公告版位

目前分類:學術研究 (9512)

瀏覽方式: 標題列表 簡短摘要
Bewise Inc. www.tool-tool.com Reference source from the internet.

切 削液传统的冷却、润滑、排屑等作用在加工过程中 得不到充分有效的发挥。因此,人们试图不用 或少用切削液来改变这种状况,以适应清洁生产工艺及减小生产成本的要求。干切削加工技术正是 这样的一种方法,它可较好地解决生态环境、技术与经济之间的协调与持续发展。1干切削及实施 可能性1.1干切削及其特点干切削就是在加工过程中不用任何切削液的工艺方法。它是相对于采 用切削液的传统湿式加工而言,是环境污染源头控制的清洁制造工艺。由于不用切削液,因而干切 削可以完全消除切削液带来的一系列负面效应,它具有以下特点:(1)形成的切屑干净、清洁、 无污染,易于回收和处理;(2)省去了与切削液有关的传输、回收、过滤等有关装置及费用,简 化了生产系统,节约了生产成本;(3)省去了与切屑及切削液处理有关的费用;(4)不污染环 境,也不发生与切削液有关的安全及质量事故。由于具有这些特点,干切削已成为目前清洁制造工 艺研究的热点之一,并在车、铣、钻、铰、镗削等加工中得到了成功应用。1.2干切削加工的实 施可能性干切削虽然具有上述诸多优点,但由于没有切削液,其冷却、润滑及排屑作用就会丧失, 切削加工中的热量就会增加,从而导致过高的切削温度,使排屑不畅、刀具寿命变短、降低了生产 效率,并使加工表面质量变差。如何克服这些不利因素,使干切削具有湿式切削的同样效果,就成 为干切削成功应用的关键所在。而切削技术、刀具材料及刀具设计技术的发展,使干切削的实施成 为可能。(1)刀具材料的发展可使刀具(片)承受更高的切削温度,因而减少了对冷却的要求。 切削加工中切削热的产生是不可避免的,通常都要加冷却液冷却,然而采用新型刀具材料(新型硬 质合金、陶瓷、涂层刀具材料等)及选择合理的进给量和切削速度,既可承受切削过程中的高温, 进行高速切削,又可使产生的大部分热量传给切屑,即可进行干切削加工。开发适合干切削的刀具 材料是其成功应用的关键。干切削刀具材料要有优良的热硬度。常用的有特殊硬质合金、涂层材料 及某些陶瓷刀具材料。如用于干铰削的铰刀要求有锋利的刀刃,以保证加工精度及表面粗糙度要求 ,选用超细晶粒硬质合金(如DK4600F:含Co:8~10%;晶粒尺寸0.3μm;韧性 比晶粒尺寸为2.5μm的普通硬质合金高60~70%),可满足锋利性要求,但由于月牙洼磨 损,刀具寿命很短;而采用金属陶瓷铰刀,则可满足加工质量要求,刀具又有较长的寿命,可进行 满意的干铰削。此外,用HSS钻头加工铸铁,刀具寿命和生产效率均受限制,而对HSS刀具进 行TiAlN涂层和Al2O3涂层相结合的组合涂层,则用于铸铁干钻削,性能比HSS钻优越 的多。除了刀具材料外,还必须选用合理的切削参数。表1为干钻削(DRY)、准干钻削(Ne ar-Dry)和高速钻削的切削用量选用表。在某些应用场合,利用激冷的气体及旋风喷雾器也 可降低切削温度。(2)涂层技术的发展可减小刀具─工件表面之间的摩擦,减小了切削力,降低 了对切削液润滑作用的依赖。目前,所用刀具中的40%是涂层刀具,而且这种趋势还在不断增长 。为了优化各种加工方法,新涂层也在不断地出现。1995年,德国Guhring公司介绍了 两种涂层,它们可减小钻削、铰削、攻丝及铣削加工中的摩擦。这些涂层有些像特氟隆(Tefl on),与刀具基体表面粘结性能优良,且形成的涂层表面光滑、摩擦系数小。其中第一种涂层是 基于二硫化钼(MoS2),被称为MOVIC的软涂层。在9%的硅铝合金工件上攻丝时,非涂 层丝锥(基体为含钴10%的超细晶粒硬质合金)加工了20个孔,TiAlN涂层丝锥可加工1 000个孔,而MOVIC图1对不同部位进行不同涂层的钻头涂层丝锥可加工4000个孔。另 一种涂层是组合涂层,即将MOVIC软涂层涂覆在某种硬涂层之上,这种涂层也在钻削钢及9% 硅铝合金中得到了成功应用。图1则为这种涂层的钻头,软的润滑性良好的涂层涂覆在排屑部位, 而要求有一定硬度的刀尖部位则仅涂一层硬涂层。表1干钻削、准干钻削及高速钻削的切削用量工 件工件材料直径(mm)深度(mm)速度(m/min)进给量mm/rev进给量m/min 轴承座铸铁8.560DRY1200.251.12HSC4000.46.0连杆热处理钢6 .820DRY800.10.3712.613.5HSC3200.34.5轮毂锻钢DRY 700.1250.22HSC3300.54.17M○NEARDRYHSC2550.36 2.23汽缸盖Alsi97.3430NEARDRYHSC345114.97其中:切削材 料为TiAlN涂层硬质合金,M○是TiAlN和MOVIC的双涂层。图2涂层对刀具的影响 因此,涂层可以代替切削液的润滑作用,减小了对切削液的依赖,还可降低切削力,如图2所示为 加工76%的镍基合金时,HSS刀具与TiN涂层HSS的进给力比较。可以看出,在各种情况 下涂层刀具的进给力都较小。新型涂层,如金刚石(未来的CBN)也可减小刀具/工件界面的摩 擦。由此可见,涂层技术是干切削成功应用的最关键的技术。(3)合理加工方式及刀具设计及制 造能力的提高使切屑排出容易,减小了依赖切削液排屑的作用。研究表明:切削液的润滑作用只有 10%,其余主要作用是排屑。因此,湿式加工中排屑主要由切削液来完成,而干切削由于没在切 削液,排屑就成为一个主要问题。但随着加工技术的发展,采用合理的加工方式及刀具设计/制造 能力的提高,排屑问题也得到了逐步解决。以下是几种成功用于干切削的排屑方法:a.借助重力 排屑。通常钻削都是从上往下进行,切屑从孔中向上排出。但如果倒过来,将工件安装在主轴下部 ,从下向上钻削,则将产生完全不同的效果:在重力的作用下,切屑就会顺利从孔中排出,也无需 用一定压力的切削液来辅助排屑。这一思想已在美国某刹车制造厂的一条自动线的柔性加工机床上 得以实现。此外,可将工件倾斜45°安装,机床主轴也相应倾斜45°,从下往上钻削,此时不 能实现完全干钻削,但需要切削液的量可达最少,其处理费用也比普通钻削少得多,这种方式可称 为准干钻削(Neor-DryDriling)。b.利用虹吸现象将切屑从孔中吸出,虹吸是 利用干燥的空气吸出切屑,也无需切削液。c.利用真空或喷气系统也可改善排屑条件,实现干切 削加工。d.由于先进制造设备的使用,复杂刀具的设计及制造能力有了很大改善,复杂的刀具几 何结构可以解封闭空间的排屑问题,同时还可降低切削力。2干切削加工技术的应用2.1铸铁的 干切削铸铁加工通常都不用切削液,是最典型干切削加工方式,铸铁干切削目前的研究主题是如何 提高加工效率。美国LeBLondMakino公司研究开发的“红月牙”(RedCresc ent)铸铁干切削技术就是利用陶瓷或CBN刀具进行高速加工。由于切削速度和进给量很高, 产生的热量很快聚集在刀具前端,使这一部分材料达到红热状态,其屈服强度下降,可大大提高切 削效率。通常,铸铁的金属切除率(车削)为16cm3/min,而采用红月牙干切削加工可使 其提高到149cm3/min。2.2铝的干切削铝材的应用量在不断增加,特别是在汽车行业 更是如此。铝的高效干切削加工就成为必须解决的问题。美国Turchan公司研制了一种用于 开口零件平面铣削的机床,并配有获得专利的真空系统,排屑非常流畅。BigThree公司安 装了八台高速(15000rpm)金刚石干切削加工系统,用以加工变速箱上的铝通道盘,加工 精度为0.05mm,每小时加工600件,与以前采用的磨削加工方法相比每年可节约经费达3 百万美元。金刚石刀具是有色金属干切削成功应用的关键。美国QQC公司开发了一种可使金刚石 与基体材料之间得到真正冶金结合的扩散工艺,其优点是导热系数大,热扩散快,与铝不亲合,且 可对成型刀具进行涂覆。2.3镁的干切削镁是金属中最难加工的材料之一,其具有易燃性,与切 削液中的水反应会形成氢化镁,并输放出危险的氢气,造成切削液中的水硬化。而且镁一旦受潮就 成为污染物,因此镁必须采用干切削加工技术。美国的Cargilpetroit公司正在研究 镁的干切削工艺。2.4其它材料干切削美国的LeBLond发明了一种专利工艺,利用这种工 艺在切削速度高达305m/min时,可用硬质合金刀具对淬硬钢(HRC>50)及钛合金进 行干车削加工。加工中产生的热量可由高压、通过主轴的气体冷却,可将切削温度降至最低,每转 中可将刀具与工件的接触限制在25%。3准干切削干切削的应用范围目前还比较有限,而完全的 湿式加工又有诸多不足,若将两者相互结合,即可满足加工要求,又可使与切削液有关的费用降至 最低,将这种介于湿式切削与干切削之间的加工技术称为准干切削技术。由于它使用的切削液量为 最少,因而切削液供给系统简单、体积小,容易布局。如美国Thyessn公司将设计的最小润 滑系统集成在主轴电机中,其流量由CNC程序控制,该单元在6.5秒时间内可钻削10个8m m、中心距为20mm的孔,其每小时仅用一杯润滑液,且大部分被蒸发,切屑中切削液含量大大 减小,回收处理费用大幅度下降。准干切削研究的主题是最少的切削液为多少?目前采用的研究方 法是钻削、镗削试验研究,受控变量为切削液类型、浓度、工件材料、刀具类型及几何参数、切削 参数;控制目标为表面粗糙度、刀具积屑瘤和切削力的大小。4结语干切削加工技术可从根本上解决切削液带来的不利因素,是一种很有前途的工艺方法。由于它与 诸多技术有关,若要广泛地用于生产,还有待于进一步地研究。

BW Bewise Inc. Willy Chen willy@tool-tool.com bw@tool-tool.com www.tool-tool.com skype:willy_chen_bw mobile:0937-618-190 Head &Administration Office No.13,Shiang Shang 2nd St., West Chiu Taichung,Taiwan 40356 TEL:+886 4 24710048 / FAX:+886 4 2471 4839 N.Branch 5F,No.460,Fu Shin North Rd.,Taipei,Taiwan S.Branch No.24,Sec.1,Chia Pu East Rd.,Taipao City,Chiayi Hsien,Taiwan

Welcome to BW tool world! We are an experienced tool maker specialized in cutting tools. We focus on what you need and endeavor to research the best cutter to satisfy users demand. Our customers involve wide range of industries, like mold & die, aerospace, electronic, machinery, etc. We are professional expert in cutting field. We would like to solve every problem from you. Please feel free to contact us, its our pleasure to serve for you. BW product including: cutting toolaerospace tool .HSS Cutting toolCarbide end millsCarbide cutting toolNAS Cutting toolCarbide end millAerospace cutting toolФрезерыCarbide drillHigh speed steelMilling cutterCVDD(Chemical Vapor Deposition Diamond )PCBN (Polycrystalline Cubic Boron Nitride) Core drillTapered end millsCVD Diamond Tools Inserts’PCD Edge-Beveling Cutter(Golden Finger’PCD V-Cutter’PCD Wood tools’PCD Cutting tools’PCD Circular Saw Blade’PVDD End Mills’diamond tool Single Crystal Diamond Metric end millsMiniature end millsСпециальные режущие инструменты Пустотелое сверло Pilot reamerFraisesFresas con mango PCD (Polycrystalline diamond) FreseElectronics cutterStep drillMetal cutting sawDouble margin drillGun barrelAngle milling cutterCarbide burrsCarbide tipped cutterChamfering toolIC card engraving cutterSide cutterNAS toolDIN toolSpecial toolMetal slitting sawsShell end millsSide and face milling cuttersSide chip clearance sawsLong end millsStub roughing end millsDovetail milling cuttersCarbide slot drillsCarbide torus cuttersAngel carbide end millsCarbide torus cuttersCarbide ball-nosed slot drillsMould cutterTool manufacturer.

Bewise Inc. www.tool-tool.com

BW специализируется в научных исследованиях и разработках, и снабжаем самым высокотехнологичным карбидовым материалом для поставки режущих / фрезеровочных инструментов для почвы, воздушного пространства и электронной индустрии. В нашу основную продукцию входит твердый карбид / быстрорежущая сталь, а также двигатели, микроэлектрические дрели, IC картонорезальные машины, фрезы для гравирования, режущие пилы, фрезеры-расширители, фрезеры-расширители с резцом, дрели, резаки форм для шлицевого вала / звездочки роликовой цепи, и специальные нано инструменты. Пожалуйста, посетите сайт www.tool-tool.com для получения большей информации.

BW is specialized in R&D and sourcing the most advanced carbide material with high-tech coating to supply cutting / milling tool for mould & die, aero space and electronic industry. Our main products include solid carbide / HSS end mills, micro electronic drill, IC card cutter, engraving cutter, shell end mills, cutting saw, reamer, thread reamer, leading drill, involute gear cutter for spur wheel, rack and worm milling cutter, thread milling cutter, form cutters for spline shaft/roller chain sprocket, and special tool, with nano grade. Please visit our web www.tool-tool.com for more info.

beeway 發表在 痞客邦 留言(0) 人氣()

Bewise Inc. www.tool-tool.com Reference source from the internet.

随 着聚晶立方氯化硼(PCBN)刀具的出现,以车代磨加工淬硬钢技术得到了长足的进步.切削加工可在热处理后进行,这样可以减小热处理变形对生产率及加工精 度的影响。由于PCBN刀具发展的历史较短.其使1D技术尚不完善。本文根据刀具寿命、切削温度、切削力和表面粗糙度试验结果,总结出使用PCBN刀具切 削高硬度all承钢的合理切削速度.同时考察了工件表面残余应力的分布。一、试验条件切削试验在普通车床C八6!40上进行.不加切削液。工件为淬硬至 HRC63的五根轴承钢棒料。试验采用美国通m电气公司生产的nzw-SI00牌vcnw7J)}.刀刃JLf"川度见下表。PCBN刀具的每次刃fh都 在J:具磨床EWAGBS-IZ上进行.刃摩后用320金刚石油石作钝化处理.钝圆半径为0.05mm。试验前要用XTL—I型体视显微镜检查刀刃有无缺 陷和裂纹等,以保证试验刀片的质显。农PCBN车刀的几何会效试验中测量了PCBN刀具的切削温度、后刀面磨损量和加工表面粗糙度,所使用的仪器相应为红 外线点温度计、工具显微镜及MODEL轮廓仪,并用X射线衍射仪测量了工件表面残余应力。二、试验结果和分析1.切削温度试验分析一般来说,切削淬硬钢比 切削软钢所消耗的能量多·转变成切削热的能量也多.PCBN刀具就是以切削淬硬钢时所产生的高热.不断地在切削区中极微小范围内对工件材料进行软比来切削 的。但是,如果切削速度选择偏高,严重的热磨损会降低刀具寿命。切削速度与切削温度的关系如图]所示,随着切削速度的提高,切削温度明显上升。本次试验所 测温度为切屑上表面温度,该值与前刀面最高温处可相差200C以上,因此,当[’>!40m/min时.前刀面最高温处将达到1000C,甚至更高。此时 PCBN的硬度比室温下硬质合金的硬度还低.聚晶体的结合强度亦有所下降.切削时间达3分钟时.负倒棱上就被磨出较深的月牙洼。月牙洼的出现使实际工作前 角增大.刀刃变得更加锋利(如图2所示),但是却降低了刀刃强度·从而影响]J其寿命。图1切削速度与切削温度的关系"F一0,Zmmj一0. (’smm/f图2刀具的前刀面磨损(二60)r一豆35*/mh…一u.*—m/一o08——/汗2.刀具寿命试验分析刀具寿命试验结果如图3所示。从 图中可以看出,**BN刀具寿命随着切削速度,的降低而提高,至。一50m/min时,刀具寿命高达三个多小时。实验中发现.PCBN刀具的后刀而磨损量 缓慢均匀地增加.正常磨损则很长。如图4所示,这一现象对生产实践十分有利,特别适宜自动化控制化生产。在此应该指出,本次试验所用的BZN-sl00是 美国通用电气公司研制的专门用于切削淬硬钢的PCBN刀片.先前的研究证明.国产的PCBN刀片没有这样高的耐磨性,其质量有待提高。图3刀具寿命曲线 a。=0.Zmmj=0.08mm/r田dPCllN刀具的耐磨曲线0,一0.Zmmf一0.08mm/r3.残余区应力试验分析用X射线衍射仪测量工件 表面残余压应力结果如图5所示。工件表面之所以存在残余图5工件残余压应力分布一90—/mln。,一0.2—m/一o.osmm/I压应力.一是因为 PCBN刀具负倒核强烈的挤压作用.造成工件表面残余压缩塑性变形;二是高切削温度使表层金属发生相变.#[l变形成的奥氏体体积小于奥氏体冷却后形成的 马氏体的体积,因而表层金属膨胀.但受里层金属牵制,结果使表层出现压应力。残余压应力有IJ)J于提高零部件的疲劳强度。4.表面粗糙度试验分析 PCBN刀具与钢的摩擦系数仅为0.l~0.2.又因为工件硬度越高.加工表面质量越好.所以用PCBN刀具切削高硬度GCrls轴承钢能得到良好的工件 表面al糙度。实验结果如图6所示。从图中可以看到.当切削jdi度大于68m/min时.表面BI糙度小于0.63pnl(US).即达到磨削效果。田 6切削速度与表面粗糙应的关系o,=0.Zmmf=0.08mm/r综上所述,利*PCBN刀具消车破度为H**63的轴承钢时.切削速度偏高.刀具寿命 因严重热磨损而降队;如切削速度较低.刀具寿命高.但切削效率低.表而粗糙度达不到阻求.故切削速度在70~120m/min的范围选择较为合适。ng、 结论1.切削速度选择过高.容易造成严重的热磨损。2.使用PCBN刀具精车高硬度轴承钢适宜的切削速度为80~120m/min。3.带负倒核和 PC33N刀具加工的工件表面残余应力为压应力。参考文献||1丁维军.张弘韬.PCBN刀具与硬质合金刀具切削淬硬钢的对比试验研究.超硬材料与工程, 1995(1)2周泽华主编.金属切削原理.上海科技出版社,19903吴湘拧.我国CBN刀具材料的现状及发展趋势.机械制造,1992(5)编辑:石 明PCBN刀具精车高硬度轴承钢的合理切削速度@丁维军,张弘韬,李享德,崔吉顺$大连理工大学聚晶立方氮化硼刀具,轴承钢,切削速度本文考察了切削速度 对PCBN刀具寿命、切削温度、切削力和工件表面粗糙度的影响,总结出PCBN刀具切削高硬度轴承钢时合理的切削速度使用范围。X射线衍射议的测量结果表 明,用PCBN刀具加工的工件表面存在残余压应力.1丁维军.张弘韬.PCBN刀具与硬质合金刀具切削淬硬钢的对比试验研究.超硬材料与工程,1995 (1)2周泽华主编.金属切削原理.我国CBN刀具材料的现状及发展趋势.机械制造,1992(5)氏体的体积,因而表层金属膨胀.但受里层金属牵制,结 果使表层出现压应力。残余压应力有IJ)J于提高零部件的疲劳强度。4.表面粗糙度试验分析PCBN刀具与钢的摩擦系数仅为0.l~0.2.又因为工件硬 度越高.加工表面质量越好.所以用PCBN刀具切削高硬度GCrls轴承钢能得到良好的工件表面al糙度。实验结果如图6所示。从图中可以看到.当切削 jdi度大于68m/min时.表面BI糙度小于0.63pnl(US).即达到磨削效果。田6切削速度与表面粗糙应的关系o,=0.Zmmf=0. 08mm/r综上所述,利*PCBN刀具消车破度为H**63的轴承钢时.切削速度偏高.刀具寿命因严重热磨损而降队;如切削速度较低.刀具寿命高.但切 削效率低.表而粗糙度达不到阻求.故切削速度在70~120m/min的范围选择较为合适。ng、结论1.切削速度选择过高.容易造成严重的热磨损。2. 使用PCBN刀具精车高硬度轴承钢适宜的切削速度为80~120m/min。3.带 负倒核和PC33N刀具加工的工件表面残余应力为压应力。

BW Bewise Inc. Willy Chen willy@tool-tool.com bw@tool-tool.com www.tool-tool.com skype:willy_chen_bw mobile:0937-618-190 Head &Administration Office No.13,Shiang Shang 2nd St., West Chiu Taichung,Taiwan 40356 TEL:+886 4 24710048 / FAX:+886 4 2471 4839 N.Branch 5F,No.460,Fu Shin North Rd.,Taipei,Taiwan S.Branch No.24,Sec.1,Chia Pu East Rd.,Taipao City,Chiayi Hsien,Taiwan

Welcome to BW tool world! We are an experienced tool maker specialized in cutting tools. We focus on what you need and endeavor to research the best cutter to satisfy users demand. Our customers involve wide range of industries, like mold & die, aerospace, electronic, machinery, etc. We are professional expert in cutting field. We would like to solve every problem from you. Please feel free to contact us, its our pleasure to serve for you. BW product including: cutting toolaerospace tool .HSS Cutting toolCarbide end millsCarbide cutting toolNAS Cutting toolCarbide end millAerospace cutting toolФрезерыCarbide drillHigh speed steelMilling cutterCVDD(Chemical Vapor Deposition Diamond )PCBN (Polycrystalline Cubic Boron Nitride) Core drillTapered end millsCVD Diamond Tools Inserts’PCD Edge-Beveling Cutter(Golden Finger’PCD V-Cutter’PCD Wood tools’PCD Cutting tools’PCD Circular Saw Blade’PVDD End Mills’diamond tool Single Crystal Diamond Metric end millsMiniature end millsСпециальные режущие инструменты Пустотелое сверло Pilot reamerFraisesFresas con mango PCD (Polycrystalline diamond) FreseElectronics cutterStep drillMetal cutting sawDouble margin drillGun barrelAngle milling cutterCarbide burrsCarbide tipped cutterChamfering toolIC card engraving cutterSide cutterNAS toolDIN toolSpecial toolMetal slitting sawsShell end millsSide and face milling cuttersSide chip clearance sawsLong end millsStub roughing end millsDovetail milling cuttersCarbide slot drillsCarbide torus cuttersAngel carbide end millsCarbide torus cuttersCarbide ball-nosed slot drillsMould cutterTool manufacturer.

Bewise Inc. www.tool-tool.com

BW специализируется в научных исследованиях и разработках, и снабжаем самым высокотехнологичным карбидовым материалом для поставки режущих / фрезеровочных инструментов для почвы, воздушного пространства и электронной индустрии. В нашу основную продукцию входит твердый карбид / быстрорежущая сталь, а также двигатели, микроэлектрические дрели, IC картонорезальные машины, фрезы для гравирования, режущие пилы, фрезеры-расширители, фрезеры-расширители с резцом, дрели, резаки форм для шлицевого вала / звездочки роликовой цепи, и специальные нано инструменты. Пожалуйста, посетите сайт www.tool-tool.com для получения большей информации.

BW is specialized in R&D and sourcing the most advanced carbide material with high-tech coating to supply cutting / milling tool for mould & die, aero space and electronic industry. Our main products include solid carbide / HSS end mills, micro electronic drill, IC card cutter, engraving cutter, shell end mills, cutting saw, reamer, thread reamer, leading drill, involute gear cutter for spur wheel, rack and worm milling cutter, thread milling cutter, form cutters for spline shaft/roller chain sprocket, and special tool, with nano grade. Please visit our web www.tool-tool.com for more info.

beeway 發表在 痞客邦 留言(0) 人氣()

Bewise Inc. www.tool-tool.com Reference source from the internet.

