end millsSide and face milling cuttersSide chip clearance sawsLong end millsStub roughing end millsDovetail milling cuttersCarbide slot drillsCarbide torus cuttersAngel carbide end millsCarbide torus cuttersCarbide ball-nosed slot drillsMould cutterTool manufacturer.

Bewise Inc. www.tool-tool.com

BW специализируется в научных исследованиях и разработках, и снабжаем самым высокотехнологичным карбидовым материалом для поставки режущих / фрезеровочных инструментов для почвы, воздушного пространства и электронной индустрии. В нашу основную продукцию входит твердый карбид / быстрорежущая сталь, а также двигатели, микроэлектрические дрели, IC картонорезальные машины, фрезы для гравирования, режущие пилы, фрезеры-расширители, фрезеры-расширители с резцом, дрели, резаки форм для шлицевого вала / звездочки роликовой цепи, и специальные нано инструменты. Пожалуйста, посетите сайт www.tool-tool.com для получения большей информации.

BW is specialized in R&D and sourcing the most advanced carbide material with high-tech coating to supply cutting / milling tool for mould & die, aero space and electronic industry. Our main products include solid carbide / HSS end mills, micro electronic drill, IC card cutter, engraving cutter, shell end mills, cutting saw, reamer, thread reamer, leading drill, involute gear cutter for spur wheel, rack and worm milling cutter, thread milling cutter, form cutters for spline shaft/roller chain sprocket, and special tool, with nano grade. Please visit our web www.tool-tool.com for more info.

beeway 發表在 痞客邦 留言(0) 人氣()