高 速切削 (High-speed Cutting)技术是国际上80年代初迅速发展起来的一项先进的 机械加工技术,它是在机床结构材料、刀具材料、机床设计制造技术、计算机控制技术、测量测试 技术等飞速发展的基础上,由机械加工自身的发展规律和需要产生并发展的。由于高速切削的特殊 规律 ̄[1]、[2],它具有切削速度高、进给速度大、加工效率高、加工成本低、加工精度高 等一系列优点,是一项极有前途的新技术。例如铸铁材料常用铣削速度为150~400m/mi n,而高速铣削速度可达750~4000m/min。目前国际上对高速铣削技术的研究正方兴 未艾,有关高速切削机理的研究正在不断进行,高速切削机床也不断推出。并在实际运用中产生了 巨大的经济效益。本文针对铸铁材料的高速铣削机理进行了一些分析研究。1铸铁材料的铣削变形 过程铸铁是一种脆性材料,在铣削过程中存在着较大的振动和冲击,而且加工表面也存在着一定的 缺陷。高速铣削铸铁的主要目的是,在提高切削效率的同时,大幅度地提高加工本项目为同济大学 和德国Darmstadt大学的合作研究课题,铸铁试件GG-25,GGG-40为德国提供 。表面质量。铸铁在切削加工时产生崩碎切屑 ̄[3].通过对切屑的电镜分析可知,崩碎切屑单 元之间在流过刀具前刀面之前就已经相互分离,如图1所示。图la表示一个新的切屑单元开始形 成,图lb表示经过切削路程l'后工件材料在刀具作用下挤压变形情况,图lc表示1个新生成 的切屑单元与工件材料分离并沿前刀面流出。因为铸铁材料内部本身有很多徽观的裂纹,当刀具切 入后,工件材料内部产生了很大的应力,如果切削速度很高,这些裂纹来不及增长,很快沿最大应 力方向剪切下来,也就是说裂纹不再象切削速度技低时经过正常的扩展后才被剪切或剥离下来,从 而使工件加工表面粗糙度降低。高速切削时,裂纹扩展方向剪切转角为由断裂力学的知识可得,假 设脆性材料的力学模型如图2所示,其中材料内部的裂纹深度为a,P、Q分别为切向力和法问力 ,K_Ⅰ、K_Ⅱ为应力强度因子,则裂纹扩展的转角中可用下式表示[5]在切削力试验中可以 测得P、Q然后根据上式(1)可求得剪切角。由此可以看出,值的大小与P和Q的比例有关,而 不是简单受某一方向力的影响。在高速切削状态下,切屑流经前刀面时会对刀具刃口产生很大的交 变载荷,切屑底面与前刀面的相对运动速度很高,并且有很大的摩擦挤压现象,因此刀屑接触区会 产生很高的热量,但是这一热量对剪切区的影响很小,它主要加剧切屑和前刀面的温升。这是因为 切削时剪切产生的裂纹增长速度很快,使切屑和工件之间几乎呈绝热状态。对剪切区而言,随着切 削速度的提高,切屑单元的动能大大增加,所以高速铣削状态下切屑仍然呈分离的崩碎状态。2  不同因素对刀具磨损的影响 ̄[4]高速铣削铸铁材料时,刀具的材料,刀具几何参数,切屑用量 等对刀具的使用性能有很大的影响,以下是通过试验分析了不同因素对刀具磨损的影响。2.1刀 具材料在选择铣削铸铁的刀具材料时,可根据铣削速度将刀具的材料分为两组,第一组为切削速度 低于1250m/min,第二组为1250~4000m/min。第一组中推荐使用硬质合金 和金属陶瓷,第二组中为Si_3N_4和CBN。在第一组中,无涂层的硬质合金铣削路程较短 ,无太大使用价值,故一般采用涂层硬质合金。金属陶瓷在速度低于750m/min时可以得到 较为满意的效果(如图3).Si_3N_4的切削速度范围可在510~2000m/min之 内,精铣时甚至可达到4000m/min(如图4)。使用CBN刀具铣削时的速度可达200 0m~4000m/min。2.2铣削用量从图3、图4中可以看出,随着铣削速度的提高,刀 具的磨损量增大。铣削试验表明,Si_3N_4刀具材料的磨损性能优于金属陶瓷,CBN又优 于Si_3N_4,当V=2000m/min,进给路程超过150m后,后刀面磨损带宽度V B还不到0.lmm。甚至有时经过经过很长的切削时间后刀面的磨损带宽度仍然保持不变。每齿 进给量的大小不仅影响刀具的寿命,同时还影响加工表面质量。一般来说,随着的增加,切削力增 大,进给路程缩短(如图5)。但是当太小时,因后刀面与已加工表面的挤压和划擦作用,刀具磨 损有可能更加严重。2.3刀具几何角度高速铣削铸铁时,后角对刀具的磨损影响很大,增大后角 可减小刀具后刀面的挤压摩擦,提高刀具的寿命。综合考虑强度和磨损因素,后角以不大于20 ̄ o为宜(如图6)。与传统的铣削加工相比,高速铣削铸铁时前角对刀具磨损的影响不大。当从变 化到+6 ̄o时,后刀面磨损带宽度变化量约为10%。2.4工作材料当刀具材料为硬质合金和 金属陶瓷时,工件材料的强度和种类对刀具磨损影响也很大,其中强度硬度较低的灰铸铁最易加工 。但是对Si_3N_4和CBN而言。工件材料的强度并不是直接影响刀具磨损的主要原因,而 其结晶组织影响很大。当工件材料中铁素体成份较多时,刀具磨损严重,这是因为在铁素体和刀具 材料之间产生的扩散磨损所造成的。3铣削表面质量在传统切削加工中,因铸铁材料的脆性使得在 切削时存在有较大的振动和冲击,影响加工表面质量;在高速切削时。随着铁削速度的提高和减少 每齿进给量则有利于获得较好的表面质量,并且在进给方向(纵向)上的表面粗糙度比横向小(如 图7)。4结论(1)高速铣削铸铁材料时,速度可选择在750~4000m/min范围内。 按照铣削速度由低到高的顺序排列,刀具的材料序次应是:涂层硬质合金、金属陶瓷、Si_3N _4和CBN,前2种适用于1250m/min以下的铣削。(2)刀具寿命的提高与合理选择 刀具几何角度、铣削用量、刀具材料等因素有关。(3)表面粗糙度R_α(轮廓算术平均偏差) 可达到1μm,这也是高速铣削的主要优点之一。

BW Bewise Inc. Willy Chen willy@tool-tool.com bw@tool-tool.com www.tool-tool.com skype:willy_chen_bw mobile:0937-618-190 Head &Administration Office No.13,Shiang Shang 2nd St., West Chiu Taichung,Taiwan 40356 TEL:+886 4 24710048 / FAX:+886 4 2471 4839 N.Branch 5F,No.460,Fu Shin North Rd.,Taipei,Taiwan S.Branch No.24,Sec.1,Chia Pu East Rd.,Taipao City,Chiayi Hsien,Taiwan

Welcome to BW tool world! We are an experienced tool maker specialized in cutting tools. We focus on what you need and endeavor to research the best cutter to satisfy users demand. Our customers involve wide range of industries, like mold & die, aerospace, electronic, machinery, etc. We are professional expert in cutting field. We would like to solve every problem from you. Please feel free to contact us, its our pleasure to serve for you. BW product including: cutting toolaerospace tool .HSS Cutting toolCarbide end millsCarbide cutting toolNAS Cutting toolCarbide end millAerospace cutting toolФрезерыCarbide drillHigh speed steelMilling cutterCVDD(Chemical Vapor Deposition Diamond )PCBN (Polycrystalline Cubic Boron Nitride) Core drillTapered end millsCVD Diamond Tools Inserts’PCD Edge-Beveling Cutter(Golden Finger’PCD V-Cutter’PCD Wood tools’PCD Cutting tools’PCD Circular Saw Blade’PVDD End Mills’diamond tool Single Crystal Diamond Metric end millsMiniature end millsСпециальные режущие инструменты Пустотелое сверло Pilot reamerFraisesFresas con mango PCD (Polycrystalline diamond) FreseElectronics cutterStep drillMetal cutting sawDouble margin drillGun barrelAngle milling cutterCarbide burrsCarbide tipped cutterChamfering toolIC card engraving cutterSide cutterNAS toolDIN toolSpecial toolMetal slitting sawsShell end millsSide and face milling cuttersSide chip clearance sawsLong end millsStub roughing end millsDovetail milling cuttersCarbide slot drillsCarbide torus cuttersAngel carbide end millsCarbide torus cuttersCarbide ball-nosed slot drillsMould cutterTool manufacturer.

Bewise Inc. www.tool-tool.com

BW специализируется в научных исследованиях и разработках, и снабжаем самым высокотехнологичным карбидовым материалом для поставки режущих / фрезеровочных инструментов для почвы, воздушного пространства и электронной индустрии. В нашу основную продукцию входит твердый карбид / быстрорежущая сталь, а также двигатели, микроэлектрические дрели, IC картонорезальные машины, фрезы для гравирования, режущие пилы, фрезеры-расширители, фрезеры-расширители с резцом, дрели, резаки форм для шлицевого вала / звездочки роликовой цепи, и специальные нано инструменты. Пожалуйста, посетите сайт www.tool-tool.com для получения большей информации.

BW is specialized in R&D and sourcing the most advanced carbide material with high-tech coating to supply cutting / milling tool for mould & die, aero space and electronic industry. Our main products include solid carbide / HSS end mills, micro electronic drill, IC card cutter, engraving cutter, shell end mills, cutting saw, reamer, thread reamer, leading drill, involute gear cutter for spur wheel, rack and worm milling cutter, thread milling cutter, form cutters for spline shaft/roller chain sprocket, and special tool, with nano grade. Please visit our web www.tool-tool.com for more info.

beeway 發表在 痞客邦 留言(0) 人氣()

Bewise Inc. www.tool-tool.com Reference source from the internet.

某 厂生产的增压器蜗轮系采用铸造 镍基高温合金K418加工而成。现行生产中,蜗轮轴部的车削采用YGS刀具,切削速度只有6 m/min,并且刀具刃磨一次只能加工两件,不仅生产效率低,而且加工质量也得不到保证。为 了改变现状,受工厂委托,我们选择了多种硬质合金、陶瓷刀具和美国GE公司生产的CBN复合 刀片,对K418进行了大量的切削试验,所得试验数据用于工厂生产,大大提高了生产效率,并 且降低了加工费用。二、工件材料与刀具材料的特性1·工件材料的特性切削试验所用工件材料为 直径D—80mm的铸态棒料,其主要成分和机械性能分别见表l~3。工件的表面硬度约为HR C37~41。由于K418材料含有大量的合金元素,可形成多种高硬度的碳化物,如TjC、 NbC等。据仪器分析,K418中大量细小而又弥散分布的金属间化合物Nj。AI使基体得到 强化。因此,K418既有很高的高温硬度,又具有很高的高温强度。另外,K418中Ni的含 量很高,而延伸率6特别小(这一点与变形高温合金相差甚远)。上述原因使得K418成为镍基 合金中较难加工的一种材料。2.刀具材料的特性根据加工镍基合金的经验以及K4]8的特点, 从解决生产实际问题的角度出发,选择了三种硬质合金刀具、三种陶瓷刀具和一种CBN刀具。硬 质合金刀具分别为株洲硬质合金厂生产的YDS.自贡硬质合金厂生产的YG类643、813, 实验中还与现行生产中采用的YGS刀具进行了对比。陶瓷刀具分别为清华大学生产的复合Si3 N;、上海硅酸盐研究所生产的SNC-255和Sialono限于条件,仅采用美国GE公司 生产的CBN复合刀具进行了粗略的切削试验。表4、表5分别是硬质合金与陶瓷刀具的物理机械 性能指标。.三、试验结果与讨论切削试验均在C6140车床上进行,该车床经改造可实现无级 调速。刀具磨损值由带有刻度的显微镜(最小读数0.0])上读取,磨损带形貌通过体视显微镜 观察。].硬质合金刀具磨损规律及特点硬质合金刀具均为机突式,刀片前面用金刚石砂轮在工具 磨床上精磨。刀片安装后,刀具角度为:yo—10”,ffe一8“,人—一4O,Kr一75 。,KrI一15”。磨钝标准取V。一0·3mm。图1所示的V—l。驼峰曲线可知,当切削 速度。分别为19.sin/min、16.sin/mjn、15m/min时,YD]5、8 13、643刀具有最大切削路程l。,分别为275m、26lin和185m。而做对比的Y GS刀具,当切削速度。一10m/min时,切削路程仅为40m。另外,YD]5、813刀 具在较宽的切削速度范围内(YDIS:16~ZIm/min;813:15~19m/min )都可保证刀具有较大的切削路程(lin>200m),这一点在切削加工中十分有利。图2是 刀具磨损曲线。由图可知,YG-8刀具磨损始终较快,而YD15、813、643三种刀具在 V。一0.]smm之前磨损较快,其后便进入正常磨损阶段。达到磨损标准V;;一0.3mm 时,磨损的增长仍很缓慢涸此,粗加工与半精加工时可将磨的标准订得高一些,刀具仍有潜力可挖 。从观察到的磨损带形貌看,YD15、813刀具基本为均匀磨损,刀尖区和边界磨损均不显著 ;643刀具有较明显的边界磨损,VN。1.SV。。其原因主要有两点:一是由于硬质合金刀 具切削速度低,切削温度相应也较低,磨损形式主要是硬质点磨损和粘结磨损;另外就是643刀 身的强度显著低于YDIS和813刀具。切削力的试验表明,YD15刀具的切削力比相同条件 下813刀具的切削力约小10%~25%。可以预见,YD15刀具切削温度较低,抗粘结磨损 和扩散磨损优于813刀具。YD15、813刀具的切削试验还表明,随着切削速度的提高,切 屑由C形屑逐渐过渡到短小的带状屑。因此,硬质合金刀具加工K418材料时,切削过程较陶瓷 刀具、CBN刀具平稳(形成崩碎屑),加工表面粗糙度也好于陶瓷刀具。2.陶瓷刀具的磨损规 律及特点装夹刀片的机夹刀杆刀槽角度为人—一8”、ac—8”、h—一扩、Kt一75”、K r’一15“。刀片负倒棱为0.IX20”,刀尖圆角半径,,一1.omm。图3是陶瓷刀具 大量切削试验中典型的磨损带形状。在图4所示的切削条件下,三种刀具的后面平均磨损厂。很小 ,而边界磨损尤其是I/IV;非常严重。分析认为,主切削刃上切削厚度大,切削温度高,对工 件材料起一定的软化作用,据文献介绍,[W处切削温度甚至高于V。处;负切削刃上切削厚度很 小,切削温度较低,已加工表面严重的加工硬化加剧了负切削刃的磨损。另外,由于K418的延 伸率6很小,而刀具又有负倒棱,所以形成崩碎切屑。切屑崩离机体时,切削力突然消失,致使切 削刃上应力突然下降。还由于切削过程中的振动等原因,使得负切削刃上VJV;处的切削深度总 在似有似无地变化着,也会引起应力突变。因此,对刀具十分不利。图5为SNC-255刀具边 界磨损与切削速度的关系。VN随切削速度的提高而减小,VN正好相反。由前面的分析知道,比 较边界磨损VJV和VIV;应主要考虑切削温度和应力突变。当切削速度提高后切削温度上升, 应力突变的频率也增加。主切削刃上切削厚度大,切削温度上升显著,对工件表层金属的软化起重 要作用;负切削刃上切削厚度很小,切削温度上升不大,应力突变频率增加是主要因素。边界磨损 过大会影响刀尖强度,VN;还直接影响加工表面质量。为了解决这一问题,实验中曾采用三角形 复合St。N。刀片(Kr一90”、Krl—30”、,。一0.smm),效果不甚理想,并 且由于刀尖强度低很容易崩刃。作者曾用手工的办法将倒棱切削刃改为半径,一0·l~0·Zm m的倒圆切削刃,有一定的效果。国外曾提出多种刀尖区几何形状,可显著减小边界磨损。但由于 陶瓷刀具刃磨困难,作者未作进一步的研究。综合考察加工铸造镍基合金的磨损情况,SNC-2 55刀具最优,复合Si3N.刀具最差。这一排列顺序与刀具断裂韧性排列顺序相符。因此,切 削铸造镍基合金,选择断裂韧性高的陶瓷刀具较为有利。3.CBN刀具的磨损规律及特点一CB N刀具所使用的机夹刀杆、刀片负倒棱和圆角半径均与陶瓷刀具相同。从图6的磨损曲线看,CB N刀具也存在边界磨损,但明显小于陶瓷刀具,这应归于CBN刀具有较高的强度和硬度。由于C BN刀具价格昂贵,应重新刃磨继续使用,所以切削加工中需控制边界磨损,使刀片易于重磨。实 验中,以I/N—0.4mm或[W;一0.4mm作为磨钝标准,不仅CBN刀具可多次重磨使 用,且由于VNI较小,加工表面质量也较为理想。一般而言,陶瓷刀具、CBN刀具切削加工应 利用其耐高温。抗氧化的优势。但切削塑性很小的K418一类的铸造合金,所形成的崩碎切屑极 易伤人。此外,为了保证较好的加工质量,也不易提高切削速度使得VIV;过快增长。这样;陶 瓷刀具、CBN刀具的优势就得不到发挥。经计算,加工单个零件的刀具费用高于YDIS刀具。 图6ChN刀具磨损曲线四、结论1.切削铸造镍基高温合金K418,应首选硬质合金刀具YD IS和813刀具,切削速度推荐为16~Zlm/min和15~1.9m/min。2.陶瓷 刀具和CBN刀具切削K418材料,影响刀具寿命的是边界磨损。提高切削速度,VN减小VN l增加,不利于改善加工表面质量。韧性高的刀具抗边界磨损能力强,选择刀具时应着重考虑。参 考文献||1肖虹,艾兴.晶须增韧陶瓷刀具切削镍基合金时的切削住能.

BW Bewise Inc. Willy Chen willy@tool-tool.com bw@tool-tool.com www.tool-tool.com skype:willy_chen_bw mobile:0937-618-190 Head &Administration Office No.13,Shiang Shang 2nd St., West Chiu Taichung,Taiwan 40356 TEL:+886 4 24710048 / FAX:+886 4 2471 4839 N.Branch 5F,No.460,Fu Shin North Rd.,Taipei,Taiwan S.Branch No.24,Sec.1,Chia Pu East Rd.,Taipao City,Chiayi Hsien,Taiwan

Welcome to BW tool world! We are an experienced tool maker specialized in cutting tools. We focus on what you need and endeavor to research the best cutter to satisfy users demand. Our customers involve wide range of industries, like mold & die, aerospace, electronic, machinery, etc. We are professional expert in cutting field. We would like to solve every problem from you. Please feel free to contact us, its our pleasure to serve for you. BW product including: cutting toolaerospace tool .HSS Cutting toolCarbide end millsCarbide cutting toolNAS Cutting toolCarbide end millAerospace cutting toolФрезерыCarbide drillHigh speed steelMilling cutterCVDD(Chemical Vapor Deposition Diamond )PCBN (Polycrystalline Cubic Boron Nitride) Core drillTapered end millsCVD Diamond Tools Inserts’PCD Edge-Beveling Cutter(Golden Finger’PCD V-Cutter’PCD Wood tools’PCD Cutting tools’PCD Circular Saw Blade’PVDD End Mills’diamond tool Single Crystal Diamond Metric end millsMiniature end millsСпециальные режущие инструменты Пустотелое сверло Pilot reamerFraisesFresas con mango PCD (Polycrystalline diamond) FreseElectronics cutterStep drillMetal cutting sawDouble margin drillGun barrelAngle milling cutterCarbide burrsCarbide tipped cutterChamfering toolIC card engraving cutterSide cutterNAS toolDIN toolSpecial toolMetal slitting sawsShell end millsSide and face milling cuttersSide chip clearance sawsLong end millsStub roughing end millsDovetail milling cuttersCarbide slot drillsCarbide torus cuttersAngel carbide end millsCarbide torus cuttersCarbide ball-nosed slot drillsMould cutterTool manufacturer.

Bewise Inc. www.tool-tool.com

BW специализируется в научных исследованиях и разработках, и снабжаем самым высокотехнологичным карбидовым материалом для поставки режущих / фрезеровочных инструментов для почвы, воздушного пространства и электронной индустрии. В нашу основную продукцию входит твердый карбид / быстрорежущая сталь, а также двигатели, микроэлектрические дрели, IC картонорезальные машины, фрезы для гравирования, режущие пилы, фрезеры-расширители, фрезеры-расширители с резцом, дрели, резаки форм для шлицевого вала / звездочки роликовой цепи, и специальные нано инструменты. Пожалуйста, посетите сайт www.tool-tool.com для получения большей информации.

BW is specialized in R&D and sourcing the most advanced carbide material with high-tech coating to supply cutting / milling tool for mould & die, aero space and electronic industry. Our main products include solid carbide / HSS end mills, micro electronic drill, IC card cutter, engraving cutter, shell end mills, cutting saw, reamer, thread reamer, leading drill, involute gear cutter for spur wheel, rack and worm milling cutter, thread milling cutter, form cutters for spline shaft/roller chain sprocket, and special tool, with nano grade. Please visit our web www.tool-tool.com for more info.

beeway 發表在 痞客邦 留言(0) 人氣()

Bewise Inc. www.tool-tool.com Reference source from the internet.

新 材料加工所用刀具的基本条件新材料具有许多优异 的性能,但从切削加工的角度来看,却有许多不 利于加工的因素。新材料大多属于难加工范畴,其加工特点是:①工具寿命短;②切削阻力大;③ 加工表面粗糙度差;①切屑处理性能不好。另外。新材料的加工较少属于大批量生产.因此,往往 不被工具厂家重视,不易找到十分合适的刀具材料。由于新材料的性能千差万别,对刀具很难有统 一的标准条件,综合各种新材料加工的情“对刀具的基本条件可归纳为:①工具材料的硬度必须较 高;②最好进行涂层处理;③切削刃应保持较高的强度;④刃倾角较大。下面介绍几种日益受到重 视的新村料的切削加工情况。(l)高强度钢用CBN刀具可加工IIRC60以上的淬火钢,但 CBN刀具仅限于车削和端面铣削加工。最近国外有几家公司开发出可供给7MPa以上高压切削 液的加工中心.可对淬火钢进行立铣和钻孔加工。高速钢涂层刀具可加工HRC52的高强度钢, 硬质合金涂层刀具可加IHRC60以上的高强度钢。(2)ADI这是一种经等温淬火回火处理 的球墨铸铁,硬度为HB300~400,可加工性极差,切削特性与高锰钢有些类似。车削加工 宜用陶瓷刀具,钻削和铣削加工则可选用硬质合金和涂层高速钢刀具。(3)镁合金由于重量很轻 ,在一些领域正逐渐取代铝合金。在切削加工中,切屑薄而长,且易燃,铣削时易堵屑。钻削加工 时,钻头的倒锥应大一些;精加工时可采用倾斜切削法,加工表面粗糙度可达Rmaxlpm。( 4)复合材料这是指纤维和基体材料互相掺合的材料,大体有三种,即玻璃纤维、碳纤维和短纤维 ,由它们组合而成的材料分别为GFRP、CFRP和AFRP。这类材料加工时,刀具磨损严重 ,最好使用金刚石烧结体刀具和超细颗粒硬质合金刀具.其中立铣刀由于形状复杂,一般均选用硬质合金材料。

BW Bewise Inc. Willy Chen willy@tool-tool.com bw@tool-tool.com www.tool-tool.com skype:willy_chen_bw mobile:0937-618-190 Head &Administration Office No.13,Shiang Shang 2nd St., West Chiu Taichung,Taiwan 40356 TEL:+886 4 24710048 / FAX:+886 4 2471 4839 N.Branch 5F,No.460,Fu Shin North Rd.,Taipei,Taiwan S.Branch No.24,Sec.1,Chia Pu East Rd.,Taipao City,Chiayi Hsien,Taiwan

Welcome to BW tool world! We are an experienced tool maker specialized in cutting tools. We focus on what you need and endeavor to research the best cutter to satisfy users demand. Our customers involve wide range of industries, like mold & die, aerospace, electronic, machinery, etc. We are professional expert in cutting field. We would like to solve every problem from you. Please feel free to contact us, its our pleasure to serve for you. BW product including: cutting toolaerospace tool .HSS Cutting toolCarbide end millsCarbide cutting toolNAS Cutting toolCarbide end millAerospace cutting toolФрезерыCarbide drillHigh speed steelMilling cutterCVDD(Chemical Vapor Deposition Diamond )PCBN (Polycrystalline Cubic Boron Nitride) Core drillTapered end millsCVD Diamond Tools Inserts’PCD Edge-Beveling Cutter(Golden Finger’PCD V-Cutter’PCD Wood tools’PCD Cutting tools’PCD Circular Saw Blade’PVDD End Mills’diamond tool Single Crystal Diamond Metric end millsMiniature end millsСпециальные режущие инструменты Пустотелое сверло Pilot reamerFraisesFresas con mango PCD (Polycrystalline diamond) FreseElectronics cutterStep drillMetal cutting sawDouble margin drillGun barrelAngle milling cutterCarbide burrsCarbide tipped cutterChamfering toolIC card engraving cutterSide cutterNAS toolDIN toolSpecial toolMetal slitting sawsShell end millsSide and face milling cuttersSide chip clearance sawsLong end millsStub roughing end millsDovetail milling cuttersCarbide slot drillsCarbide torus cuttersAngel carbide end millsCarbide torus cuttersCarbide ball-nosed slot drillsMould cutterTool manufacturer.

Bewise Inc. www.tool-tool.com

BW специализируется в научных исследованиях и разработках, и снабжаем самым высокотехнологичным карбидовым материалом для поставки режущих / фрезеровочных инструментов для почвы, воздушного пространства и электронной индустрии. В нашу основную продукцию входит твердый карбид / быстрорежущая сталь, а также двигатели, микроэлектрические дрели, IC картонорезальные машины, фрезы для гравирования, режущие пилы, фрезеры-расширители, фрезеры-расширители с резцом, дрели, резаки форм для шлицевого вала / звездочки роликовой цепи, и специальные нано инструменты. Пожалуйста, посетите сайт www.tool-tool.com для получения большей информации.

BW is specialized in R&D and sourcing the most advanced carbide material with high-tech coating to supply cutting / milling tool for mould & die, aero space and electronic industry. Our main products include solid carbide / HSS end mills, micro electronic drill, IC card cutter, engraving cutter, shell end mills, cutting saw, reamer, thread reamer, leading drill, involute gear cutter for spur wheel, rack and worm milling cutter, thread milling cutter, form cutters for spline shaft/roller chain sprocket, and special tool, with nano grade. Please visit our web www.tool-tool.com for more info.

beeway 發表在 痞客邦 留言(0) 人氣()

Bewise Inc. www.tool-tool.com Reference source from the internet.

用 高速钢、硬质合金车刀车削镍基合金(例由于在切 削中积屑瘤会受到切屑的挤压或如Incone l718、H。telloys和W。OPaloy等),钻基相互碰撞产生剥落现象滩g将切削 刃上的碳化合金(例如Stelljte和Mar-M302等)和铁基合物剥落掉)。这种初始 剥落所致的破损扩展到切金(例如incolov、A-286和Greek、Ascolovs )等奥削刃的前面形成月牙洼和扩展到切削刃的后面“氏体高温合金是切削领域中的最大难题之一 。处形成“吃刀深度”上的缺口。这种缺口会在车这是因为含有铝、钛、钢等丫相形成元素和铝、 削表面形成严重的凹凸不平的粗糙波纹。若这钨等强化元素的宇航用高温合金具有高、低温种缺口 继续沿刀具切削刃后面扩展下去,缺口强度高、韧性好、导热性差等特点,车削时产生的深度加深 ,使刀具的破损加剧,造成刀具崩很大的切削力,使切削温度升高,即使在低切削刃,最终导致切 削中止。速度下也能产生高达650C的切削温度。切削经切削实践证明,通过采取圆形刀片或大 温度高一方面会加快刀具磨损,例如产生月牙圆弧刀片进行车削,可以使造成切削刃缺口的洼磨损 等,降低了刀具强度,另一方面又加快了切削力由大圆弧接触面的切削刃承受,使单位工件材料的 铝、钛元素和刀具材料中的碳,氮元面积上的作用力(即压应力)大大减小。因而,根素之间的化 学反应(其中工件中的铝、钛元素被据不同零件的加工,选择不同半径的大圆弧刀碳、氮元素置换 ),使工件和刀具在高温高压作片是非常关键的一环。正确的大圆弧刀片可以用下密切接触、产生 压力粘附现象,加上加工时大大减小缺口的深度,但不能完全克服。要从根产生的加工硬化作用, 致使切屑下面形成塑性本上解决这个问题,只有选择高强度、耐高温的流动的分离片粘接在前面上 ,而且越积越多,形先进刀具材料,而且还必须与切削用量、机床、成积屑瘤。积屑瘤越积越大, 给刀具形成潜在的加工状态(热处理硬度)等条件相配合。破坏威胁,若不及时消除,则会造成切 削刃破表1是根据工件材料、机床(刚性)、加工状损。一般材料车削中的积屑瘤可通过提高切削 态、切削用量等选择先进刀具材料的推荐意见。速度加以抑制。但对高温合金来说,当切削速度表 2为选用涂层硬质合金、纤维增强陶瓷和提高使切削温度升高,更会加快工件材料与刀CBN刀具 车削各种高温合金应选择的切削用具材料之间的化学反应,更会加快形成更为严量推荐值。重的压 力粘附,形成更大的积屑瘤。另一观点认除此之外,研究人员最近还研制出一种将为,切削速度的 提高,积屑瘤可以消除。但在刀氮化碳(CN)涂层涂覆在硬质合金、Si3N;以及纤具/工件 界面上的流变层会产生更高的切削温维增强陶瓷刀具表面上的新型刀具材料,进一度,这时的温度 (可能大大超过1000C)足以步提高了刀具的切削性能,取代了川。O3(脆性使分散在高温 合金中的铝、钛、锡等丫相溶解。大)和&纤维增强陶瓷刀具(SIC纤维对身体但这时的高温合 金仍具有很高的强度和很高的有害)以及CBN刀具(成本高)。同时还研究出压应力,这就使刀 具在剪切和高温时的压应力喷射高压冷却液至切削区的加工方法,以降低作用下,引起切削力增大 ,加速刀具磨据。因此,切削温度,减弱工件材料与刀具材料间的化学在实际切削中,还不能用提 高切削速度的方法反应,据称这可提高刀具使用寿命10倍以上。来消除积屑瘤,只能适当将切削 速度控制在一预计在不久的将来,这方面的研究还会有新的定范围内,让积屑瘤继续存在。突破和 进展。表1刀具材料的选择表2切削速度的选择(m/min)—”“‘一ldk#talN瓷、 effiffiRg&CFE1993(2)27~32(薛儒编译才利校)编辑:笑洋高温合金 的车削加工<正>用高速钢、硬质合金车刀车削镍基合金(例如Inconel718、Hast elloys和Waspaloy等),钴基合金(例如Stellite和Mar-M302等 )和铁基合金(例如incoloy、A-286和Greek、Ascoloys)等奥氏体高温合金是切削领域中的最大难题之一。

BW Bewise Inc. Willy Chen willy@tool-tool.com bw@tool-tool.com www.tool-tool.com skype:willy_chen_bw mobile:0937-618-190 Head &Administration Office No.13,Shiang Shang 2nd St., West Chiu Taichung,Taiwan 40356 TEL:+886 4 24710048 / FAX:+886 4 2471 4839 N.Branch 5F,No.460,Fu Shin North Rd.,Taipei,Taiwan S.Branch No.24,Sec.1,Chia Pu East Rd.,Taipao City,Chiayi Hsien,Taiwan

Welcome to BW tool world! We are an experienced tool maker specialized in cutting tools. We focus on what you need and endeavor to research the best cutter to satisfy users demand. Our customers involve wide range of industries, like mold & die, aerospace, electronic, machinery, etc. We are professional expert in cutting field. We would like to solve every problem from you. Please feel free to contact us, its our pleasure to serve for you. BW product including: cutting toolaerospace tool .HSS Cutting toolCarbide end millsCarbide cutting toolNAS Cutting toolCarbide end millAerospace cutting toolФрезерыCarbide drillHigh speed steelMilling cutterCVDD(Chemical Vapor Deposition Diamond )PCBN (Polycrystalline Cubic Boron Nitride) Core drillTapered end millsCVD Diamond Tools Inserts’PCD Edge-Beveling Cutter(Golden Finger’PCD V-Cutter’PCD Wood tools’PCD Cutting tools’PCD Circular Saw Blade’PVDD End Mills’diamond tool Single Crystal Diamond Metric end millsMiniature end millsСпециальные режущие инструменты Пустотелое сверло Pilot reamerFraisesFresas con mango PCD (Polycrystalline diamond) FreseElectronics cutterStep drillMetal cutting sawDouble margin drillGun barrelAngle milling cutterCarbide burrsCarbide tipped cutterChamfering toolIC card engraving cutterSide cutterNAS toolDIN toolSpecial toolMetal slitting sawsShell end millsSide and face milling cuttersSide chip clearance sawsLong end millsStub roughing end millsDovetail milling cuttersCarbide slot drillsCarbide torus cuttersAngel carbide end millsCarbide torus cuttersCarbide ball-nosed slot drillsMould cutterTool manufacturer.

Bewise Inc. www.tool-tool.com

BW специализируется в научных исследованиях и разработках, и снабжаем самым высокотехнологичным карбидовым материалом для поставки режущих / фрезеровочных инструментов для почвы, воздушного пространства и электронной индустрии. В нашу основную продукцию входит твердый карбид / быстрорежущая сталь, а также двигатели, микроэлектрические дрели, IC картонорезальные машины, фрезы для гравирования, режущие пилы, фрезеры-расширители, фрезеры-расширители с резцом, дрели, резаки форм для шлицевого вала / звездочки роликовой цепи, и специальные нано инструменты. Пожалуйста, посетите сайт www.tool-tool.com для получения большей информации.

BW is specialized in R&D and sourcing the most advanced carbide material with high-tech coating to supply cutting / milling tool for mould & die, aero space and electronic industry. Our main products include solid carbide / HSS end mills, micro electronic drill, IC card cutter, engraving cutter, shell end mills, cutting saw, reamer, thread reamer, leading drill, involute gear cutter for spur wheel, rack and worm milling cutter, thread milling cutter, form cutters for spline shaft/roller chain sprocket, and special tool, with nano grade. Please visit our web www.tool-tool.com for more info.

beeway 發表在 痞客邦 留言(0) 人氣()

Bewise Inc. www.tool-tool.com Reference source from the internet.

切削液由於有冷卻、潤滑、清洗和防銹等功能,被廣泛地應用在切削加工中。切削液在使用中經常出現變質發臭腐蝕產生泡沫、使用操作者皮膚過敏等問題,下面結合我們工作中的實際經驗,談談切削液使用中的問題及其對策。

切削油變質發臭的問題

切削液變質發臭的主要原因是:切削液中含有大量細菌,切削液中的細菌主要有耗氧菌和厭氧菌。耗氧菌生活在有礦物質的環境中,如水、切削液的濃縮液和機床漏出的油中,在有氧條件下,每 2030min分裂為二。而厭氧菌生存在沒有氧氣的環境中,每小時分裂為二,代謝釋放出SO2,有臭雞蛋味,切削液變黑。當切削液中的細菌大於106時,切削液就會變臭。

(1) 細菌主要通過以下管道進入到切削液中: 

1)配製過程中有細菌侵入,如配製切削液的水中有細菌。

2)空氣中的細菌進入切削液。

3)工件工序間的轉運造成切削液的感染。

4)操作者的不良習慣,如亂丟髒東西。

5)機床及工作場所的清潔度差。

(2)控制細菌生長的方法

1)使用高品質、穩定性好的切削液。

2)用乾淨的水配製濃縮液,不但配製容易,而且可改善切削液的潤滑性,且減少被切屑帶走的量,並能防止細菌侵蝕。

3)使用時,要控制切削液中濃縮液的比率不能過低,否則易使細菌生長。

4)由於機床所用油中含有細菌喜愛的食物,所以要盡可能減少機床漏出的油混入切削液。

5)切削液的pH值在8.39.2時,細菌難以生存,所以應及時加入新的切削液,提高pH值。

6)保持切削液的清潔,不要使切削液與汙油、食物、煙草等汙物接觸。

7)經常使用殺菌劑。

8)保持工作場所和機床的清潔。

9)設備如果沒有過濾裝置,應定期撇除浮油,清除汙物。

切削液的腐蝕問題

(1)產生腐蝕的原因

1)切削液中濃縮液所占的比例偏低。

2)切削液的pH值過高或過低。例如PH9.2時,對鋁有腐蝕作用。所以應根據金屬材料選擇合適的pH值。

3)不相似的金屬材料接觸。

4)用紙或木頭墊放工件。

5)零部件疊放。

6)切削液中細菌的數量超標。

7)工作環境的濕度太高。

(2)防治腐蝕的方法

1)用純水配製切削液,並且切削液的比例應按所用切削液說明書中的推薦值使用。

2)在需要的情況下,要使用防銹液。

3)控制細菌的數量,避免細菌的產生。

4)檢查濕度,注意控制工作環境的濕度在合適的範圍內。

5)要避免切削液受到污染。

6)要避免不相似的材料接觸,如鋁和鋼、鑄鐵(含鎂)和銅等。

產生泡沫的問題

在使用切削液時,有時切削液表面會產生大量泡沫。

(1)產生泡沫的主要原因

1)切削液的液面太低。

2)切削液的流速太快,氣泡沒有時間溢出,越積越多,導致大量泡沫產生。

3)水槽設計中直角太多,或切削液的噴嘴角度太直。

(2)避免產生泡沫的方法

1)在集中冷卻系統中,管路分級串聯,離冷卻箱近的管路壓力應低一些。

2)保證切削液的液面不要太低,及時檢查液面高度,及時添加切削液。

3)控制切削液流速不要太快。

4)在設計水槽時,應注意水槽直角不要太多。

5)在使用切削液時應注意切削液噴嘴角度不要太直。

操作者皮膚過敏的問題

(1)產生操作者皮膚過敏的主要原因

1pH值太高。

2)切削液的成分。

3)不溶的金屬及機床使用的油料。

4)濃縮液使用配比過高。

5)切削液表面的保護性懸浮層,如氣味封閉層、防泡沫層。殺菌劑及不乾淨的切削液。

(2)在工作中,為了避免操作者皮膚過敏,應該注意以下幾點

1)操作者應塗保護油,穿工作服,帶手套,應注意避免皮膚與切削液直接接觸。

2)切削液中濃縮液比例一定要按照切削液的推薦值使用。

3)使用殺菌劑要按說明書中的劑量使用。

還有,一般橡膠易受切削液影響而變形,氟橡膠則較不易受影響,在用作機床密封件時,可優先考慮。為了防止變形,機床密封件所用橡膠含脂量一般應大於35%。另外,為了有效防止切削液引起機床油漆脫落,可選擇環氧樹脂漆或聚酯漆。

總之,在正常生產中使用切削液,如果能注意以上問題,可以避免不必要的經濟損失,有效地提高生產效率。


BW Bewise Inc. Willy Chen willy@tool-tool.com bw@tool-tool.com www.tool-tool.com skype:willy_chen_bw mobile:0937-618-190 Head &Administration Office No.13,Shiang Shang 2nd St., West Chiu Taichung,Taiwan 40356 TEL:+886 4 24710048 / FAX:+886 4 2471 4839 N.Branch 5F,No.460,Fu Shin North Rd.,Taipei,Taiwan S.Branch No.24,Sec.1,Chia Pu East Rd.,Taipao City,Chiayi Hsien,Taiwan

Welcome to BW tool world! We are an experienced tool maker specialized in cutting tools. We focus on what you need and endeavor to research the best cutter to satisfy users demand. Our customers involve wide range of industries, like mold & die, aerospace, electronic, machinery, etc. We are professional expert in cutting field. We would like to solve every problem from you. Please feel free to contact us, its our pleasure to serve for you. BW product including: cutting toolaerospace tool .HSS Cutting toolCarbide end millsCarbide cutting toolNAS Cutting toolCarbide end millAerospace cutting toolФрезерыCarbide drillHigh speed steelMilling cutterCVDD(Chemical Vapor Deposition Diamond )PCBN (Polycrystalline Cubic Boron Nitride) Core drillTapered end millsCVD Diamond Tools Inserts’PCD Edge-Beveling Cutter(Golden Finger’PCD V-Cutter’PCD Wood tools’PCD Cutting tools’PCD Circular Saw Blade’PVDD End Mills’diamond tool Single Crystal Diamond Metric end millsMiniature end millsСпециальные режущие инструменты Пустотелое сверло Pilot reamerFraisesFresas con mango PCD (Polycrystalline diamond) FreseElectronics cutterStep drillMetal cutting sawDouble margin drillGun barrelAngle milling cutterCarbide burrsCarbide tipped cutterChamfering toolIC card engraving cutterSide cutterNAS toolDIN toolSpecial toolMetal slitting sawsShell end millsSide and face milling cuttersSide chip clearance sawsLong end millsStub roughing end millsDovetail milling cuttersCarbide slot drillsCarbide torus cuttersAngel carbide end millsCarbide torus cuttersCarbide ball-nosed slot drillsMould cutterTool manufacturer.

Bewise Inc. www.tool-tool.com

BW специализируется в научных исследованиях и разработках, и снабжаем самым высокотехнологичным карбидовым материалом для поставки режущих / фрезеровочных инструментов для почвы, воздушного пространства и электронной индустрии. В нашу основную продукцию входит твердый карбид / быстрорежущая сталь, а также двигатели, микроэлектрические дрели, IC картонорезальные машины, фрезы для гравирования, режущие пилы, фрезеры-расширители, фрезеры-расширители с резцом, дрели, резаки форм для шлицевого вала / звездочки роликовой цепи, и специальные нано инструменты. Пожалуйста, посетите сайт www.tool-tool.com для получения большей информации.

BW is specialized in R&D and sourcing the most advanced carbide material with high-tech coating to supply cutting / milling tool for mould & die, aero space and electronic industry. Our main products include solid carbide / HSS end mills, micro electronic drill, IC card cutter, engraving cutter, shell end mills, cutting saw, reamer, thread reamer, leading drill, involute gear cutter for spur wheel, rack and worm milling cutter, thread milling cutter, form cutters for spline shaft/roller chain sprocket, and special tool, with nano grade. Please visit our web www.tool-tool.com for more info.

beeway 發表在 痞客邦 留言(0) 人氣()

Bewise Inc. www.tool-tool.com Reference source from the internet.

在德國、北歐,不使用切削油的切削加工方法作為當前主要課題進行研究。對於切削油產生的污染逐年嚴格要求,此外所有與切削油廢液處理有關的成本費用都在上升。

在切削油中,為了提高切削性而加入各種高壓添加劑,其中也有氯系高壓添加劑。在焚燒切削油的廢液時,會產生劇毒性、致癌性、畸形性的二氧環己烷。因此,迫切要求切削油的非氯化。在德國和北歐、較早以前就已禁止使用氯系高壓添加劑。

其 次,必須加強切削油的管理。對於飲用水大多取自地下水的歐洲來說,切削油廢液的排放,就直接影響飲用水的污染。因此,不僅禁止切削油廢液的隨意排放,就連 切削油灑落在機床外部也是不許可的。使用後的切削油廢液的管理及其限制也必須嚴格執行。減少切削油廢液的方式就顯得很有必要。在德國,要從切削油廢液中除 去油渣(污泥),進行切削油的回收再迴圈使用相當普遍。

這些為保護環境而加強的規定,使得切削油的設備、管理、廢液處理等的總成本費用上升,因而直接促使生產加工費用的上升。據說在德國與切削油有關連的費用已上升至生產加工費用的1530%

因此,在歐洲,乾式加工用的刀具和刀具塗料的開發、新的切削油的開發等在加緊進行之中。在日本,明治大學橫川教授研究的把零下30℃的冷風吹到加工點上進行乾式切削加工的方法已取得了成果。 雖 然可以期望在將來使用完全乾式切削加工,但是要完全乾式切削,則在刀具壽命、加工精度、表面光潔度等方面,還有許多必須克服的問題,所以可以預料,根據當 前的現狀而轉換使用不影響環境的切削油。特別是,重新評價在過去使用大量切削油的方法,研究切削油的適量化、微量化以及給油定點化等。

微量油霧式切削加工“MQL”方法

最適合微量油霧式切削加工系統是MQLS微滴油霧方法。MQLS微 滴油霧方法,是通過切削油的微量化和供給油的定點化來進行半乾式切削加工。是把最少量的高潤滑切削油噴塗到刀刃上進行切削加工的系統。通過具有高潤滑性的 切削油和正確供給最少量切削油的給油裝置的組合,就構成半乾式切削加工。本來,這種加工方法是美國的航空工業為難切削材料的加工而開發出來的方法。

MQLS微油霧切削油方法的特徵有以下幾點:

1、 利用專用的給油裝置,把微量的切削油噴成油霧而塗布到刀刃上。切削油消耗量為210ml/小時,近似於乾式切削加工就變成為可能。另外,因為沒有大量的切削油,使工作環境得到改善。由於切屑是乾燥的,質量輕的鋁切屑很容易收集。

2、 由於切削油的使用量非常少,所以無火災之虞。

3、 切削油的消耗量極少,而且完全消耗掉,所以與切削油的濃度管理、防止腐敗管理、廢液處理等有關的費用可降至很低。

4、 因為使用切削油很少,粘附到工件上的切削油也相應減少,使工件的清洗和抽樣也可以簡易化。

5、 MQLS方法切削油的成份是以植物油為基料,無公害、無毒性、沒有變態反應性,是對人體安全的切削油。

6、 由於是植物性油,有生物分解性,即使排放到周圍環境中也會分解。

7、 由於高潤滑性,控制刀刃產生的熱量、可以延長刀具壽命。

利用油霧供應微量切削油方式

為使半乾式切削方法發揮更大效果,另外,還配有專用的給油裝置。

內部給油和外部給油的機器設備

內部給油 外部給油

主軸單元加工中心 專用機床

心軸單元加工中心 圓鋸切斷機

CNC車床 帶鋸機

帶中央給油功能的專用機床 衝床

通用銑床

通用車床

鏜床

為了最佳的效果,要把切削油供給到刀刃處,而內部給油是最好的方法。油霧是專門為微油霧切削油而開發的內部給油裝置。

MQLS油霧增壓器產生出微粒子的油霧,不但幾乎不會粘附到配管內,而且對高速主軸(轉速可達20,000r/min)進行油霧給油是可能的,另外,回應時間完全與空氣的到達相同,對於大部份的配管,油霧在1秒以內就到達刀刃處。油霧是由泵產生,所以油霧濃度和油霧量都可以控制。另外,在深孔加工方面,為了排出切屑而需要高氣壓空氣時,由於使用增壓器增壓的空氣,所以可加工比以前更深的孔。

外部給油裝置

在外部給油的場合,使用MQLS給油機。MQLS給油機也是專門為切削油而設計的,它內有高精度泵,用來把空氣和切削油送入到噴嘴內。與油杯型油霧給油機不同,其空氣量和切削油量可以分別調整。每個噴嘴切削油的消耗量為48ml/h,這是非常微量的,是從噴嘴的前端看不見切削油噴出那種程度的微量。MQLS型給油機與油霧增壓器相反,它使油霧的粒子增多。在外部給油時,由於從刀具的外部給油,在回轉尠的刀具周圍會產生氣流。高流量的油霧粒子要突破氣流才能到達刀刃處。另外,由於油霧粒子增多了,所以溫度降低油煙減少了,不必擔心會損害工作環境。

對外部給油方式有一些限制,加工中心的自動換刀或許會對噴嘴有幹擾,對於CNC車床也是不能適用的。另外,在用鑽頭和鉸刀的孔加工方面,要從外部向加工點送入油霧很困難。但是,利用內部給油方式的油霧增壓器大體上可以解決這些問題。

切削油的選用

切削油是合成植物性切削油,對人體是安全的,由於具有生物分解性,所以是有助於保持良好環境的切削油。因為具有非常高的潤滑性,微量使用切削油就能發揮效果。

降低切削油的費用

使用切削油,可大幅度地降低費用。

通常,在比較切削油成本時往往只是比較切削油的價格。但是,必需是進一步考慮與整個切削油有關的總費用。費用應包括:機床的切削油罐、迴圈設備或者高壓冷卻器等的設備費用;切削油的費用;防腐敗管理、濃度管理、篩檢程式的費用;切削油廢油處理費用或回收再迴圈的費用等。

在使用切削油的場合,可削減成本的是以下項目:切削油價格,另外,由於是高潤滑油,雖然價格高於石油系切削油,但是使用量只是微量。

與傳統油性切削油回收設備比較,給油裝置的初置成本是很小的; 不需要考慮水性切削油的防腐敗、濃度管理;由於切削油的消耗量很少,洗淨和抽樣都可以簡易化。 由於切屑的乾燥,使收集、處理或再熔煉都變得容易。


BW Bewise Inc. Willy Chen willy@tool-tool.com bw@tool-tool.com www.tool-tool.com skype:willy_chen_bw mobile:0937-618-190 Head &Administration Office No.13,Shiang Shang 2nd St., West Chiu Taichung,Taiwan 40356 TEL:+886 4 24710048 / FAX:+886 4 2471 4839 N.Branch 5F,No.460,Fu Shin North Rd.,Taipei,Taiwan S.Branch No.24,Sec.1,Chia Pu East Rd.,Taipao City,Chiayi Hsien,Taiwan

Welcome to BW tool world! We are an experienced tool maker specialized in cutting tools. We focus on what you need and endeavor to research the best cutter to satisfy users demand. Our customers involve wide range of industries, like mold & die, aerospace, electronic, machinery, etc. We are professional expert in cutting field. We would like to solve every problem from you. Please feel free to contact us, its our pleasure to serve for you. BW product including: cutting toolaerospace tool .HSS Cutting toolCarbide end millsCarbide cutting toolNAS Cutting toolCarbide end millAerospace cutting toolФрезерыCarbide drillHigh speed steelMilling cutterCVDD(Chemical Vapor Deposition Diamond )PCBN (Polycrystalline Cubic Boron Nitride) Core drillTapered end millsCVD Diamond Tools Inserts’PCD Edge-Beveling Cutter(Golden Finger’PCD V-Cutter’PCD Wood tools’PCD Cutting tools’PCD Circular Saw Blade’PVDD End Mills’diamond tool Single Crystal Diamond Metric end millsMiniature end millsСпециальные режущие инструменты Пустотелое сверло Pilot reamerFraisesFresas con mango PCD (Polycrystalline diamond) FreseElectronics cutterStep drillMetal cutting sawDouble margin drillGun barrelAngle milling cutterCarbide burrsCarbide tipped cutterChamfering toolIC card engraving cutterSide cutterNAS toolDIN toolSpecial toolMetal slitting sawsShell end millsSide and face milling cuttersSide chip clearance sawsLong end millsStub roughing end millsDovetail milling cuttersCarbide slot drillsCarbide torus cuttersAngel carbide end millsCarbide torus cuttersCarbide ball-nosed slot drillsMould cutterTool manufacturer.

Bewise Inc. www.tool-tool.com

BW специализируется в научных исследованиях и разработках, и снабжаем самым высокотехнологичным карбидовым материалом для поставки режущих / фрезеровочных инструментов для почвы, воздушного пространства и электронной индустрии. В нашу основную продукцию входит твердый карбид / быстрорежущая сталь, а также двигатели, микроэлектрические дрели, IC картонорезальные машины, фрезы для гравирования, режущие пилы, фрезеры-расширители, фрезеры-расширители с резцом, дрели, резаки форм для шлицевого вала / звездочки роликовой цепи, и специальные нано инструменты. Пожалуйста, посетите сайт www.tool-tool.com для получения большей информации.

BW is specialized in R&D and sourcing the most advanced carbide material with high-tech coating to supply cutting / milling tool for mould & die, aero space and electronic industry. Our main products include solid carbide / HSS end mills, micro electronic drill, IC card cutter, engraving cutter, shell end mills, cutting saw, reamer, thread reamer, leading drill, involute gear cutter for spur wheel, rack and worm milling cutter, thread milling cutter, form cutters for spline shaft/roller chain sprocket, and special tool, with nano grade. Please visit our web www.tool-tool.com for more info.

beeway 發表在 痞客邦 留言(0) 人氣()

Bewise Inc. www.tool-tool.com Reference source from the internet.

壓 縮機是用來提高氣體壓力和輸送氣體的機械。從能量的觀點來看,壓縮機是屬於將原動機的動力能轉變為氣體壓力能的機器。隨著科學技術的發展,壓力能的應用日 益廣泛,使得壓縮機在經濟建設的許多部門中成為必不可少的關鍵設備之一。壓縮機在運轉過程中,難免會出現一些故障,甚至事故。故障是指壓縮機在運行中出現 的不正常情況,一經排除壓縮機就能恢復正常工作,而事故則是指出現了破壞情況。兩者往往是關聯的,若碰到故障不及時排除便會造成重大事故。

常見故障及其原因和措施

一、 排氣量不足:

排氣量不足是與壓縮機的設計氣量相比而言。主要可從下述幾方面考慮:

1. 進氣濾清器的故障 :積垢堵塞,使排氣量減少;吸氣管太長,管徑太小,致使吸氣阻力增大影響了氣量,要定期清洗濾清器。

2. 壓縮機轉速降低使排氣量降低:空氣壓縮機使用不當,因空氣壓縮機的排氣量是按一定的海拔高度、吸氣溫度、濕度設計的,當把它使用在超過上述標準的高原上時,吸氣壓力降低等,排氣量必然降低。

3. 氣 缸、活塞、活塞環磨損嚴重、超差、使有關間隙增大,洩漏量增大,影響到了排氣量。屬於正常磨時,需及時更換易損件,如活塞環等。屬於安裝不正確,間隙留得 不合適時,應按圖紙給予糾正,如無圖紙時,可取經驗資料,對於活塞與氣缸之間沿圓周的間隙,如為鑄鐵活塞時,間隙值為氣缸直徑的0.061000.09100;對於鋁合金活塞,間隙為氣徑直徑的0.121000.18100;鋼活塞可取鋁合金活塞的較小值。

4. 填料函不嚴產生漏氣使氣量降低。其原因首先是填料函本身製造時不合要求;其次可能是由於在安裝時,活塞杆與填料函中心對中不好,產生磨損、拉傷等造成漏氣;一般在填料函處加注潤滑油,它起潤滑、密封、冷卻作用。

5. 壓縮機吸、排氣閥的故障對排氣量的影響。閥座與閥片間掉入金屬碎片或其他雜物,關閉不嚴,形成漏氣。這不僅影響排氣量,而且還影響間級壓力和溫度的變化 ;閥座與閥片接觸不嚴形成漏氣而影響了排氣量,一個是製造品質問題,如閥片翹曲等,第二是由於閥座與閥片磨損嚴重而形成漏氣。

6. 氣閥彈簧力與氣體力匹配的不好。彈力過強則使閥片開啟遲緩,彈力太弱則閥片關閉不及時,這些不僅影響了氣量,而且會影響到功率的增加,以及氣閥閥片、彈簧的壽命。同時,也會影響到氣體壓力和溫度的變化。

7. 壓緊氣閥的壓緊力不當。壓緊力小,則要漏氣,當然太緊也不行,會使閥罩變形、損壞,一般壓緊力可用下式計算:p=kπ/4 D2P2D為閥腔直徑,P2為最大氣體壓力,K為大於1的值,一般取1.52.5,低壓時K1.52.0,高壓時K1.52.5。這樣取K,實踐證明是好的。氣閥有了故障,閥蓋必然發熱,同時壓力也不正常。

二、排氣溫度不正常

排氣溫度不正常是指其高於設計值。從理論上進,影響排氣溫度增高的因素有:進氣溫度、壓力比、以及壓縮指數(對於空氣壓縮指數K1.4)。 實際情況影響到吸氣溫度高的因素如:中間冷卻效率低,或者中冷器內水垢結多影響到換熱,則後面級的吸氣溫度必然要高,排氣溫度也會高。氣閥漏氣,活塞環漏 氣,不僅影響到排氣溫度升高,而且也會使級間壓力變化,只要壓力比高於正常值就會使排氣溫度升高。此外,水冷式機器,缺水或水量不足均會使排氣溫度升高。

三、壓力不正常以及排氣壓力降低

壓 縮機排出的氣量在額定壓力下不能滿足使用者的流量要求,則排氣壓力必然要降低,所要排氣壓力降低是現象,其實質是排氣量不能滿足使用者的要求。此時,只好 另換一台排氣壓力相同,而排氣量大的機器。影響級間壓力不正常的主要原因是氣閥漏氣或活塞環磨損後漏氣,故應從這些方面去找原因和採取措施。

四、不正常的響聲

壓 縮機若某些件發生故障時,將會發出異常的響聲,一般來講,操作人員是可以判別出異常的響聲的。活塞與缸蓋間隙過小,直接撞擊;活塞杆與活塞連接螺帽鬆動或 脫扣,活塞端面絲堵檜,活塞向上串動碰撞氣缸蓋,氣缸中掉入金屬碎片以及氣缸中積聚水份等均可在氣缸內發出敲擊聲。曲軸箱內曲軸瓦螺栓、螺帽、連杆螺栓、 十字頭螺栓鬆動、脫扣、折斷等,軸徑磨損嚴重間隙增大,十字頭銷與襯套配合間隙過大或磨損嚴重等等均可在曲軸箱內發出撞擊聲。排氣閥片折斷,閥彈簧鬆軟或 損壞,負荷調節器調得不當等等均可在閥腔內發出敲擊聲。由此去找故障和採取措施。

五、過熱故障

在 曲軸和軸承、十字頭與滑板、填料與活塞杆等摩擦處,溫度超過規定的數值稱之為過熱。過熱所帶來的後果:一個是加快磨擦副間的磨損,二是過熱量的熱不斷積聚 直致燒毀磨擦面以及燒抱而造成機器重大的事故。造成軸承過熱的原因主要有:軸承與軸頸貼合不均勻或接觸面積過小;軸承偏斜曲軸彎曲、扭;潤滑油粘度太小, 油路堵塞,油泵有故障造成斷油等;安裝時沒有找平,沒有找好間隙,主軸與電機軸沒有找正,兩軸有傾斜等。

壓縮機的事故

一、斷裂事故:

1. 曲軸斷裂:其斷裂大多在軸頸與曲臂的圓角過渡處,其原因大致有如下幾種:過渡圓角太小,r<0.06d(d為曲軸頸) ;熱處理時,圓角處未處理到,使交界處產生應力集中;圓角加工不規則,有局部斷面突變;長期超負荷運轉,以及有的用戶為了提高產量,隨便增加轉速,使受力狀況惡化;材質本身有缺陷,如鑄件有砂眼、縮松等。此外在曲軸上的油孔處起裂而造成折斷也是可以看到的。

2. 連杆的斷裂:有如下幾種情況:連杆螺釘斷裂,其原因有:連杆螺釘長期使用產生塑性變形;螺釘頭或螺母與大頭端面接觸不良產生偏心負荷,此負荷可大到是螺栓受單純軸向拉力的七倍之多,因此,不允許有任何微小的歪斜,接觸應均勻分佈,接觸點斷開的距離最大不得超過圓周的1/8450 ;螺栓材質加工品質有問題。

3. 活 塞杆斷裂:主要斷裂的部位是與十字頭連接的螺紋處以及緊固活塞的螺紋處,此兩處是活塞杆的薄弱環節,如果由於設計上的疏忽,製造上的馬虎以及運轉上的原 因,斷裂較常發生。若在保證設計、加工、材質上都沒有問題,則在安裝時其預緊力不得過大,否則使最大作用力達到屈服極限時活塞杆會斷裂。在長期運轉後,由 於氣缸過渡磨損,對於臥式列中的活塞會下沉,從而使連接螺紋處產生附加載荷,再運轉下去,有可能使活塞杆斷裂,這一點在檢修時應特別注意。此外,由於其他 部位的損壞,使活塞杆受到了強烈的衝擊時,都有可能使活塞杆斷裂。

4. 氣 缸、缸蓋破裂:主要原因:對於水冷式機器,在冬天運轉停車後,若忘掉將氣缸、缸蓋內的冷卻水放盡,冷卻水會結冰而撐破氣缸以及缸蓋,特別是在我國的北方地 區,停車後必須放掉冷卻水;由於在運轉中斷水而未及時發現,使氣缸溫度升高,而又突然放入冷卻水,使缸被炸裂;由於死點間隙太小,活塞螺帽鬆動,以及掉入 缸內金屬物和活塞上的絲堵脫出等原因都會使活塞撞擊缸蓋,使其破裂。

燃燒和爆炸事故

有 油潤滑壓縮機中往往產生積碳問題,這是我們所不希望的,因為積碳不僅會使活塞環卡在槽內,氣閥工作不正常以及使氣流通道面積減小增加阻力,而且在一定的條 件下積碳會燃燒,導致壓縮機發生爆炸事故。因此,氣缸中的潤滑油不能供給太多,不能讓沒有經過很好過濾,含有大量塵埃的氣體吸入氣缸,否則形成積碳與含有 多量揮發物的氣體接觸導致爆炸。為要防止燃燒、爆炸發生,一定要計畫檢修,定期清洗儲氣罐和管道的油垢。

除 此以外,引起壓縮機燃燒和爆炸事故還有如下操作方面的原因:壓縮機在用氫、氧、氮氫氣負荷試車之前,沒有用低壓的氮氣將空氣驅除乾淨而引起爆炸。因缺乏操 作知識,開車後沒有打開壓縮機到儲氣罐的閥門,致使排氣壓力急劇升高導致爆炸。因此,要防止這類事故發生,開車前必須熟悉操作規程,開車後,密切注意壓力 錶數值。在一般中小型壓縮機中,最好將壓縮機到儲氣罐這段管路上的閘閥取消,只留下逆止閥即可。此外,對壓縮機操作工應進行上崗前的培訓。

由於壓縮機高壓級氣閥不嚴密,使高壓高溫的氣體返回氣缸,在排氣閥附近產生高溫,當有積碳存在時,即會引起爆炸。為避免事故,此時必須檢修排氣閥、檢查漏氣部位,消除故障。


BW Bewise Inc. Willy Chen willy@tool-tool.com bw@tool-tool.com www.tool-tool.com skype:willy_chen_bw mobile:0937-618-190 Head &Administration Office No.13,Shiang Shang 2nd St., West Chiu Taichung,Taiwan 40356 TEL:+886 4 24710048 / FAX:+886 4 2471 4839 N.Branch 5F,No.460,Fu Shin North Rd.,Taipei,Taiwan S.Branch No.24,Sec.1,Chia Pu East Rd.,Taipao City,Chiayi Hsien,Taiwan

Welcome to BW tool world! We are an experienced tool maker specialized in cutting tools. We focus on what you need and endeavor to research the best cutter to satisfy users demand. Our customers involve wide range of industries, like mold & die, aerospace, electronic, machinery, etc. We are professional expert in cutting field. We would like to solve every problem from you. Please feel free to contact us, its our pleasure to serve for you. BW product including: cutting toolaerospace tool .HSS Cutting toolCarbide end millsCarbide cutting toolNAS Cutting toolCarbide end millAerospace cutting toolФрезерыCarbide drillHigh speed steelMilling cutterCVDD(Chemical Vapor Deposition Diamond )PCBN (Polycrystalline Cubic Boron Nitride) Core drillTapered end millsCVD Diamond Tools Inserts’PCD Edge-Beveling Cutter(Golden Finger’PCD V-Cutter’PCD Wood tools’PCD Cutting tools’PCD Circular Saw Blade’PVDD End Mills’diamond tool Single Crystal Diamond Metric end millsMiniature end millsСпециальные режущие инструменты Пустотелое сверло Pilot reamerFraisesFresas con mango PCD (Polycrystalline diamond) FreseElectronics cutterStep drillMetal cutting sawDouble margin drillGun barrelAngle milling cutterCarbide burrsCarbide tipped cutterChamfering toolIC card engraving cutterSide cutterNAS toolDIN toolSpecial toolMetal slitting sawsShell end millsSide and face milling cuttersSide chip clearance sawsLong end millsStub roughing end millsDovetail milling cuttersCarbide slot drillsCarbide torus cuttersAngel carbide end millsCarbide torus cuttersCarbide ball-nosed slot drillsMould cutterTool manufacturer.

Bewise Inc. www.tool-tool.com

BW специализируется в научных исследованиях и разработках, и снабжаем самым высокотехнологичным карбидовым материалом для поставки режущих / фрезеровочных инструментов для почвы, воздушного пространства и электронной индустрии. В нашу основную продукцию входит твердый карбид / быстрорежущая сталь, а также двигатели, микроэлектрические дрели, IC картонорезальные машины, фрезы для гравирования, режущие пилы, фрезеры-расширители, фрезеры-расширители с резцом, дрели, резаки форм для шлицевого вала / звездочки роликовой цепи, и специальные нано инструменты. Пожалуйста, посетите сайт www.tool-tool.com для получения большей информации.

BW is specialized in R&D and sourcing the most advanced carbide material with high-tech coating to supply cutting / milling tool for mould & die, aero space and electronic industry. Our main products include solid carbide / HSS end mills, micro electronic drill, IC card cutter, engraving cutter, shell end mills, cutting saw, reamer, thread reamer, leading drill, involute gear cutter for spur wheel, rack and worm milling cutter, thread milling cutter, form cutters for spline shaft/roller chain sprocket, and special tool, with nano grade. Please visit our web www.tool-tool.com for more info.

beeway 發表在 痞客邦 留言(0) 人氣()

Bewise Inc. www.tool-tool.com Reference source from the internet.

在 现代生产工程中,各种新型材料(包括金属和非金 属)的应用日益广泛。其中有不少材料是难加工 的。本文论述各种难加工材料的切削加工特点及其加工技术的新发展,对生产有一定指导作用。一 、现代难加工材料的种类随着航天航空工业、核工业、兵器工业、化学工业、电子工业以及现代化 机械工业的发展,对产品零部件材料的性能有着各种各样的特殊要求。有的在高温、高应力状态下 工作,有的要耐腐蚀、耐磨损,有的要能绝缘,有的则需有病导电率。故现代新的工程材料形形色 色,多种多样,不断涌现。不仅使用一般的碳素结构钢,而且使用了高强度钢、超高强度合金结构 钢、高锰钢和不锈钢;不仅使用一般的灰铸铁、球墨铸铁和可锻铸铁,而且使用了合金耐磨铸铁和 冷硬铸铁;不仅使用黑色金属,而且使用了钛合金、铜合金、铝合金及其它有色金属,不仅使用一 般的铁碳合金,而且使用了多元合金如高温合金等,不仅使用以珠光体、铁索体为主的普通钢材, 而且使用了以索氏体、托民体为主的中硬钢和马氏体淬硬钢;不仅使用用冶炼方法制成的金属材料 ,而且使用了用粉末冶金和热喷涂等方法制成的金属零件;不仅大量使用生属材料,而且大量使用 了各种非金属材料,如石材、陶瓷、工程塑料、纤维增强材料等。在上述各种新工程材料中,有不 少是属于难切削的,即所谓“难加工材料”。难加工的原因一般是以下几个方面:(1)高硬度, (2)高强度,(3)高塑性和高韧性,(4)低塑性和高脆性,(5)低导热性,(6)有微观 的硬质点或硬夹杂物,(7)化学性质活泼。新工程材料的这些特性,一般都能使切削过程中的切 削力加大,切削温度升高,刀具耐用度下降,有时还将使已加工表面质量恶化,切屑难以控制,最 终则使加工效率和加工质量降低。机械加工工作者的任务是针对难加工材料的特点,提出对应的措 施,采用新的加工技术,保证所需的加工效率和加工质量。二、各种难加工材料的切削加工特点1 .高强度和超高强度钢调质(淬火,中温回火)后a.>1000MPa或a。ler1100M Pa的结构钢,称为高强度钢。调质后a.De1200Mp。或。。to1500Mp。的结构 钢,称为超高强度钢。在这类钢材中,凡含碳量在0.30~0.50%之间,合金元素总量不超 过6%的,为低合金高强度、超高强度钢,在生产中用得最多。还有合金元素含量较多的中合金、 高合金高强度与超高强度钢,它们的加工难度更大。高强度、超高强度钢的金相组织一般为索民体 和托氏体。与普通碳素结构钢相比,它们的硬度、强度较高(约比45钢高出一倍或一倍以上), 冲击值较大,导热系数偏低,故切削力较大,切削温度较高。加工高强度、超高强度钢时,可选用 与加工普通碳素钢相同的刀具材料。根据粗加工、半精加工、精加工的要求,分别采用不同牌号的 YT类硬质合金,最好是添加银、锯的牌号。高速精加工时,应采用高T比含量的YT类合金,也 可采用YN类合金、涂层含金与AI。0。陶瓷。在工艺系统刚性允许的情况下,刀具的前角和主 偏角应较小,刀尖圆弧半径应较大。必须采用低于加工中碳五火锅的切削用量,尤其是切削速度。 2.高锰钢高锰钢典型牌号有Mn13、40Mn18Cr3、50Mn18Cr4等。经过水韧 处理,其金相组织为均匀的奥氏体。它的原始硬度虽不甚高,但其塑性和韧性特别高,加工硬化特 别严重。硬化后可达500HRW。它的导热系数很小,只为45钢的1八。切削力比加工中碳钢 时增大60%,切削温度很高。应选用硬度高,有一定韧性,导热系数较大,高温性能好的刀具材 料。一股,粗加工时应选用YG类和Yw类硬质合金,精加工时可用YW或YT14合金,用AI 。0。陶瓷刀具进行高速精加工效果很好。宜采用较小的前角和主编角,较大的后角,切削速度应 较低,进给量应较九3.淬硬钢和冷硬铸铁淬硬钢的组织为回欠马氏体,硬度可达HRC60X上 。塑性和导热系数均极低。冷硬铸铁的特点是铸铁表面经激冷而发生“白日”(组织为渗碳体加珠 光体),硬度亦达HRC52~60,其它性能与淬硬钢相近。宜采用YG类合金(YG类的弹性 模量大于yT类合金)。用AI。03或Si3N4基陶瓷刀具对’淬硬钢和冷硬铸铁进行精加工 、半精加工,效果比硬质合主好。刀具前角和主偏角应小,切削速度应低。穆加工时可用CBN刀 具。4.不锈钢和高温合金铁索体、马氏体不锈钢的切削加工并不太难。奥氏体不锈钢(如ICr 18NigTi)加工难度较大,它的原始硬度、强度都不太高,但塑性、韧性很高,加工硬化严 重,且有一定数量的硬质夹杂物,导热系数很小(为45钢的1/3),切削力较大,切谢温度较 高。高温合金的加工难度更大,其原始硬度、强度偏高,导热系数很小(为45钢的1/3~1/ 4),硬夹杂物多,加工硬化严重,切削力大,切削温度高。高温合金中含有许多高熔点合金元素 ,如Fe、Ti、Cr、Co、Ni、V、MO、W等,它们与非金属元素N、C’B等结合成比 重小、熔点高的高硬度化合物,还能形成有一定硬度和韧性的金属间化合物,这些都能加剧刀具的 磨损。加工不锈钢和高温合金都应采用YG类硬质合金,而不能用含Ti的YT类合金。采用适当 的刀具前角,切削速度应较低,进给量应较大。必要时也可采用高速钢D具。5.热喷涂材料利用 不同热源,将合金粉末(Ni基、F。基、CO基等)或陶瓷等材料加热至溶化状态,并在较大压 力和喷射速度下喷涂到工件表面上,从而形成一层牢固怕、耐高温、耐磨损的保护层。热喷涂材料 的成分、性能及加工性都与高温合金相似,硬度尤高,刀具材料及切削用量的选用原则亦与高温合 金相近。YC09硬质合金刀具加工热喷涂材料很有效。6.钦合金钛合金的导热系数极小(只有 45钢的1/6),化学性质活泼,易与大气中氧、氮等化合而形成硬脆物质,刀屑接触界面镶, 切削温度高,弹性模量小。只能采用YG类硬质合金。刀具前角应小,切削速度应低,进给量应较 大。必要时也可采用高速钢刀具。7.石材石材不仅是建筑材料,而且越来越多地用作机械工程材 料。石材都较硬,例如辉绿岩为HSS0,大理石为HS50,花岗岩达HS100以上。它们都 是抗压强度高,抗弯强度低,材质不如金属材料均匀。出粉状或粒状碎屑。一般用YG类硬质合金 加工,切割时常用金刚石镇齿锯片。8·工程塑料工程塑料的品种非常多,按其性质的不同可分为 热塑性塑料和热固性塑料两大类。前者有聚氯乙烯、聚丙烯、有机玻璃等,后者有胶水、玻璃钢等 。塑料的比重小,比强度高,耐磨损,抗腐蚀,不导电,具有良好的使用性能。它们的硬度、强度 虽然不高,但导热系数极小,只有碳钢的1/175~1/450,加工时容易引起烧伤和热变形 ,弹性模最小,不易保证加工尺寸。刀具材料一股选用YG类硬质合金或高速钢。9.复合材料和 纤维增强材料复合材料可以由金属、高聚物和陶瓷三者中任意两个人工合成。复合材料包括纤维增 强材料,有碳纤维(CFRP)、玻璃纤维(GFRP)和Ke刊ar纤维(KFRP)等。纤维 增强材料的弹性模量和导热系数都很小,已加工表面易发生回弹、撕裂,产生毛刺,故表面质量不 易保证。切削力和表面粗糙度常因切削方向不同而变化。刀具材料也选用YG类硬质合金或高速钢 。新的难加工工程材料不仅是以上所提到的,还有其它的类型,如纯金属(纯铁、纯铜、纯谋)、 高比重合金以及陶瓷等等,它们的加工性也各有特色,此处从略。三、难加。材料切削技术的新发 展1.采用高性能的新刀具材料在难加工材料的切削加工中,刀具材料是最活跃的因素。新刀具材 料的出现和应用,有力地推动了难加工材料切削加工效率的提高。当前,新型高速钢有各种超硬高 速钢、粉末高速钢和涂层高速钢,切削性能比普通高速钢大力提高。新型硬质合金有各种添加钮、 能等元素的WC基合金、细晶粒超细晶粒的WC基合金、TIC基和Ti(C,N)基合金、涂层 和稀土硬质含金,还有热压复合陶瓷和超硬刀具材料CBN、金刚石等。可以分别用于切削各种难 加工材料。应注意工件、刀具材料的合理匹配。2.采用非常规的新切削方法上述各种新型刀具材 料仍是在常规的切削状态下工作的。但有时对具材料的性能尚不敷需要。例如,对于某些高硬度材 料的加工,新型硬质含金的硬度和耐磨性还嫌不足,因此不得不降低切削速度,加工效率不够高。 CBN和金刚石刀具硬度虽高,但强度不足,且金刚石不能加工黑色金属,政只能在一定的切削条 件下使用,因此应用范围不广。近年来,开发了多种非常规的新切削方法,在一定的条件下可以用 于难加工材料的加工,并可取得效益。(1)加热切削法一种是导电加热切削,即在工件和刀具的 回路中(工件必须是导电体)施加低电压(约SV)、大电流(约500A),利用刀具、工件间 及剪切面处的电阻使切削区产生热量,从而使局部工件材料的力学性能、接触和摩擦条件都发生变 化。另一种是等离子体加热切削,即用等离子弧对靠近刀尖将要被切除的工件材料进行加热,使其 硬度、强度降低,从而改善了切削条件。两种方法的效果相近。可较大幅度地降低切削力,可以消 除积屑瘤等现象,从而降低了表面粗糙度。在中速下切削刀具耐用度有明显提高。因此用这样的方 法用大切深、大送给加工硬材料是有效的。

BW Bewise Inc. Willy Chen willy@tool-tool.com bw@tool-tool.com www.tool-tool.com skype:willy_chen_bw mobile:0937-618-190 Head &Administration Office No.13,Shiang Shang 2nd St., West Chiu Taichung,Taiwan 40356 TEL:+886 4 24710048 / FAX:+886 4 2471 4839 N.Branch 5F,No.460,Fu Shin North Rd.,Taipei,Taiwan S.Branch No.24,Sec.1,Chia Pu East Rd.,Taipao City,Chiayi Hsien,Taiwan

Welcome to BW tool world! We are an experienced tool maker specialized in cutting tools. We focus on what you need and endeavor to research the best cutter to satisfy users demand. Our customers involve wide range of industries, like mold & die, aerospace, electronic, machinery, etc. We are professional expert in cutting field. We would like to solve every problem from you. Please feel free to contact us, its our pleasure to serve for you. BW product including: cutting toolaerospace tool .HSS Cutting toolCarbide end millsCarbide cutting toolNAS Cutting toolCarbide end millAerospace cutting toolФрезерыCarbide drillHigh speed steelMilling cutterCVDD(Chemical Vapor Deposition Diamond )PCBN (Polycrystalline Cubic Boron Nitride) Core drillTapered end millsCVD Diamond Tools Inserts’PCD Edge-Beveling Cutter(Golden Finger’PCD V-Cutter’PCD Wood tools’PCD Cutting tools’PCD Circular Saw Blade’PVDD End Mills’diamond tool Single Crystal Diamond Metric end millsMiniature end millsСпециальные режущие инструменты Пустотелое сверло Pilot reamerFraisesFresas con mango PCD (Polycrystalline diamond) FreseElectronics cutterStep drillMetal cutting sawDouble margin drillGun barrelAngle milling cutterCarbide burrsCarbide tipped cutterChamfering toolIC card engraving cutterSide cutterNAS toolDIN toolSpecial toolMetal slitting sawsShell end millsSide and face milling cuttersSide chip clearance sawsLong end millsStub roughing end millsDovetail milling cuttersCarbide slot drillsCarbide torus cuttersAngel carbide end millsCarbide torus cuttersCarbide ball-nosed slot drillsMould cutterTool manufacturer.

Bewise Inc. www.tool-tool.com

BW специализируется в научных исследованиях и разработках, и снабжаем самым высокотехнологичным карбидовым материалом для поставки режущих / фрезеровочных инструментов для почвы, воздушного пространства и электронной индустрии. В нашу основную продукцию входит твердый карбид / быстрорежущая сталь, а также двигатели, микроэлектрические дрели, IC картонорезальные машины, фрезы для гравирования, режущие пилы, фрезеры-расширители, фрезеры-расширители с резцом, дрели, резаки форм для шлицевого вала / звездочки роликовой цепи, и специальные нано инструменты. Пожалуйста, посетите сайт www.tool-tool.com для получения большей информации.

BW is specialized in R&D and sourcing the most advanced carbide material with high-tech coating to supply cutting / milling tool for mould & die, aero space and electronic industry. Our main products include solid carbide / HSS end mills, micro electronic drill, IC card cutter, engraving cutter, shell end mills, cutting saw, reamer, thread reamer, leading drill, involute gear cutter for spur wheel, rack and worm milling cutter, thread milling cutter, form cutters for spline shaft/roller chain sprocket, and special tool, with nano grade. Please visit our web www.tool-tool.com for more info.

beeway 發表在 痞客邦 留言(0) 人氣()

Bewise Inc. www.tool-tool.com Reference source from the internet.

什么是高强度钢和超高强度钢?

所谓高强度钢,是指那些在强度和韧性方面结合很好的钢种。低合金结构钢,经调质处理后,具有很好的综合力学性能。其抗拉强度σb>1200MPa时,叫高强度钢;其抗拉强度σb>1500MPa时,称为超高强度钢。

超高强度钢,视其合金含量的多少,可分为低合金超高强度钢(合金含量不大于6%)、中合金超高强度钢和高合金超高强度钢。

含一种合金元素的高强度合金钢有铬钢、镍钢、锰钢等;含两种合金元素的合金钢有铬镍钢、铬锰钢、铬钼钢等;含三种以上合金元素的高强度合金钢有铬锰硅钢、铬镍钨钢、铬镍钼钢、铬锰钛钢、铬锰钼钒钢等。

高强度钢和超高强度钢的原始强度和硬度并不高,但是经过调质处理后可获得较高的强度,硬度在HRC30~50之间。

钢 的抗拉强度与硬度之间存在一定的关系。一般来说,硬度提高强度也随之增高,但不能说高强度钢就是高硬度钢。所谓高强度钢和超高强度钢,是指综合性能而言 的。淬火钢的硬度很高,但不能称为高强度钢和超高强度钢,其原因是它的综合性能不好,几乎没有塑性,韧性也很差,只能作耐磨零件和工具。

2 高强度钢和超高强度钢有哪些切削特点?

高强度钢和超高强度钢,由于加入不同量的合金元素,经热处理后,Si、Mo、Ni等元素使固溶体强化,金相组织多为马氏体,具有很高的强度(最高可达1960MPa)和较高的硬度(HRC>35),冲击韧性高于45号钢,切削时具有以下特点:

1) 刀具易磨损、耐用度低:高强度钢和超高强度钢,调质后的硬度一般在HRC50以下,但抗拉强度高,韧性也好。在切削过程中,刀具与切屑的接触长度小,切削 区的应力和热量集中,易造成前刀面月牙洼磨损,增加后刀面的磨损,导致刃口崩缺或烧伤,刀具的耐用度低。

2) 切削力大:高强度钢和超高强度钢的剪切强度高,变形困难,切削力在同等的切削条件下,比切45号钢的单位切削力大1.17~1.49倍。

3) 切削温度高:这两种钢的导热性差,切削时切屑集中于刃口附近很小的接触面内,使切削温度增高。如45号钢的导热系数为50.2 W/(m·K),而38CrNi3MoVA的导热系数为29.3 W/(m·K),仅为45号钢的60%,切削38CrNi3MoVA时的切削温度比切削45号钢的切削温度高100℃左右。切削温度高,刀具磨损加剧。

4) 断屑困难:由于高强度钢和超高强度钢具有良好的塑性和韧性,所以切削时切屑不易拳曲和折断。切屑常缠绕在工件和刀具上,影响切削的顺利进行。

3 切削高强度钢和超高强度钢时怎样选择刀具材料?

高强度钢和超高强度钢具有很高的强度和硬度,切削时要求刀具应具有较高的红硬性、耐磨性及冲击韧性,而且不易产生粘结磨损和扩散磨损。粗加工和断续切削 时,要求刀具具有抗热冲击性能。除金刚石刀具外,各种刀具材料均可以切削,在选择刀具材料时,应根据切削条件合理选择。

1) 高速钢:选用高性能高速钢切削高强度钢和超高强度钢,应根据工件材料的性能、形状、加工方法和工艺系统刚性等特点,全面考虑刀具材料的耐热性、耐磨性和韧 性等。当工艺系统刚性较好、刀具型面简单时,可采用钨系、钨钼系高钒高钴高速钢;型面复杂时,可采用钨钼系、高碳低钒含铝高速钢或钨钼系高碳低钒高钴高速 钢;当工艺系统刚性较差时,可采用钨钼系低钒含铝高速钢及钨钼系低钒高钴高速钢;在冲击切削条件下,宜采用钨钼系高钒高速钢、钨钼系含铌高速钢或钨钼系含 铝高速钢。


2) 粉末冶金高速钢和TiN涂层高速钢:粉末冶金高速钢,是由高速钢粉末在高温(1100℃)、高压(100MPa)下直接压制,再锻造成所需要的刀具形状,加工淬火后刃磨而成。它具有硬度高、高温硬度好、耐磨性好的特点,适用于高强度钢和超高强度钢的切削。

高速钢刀具TiN涂层,可以延长刀具耐用度2~3倍,提高切削速度25%。常用的涂层高速钢刀具有:麻花钻、立铣刀、丝锥、齿轮滚刀、铰刀和插齿刀等。

3) 硬质合金:根据硬质合金的性能,它是切削高强度和超高强度钢的主要刀具材料。一般应选新型高性能硬质合金或涂层硬质合金。

4) 陶瓷刀具:它的硬度和耐热性高于硬质合金,允许的切削速度比硬质合金高1~2倍。在高强度钢和超高强度钢的切削中,陶瓷刀具主要用于车削和平面铣削的半精 加工和精加工中。推荐选用Al2O3~TiC系列陶瓷,如AT6、AG2、T8、LT35、LT55等。

5) 立方氮化硼(CBN、PCBN):这种刀具的硬度、耐磨性及耐热性很高,PCBN的强度也很高,达1500 MPa,适用于高强度钢和超高强度钢的车削和铣削,主要用于半精加工和精加工。

4 切削高强度钢和超高强度钢时怎样选择刀具几何参数?

切削高强度钢和超高强度钢,刀具几何参数的选择原则与加工一般钢材相同。但由于这种钢材的切削特点,应注意刀刃和刀尖部分的强度,以保证刀具有一定的耐用度。

刀具的耐用度,随着刀具的前角和后角改变而变化。前角大,刃口强度低,容易造成崩刃。后角小,增大了刀具与工件的摩擦,使切削温度增高,加剧刀具磨损。所以在切削时,应采用较小的前角或负前角及较大的后角。


钻削高强度钢和超高强度钢时怎样选择钻头?

钻削高强度钢,可选用高性能高速钢麻花钻或硬质合金钻头。钻削超高强度钢,一般应采用硬质合金钻头,直径大于16mm孔时,推荐选用可转位浅孔钻。

高速钢麻花钻,可选用群钻或修磨成三尖刃形的钻头。为了提高钻头的刚度,应适当增加钻心厚度,减小悬伸量。螺旋角也应小一些,一般为17°~30°。

选 用硬质合金钻头时,可加大顶角,以改善排屑,一般为2kr=140°~150°。为了减小轴向力,应减小横刃,一般为0.1do(do为钻头直径)。钻 头的进给前角gf=0°,进给后角af=6°~12°。可转位浅孔钻的刀片应选用涂层刀片或非涂层刀片。推荐选用的涂层刀片有:YB01、YB02、 YB03;非涂层刀片有:YC10、YC30、YC40、YD20、798、813等。

硬质合金钻头

钻削高强度钢和超高强度钢时怎样选择切削用量?

钻削高强度钢和超高强度钢,比钻削一般钢材的切削速度低50%左右。选用高速钢钻头钻孔时,一般取Vc=10~15m/min,当工件材料的硬度HRC>45时,切削速度更低。进给量为f=0.03~0.3 mm/r,钻头直径小时取小值。

采用硬质合金钻头时,可以选较高的切削速度,但不能太高,必须考虑工件材料的硬度对钻头耐用度的影响。当工件材料硬度HRC>50时,钻头的速度应 小于30m/min,进给量f=0.03~0.3 mm/r。高速钢和硬质合金钻头,钻削不同硬度的高强度和超高强度钢的切削速度见表8;高速钢群钻的切削用量见表9。
表8 按工件材料硬度选择切削速度
工件硬度 35~40 40~45 45~50 50~55
刀具切削速度
(m/min) 高速钢 9~12 7.6~11 4.6~7.6 2~6.6
硬质合金 72~120 30~72 22~30 <30


怎样攻高强度钢和超高强度钢螺纹?

攻 高强度钢和超高强度钢螺纹的丝锥,可用高性能高速钢、粉末冶金高速钢等制作。当工件硬度达到HRC48~52时,应采用硬质合金丝锥。丝锥多采用跳牙丝 锥和修正丝锥。丝锥的齿形角应小于2°~5°,校准部分应有17′~33′的倒锥,切削锥角取2°30′~5°,切削锥长度L1=(1/2~2/3)校准 部分长度。应适当增加螺纹底孔直径与切削部分长度,减小校准部分长度。如攻制高强度钢螺纹的丝锥,丝锥的材质为含钴超硬高速钢 (W2Mo9Cr4VCo8),规格为M18×1.5,每组三支。攻丝时,使用豆油或菜子油作切削液。

铣削高强度钢和超高强度钢时怎样选择刀具及几何参数?

高 强度钢和超高强度钢的室温强度很高,抗拉强度一般在1470 MPa以上。淬火后的硬度在HRC35以上,最高可达HRC58。高强度的马氏体,在切削时的剪切应力大,切削温度高,刀具磨损严重,容易崩刃或打刀。铣 削时应选强度高、耐冲击和耐热性好的刀具材料,如高性能高速钢和硬质合金。高速钢铣刀,可选用高钒高速钢、含钴或含铝超硬高速钢。选用硬质合金作刀具材料 时,应选抗弯强度高、硬度也较高的刀片。

在选择刀具几何参数时,要充分考虑这种钢的切削特点,应减小主偏角,增大刀尖圆弧半径,切深前角和进给前角应小于0°(高速钢铣刀除外)。硬质合金和陶瓷刀具的刃口应倒棱,以增加刃口的强度。


切削高强度钢和超高强度钢有哪些实例?

1) 车削:工件材质为32CrNi3MoVA,sb=1080 MPa,硬度为HRC35~38。刀具材料为YN05,g0=4°~8°,a0=6°~10°,ls=-4°。车削用量为Vc=65m/min,f=0.3mm/r,ap=1mm。

2) 车削:工件材质为35CrMoSiA,sb≥1450 MPa,硬度为HRC43~48。刀具材料为AG2陶瓷,g0=-4°,a0=6°,ls=-4°。切削用量为Vc=150 m/min,f=0.3mm/r,ap=0.3mm。

3) 铣削(面铣):工件材质为40CrNiMoVA,sb=1870MPa,硬度为HRC52~54。刀具材料为YM052硬质合金,g0=0°~5°,a0 =8°,ls=-5°,kr=45°。切削用量为Vc=23 m/min,f=0.08~0.1 mm/z,ap=2mm。

4) 钻孔:工件材料为超高强度钢,sb=1850~1980 MPa,硬度为HRC53~55。钻头的材料为W12Mo3Cr4V3Co5Si含钴超硬高速钢。切削条件为n=105r/min,f=0.05 mm/r,钻头直径?10 mm,孔深30 mm,一般冷却,每刃磨一次钻头,可钻孔38~40个。

5) 铰孔:工件材质为高强度钢,sb=1200 MPa,采用含钴超硬高速钢,在n=140r/min,f=0.05mm/r,铰孔余量为0.1mm的情况下,用直径8mm的铰刀,铰孔60~70个,尺寸稳定,表面粗糙度Ra为1.6μm以下。

6) 攻丝:工件材料为高强度钢,sb=1200 MPa,采用含钴超硬高速钢的M12×1的丝锥,手动攻丝,攻60个孔,丝锥未见磨损。用普通高速钢的丝锥,只能攻6~8个螺孔

BW Bewise Inc. Willy Chen willy@tool-tool.com bw@tool-tool.com www.tool-tool.com skype:willy_chen_bw mobile:0937-618-190 Head &Administration Office No.13,Shiang Shang 2nd St., West Chiu Taichung,Taiwan 40356 TEL:+886 4 24710048 / FAX:+886 4 2471 4839 N.Branch 5F,No.460,Fu Shin North Rd.,Taipei,Taiwan S.Branch No.24,Sec.1,Chia Pu East Rd.,Taipao City,Chiayi Hsien,Taiwan

Welcome to BW tool world! We are an experienced tool maker specialized in cutting tools. We focus on what you need and endeavor to research the best cutter to satisfy users demand. Our customers involve wide range of industries, like mold & die, aerospace, electronic, machinery, etc. We are professional expert in cutting field. We would like to solve every problem from you. Please feel free to contact us, its our pleasure to serve for you. BW product including: cutting toolaerospace tool .HSS Cutting toolCarbide end millsCarbide cutting toolNAS Cutting toolCarbide end millAerospace cutting toolФрезерыCarbide drillHigh speed steelMilling cutterCVDD(Chemical Vapor Deposition Diamond )PCBN (Polycrystalline Cubic Boron Nitride) Core drillTapered end millsCVD Diamond Tools Inserts’PCD Edge-Beveling Cutter(Golden Finger’PCD V-Cutter’PCD Wood tools’PCD Cutting tools’PCD Circular Saw Blade’PVDD End Mills’diamond tool Single Crystal Diamond Metric end millsMiniature end millsСпециальные режущие инструменты Пустотелое сверло Pilot reamerFraisesFresas con mango PCD (Polycrystalline diamond) FreseElectronics cutterStep drillMetal cutting sawDouble margin drillGun barrelAngle milling cutterCarbide burrsCarbide tipped cutterChamfering toolIC card engraving cutterSide cutterNAS toolDIN toolSpecial toolMetal slitting sawsShell end millsSide and face milling cuttersSide chip clearance sawsLong end millsStub roughing end millsDovetail milling cuttersCarbide slot drillsCarbide torus cuttersAngel carbide end millsCarbide torus cuttersCarbide ball-nosed slot drillsMould cutterTool manufacturer.

Bewise Inc. www.tool-tool.com

BW специализируется в научных исследованиях и разработках, и снабжаем самым высокотехнологичным карбидовым материалом для поставки режущих / фрезеровочных инструментов для почвы, воздушного пространства и электронной индустрии. В нашу основную продукцию входит твердый карбид / быстрорежущая сталь, а также двигатели, микроэлектрические дрели, IC картонорезальные машины, фрезы для гравирования, режущие пилы, фрезеры-расширители, фрезеры-расширители с резцом, дрели, резаки форм для шлицевого вала / звездочки роликовой цепи, и специальные нано инструменты. Пожалуйста, посетите сайт www.tool-tool.com для получения большей информации.

BW is specialized in R&D and sourcing the most advanced carbide material with high-tech coating to supply cutting / milling tool for mould & die, aero space and electronic industry. Our main products include solid carbide / HSS end mills, micro electronic drill, IC card cutter, engraving cutter, shell end mills, cutting saw, reamer, thread reamer, leading drill, involute gear cutter for spur wheel, rack and worm milling cutter, thread milling cutter, form cutters for spline shaft/roller chain sprocket, and special tool, with nano grade. Please visit our web www.tool-tool.com for more info.

beeway 發表在 痞客邦 留言(0) 人氣()

Bewise Inc. www.tool-tool.com Reference source from the internet.

目前塑料模具越来越精巧、结构越来越复杂、整副模具越来越精密,模具要求的合模次数接近和超过80万次,国外的塑料模具厂商采用的模具钢材的硬度越来越 高,有的甚至超过HRC 64以上,而模具的交货期却要求越来越短。这些市场特点给模具制造商带来了极大的压力。高速铣削技术的出现为模具制造带来了新的发展机会,尤其在中小型精 密塑料模具加工中显示了巨大的优势。

减少塑料模具加工中的工序数量,缩短模具的交付时间

高速切削的高效率不光体现在减少多少机床加工时间,实际上是减少整体工序时间。采用更高的切削速 度,精加工时更少的加工余量,更密的刀轨以及更少的切深,特别是在自由曲面上(切深一般在0.02至0.1mm,如使用细小刀具直径,如 0.3-0.8mm直径刀具时,切深更小至(0.008-0.02mm),精细、紧密的刀轨一般均会大大提高加工表面的光洁度。以快速精细的轻切削代替常规的缓慢的重切削,会大大简化以后的工序。例如手工抛光时间可缩短60%-100%,也可减少EDM的工序与时间,这种节约已经在许多国外模具厂商得到了真实反映。

可加工薄壁的筋和细小直径刀具的清根

由于高速削 机床大大提高了主轴转速和主轴的动平衡性能以及机床的稳定性,在同样的刀具直径下,可得到更大的切削速度,这样在刀具与工件表面可实现轻切削的加工方式, 大大降低切削区域的切削力。所以可加工0.1mm以上的薄壁或筋,同时对精密模具的小圆角清根带来极大的方便,甚至在模具材料硬度达HRC54,可使用直 径为0.3mm的刀具进行铣削操作。这样可大大减少电极的数量,同时也减少了放电加工时间。

在没有使用高速之前,采用雕刻机制造电极,效果不理想。加工中容易断刀,加工效率低、光洁度低、加工材料硬度低,达不到外商的要求。采用高速削后大大提高了加工质量和加工效率。

提高加工零件的精度

与传统的切削方式相比,高速削 的切屑形成方式不同,产生的绝大部分的热量由切屑带走,热量不会聚集在加工区域,同时走刀速度比常规走刀速度要快的多,热量更不容易聚集,材料热变形小的 多,保持比较恒定、理想的切削条件,从而保证了工件的加工精度。另外在电极加工中,加工的电极精度高,轮廓形状一致性好,光洁度高,电极一般不需要抛光处 理,不会产生由于手工抛光而影响工件的精度,从而大大提高了模具的制造精度。

高效率的电极加工及更为有效的放电加工

由于高速削 产生切屑的方式不同和加工热量不易集中的特性,在加工铜电极与石墨电极这些材料时,能提供更快的走刀速度,单位时间内的材料去除率比常规切削高好几倍,使 得电极的粗加工和半精加工的时间大大缩短,同时在精加工中采用高速的轻切削,更细密、精确的刀轨,大大提高了电极的光洁度,节省、甚至取消了抛光时间。在 刀具磨损量非常大的石墨电极加工中,由于应用了PCD(钻石)涂层的刀具,大大降低了刀具的磨损量,使得加工石墨电极中采用高速铣变为可能。在放电加工工 艺中,目前普遍采用粗、精电极加工,而高速切削加工的电极减少或取消了抛光工作,使得电极放电区域一致,提高面接触,放电间隙得到有效的控制,提高了放电 的效率。同时由于可采用更小的刀具直径,使得模具的加工余量减少,因而可以取消粗电极,减少了电极数量并缩短了放电加工的时间。

 随着这几年高速削技术的发展,高速削的外部环境也越来越完善。刀柄、冷却系统、机床结构、主轴转速的不断提高,应用技术的累积等,使得高速铣削技术的性价比越来越高。高速削刀具的不断推陈出新,新的涂层、新的工艺的不断被采用,切削材料硬度不断提高,模具材料能选用越来越硬的材料。目前带动平衡的高速铣刀能切削超过HRC 64的淬硬钢材料,提高了模具的合模次数。目前拥有高速加工中心的模具厂商普遍采用在普通机床上进行大余量、大刀具的粗加工,然后进行热处理,最后在高速机床上进行半精加工和精加工,在提高了精度和效率的同时尽可能地降低加工成本。


BW Bewise Inc. Willy Chen willy@tool-tool.com bw@tool-tool.com www.tool-tool.com skype:willy_chen_bw mobile:0937-618-190 Head &Administration Office No.13,Shiang Shang 2nd St., West Chiu Taichung,Taiwan 40356 TEL:+886 4 24710048 / FAX:+886 4 2471 4839 N.Branch 5F,No.460,Fu Shin North Rd.,Taipei,Taiwan S.Branch No.24,Sec.1,Chia Pu East Rd.,Taipao City,Chiayi Hsien,Taiwan

Welcome to BW tool world! We are an experienced tool maker specialized in cutting tools. We focus on what you need and endeavor to research the best cutter to satisfy users demand. Our customers involve wide range of industries, like mold & die, aerospace, electronic, machinery, etc. We are professional expert in cutting field. We would like to solve every problem from you. Please feel free to contact us, its our pleasure to serve for you. BW product including: cutting toolaerospace tool .HSS Cutting toolCarbide end millsCarbide cutting toolNAS Cutting toolCarbide end millAerospace cutting toolФрезерыCarbide drillHigh speed steelMilling cutterCVDD(Chemical Vapor Deposition Diamond )PCBN (Polycrystalline Cubic Boron Nitride) Core drillTapered end millsCVD Diamond Tools Inserts’PCD Edge-Beveling Cutter(Golden Finger’PCD V-Cutter’PCD Wood tools’PCD Cutting tools’PCD Circular Saw Blade’PVDD End Mills’diamond tool Single Crystal Diamond Metric end millsMiniature end millsСпециальные режущие инструменты Пустотелое сверло Pilot reamerFraisesFresas con mango PCD (Polycrystalline diamond) FreseElectronics cutterStep drillMetal cutting sawDouble margin drillGun barrelAngle milling cutterCarbide burrsCarbide tipped cutterChamfering toolIC card engraving cutterSide cutterNAS toolDIN toolSpecial toolMetal slitting sawsShell end millsSide and face milling cuttersSide chip clearance sawsLong end millsStub roughing end millsDovetail milling cuttersCarbide slot drillsCarbide torus cuttersAngel carbide end millsCarbide torus cuttersCarbide ball-nosed slot drillsMould cutterTool manufacturer.

Bewise Inc. www.tool-tool.com

BW специализируется в научных исследованиях и разработках, и снабжаем самым высокотехнологичным карбидовым материалом для поставки режущих / фрезеровочных инструментов для почвы, воздушного пространства и электронной индустрии. В нашу основную продукцию входит твердый карбид / быстрорежущая сталь, а также двигатели, микроэлектрические дрели, IC картонорезальные машины, фрезы для гравирования, режущие пилы, фрезеры-расширители, фрезеры-расширители с резцом, дрели, резаки форм для шлицевого вала / звездочки роликовой цепи, и специальные нано инструменты. Пожалуйста, посетите сайт www.tool-tool.com для получения большей информации.

BW is specialized in R&D and sourcing the most advanced carbide material with high-tech coating to supply cutting / milling tool for mould & die, aero space and electronic industry. Our main products include solid carbide / HSS end mills, micro electronic drill, IC card cutter, engraving cutter, shell end mills, cutting saw, reamer, thread reamer, leading drill, involute gear cutter for spur wheel, rack and worm milling cutter, thread milling cutter, form cutters for spline shaft/roller chain sprocket, and special tool, with nano grade. Please visit our web www.tool-tool.com for more info.

beeway 發表在 痞客邦 留言(0) 人氣()

Bewise Inc. www.tool-tool.com Reference source from the internet.

柴油引擎Diesel Engine),即壓燃式發動機,是內燃機的一種。其主要特徵為使用壓縮產生高壓及高溫點燃氣化燃料,而毋須另外提供點火。柴油引擎使用的原理稱為狄塞爾循環,為德國工程師魯道夫·狄塞爾(Rudolph Diesel)在1892年所發明。現時大部份的柴油引擎使用的燃料為柴油,但狄塞爾的發明原意是可以使用不同種類的燃料。事實上,他在1900年的世界博覽會上展示他的發明時,使用的燃料是花生油。
世界上有名的柴油引擎製造商有Wartsila[瓦濟蘭]等等

BW Bewise Inc. Willy Chen willy@tool-tool.com bw@tool-tool.com www.tool-tool.com skype:willy_chen_bw mobile:0937-618-190 Head &Administration Office No.13,Shiang Shang 2nd St., West Chiu Taichung,Taiwan 40356 TEL:+886 4 24710048 / FAX:+886 4 2471 4839 N.Branch 5F,No.460,Fu Shin North Rd.,Taipei,Taiwan S.Branch No.24,Sec.1,Chia Pu East Rd.,Taipao City,Chiayi Hsien,Taiwan

Welcome to BW tool world! We are an experienced tool maker specialized in cutting tools. We focus on what you need and endeavor to research the best cutter to satisfy users demand. Our customers involve wide range of industries, like mold & die, aerospace, electronic, machinery, etc. We are professional expert in cutting field. We would like to solve every problem from you. Please feel free to contact us, its our pleasure to serve for you. BW product including: cutting toolaerospace tool .HSS Cutting toolCarbide end millsCarbide cutting toolNAS Cutting toolCarbide end millAerospace cutting toolФрезерыCarbide drillHigh speed steelMilling cutterCVDD(Chemical Vapor Deposition Diamond )PCBN (Polycrystalline Cubic Boron Nitride) Core drillTapered end millsCVD Diamond Tools Inserts’PCD Edge-Beveling Cutter(Golden Finger’PCD V-Cutter’PCD Wood tools’PCD Cutting tools’PCD Circular Saw Blade’PVDD End Mills’diamond tool Single Crystal Diamond Metric end millsMiniature end millsСпециальные режущие инструменты Пустотелое сверло Pilot reamerFraisesFresas con mango PCD (Polycrystalline diamond) FreseElectronics cutterStep drillMetal cutting sawDouble margin drillGun barrelAngle milling cutterCarbide burrsCarbide tipped cutterChamfering toolIC card engraving cutterSide cutterNAS toolDIN toolSpecial toolMetal slitting sawsShell end millsSide and face milling cuttersSide chip clearance sawsLong end millsStub roughing end millsDovetail milling cuttersCarbide slot drillsCarbide torus cuttersAngel carbide end millsCarbide torus cuttersCarbide ball-nosed slot drillsMould cutterTool manufacturer.

Bewise Inc. www.tool-tool.com

BW специализируется в научных исследованиях и разработках, и снабжаем самым высокотехнологичным карбидовым материалом для поставки режущих / фрезеровочных инструментов для почвы, воздушного пространства и электронной индустрии. В нашу основную продукцию входит твердый карбид / быстрорежущая сталь, а также двигатели, микроэлектрические дрели, IC картонорезальные машины, фрезы для гравирования, режущие пилы, фрезеры-расширители, фрезеры-расширители с резцом, дрели, резаки форм для шлицевого вала / звездочки роликовой цепи, и специальные нано инструменты. Пожалуйста, посетите сайт www.tool-tool.com для получения большей информации.

BW is specialized in R&D and sourcing the most advanced carbide material with high-tech coating to supply cutting / milling tool for mould & die, aero space and electronic industry. Our main products include solid carbide / HSS end mills, micro electronic drill, IC card cutter, engraving cutter, shell end mills, cutting saw, reamer, thread reamer, leading drill, involute gear cutter for spur wheel, rack and worm milling cutter, thread milling cutter, form cutters for spline shaft/roller chain sprocket, and special tool, with nano grade. Please visit our web www.tool-tool.com for more info.

beeway 發表在 痞客邦 留言(0) 人氣()

Bewise Inc. www.tool-tool.com Reference source from the internet.
محرك ديزل لسفينة

محرك ديزل لسفينة

[تحرير] محرك و طريقة الديزل برؤية التحريك الحراري

تعليق

تعليق

يعتبر محرك الديزل من محركات الاحتراق الداخلي حيث يقوم بتحويل الطاقة الكيميائية الكامنة في وقود (زيت الغاز)الى طاقة حركية. أول من اخترع المحرك الديزل هو رودولف ديزل في عام 1892 و الهدف من وراء هذا الإختراع هو إيجاد محرك ذو كفاءة أعلى من كفاءة محرك البنزين. وتأتي الزيادة في الكفاءة من إرتفاع نسبة االضغط (compresses ratio) في محركات الديزل حيث تتراوح ما بين 1:14 إلى 1:25 أما البنزين فيتراوح ما بين 1:8 إلى 1:12 و كما هو معروف أن كفاءة المحرك تتناسب طرديا مع نسبة االضغط.

يمكن تفسير كيفية عمل محرك الديزل إستناداً إلى الترموديناميكا التي تصف عملية الديزل (Diesel Process) على النحو التالي:

  1. يتم ضغط الغاز تحت ظروف إيزونتروبية أي أن الغاز يضغط دون تبادل للحرارة مع المحيط الخارجي للآلة الضاغطة(النظام).
  2. إضافة حرارة للمنظومة مع الإحتفاظ بنفس الضغط (isobaric).
  3. تمدد الغاز إيزونتروبيا.
  4. إخراج الحرارة من الآلة الضاغطة مع المحافظة على نفس الحجم.

[تحرير] البنية الميكانيكية لمحرك الديزل

يتكون المحرك من مجموعه من المكابس تتناوب في حركة إزاحة ذهابا وإيابا من أجل إدارة عمود ( الكرنك ) وبذلك تتولُّد حركة دورانية من حركه ترددية منتظمة.

  • شرح كيفية عمل الكباس الواحد
  1. يهبط الكباس في الاسطوانه المحكمة الغلق علية ليسحب الهواء ويملاء به الفراغ داخل الأسطوانة.
  2. حين صعود الكباس يقوم بضغط الهواء كلما اقترب من أعلى الأسطوانة.
  3. وعند مكان معين من صعوده يتم حقن الديزل اللازم للإشتعال.
  4. تحت الضغط العالي والحرارة الكافية مع وجود وقود يحدث احتراق قوي كاف لدفع الكباس إلى أسفل الأسطوانة.
  5. يتصل الكباس بوصلات وأجزاء ميكانيكية، تساعد ميكانيكيتها على دوران عمود الكرنك المطلوب دورانه في تحريك القطع الأخرى.
  1. دورة المحرك:

تتكون دورة المحرك من أربع مراحل هي: 1/ السحب. 2/ الانضغاط. 3/ الإشتعال أو الإحتراق. 4/ العادم.

[تحرير] ميزات و مساوئ محرك ديزل

  1. ذو كفاءة عالية مقارنة بمحرك البنزين. لنفس حجم المحرك يكون محرك الديزل ذو قدرة و عزم دوران أعلى من محرك البنزين..
  2. يعتبر وقود الديزل ذو تكلفة منخفضة مقارنة بباقي أنواع الوقود كما أن الطاقة الكامنة فيه أعلى من الطاقة الكامنة في وقود البنزين.
  3. إن نسبة الضغط العالية في محركات الديزل والتي تصل إلى 1:25 يجبر المصمم على زيادة حجم ووزن المحرك مما يؤدي إلى غلاء محركات الديزل نسبيا.
  4. تستخدم محركات الديزل بكثرة في المعدات التي تحتاج قدرة وعزماً عاليين، على سبيل المثال مولدات الكهرباء الضخمة والآليات الكبيرة، لأن الكتلة الكبيرة لمحركات الديزل تجعل تعجيل التسارعي للمحرك قليلا مقارنة بمحرك البنزين مما يقلل من رغبة في استخدامها في السيارات الصغيرة.


BW Bewise Inc. Willy Chen willy@tool-tool.com bw@tool-tool.com www.tool-tool.com skype:willy_chen_bw mobile:0937-618-190 Head &Administration Office No.13,Shiang Shang 2nd St., West Chiu Taichung,Taiwan 40356 TEL:+886 4 24710048 / FAX:+886 4 2471 4839 N.Branch 5F,No.460,Fu Shin North Rd.,Taipei,Taiwan S.Branch No.24,Sec.1,Chia Pu East Rd.,Taipao City,Chiayi Hsien,Taiwan

Welcome to BW tool world! We are an experienced tool maker specialized in cutting tools. We focus on what you need and endeavor to research the best cutter to satisfy users demand. Our customers involve wide range of industries, like mold & die, aerospace, electronic, machinery, etc. We are professional expert in cutting field. We would like to solve every problem from you. Please feel free to contact us, its our pleasure to serve for you. BW product including: cutting toolaerospace tool .HSS Cutting toolCarbide end millsCarbide cutting toolNAS Cutting toolCarbide end millAerospace cutting toolФрезерыCarbide drillHigh speed steelMilling cutterCVDD(Chemical Vapor Deposition Diamond )PCBN (Polycrystalline Cubic Boron Nitride) Core drillTapered end millsCVD Diamond Tools Inserts’PCD Edge-Beveling Cutter(Golden Finger’PCD V-Cutter’PCD Wood tools’PCD Cutting tools’PCD Circular Saw Blade’PVDD End Mills’diamond tool Single Crystal Diamond Metric end millsMiniature end millsСпециальные режущие инструменты Пустотелое сверло Pilot reamerFraisesFresas con mango PCD (Polycrystalline diamond) FreseElectronics cutterStep drillMetal cutting sawDouble margin drillGun barrelAngle milling cutterCarbide burrsCarbide tipped cutterChamfering toolIC card engraving cutterSide cutterNAS toolDIN toolSpecial toolMetal slitting sawsShell end millsSide and face milling cuttersSide chip clearance sawsLong end millsStub roughing end millsDovetail milling cuttersCarbide slot drillsCarbide torus cuttersAngel carbide end millsCarbide torus cuttersCarbide ball-nosed slot drillsMould cutterTool manufacturer.

Bewise Inc. www.tool-tool.com

BW специализируется в научных исследованиях и разработках, и снабжаем самым высокотехнологичным карбидовым материалом для поставки режущих / фрезеровочных инструментов для почвы, воздушного пространства и электронной индустрии. В нашу основную продукцию входит твердый карбид / быстрорежущая сталь, а также двигатели, микроэлектрические дрели, IC картонорезальные машины, фрезы для гравирования, режущие пилы, фрезеры-расширители, фрезеры-расширители с резцом, дрели, резаки форм для шлицевого вала / звездочки роликовой цепи, и специальные нано инструменты. Пожалуйста, посетите сайт www.tool-tool.com для получения большей информации.

BW is specialized in R&D and sourcing the most advanced carbide material with high-tech coating to supply cutting / milling tool for mould & die, aero space and electronic industry. Our main products include solid carbide / HSS end mills, micro electronic drill, IC card cutter, engraving cutter, shell end mills, cutting saw, reamer, thread reamer, leading drill, involute gear cutter for spur wheel, rack and worm milling cutter, thread milling cutter, form cutters for spline shaft/roller chain sprocket, and special tool, with nano grade. Please visit our web www.tool-tool.com for more info.

beeway 發表在 痞客邦 留言(0) 人氣()

Bewise Inc. www.tool-tool.com Reference source from the internet.

Vznětový motor, běžně nesprávně nazývaný dieselový motor, nebo též Dieselův motor či zkráceně jen diesel, je nejvýznamnějším dnes používaným druhem spalovacího motoru. Jedná se o technické zařízení, kde se chemická energie vázaná v palivu mění na mechanickou energii ve formě otáčivého pohybu hnacího hřídele stroje.

Byl vynalezen Rudolfem Dieselem a zdokonalen Charlesem Ketteringem.

Vznětový motor pracuje obvykle jako čtyřdobý spalovací motor. Na rozdíl od ]]zážehových motorů je do něj palivo dopravováno odděleně od vzduchu. Palivo je do spalovacího prostoru motoru dopravováno speciálním vysokotlakým čerpadlem a vysokotlakým potrubím.

Do spalovacího prostoru se nejprve nasává vzduch = sání. Po uzavření sacího ventilu se nasátý vzduch stlačuje (komprimuje), píst se pohybuje směrem nahoru a jeho teplota roste na více než 500 °C (při kompresním poměru okolo 1÷14 až 20). Tlak v horní úvrati stoupá na cca 3 MPa, zvedá se teplota (> 600 °C). Před horní úvratí je tryskou do válce vstříknuta čerpadlem přesně odměřená dávka paliva, které je jemně rozprášeno (nafta). Palivo začne hořet samovznícením ve vzduchu ohřátém kompresí. Ve fázi expanze je pak vzniklé teplo převedeno na mechanickou práci, adiabatický děj. V poslední fázi (výfuk) se otevírá výfukový ventil a spaliny jsou vytlačeny do výfuku, izobarický děj.

Vznětové motory jsou často vybavovány mechanickým kompresorem nebo (častěji — takřka výhradně) tzv. turbodmychadlem (tj. kompresorem poháněným turbínou na výfukové plyny). Jedná se o tzv. přeplňované motory. Turbodmychadlo je zde poháněno odtokem spalin z motoru, proto funguje uspokojivě jen ve vyšších otáčkách, kdy je rychlost spalin dostatečně vysoká. Kompresor má stejný efekt jako turbodmychadlo, ale funguje i v nízkých otáčkách, neboť je poháněno mechanicky - převodem od klikového hřídele. Oba systémy umožňují lépe využít energie obsažené v palivu (naftě), celkový výkon vznětového motoru lze takto zvýšit minimálně o 30 a více procent (zde záleží na velikosti plnicího tlaku — vzrůst výkonu ve srovnání s motorem nepřeplňovaným může být i o více než 100%), tepelná účinnost motoru se tím také zvyšuje (u motorů přeplňovaných turbodmychadlem — motor tak využívá energie plynů, které by jinak již jen bez užitku volně unikly výfukem).

Zajímavé je i použití vysokotlakého vstřikovacího systému Common rail nebo systému čerpadlo-tryska.

Vznětové motory pohánějí plavidla resp. lodě, nezávislé trakční mechanismy resp. lokomotivy, nákladní automobily a autobusy. V posledních letech se vznětové motory stále více uplatňují coby pohon i u osobních automobilů; svého času sloužily i v letecké dopravě. Stacionární vznětové motory se využívají i pro pohon strojů, které nemají pevný přívod elektrického proudu, případně jako pohon elektrických generátorů (diesel agregáty). Velké použití doznaly i u celé řady speciálních stavebních a zemědělských strojů a u vojenských mobilních mechanismů.

Velké (kupř.lodní či lokomotivní) motory bývají konstruovány jakožto víceválcové s uspořádáním do "V", a bývají pomaluběžné (platí zde pravidlo: čím větší vznětový motor, tím nižší jmenovité otáčky), otáčky se zde pohybují řádově ve stovkách otáček za minutu.


  • Zajímavost : vedle klasického čtyřdobého vznětového motoru existuje i zastaralý systém dvoudobý.

Ten se kdysi používal coby lodní pohon v ponorkách. V Československu byl užíván u těžkých nákladních lokomotiv 781, dovezených ze SSSR, které ČSD hojně používaly ještě v 80. letech 20. století. Vlastní motor měl speciální systém bočních ventilů, výfuk, sání a komprese zde probíhaly naráz v jednom taktu za použití souproudého výplachu válců stlačeným vzduchem z turbodmychadla. Motory byly mimořádně hlučné, vyznačovaly se velkou kouřivostí a značnými vibracemi celého zařízení (kromě vlastní lokomotivy se značně otřásalo vše co se nacházelo v blízkém okolí tohoto těžkého stroje, hluk z trati bývalo slyšet na kilometry daleko).


BW Bewise Inc. Willy Chen willy@tool-tool.com bw@tool-tool.com www.tool-tool.com skype:willy_chen_bw mobile:0937-618-190 Head &Administration Office No.13,Shiang Shang 2nd St., West Chiu Taichung,Taiwan 40356 TEL:+886 4 24710048 / FAX:+886 4 2471 4839 N.Branch 5F,No.460,Fu Shin North Rd.,Taipei,Taiwan S.Branch No.24,Sec.1,Chia Pu East Rd.,Taipao City,Chiayi Hsien,Taiwan

Welcome to BW tool world! We are an experienced tool maker specialized in cutting tools. We focus on what you need and endeavor to research the best cutter to satisfy users demand. Our customers involve wide range of industries, like mold & die, aerospace, electronic, machinery, etc. We are professional expert in cutting field. We would like to solve every problem from you. Please feel free to contact us, its our pleasure to serve for you. BW product including: cutting toolaerospace tool .HSS Cutting toolCarbide end millsCarbide cutting toolNAS Cutting toolCarbide end millAerospace cutting toolФрезерыCarbide drillHigh speed steelMilling cutterCVDD(Chemical Vapor Deposition Diamond )PCBN (Polycrystalline Cubic Boron Nitride) Core drillTapered end millsCVD Diamond Tools Inserts’PCD Edge-Beveling Cutter(Golden Finger’PCD V-Cutter’PCD Wood tools’PCD Cutting tools’PCD Circular Saw Blade’PVDD End Mills’diamond tool Single Crystal Diamond Metric end millsMiniature end millsСпециальные режущие инструменты Пустотелое сверло Pilot reamerFraisesFresas con mango PCD (Polycrystalline diamond) FreseElectronics cutterStep drillMetal cutting sawDouble margin drillGun barrelAngle milling cutterCarbide burrsCarbide tipped cutterChamfering toolIC card engraving cutterSide cutterNAS toolDIN toolSpecial toolMetal slitting sawsShell end millsSide and face milling cuttersSide chip clearance sawsLong end millsStub roughing end millsDovetail milling cuttersCarbide slot drillsCarbide torus cuttersAngel carbide end millsCarbide torus cuttersCarbide ball-nosed slot drillsMould cutterTool manufacturer.

Bewise Inc. www.tool-tool.com

BW специализируется в научных исследованиях и разработках, и снабжаем самым высокотехнологичным карбидовым материалом для поставки режущих / фрезеровочных инструментов для почвы, воздушного пространства и электронной индустрии. В нашу основную продукцию входит твердый карбид / быстрорежущая сталь, а также двигатели, микроэлектрические дрели, IC картонорезальные машины, фрезы для гравирования, режущие пилы, фрезеры-расширители, фрезеры-расширители с резцом, дрели, резаки форм для шлицевого вала / звездочки роликовой цепи, и специальные нано инструменты. Пожалуйста, посетите сайт www.tool-tool.com для получения большей информации.

BW is specialized in R&D and sourcing the most advanced carbide material with high-tech coating to supply cutting / milling tool for mould & die, aero space and electronic industry. Our main products include solid carbide / HSS end mills, micro electronic drill, IC card cutter, engraving cutter, shell end mills, cutting saw, reamer, thread reamer, leading drill, involute gear cutter for spur wheel, rack and worm milling cutter, thread milling cutter, form cutters for spline shaft/roller chain sprocket, and special tool, with nano grade. Please visit our web www.tool-tool.com for more info.

beeway 發表在 痞客邦 留言(0) 人氣()

Bewise Inc. www.tool-tool.com Reference source from the internet.

De to mest anvendte principper for stempelmotorer er hhv. Ottomotor og Dieselmotor, begge opkaldt efter deres opfindere.

I en dieselmotor, som er en varmekraftmaskine, indsprøjtes brændstof i en komprimeret luftmængde og tændes på grund af luftmængdens temperatur.

En Dieselmotor kan realiseres som enten totaktsmotor eller firetaktsmotor.

[redigér] Totaktsmotorer

Store totaktsmotorer kombineres som regel med turboladere og opnår derved den højeste termiske virkningsgrad, der kendes for motorer.

De fleste totakts motorer driver enten skibe eller mindre kraftværker.

Siden år 2000 har marinemotorer eksisteret med elektronisk styret indsprøjtning af diesel samt elektronisk styret åbning af ventiler. Det første skib, ved navn Bow Cecil ejet af det norske rederi "Odfjell", blev udstyret med en sådan motor af MAN B&W Diesel A/S.

[redigér] Firetaktsmotorer

Firetaktsmotorer anvendes idag mange steder i transportindustrien, dels pga. dens høje virkningsgrad, dels pga. dens høje drejningsmoment.

Det var da også momentet der var argumentet da man i 1920'ernes USA begyndte at anvende dieselmotorer i lastbilerne, kort efter fulgte jernbane lokomotiverne, de benytter dog en hydraulisk gearkasse eller elektrisk transmission i modsætning til lastbilernes mekaniske. Dette skyldes at en direkte mekanisk overførsel af kraften ikke er solid nok til de kræfter der bruges i et lokomotiv; drivlinen vil simpelthen blive rykket i stykker. Lokomotiver med elektrisk transmission kaldes dieselelektriske lokomotiver. Dieselelektriske drivliner benyttes iøvrigt også på større dumpers i miner og stenbrud.

De første traktorer med dieselmotor dukkede op i 1930'erne. Og sammen med dem entreprenør-maskinerne (gravemaskiner, bulldozere, osv.).

Den først dieselpersonbil, en Mercedes 270D, kom på markedet i 1937, der skulle dog gå 50 år inden dieselen rigtig fik fat i personbilsmarkedet. Det lykkedes først med turboladeren fra 1980'erne (ofte sammensat med en intercooler), og siden Commonrail indsprøjtningen fra slutningen af 1990'erne.

Dieselmotorer i biler har visse miljømæssige ulemper, der til dels kan afhjælpes vha. partikelfiltre.


BW Bewise Inc. Willy Chen willy@tool-tool.com bw@tool-tool.com www.tool-tool.com skype:willy_chen_bw mobile:0937-618-190 Head &Administration Office No.13,Shiang Shang 2nd St., West Chiu Taichung,Taiwan 40356 TEL:+886 4 24710048 / FAX:+886 4 2471 4839 N.Branch 5F,No.460,Fu Shin North Rd.,Taipei,Taiwan S.Branch No.24,Sec.1,Chia Pu East Rd.,Taipao City,Chiayi Hsien,Taiwan

Welcome to BW tool world! We are an experienced tool maker specialized in cutting tools. We focus on what you need and endeavor to research the best cutter to satisfy users demand. Our customers involve wide range of industries, like mold & die, aerospace, electronic, machinery, etc. We are professional expert in cutting field. We would like to solve every problem from you. Please feel free to contact us, its our pleasure to serve for you. BW product including: cutting toolaerospace tool .HSS Cutting toolCarbide end millsCarbide cutting toolNAS Cutting toolCarbide end millAerospace cutting toolФрезерыCarbide drillHigh speed steelMilling cutterCVDD(Chemical Vapor Deposition Diamond )PCBN (Polycrystalline Cubic Boron Nitride) Core drillTapered end millsCVD Diamond Tools Inserts’PCD Edge-Beveling Cutter(Golden Finger’PCD V-Cutter’PCD Wood tools’PCD Cutting tools’PCD Circular Saw Blade’PVDD End Mills’diamond tool Single Crystal Diamond Metric end millsMiniature end millsСпециальные режущие инструменты Пустотелое сверло Pilot reamerFraisesFresas con mango PCD (Polycrystalline diamond) FreseElectronics cutterStep drillMetal cutting sawDouble margin drillGun barrelAngle milling cutterCarbide burrsCarbide tipped cutterChamfering toolIC card engraving cutterSide cutterNAS toolDIN toolSpecial toolMetal slitting sawsShell end millsSide and face milling cuttersSide chip clearance sawsLong end millsStub roughing end millsDovetail milling cuttersCarbide slot drillsCarbide torus cuttersAngel carbide end millsCarbide torus cuttersCarbide ball-nosed slot drillsMould cutterTool manufacturer.

Bewise Inc. www.tool-tool.com

BW специализируется в научных исследованиях и разработках, и снабжаем самым высокотехнологичным карбидовым материалом для поставки режущих / фрезеровочных инструментов для почвы, воздушного пространства и электронной индустрии. В нашу основную продукцию входит твердый карбид / быстрорежущая сталь, а также двигатели, микроэлектрические дрели, IC картонорезальные машины, фрезы для гравирования, режущие пилы, фрезеры-расширители, фрезеры-расширители с резцом, дрели, резаки форм для шлицевого вала / звездочки роликовой цепи, и специальные нано инструменты. Пожалуйста, посетите сайт www.tool-tool.com для получения большей информации.

BW is specialized in R&D and sourcing the most advanced carbide material with high-tech coating to supply cutting / milling tool for mould & die, aero space and electronic industry. Our main products include solid carbide / HSS end mills, micro electronic drill, IC card cutter, engraving cutter, shell end mills, cutting saw, reamer, thread reamer, leading drill, involute gear cutter for spur wheel, rack and worm milling cutter, thread milling cutter, form cutters for spline shaft/roller chain sprocket, and special tool, with nano grade. Please visit our web www.tool-tool.com for more info.

beeway 發表在 痞客邦 留言(0) 人氣()

Bewise Inc. www.tool-tool.com Reference source from the internet.

De to mest anvendte principper for stempelmotorer er hhv. Ottomotor og Dieselmotor, begge opkaldt efter deres opfindere.

I en dieselmotor, som er en varmekraftmaskine, indsprøjtes brændstof i en komprimeret luftmængde og tændes på grund af luftmængdens temperatur.

En Dieselmotor kan realiseres som enten totaktsmotor eller firetaktsmotor.

[redigér] Totaktsmotorer

Store totaktsmotorer kombineres som regel med turboladere og opnår derved den højeste termiske virkningsgrad, der kendes for motorer.

De fleste totakts motorer driver enten skibe eller mindre kraftværker.

Siden år 2000 har marinemotorer eksisteret med elektronisk styret indsprøjtning af diesel samt elektronisk styret åbning af ventiler. Det første skib, ved navn Bow Cecil ejet af det norske rederi "Odfjell", blev udstyret med en sådan motor af MAN B&W Diesel A/S.

[redigér] Firetaktsmotorer

Firetaktsmotorer anvendes idag mange steder i transportindustrien, dels pga. dens høje virkningsgrad, dels pga. dens høje drejningsmoment.

Det var da også momentet der var argumentet da man i 1920'ernes USA begyndte at anvende dieselmotorer i lastbilerne, kort efter fulgte jernbane lokomotiverne, de benytter dog en hydraulisk gearkasse eller elektrisk transmission i modsætning til lastbilernes mekaniske. Dette skyldes at en direkte mekanisk overførsel af kraften ikke er solid nok til de kræfter der bruges i et lokomotiv; drivlinen vil simpelthen blive rykket i stykker. Lokomotiver med elektrisk transmission kaldes dieselelektriske lokomotiver. Dieselelektriske drivliner benyttes iøvrigt også på større dumpers i miner og stenbrud.

De første traktorer med dieselmotor dukkede op i 1930'erne. Og sammen med dem entreprenør-maskinerne (gravemaskiner, bulldozere, osv.).

Den først dieselpersonbil, en Mercedes 270D, kom på markedet i 1937, der skulle dog gå 50 år inden dieselen rigtig fik fat i personbilsmarkedet. Det lykkedes først med turboladeren fra 1980'erne (ofte sammensat med en intercooler), og siden Commonrail indsprøjtningen fra slutningen af 1990'erne.

Dieselmotorer i biler har visse miljømæssige ulemper, der til dels kan afhjælpes vha. partikelfiltre.


BW Bewise Inc. Willy Chen willy@tool-tool.com bw@tool-tool.com www.tool-tool.com skype:willy_chen_bw mobile:0937-618-190 Head &Administration Office No.13,Shiang Shang 2nd St., West Chiu Taichung,Taiwan 40356 TEL:+886 4 24710048 / FAX:+886 4 2471 4839 N.Branch 5F,No.460,Fu Shin North Rd.,Taipei,Taiwan S.Branch No.24,Sec.1,Chia Pu East Rd.,Taipao City,Chiayi Hsien,Taiwan

Welcome to BW tool world! We are an experienced tool maker specialized in cutting tools. We focus on what you need and endeavor to research the best cutter to satisfy users demand. Our customers involve wide range of industries, like mold & die, aerospace, electronic, machinery, etc. We are professional expert in cutting field. We would like to solve every problem from you. Please feel free to contact us, its our pleasure to serve for you. BW product including: cutting toolaerospace tool .HSS Cutting toolCarbide end millsCarbide cutting toolNAS Cutting toolCarbide end millAerospace cutting toolФрезерыCarbide drillHigh speed steelMilling cutterCVDD(Chemical Vapor Deposition Diamond )PCBN (Polycrystalline Cubic Boron Nitride) Core drillTapered end millsCVD Diamond Tools Inserts’PCD Edge-Beveling Cutter(Golden Finger’PCD V-Cutter’PCD Wood tools’PCD Cutting tools’PCD Circular Saw Blade’PVDD End Mills’diamond tool Single Crystal Diamond Metric end millsMiniature end millsСпециальные режущие инструменты Пустотелое сверло Pilot reamerFraisesFresas con mango PCD (Polycrystalline diamond) FreseElectronics cutterStep drillMetal cutting sawDouble margin drillGun barrelAngle milling cutterCarbide burrsCarbide tipped cutterChamfering toolIC card engraving cutterSide cutterNAS toolDIN toolSpecial toolMetal slitting sawsShell end millsSide and face milling cuttersSide chip clearance sawsLong end millsStub roughing end millsDovetail milling cuttersCarbide slot drillsCarbide torus cuttersAngel carbide end millsCarbide torus cuttersCarbide ball-nosed slot drillsMould cutterTool manufacturer.

Bewise Inc. www.tool-tool.com

BW специализируется в научных исследованиях и разработках, и снабжаем самым высокотехнологичным карбидовым материалом для поставки режущих / фрезеровочных инструментов для почвы, воздушного пространства и электронной индустрии. В нашу основную продукцию входит твердый карбид / быстрорежущая сталь, а также двигатели, микроэлектрические дрели, IC картонорезальные машины, фрезы для гравирования, режущие пилы, фрезеры-расширители, фрезеры-расширители с резцом, дрели, резаки форм для шлицевого вала / звездочки роликовой цепи, и специальные нано инструменты. Пожалуйста, посетите сайт www.tool-tool.com для получения большей информации.

BW is specialized in R&D and sourcing the most advanced carbide material with high-tech coating to supply cutting / milling tool for mould & die, aero space and electronic industry. Our main products include solid carbide / HSS end mills, micro electronic drill, IC card cutter, engraving cutter, shell end mills, cutting saw, reamer, thread reamer, leading drill, involute gear cutter for spur wheel, rack and worm milling cutter, thread milling cutter, form cutters for spline shaft/roller chain sprocket, and special tool, with nano grade. Please visit our web www.tool-tool.com for more info.

beeway 發表在 痞客邦 留言(0) 人氣()

Bewise Inc. www.tool-tool.com Reference source from the internet.

DM12-Dieselmotor der ersten Generation (1906)

DM12-Dieselmotor der ersten Generation (1906)
Dieselmotor 1.3 Multijet 16V mit Common-Rail-Technik und gewählter Motor des Jahres 2005

Dieselmotor 1.3 Multijet 16V mit Common-Rail-Technik und gewählter Motor des Jahres 2005

Ein Dieselmotor ist ein Verbrennungsmotor, der nach dem 1892 von Rudolf Diesel erfundenen Verfahren arbeitet. Das charakteristische Merkmal ist die Selbstzündung des eingespritzten Kraftstoffes in der heißen, komprimierten Verbrennungsluft. Das Verfahren wurde bei der Firma MAN in Augsburg entwickelt. Ein Dieselmotor wird überwiegend als Hubkolbenmotor ausgeführt.

Technologie

Prinzip

Beim Diesel-Verbrennungsverfahren wird im Gegensatz zum Ottomotor kein zündfähiges Luft-Kraftstoff-Gemisch zugeführt, sondern ausschließlich Luft. Diese Luft wird zunächst im Zylinder hoch verdichtet, wodurch sie sich auf etwa 700 bis 900 °C erwärmt. Vor dem oberen Totpunkt beginnt die Einspritzung und Feinstverteilung des Kraftstoffes in der heißen Luft im Brennraum. Die hohe Temperatur ist ausreichend, um den Kraftstoff von der Oberfläche beginnend zu verdampfen und zu zünden.

Aus thermodynamischer Sicht stellt der von Rudolf Diesel erdachte und nach ihm benannte Diesel-Prozess einen Vergleichsprozess für den Dieselmotor dar. Weil in diesem die tatsächlichen Verbrennungsvorgänge nur unzureichend abgebildet werden, wird besser der Seiliger-Prozess als Vergleichsprozess herangezogen.(mehr dazu im Abschnitt: Thermodynamik des Dieselmotors)

Kennzeichen des Dieselmotors:

  • Selbstzündung: Die angesaugte oder durch einen Lader zugeführte Luft heizt sich durch die adiabate Kompression stark auf, und der in die heiße Luft eingespritzte Kraftstoff entzündet sich ohne eine externe Zündhilfe. Die im Ottomotor notwendigen Zündkerzen entfallen, nur zum Kaltstart sind Zündhilfen (z. B. Glühkerzen, Startkraftstoff) notwendig.
  • Innere Gemischbildung: Kraftstoff und Luft werden erst im Brennraum gemischt.
  • So hohes Verdichtungsverhältnis, dass eine solche Selbstzündung möglich ist.
  • Die Motorleistung wird nicht durch die Menge des zugeführten Kraftstoff-Luft-Gemisches (quantitativ) geregelt, sondern durch den Kraftstoffgehalt einer konstanten Gasmenge (qualitativ), der durch die eingespritzte Kraftstoffmenge variiert werden kann.

Ausführungen

Dieselmotoren werden als Zweitaktmotor oder als Viertaktmotor mit und ohne Aufladung ausgeführt. Zweitakt-Dieselmotoren werden oft als Großmotoren in Schiffen und Verbrennungsmotoren-Kraftwerken eingesetzt (siehe auch: Schiffsdieselmotor), die thermodynamisch die effizientesten Verbrennungskraftmaschinen darstellen. Kleinere Einheiten werden auch bei Diesellokomotiven, Lastkraftwagen (insbesondere bei der ehemaligen Lkw-Marke Krupp) aber auch bei Luftfahrtantrieben (z. B. Zoche) verwendet. Häufiger ist jedoch der Viertakt-Dieselmotor, dessen Hauptanwendungen im Antrieb von Diesellokomotiven, Dieseltriebwagen, Kraftfahrzeugen, Baumaschinen und Generatoren liegen. Dieselmotoren gibt es ferner in wasser- oder in luftgekühlter Bauweise; letztere wurde von Klöckner-Humboldt-Deutz entwickelt und lange Jahre für den Antrieb von Magirus-Deutz Nutzfahrzeugen verwendet.

Einspritzverfahren

Im wesentlichen lassen sich die Einspritzverfahren nach einem kompakten Brennraum und nach einem unterteilten Brennraum unterscheiden:

Bei den o.a. Verfahren werden verschiedene Pumpensysteme zum Aufbau der Einspritzdrücke verwendet:

Vor- und Nachteile

Vorteile des Dieselmotors gegenüber einem leistungsgleichen Ottomotor

  • Ein günstigerer Wirkungsgrad, vor allem im Teillastbereich, und der daraus resultierende geringere spezifische Kraftstoffverbrauch (entspricht geringeren Kohlendioxid-Emissionen)
  • Geringerer Ausstoß von Kohlenwasserstoffen, Kohlenmonoxid und Stickoxid, im Vergleich zu einem Benzinmotor ohne Abgasnachbehandlung
  • Einsatz von einfacher herzustellenden, ungefährlicheren Kraftstoffen und die Vielstofffähigkeit
  • Die in der Praxis oft beobachtete höhere Zuverlässigkeit und lange Lebensdauer und
  • eine bessere Eignung für Kurzstreckenbetrieb und Kaltlauf, da durch die Einspritzung des Kraftstoffs in die heiße Luft eine Kondensation des Kraftstoffs an den Zylinderwänden und damit ein Abwaschen des Schmierfilms verhindert wird.

Die wirtschaftlichen Vorteile eines Dieselmotors für den PKW-Antrieb hängen teilweise auch von den steuerlichen Randbedingungen ab. In zahlreichen Staaten ist durch Besteuerung Dieselkraftstoff günstiger als Ottokraftstoff, so dass sich die meist höheren Anschaffungskosten über die Laufzeit amortisieren.

Nachteile

  • Höherer Ausstoß von Stickstoffoxiden gegenüber einem Benzinmotor mit 3-Wege-Katalysator
  • Partikelausstoß (Dieselruß und andere), darunter auch lungengängiger Feinstaub, sofern der Motor keinen Partikelfilter besitzt
  • Höhere Produktionskosten
  • Größere Geräuschemissionen (sog. Dieselnageln)
  • Unkultivierter Motorlauf (bei Motoren aus der Zeit vor 2000)
  • Höheres Gewicht im Vergleich zum Ottomotor bei gleicher Leistung
  • Eine begrenzte Höchstdrehzahl, die durch den Zündverzug des Dieselkraftstoffs begründet ist. Dadurch ist eine weitere Leistungssteigerung nur über eine Erhöhung des mittleren Verbrennungsdrucks (und damit des Drehmoments) möglich.
  • Zur Erzielung hoher Leistungsdichten wird eine Aufladung benötigt (Turbolader oder Kompressor), bedingt durch höhere Pumpverluste und niedrigere maximale Drehzahl
  • Aufwendige Abgasreinigung, katalytische Nachbehandlung der Stickoxide wegen des hohen Luftüberschuss nur schwer zu verwirklichen. Wobei ein mittlerer Luftüberschuss z. B. beim Betrieb mit einem stufenlosen Getriebe, einem Speicherkatalysator und einem Rußfilter nicht zwingend ist.
  • Einsatz verschleißfesterer Materialien z. B. keramikbeschichtete Kolbenringe
  • Höhere Ansprüche an das Schmieröl, z. B. höhere Scherbelastung

Besonderheiten bei Motoren für den Antrieb von Kraftfahrzeugen

Drehmomentverlauf und Leistungsabgabe

Dieselmotoren besitzen eine physikalisch bedingte Drehzahlgrenze von etwa 5500 Umdrehungen je Minute (min-1). Dies ist durch den Zündverlauf des Kraftstoffs gegeben und wird durch den Zündverzug, der zwischen 1 und 10 ms liegt, beschrieben. Zum Teil gibt es Dieselmotoren, die auch höhere Drehzahlen erreichen können. Ein von der Firma Dr. Schrick GmbH entwickelter direkteinspritzender kleinvolumiger 2-Zylinder-Turbodiesel für Drohnen erreicht seine Nennleistung erst bei 6000 min-1, der Ventiltrieb ist bis 10.000 min-1 drehzahlfest [1]. Wobei man anmerken muss, dass bei UAVs praktisch keine Abgasvorschriften zu beachten sind und Kerosin (Jet-A1, Petroleum) einen geringeren Zündverzug besitzt als Dieseltreibstoff.

Bei Ottomotoren wird im Gegensatz dazu die Drehzahl vor allem durch die mechanischen Belastbarkeitsgrenzen der Bauteile bestimmt. So drehen aktuelle Formel-1-Motoren bis zu 20.200 min-1 (Williams-Cosworth, Saisonstart 2006). Ottomotoren mit Glühkerzenzündung für Modellfahrzeuge erreichen wegen der geringeren Abmessungen noch weit höhere Drehzahlen von bis zu 40.000 min-1.

P sei die Leistung, M das Drehmoment und n die Drehzahl mal 2π ergibt die Kreisfrequenz ω. Aus der Gleichung P = M \cdot 2\pi\cdot n oder P = M \cdot \omega lässt sich folglich ableiten, dass das Drehmoment M eines Dieselmotors aufgrund des kleineren Drehzahlbereiches im Vergleich zu einem Ottomotor höher sein muss um die gleiche Leistung zu erreichen. Dies wird durch einen größeren Hubraum oder eine Aufladung erreicht. Eine vergleichsweise robuste Ausführung der Gebrauchsdieselmotoren führte zu einem höheren Motorengewicht. Dieselmotoren sind oft als Langhuber ausgeführt, um das (im Vergleich zum Ottomotor) höhere geometrische Verdichtungsverhältnis (Kompressionsvolumen, Schadraum) zu erreichen.

Die Literleistung eines unaufgeladenen Dieselmotors ist deutlich geringer als die eines vergleichbaren unaufgeladenen hubraumgleichen Benzinmotors, auch weil der Dieselmotor mit einem erheblichen Luftüberschuss betrieben werden muss, um akzeptable Rußemissionen zu erzielen

Kommt beim Pkw-Diesel eine Motoraufladung zum Einsatz, liegt das Drehmomentmaximum bevorzugt im Bereich von 1600 min-1 bis 2000 min-1. Bei einer Nenndrehzahl um 4000 min-1 liegen somit günstige Elastizitätswerte vor. Bereits bei Leerlaufdrehzahl kann der Dieselmotor große Drehmomente zur Verfügung stellen (typisch 50 % des Maximalwertes). In einigen Straßenfahrzeugen wird die Drehmomentkurve durch die Steuerelektronik begrenzt, um den Antriebsstrang (Getriebe, Achsantrieb, Antriebswellen) vor Überlastung zu schützen bzw. um mit der vorhandenen Auslegung des Antriebsstranges eine größere Anzahl von Gleichteilen mit ähnlichen Fahrzeugmodellen zu behalten.

Drosselklappen

Beim Prinzip des Dieselverfahrens sind Drosselklappen prinzipiell nicht erforderlich und wegen der Drosselverluste (Vergrößerung Ladungswechselschleife) für den Wirkungsgrad nicht sinnvoll. Allerdings werden in modernen PKW aus Gründen der strengen Abgasnormen gelegentlich Drosselklappen verbaut. Durch eine Drosselklappe kann im Betrieb mit Abgasrückführung ein höheres Druckgefälle erreicht werden. Zusätzlich kann im Regenerationsbetrieb des Partikelfilters ein zu starkes Durchströmen von Luft, d. h. hier Abkühlen des Abgases verhindert werden. Außerdem kann die Drosselklappe zur Verbesserung des NVH-Verhaltens (Noise Vibration Harshness) genutzt werden.

Eine Art Drosselung wird beim 4-Ventil-Dieselmotor im PKW zur Erhöhung der Luftverwirbelung in jeweils einem Einlasskanal angewandt. Diese bauliche Maßnahme wird Einlasskanalabschaltung genannt und kommt nur im unteren Last- und Drehzahlbereich zum Einsatz (Verminderung des Partikelausstoßes – Beachte Trade Off PM/NOx).

In der Geschichte gibt es Beispiele für Dieselmotoren, die aus einem weiteren Grund mit einer Drosselklappe ausgestattet waren. So z. B. der 260D von Mercedes-Benz: Mit diesem Modell wurde 1936 das erste Pkw-Diesel Fahrzeug vorgestellt. Noch bis in die 1980er Jahre baute Mercedes in Dieselmotoren Drosselklappen ein, weil die früher verwendete Bauart der Bosch-Einspritzpumpe pneumatisch, d. h. durch leichten Unterdruck im Ansaugtrakt gesteuert wurde. Diese Art der Regelung ist jedoch recht anfällig für Schwarzrauchbildung in manchen Betriebszuständen: eine Überfettung des Motors mit zu viel Dieselkraftstoff, der nicht komplett verbrennt und Ruß erzeugt. Daneben kann durch die Drosselklappe die Auskühlung der Vorkammer im Schubbetrieb oder Leerlauf verringert werden, so dass bei erneutem Gasgeben die Rußemission geringer ausfällt.

Einspritztechniken

Die von Ottomotoren bekannte Vorzündung findet sich in abgewandelter Form auch in der Motorsteuerung von Dieselmotoren wieder. Bei mechanisch geregelten Pumpen gibt es dazu zwei Mechanismen: Der Spritzversteller sorgt abhängig von der Motordrehzahl für eine frühzeitige Einspritzung vor dem oberen Totpunkt, und der Kaltstartbeschleuniger verlegt den Einspritzbeginn bei tiefen Temperaturen in der Kaltlaufphase in Richtung „früh“. Bei elektronisch geregelten Pumpen werden diese Aufgaben vom Steuergerät übernommen.

Eine neuere Entwicklung im Bereich der Einspritzung ist die Common-Rail-Technik. Dabei wird nicht mehr ein Druckpuls erzeugt, der das Ventil öffnet, sondern es gibt ein gemeinsames Hochdruckreservoir (=Common Rail) für alle Einspritzdüsen, das auf konstantem Druck gehalten wird. Der Einspritzvorgang wird durch das elektromagnetisch oder piezoelektrisch bewegte Ventil gesteuert. Dadurch ist es möglich, extrem kleine Kraftstoffmengen als Voreinspritzung vor der Hauptmenge in den Zylinder einzubringen. Nacheinspritzungen zur Erhöhung der Abgastemperaturen bei der Dieselpartikelfilterregeneration werden dadurch ebenfalls möglich.

Ohne gemeinsames Reservoir, aber ebenfalls mit elektromagnetischem Ventil, arbeitet die Pumpe-Düse-Einspritztechnik. Die Druckerzeugung findet für jede Düse in einem gemeinsamen Bauteil statt. Dadurch entfallen die Druckleitungen, und es können höhere Drücke (Stand der Technik sind etwa 2500 bar) als bei der Common-Rail-Technik verwendet werden. Das so gesteuerte Pumpe-Düse-System ist gegenwärtig noch teurer als Common-Rail-Systeme.

Kennzeichen des Direkteinspritzer-Diesels ist die meist Omega-förmige Mulde am Kolbenboden. Die geringere Brennraumoberfläche im Vergleich zum einem Dieselmotor mit geteiltem Brennraum (Vor- oder Wirbelkammer) ermöglicht geringere Wärmeverluste, geringere Überströmverluste und damit einen besseren Wirkungsgrad. Deshalb haben diese Motoren einen besonders niedrigen Verbrauch. Bedingt durch die höheren Zünddruckanstiege sind sie aber auch lauter als vergleichbare Kammermotoren.

Heute hat sich bei Dieselmotoren die Turboaufladung in Verbindung mit Direkteinspritzung weitgehend durchgesetzt. Vereinzelt gibt es noch Dieselmotoren ohne Aufladung (Saugdiesel) oder Dieselmotoren mit indirekter Einspritzung.

Direkteinspritzung

Es handelt sich dabei um einen Dieselmotor, dessen Einspritzdüse im direkten Verbrennungsraum (ohne Nebenkammer) angeordnet ist. Die geringere Brennraumoberfläche im Vergleich zum Nebenkammer-Motor ermöglicht geringere Wärmeverluste und der Verzicht auf die Medienbewegung ermöglicht einen besseren Wirkungsgrad, was zu einem geringeren spezifischen Verbrauch führt.

Jahrzehntelang wurden Direkteinspritzer-Dieselmotoren ausschließlich im gewerblichen Fahrzeugbereich und bei Stationärmotoren eingesetzt. Grund war das nachteilige Geräuschbild, das in einem PKW nicht akzeptiert wurde. Deshalb waren bis in die 90er Jahre Vorkammermotoren im PKW-Dieselbereich üblich. Das änderte sich ab 1987; da wurden Dieselmotoren mit Direkteinspritzung in PKW-Großserie erstmals eingesetzt, in dem von Fiat angebotenen Fiat Croma TD i.d.. Der Motor wurde in Zusammenarbeit zwischen Magneti Marelli und dem Fiat Forschungszentrum in Neapel entwickelt. Man adaptierte einen aus dem Nutzfahrzeugbereich bekannten Motor und stattete ihn mit einer elektronischen Einspritzsteuerung aus, wodurch die Laufruhe auf ein für PKW-Verhältnisse brauchbares Maß verbessert werden konnte. Der heutige Erfolg der Dieselmotoren bei PKW ist hauptsächlich auf die Direkteinspritzung zurückzuführen. Sie verbindet geringe Kosten mit einem ausgezeichneten Wirkungsgrad.

Während der Ära Piëch arbeitete auch Audi an einem solchen Motor. Daraus resultierte 1989 als zweiter PKW dieser Art nach dem Fiat der Audi 100 TDI. Sein Motor zeichnete sich durch ein hohes Drehmoment bei niedrigen Drehzahlen und guten Fahrleistungen aus. Er begründete den Erfolg der TDI-Motoren aus dem Volkswagen-Konzern. Audi konnte im Jahr 2006 den ersten Sieg eines Rennwagens mit Dieselmotor beim 24-Stunden-Rennen von Le Mans erringen.

Leistungssteigerung

Hauptlimitierender Faktor ist die beschränkte Höchstdrehzahl (vgl. Zündverzug), weshalb man eine effektive Leistungssteigerung nur durch Aufladung erreichen kann. Die theoretischen Grenzen bezüglich denkbarer Verdichtungs- und Verbrennungsdrücke sind dabei weiter gesteckt, als beim Ottomotor (Klopfen). Allerdings führt hohe effektive Verdichtung bedingt durch eine hohe Aufladung zu höheren Stickoxidwerten im unbehandelten Abgas. Weitere Beschränkungen ergeben sich aus dem Einhalten akzeptabler Werte für die Scherbelastung des Ölfilms und der Lagerbelastung; dennoch ist das Leistungspotential der heutigen Dieselmotoren noch lange nicht ausgeschöpft.

Gängige Maßnahme für die Aufladung ist der Einsatz von Abgasturboladern. Durch die Vorverdichtung der Luft erhält jede Zylinderfüllung mehr Sauerstoff, die Einspritzmenge kann dann erhöht werden, und im gleichen Zylinder wird mehr Kraftstoffenergie bei praktisch gleichen Verlusten umgesetzt. Dieses erhöht die Leistung deutlich und auch der Wirkungsgrad des Motors verbessert sich um etwa 5 bis 10% (Downsizing).

Thermodynamik

Als thermodynamischen Vergleichsprozess des Dieselmotors lassen sich der Diesel-Prozess, auch Gleichdruckprozess genannt, und der Seiliger-Prozess heranziehen. Bei beiden Prozessen nehmen die thermischen Wirkungsgrade mit höherer Verdichtung zu. Bei Dieselmotoren ohne Aufladung beträgt das geometrische Verdichtungsverhältnis etwa 1:18 bis 1:25. Bei Dieselmotoren mit Aufladung liegt in der Regel das Verdichtungsverhältnis etwas niedriger.

Bemerkenswert ist, dass der Ottomotor, wenn er genauso hoch verdichten könnte wie der Dieselmotor, einen höheren Wirkungsgrad erreichen würde. Der Grund hierfür ist, dass der thermische Wirkungsgrad des Dieselmotors neben dem Verdichtungsverhältnis auch noch abhängig ist vom Einspritzverhältnis.

Einer Steigerung des Verdichtungsverhältnisses sind allerdings mechanische Grenzen gesetzt. Mit steigender Verdichtung nehmen die Reibungsverluste (Kolbenringe, Lager) immer mehr zu, so dass sie ab einem bestimmten (vom Motor abhängigen Verhältnis) stärker wachsen, als der thermische Wirkungsgrad, und unter dem Strich der Gesamtwirkungsgrad wieder sinkt. Eine höhere Verdichtung hat außerdem ein Ansteigen der maximalen Verbrennungstemperatur zur Folge, sodass der in der Luft enthaltene Stickstoff vermehrt mit dem Luftsauerstoff reagiert und es zu einer, im Vergleich zum Ottomotor, erhöhten Konzentration von Stickoxiden im Abgas kommt.

Abhilfe kann die so genannte Abgasrückführung (AGR) schaffen. Dabei wird der dem Motor zugeführten Luft Abgas beigemischt. Dieses bewirkt eine Reduktion des Sauerstoff- und Stickstoffanteils. Dadurch werden die Spitzentemperaturen bei der Verbrennung gesenkt, und damit kommt es zu einer Reduktion des (NOx)-Anteils im Abgas. Ist der Abgasanteil im Verhältnis zum später eingespritzten Dieselkraftstoff zu hoch, beginnt ein Dieselmotor wegen des Sauerstoffmangels zu rußen (Schwarzrauchbildung). Daher ist die reproduzierbare, aber komplexe Steuerung der zugemischten Abgasmenge in Abhängigkeit von einigen weiteren Einflussfaktoren sehr wichtig.

Abgase und Partikelfilter

1985 wurde erstmalig serienmäßig ein Partikelfilter in einem Fahrzeug verbaut. Der ausschließlich für den amerikanischen Markt bestimmte Mercedes-Benz 300 SDL. Schon 1988 wurde die Produktion eingestellt.

Der erste Fahrzeughersteller, der einen Partikelfilter für den europäischen Markt serienmäßig einbaute, war der PSA-Konzern. 2003 bot mit Mercedes-Benz ein Hersteller Fahrzeuge mit Dieselpartikelfilter an, die auch Euro 4 erfüllen.

Momentan bieten fast alle Hersteller in verschiedenen Fahrzeugen Partikelfilter an. Dies ist neben den latenten Kundenwunsch auf die erwartete Einführung von Fahrverboten in einigen Gebieten für filterlose Fahrzeuge und steuerliche Nachteile zurückzuführen. Es findet also ein ähnlicher Prozess, wie damals bei der Einführung der Katalysatoren bei PKWs mit Benzinmotoren in den 1980ern, statt. Von Peugeot und Citroën werden die Filter in Deutschland auch bei Kleinwagen serienmäßig angeboten.

Erste Vorschläge des Umweltbundesamtes für den Partikelgrenzwert der Euro-5-Norm sind so niedrig, dass sie nur durch den Einsatz eines Partikelfilters zu erfüllen sind. Der insbesondere von deutschen KFZ-Herstellern beschrittene alternative Weg, den Partikelausstoß durch Optimierung der Verbrennung zu verringern, geriet in Kritik, als sich herausstellte, dass die Partikel-Gesamtmasse zwar in bestimmten Lastbereichen reduziert werden konnte, die nun erzeugten Partikel jedoch zahlreicher, kleiner und somit lungengängig und potentiell viel gefährlicher als die groben Stäube waren (siehe auch HCCI).

In Österreich soll die Normverbrauchsabgabe (NOVA) ab 2005 um 300 € beim Kauf eines Neuwagens (PKW) mit Partikelfilter reduziert werden, andererseits soll die NOVA bei Neufahrzeugen ohne Filter um 150 € erhöht werden.

Bei Flurförderzeugen eingesetzten Dieselmotoren sind Rußpartikelfilter seit den 1970er Jahren üblich. Die Verwendung dieser auch für jeden Motor individuell erhältlichen Filter wird jedoch durch bürokratische Hürden außerhalb dieses Einsatzbereiches verhindert.

International verkehrende Schiffe unterliegen in weiten Teilen der Welt nur sehr geringen Umweltanforderungen. Die Verbrennung von schwefelreichem Schweröl (Bunkeröl C) in Schiffsdieseln führt zu Belastungen in Hafenstädten und stark befahrenen Seegebieten.

Geschichte

Das Patent für Rudolf Diesel vom 23. Februar 1893

Das Patent für Rudolf Diesel vom 23. Februar 1893
Briefmarke zum 100. Geburtstag des Dieselmotors

Briefmarke zum 100. Geburtstag des Dieselmotors

Der Dieselmotor wurde 1892 von Rudolf Diesel erfunden. Während der Entwicklung wurden die verschiedensten Kraftstoffe im Versuch erprobt. Diesel strebte von Anbeginn die direkte Einspritzung in den Brennraum an, scheiterte jedoch an den mangelhaften Pumpen und an der fehlenden Präzision der Einspritzventile. Deswegen wurde der Umweg über eine Einspritzung des Kraftstoffes mit Luft gewählt, die es erlaubte, den flüssigen Kraftstoff genau genug zu dosieren und im Brennraum zu verteilen. Am 10. August 1893 läuft der erste Prototyp des neuen Motors aus eigener Kraft.[2]

Der heute aus Erdöl hergestellte Dieselkraftstoff wurde (in Deutschland und einigen anderen Ländern) nach dem Erfinder des Motors benannt. Die meisten heutigen Dieselmotoren können auch mit einem Pflanzenöl (Pöl) betrieben werden, jedoch sind dazu meistens Umbauten in der Kraftstoffversorgung notwendig.

  • Im Februar 1897 führten die Entwicklungsarbeiten Diesels bei der Maschinenfabrik Augsburg (aus der später die Firma MAN hervorging) zu einem Motor mit guten Laufeigenschaften.
  • 1902 bis 1910 produzierte MAN 82 Exemplare des stationären Dieselmotors DM 12.
  • 1908 – Prosper L'Orange entwickelt eine präzise arbeitende Einspritzpumpe sowie das Vorkammerprinzip.
  • 1910 wurde das norwegische Forschungsschiff Fram als erstes Schiff der Welt mit einem Dieselantrieb versehen. Danach folgte die auf einer dänischen Werft gebaute Selandia als erstes Handelsschiff. Der Dieselantrieb verdrängt bis 1960 Dampfturbine und Kohlebefeuerung.
  • 1919 meldet Prosper L'Orange seine Erfindung zum Patent an: ein trichterförmiger Einsatz in der Vorkammer.
  • 1923 – Erster Traktor mit Vorkammer-Dieselmotor, erster Lastkraftwagen mit Dieselmotor
  • 1936 – Erste Personenkraftwagen mit Dieselmotor (Mercedes-Benz 260 D, Hanomag Rekord und Saurer)
  • 1936 – DB 602/LOF6 Luftschiffmotor für das Luftschiff LZ129 Hindenburg
  • 1937 – Der BMW 114 Flugzeugdieselmotor wird eingestellt.
  • 1944 – Die Ingenieure der Klöckner-Humboldt-Deutz AG (KHD) entwickeln Dieselmotoren mit Luftkühlung zur Serienreife. Damit werden später Lastwagen der Marke Magirus-Deutz angetrieben.
  • 1968 – Peugeot stellt mit dem 204 den ersten Kleinwagen mit quer eingebautem Diesel vor.
  • 1978 - erscheint der Golf Diesel von Volkswagen.
  • 1988 – Als erster Hersteller stellt Fiat im Modell Fiat Croma TD i.d. einen richtungsweisenden turboaufgeladenen, direkteinspritzenden Dieselmotor mit einer Leistung von 66 kW (90 PS) vor.
  • 2004 – In Westeuropa steigt der Anteil neuzugelassener PKW mit Dieselmotor auf über 50 %.

Der Diesel-Boom im PKW-Bereich

Bis in die Mitte der 1990er Jahre galten Diesel-PKW als sparsam und zuverlässig, aber auch in Bezug auf Fahrleistungen selbst bei identischer Leistung einem Ottomotor unterlegen. Dies änderte sich mit der zunehmenden Verbreitung der Turboaufladung und durch die Einführung der direkten Kraftstoffeinspritzung. Zuvor wurden zugunsten der Laufruhe bei schnelllaufenden Kleindieselaggregaten (PKW-Motoren) der Kraftstoff nicht direkt in den Brennraum injiziert, sondern in eine Vorkammer (z. B. Mercedes, Fiat) oder eine Wirbelkammer (z. B. Volkswagen, BMW) eingespritzt.

„Diesel“-Schriftzug an einem Pkw

Diesel“-Schriftzug an einem Pkw

Diese Art von Dieselmotoren wurde in Großserie für PKW erstmals ab 1988 in dem von Fiat angebotenen Fiat Croma TD i.d. eingesetzt. Zusammen mit der Turboaufladung und der Ladeluftkühlung wurde diese Dieselgeneration sehr elastisch. Die direkte Kraftstoffeinspritzung mit hohem Druck (über 1000 bar anstatt 200 bar bei den Vor- und Wirbelkammermotoren) führte zu einer Leistungssteigerung, zu einem höheren Wirkungsgrad (damit zu niedrigerem Verbrauch), und der Diesel verlor das oft als leistungsschwach oder „phlegmatisch“ beschriebene Leistungsverhalten. Zu Beginn wurden spezielle Verteilereinspritzpumpen (z. B. die VP44 von Bosch) verwendet, später wechselten die meisten Hersteller zum kostengünstigeren Common-Rail-System oder zur Pumpe-Düse-Technik (insbesondere VW). VW geht aber derzeit auch zum Common-Rail-System über, weil dieses System billiger in der Herstellung und inzw. technisch so ausgereift ist, dass es ähnlich hohe Einspritzdrücke ermöglicht, wie das Pumpe-Düse-System.

Heute haben gängige Turbodieselmotoren mehr Leistung als vergleichbare Benzinmotoren ohne Aufladung, bei weiterhin niedrigerem Verbrauch als Benziner.

Bedeutung des Dieselmotors

Nachdem der Dieselmotor im Automobilbau bei PKW (im Gegensatz zu LKW, die in Europa nahezu ausschließlich mit Dieselmotoren angetrieben werden) jahrzehntelang ein Schattendasein führte, sind Personenwagen mit Dieselmotoren in Europa mittlerweile sehr weit verbreitet. In einigen Ländern stellen sie bereits mehr als 75 Prozent aller Neuwagenzulassungen. Das liegt vor allem an der Entwicklung leistungsstarker und relativ leiser Dieselmotoren und insbesondere an der Einführung des Turboladers in den letzten Jahren. In Verbindung mit dem prinzipiell begründeten niedrigeren Verbrauch bzw. dem höheren Wirkungsgrad eines Dieselmotors im Vergleich zum Benzin verbrauchenden Ottomotor (Dieselkraftstoff hat mit 35,3 MJ/L überdies eine höhere Energiedichte als Benzin mit 32 MJ/L) sowie der in vielen Ländern praktizierten steuerlichen Begünstigung des Dieselkraftstoffes gewinnt dieser Motor an Attraktivität. Dieselkraftstoff wird niedriger besteuert, um die Betriebskosten von Lastkraftwagen niedrig zu halten. Eine Ausnahme bilden hierbei die Schweiz und Großbritannien, wo Dieselkraftstoff teurer ist als Benzin. Als Ausgleich hierfür wird in einigen Ländern die Kraftfahrzeugsteuer für Dieselfahrzeuge angehoben, so dass erst eine hohe Kilometerlaufleistung zu einer Nettoersparnis führt.

Für Dieselfahrzeuge spricht weiterhin die Verwendbarkeit von aus Pflanzenöl gewonnenen Alternativkraftstoffen wie Biodiesel, die in der Regel wegen fehlender oder geringerer Besteuerung preiswerter als Dieselkraftstoff angeboten werden. In anderen Kontinenten ist der Dieselmotor deutlich weniger verbreitet, wobei es Planungen beispielsweise der deutschen Automobilhersteller gibt, in Zukunft auch auf dem US-Markt mit Dieselmotoren Fuß zu fassen. In der Schweiz ist der Dieselmotor in PKW weniger verbreitet, aber der Anteil am Fahrzeugbestand nimmt zu, da sich der hohe Dieselanteil in den EU-Ländern und die dort günstigen Dieselpreise werbewirksam auf die Schweizer Konsumenten auswirken.

Der Dieselmotor erreicht nicht so hohe Drehzahlen wie ein vergleichbarer Ottomotor. Ein Turbodiesel stellt dafür im unteren Drehzahlbereich ein hohes Drehmoment zur Verfügung. Dieselmotoren liefen bisher in der Regel auch nicht so vibrationsarm wie Ottomotoren. Trotz der Fortschritte auf dem Gebiet der Motorentechnik galten Ottomotoren bezüglich Laufruhe und -kultur als überlegen. Aber hohe Einspritzdrücke bis zu 2000 bar mit modernen Piezo-Einspritzdüsen, um den Dieselkraftstoff noch feiner zu zerstäuben, und leistungsfähige Motorsteuerungselektronik machen den modernen Dieselmotor „salonfähig“. Auf der Lufteintrittsseite gibt es heute häufig eine Abgasturboaufladung, mit der die Luftmenge im Zylinder erhöht wird. Dies erlaubt die Einspritzung einer höheren Kraftstoffmenge, was die Motorleistung und damit das Beschleunigungsverhalten des Diesel-PKW verbessert.

Mittels einer Abgasrückführung wurde die Stickoxidproduktion des Dieselmotors positiv beeinflusst. Man muss hier allerdings einen Kompromiss zwischen vertretbaren Stickoxid- und Partikelwerten im Abgas eingehen, da bei hohen Abgasrückführungsraten zwar Motorleistung und Stickoxidwerte absinken, der Rußpartikelausstoß aber in nicht tolerierbarem Maß ansteigt. Dieselmotoren sind wegen ihrer Luftverschmutzung durch den krebserregenden Ruß in die Kritik geraten und werden deshalb zunehmend mit Partikelfiltern ausgestattet. In den Filtern werden die Rußpartikel zurückgehalten; von Zeit zu Zeit müssen sie regeneriert werden.

Der beim Kaltlauf auftretenden, klopfenden Verbrennung (das sogenannte „Nageln“) wird in Common-Rail-Systemen inzwischen durch eine Aufteilung der Einspritzmenge auf mehrere Einspritzvorgänge begegnet, wobei ein Kompromiss zwischen niederer Partikelemissionen und Laufruhe eingegangen werden muss.

Im Vergleich zu modernen Benzinmotoren, die mit Drei-Wege-Katalysator ausgerüstet sind, ist der Stickoxidausstoss beim Dieselmotor deutlich höher.

Dieselkraftstoff ist dem Heizöl ähnlich, enthält aber deutlich weniger Schwefel und Paraffin. Bis 1994 waren Dieselkraftstoff und Heizöl identisch. Wegen der unterschiedlichen Besteuerung wird Heizöl rot eingefärbt und enthält den Zusatzstoff Solvent Yellow 124, um eine unerlaubte Verwendung in Dieselmotoren nachzuweisen (Delikt: Steuerhinterziehung).

Einsatzgebiete neben Pkw und Lkw

Motorräder

Sommer-Hatz-Diesel

Sommer-Hatz-Diesel

Motorräder mit Dieselmotoren sind ungewöhnlich, aber es gibt sie. Nach Stand 2005 sind die in Indien gefertigte Royal Enfield Bullet mit italienischen Lombardini- und einem deutschen Hatz-Dieselmotor käuflich, beide mit ca. 8 kW. Diese dürften die wirtschaftlichsten Motorräder sein. Die FHT Esslingen hat im Rahmen eines studentischen Projekts ein Motorrad mit Smart-Dieselmotor, Abgasrückführung und Partikelfilter entwickelt (EDiMo).

Flugzeuge

Junkers Jumo 205 Flugdiesel

Junkers Jumo 205 Flugdiesel

Seit einigen Jahren werden, zum ersten mal nach den vor etlichen Jahrzehnten aufgegebenen Entwicklungen von Junkers (siehe Gegenkolbenmotor), Rolls-Royce und Packard, wieder ernsthafte Versuche unternommen, die Vorteile des Dieselmotors auch in der Luftfahrt nutzbar zu machen.

Beispiel hierfür sind die durch Umbauten des Volkswagen-Vierzylinder-TDI-Motors oder des 1,7-l Motors aus der Mercedes-A-Klasse geschaffenen Flugmotoren. Von Diamond Aircraft wird bereits sehr erfolgreich ein kleines Flugzeug mit einem von der Thielert AG umgebauten Mercedes-Motor verkauft.

Die Fortschritte in der Dieseltechnologie erlauben es, bei gleicher Reichweite einen kleineren und damit leichteren Tank einzubauen, der das höhere Motorgewicht relativiert. Damit kann das Leistungsgewicht des Gesamtsystems Motor + Treibstoff auf Ottomotorniveau gesenkt werden, bei höheren Reichweitenanforderungen ist das Dieselmotorsystem sogar klar im Vorteil.

Probleme mit dem ungünstigeren Leistungsgewicht, mit den in der Luftfahrt komplexen Zulassungsverfahren sowie mit der marktbeherrschenden Position der Ottomotoren-Anbieter erschweren die Einführung jedoch und machen den Flug-Dieselmotor für große Automobilmotor-Produzenten wenig attraktiv. Kleine Firmen wie z. B Thielert, DeltaHawk oder die Société de Motorisations Aéronautiques (jetzt SAFRAN) sind jedoch auf diesem Gebiet aktiv. Dieselmotoren sind für den Antrieb von Flugzeugen interessant, weil man sie mit Kerosin (JET-A1) betreiben kann, das auf Flughäfen günstiger als Ottokraftstoff zu bekommen ist. Die Wankel AG bietet einen Wankelflugmotor, der mit Kerosin betrieben werden kann, aber kein Selbstzünder ist.

Wasserfahrzeuge

Schiffsdieselmotoren sind in der Schifffahrt die häufigste Antriebsart, vom Hilfsmotor bei Segelschiffen bis hin zu riesigen Aggregaten mit mehreren 10.000 kW. Als Kraftstoff dient bei Großmotoren meist preiswertes, ungereinigtes Dieselöl oder Schweröl. Besonders die größeren Schiffsdieselmotoren sind auf einen Betrieb bei niedrigen Drehzahlen ausgelegt und häufig als Zweitaktmotor ausgeführt. Bei Booten werden häufig modifizierte PKW-Motoren (zum Beispiel Volkswagen Marine) oder modifizierte LKW-Motoren (z. B. Volvo Penta) eingesetzt.

Gegenüber Benzinmotoren bieten Dieselmotoren in der Schifffahrt einige Vorteile:

  • kostengünstiger Kraftstoff
  • weniger gefährlicher Kraftstoff an Bord

Benzin ist sehr leicht flüchtig (d. h. verdampft schnell). Benzindämpfe sind schwerer als Luft, sinken nach unten und sammeln sich im Motorraum an der tiefsten Stelle an. Durch einen Funken können die Dämpfe explodieren. Deshalb sind bei Booten mit Benzinmotor(en) explosionsgeschützte Lüfter notwendig, die den Motorraum entlüften. In der Regel muss zudem vor einem Motorstart der Motorraum mehrere Minuten entlüftet werden.

  • keine gegenüber Feuchtigkeit empfindliche Zündanlage

Schienenfahrzeuge

Neben Elektromotoren stellen Dieselmotoren die meistverwendete Antriebsart für Triebwagen und Lokomotiven dar (siehe Diesellokomotive). Häufig kommt eine Kombination beider Antriebsarten zum Einsatz (siehe: Dieselelektrischer Antrieb).

Stromerzeugungsaggregate

Der dieselmotorgetriebene Stromerzeuger wird auch Dieselaggregat genannt und dient der Stromversorgung von meist abgelegenen Gebäuden und anderen Objekten, welche nicht an das Stromnetz der Energieversorgungsunternehmen angeschlossen sind . Als Notstromaggregat wird er eingesetzt, wo man auf eine unterbrechungsfreie Stromversorgung angewiesen ist, wie in Rechenzentren und Krankenhäusern.

Motorsport

Aufgrund von Turboaufladung und Direkteinspritzung wurden Dieselmotoren Ende der 1990er auch im Automobilsport konkurrenzfähig. Gegenüber Ottomotoren haben Dieselmotoren bezüglich Motorleistung und Leistungsentfaltung so keine schwerwiegenden Nachteile mehr. Im Gegenteil haben Dieselmotoren gegenüber Ottomotoren den Vorteil, dass sie weniger Kraftstoff verbrauchen und somit besonders bei Langstreckenrennen bemerkbare Vorteile haben. Hinzu kommt durch den Turbolader ein sehr hohes Drehmoment, welches das Fahren in mittlerern Drehzahlen ohne Beeinträchtigung der Beschleunigung bewirkt und ihnen zudem bei Steigungen Vorteile verschafft. Weil Dieselmotoren etwa 30 % weniger Kraftstoff verbrauchen, muss weniger Kraftstoff mitgenommen werden, was Dieselrennwagen auch einen geringen Gewichtsvorteil verschafft.

So konnte 1998 - Dieselmotoren waren damals im Fahrzeugfeld noch höchst selten - ein BMW 320d als erster mit Dieselkraftstoff betriebener Rennwagen das 24-Stunden-Rennen auf dem Nürburgring gewinnen, wodurch für viel Aufmerksamkeit gesorgt wurde. Heute sind Dieselfahrzeuge bei dieser Rennveranstaltung längst nichts Ungewöhnliches mehr. Auch in der WTCC setzte Seat als erster Hersteller 2007 zwei mit Dieselkraftstoff betriebene Seat León ein, denen auch schon ein Sieg gelang.

Seit 2003 nimmt Volkswagen an der Rallye Dakar teil und setzte von Anfang an Rallyewagen m

beeway 發表在 痞客邦 留言(0) 人氣()

Bewise Inc. www.tool-tool.com Reference source from the internet.

A diesel engine built by MAN AG in 1906

A diesel engine built by MAN AG in 1906
Rudolf Diesel&apos;s 1893 patent on his engine design

Rudolf Diesel's 1893 patent on his engine design

A Diesel engine is an internal combustion engine which operates using the Diesel cycle. German engineer Rudolf Diesel invented it in 1892, basing it on the hot bulb engine. He received a patent for it on February 23, 1893. The Diesel cycle uses compression ignition: the fuel ignites upon being injected into the highly compressed air in the combustion chamber. By contrast, petrol engines utilize the Otto cycle, in which fuel and air are typically mixed before entering the combustion chamber. The mixture is then ignited by a spark plug. Compression ignition is generally considered undesirable in Otto cycle engines (see engine knocking).

[edit] Patent controversy

It is possible that Rudolf Diesel was not the first to invent the diesel engine. His patent (No. 7241) was filed in 1892.[1] However, Herbert Akroyd Stuart and Charles Richard Binney had already obtained a patent (No. 7146) in 1890 entitled: "Improvements in Engines Operated by the Explosion of Mixtures of Combustible Vapour or Gas and Air" which described the world's first compression-ignition engine.[2]. Akroyd-Stuart constructed the first compression-ignition oil engine in Bletchley, England in 1891 and leased the rights to Richard Hornsby & Sons, who by July 1892, five years before Diesel's prototype, had a diesel engine working for Newport Sanitary Authority. By 1896, diesel tractors and locomotives were being built in some quantity in Grantham. Importantly, Diesel's airblast injection system did not become part of subsequent "diesel" engines, with direct injection (DI) (as found in Akroyd-Stuart's engine) used instead, developed by Robert Bosch GmbH in 1927.

[edit] Early history timeline

  • 1862: Nicholas Immel develops his coal gas engine, similar to a modern gasoline engine.
  • 1891: Justin Simerson, of Bletchley perfects his oil engine, and leases rights to Hornsby of England to build engines. They build the first cold start, compression ignition engines.
  • 1892: Hornsby engine No. 101 is built and installed in a waterworks. It was in the MAN truck museum in Stockport, and is now in the Anson Engine Museum in Poynton. T.H. Barton at Hornsbys builds an experimental version where the vaporiser was replaced with a cylinder head and the pressure increased. Automatic ignition was achieved through compression alone (the first time this had happened), and the engine ran for six hours. Diesel would achieve much the same thing five years later, claiming the achievement for himself.
  • 1892: Rudolf Diesel develops the principles of his proposed Carnot heat engine type motor which would burn powdered coal dust. He is employed by refrigeration genius Carl von Linde, then Munich iron manufacturer MAN AG, and later by the Sulzer engine company of Switzerland. He borrows ideas from them and leaves a legacy with all firms.
  • 1892: John Froelich builds his first oil engine powered farm tractor.
  • 1893: August 10th — Diesel builds a working version of his ideas.
  • 1894: Witte, Reid, and Fairbanks start building oil engines with a variety of ignition systems.
  • 1896: Hornsby builds diesel tractors and railway engines.
  • 1897: Winton produces and drives the first US built gas automobile; he later builds diesel plants. On February 17th, Diesel builds his first working prototype, which narrowly avoids a catastrophic explosion in Augsburg. The engine was not really ready for market until 1908, thanks to other people's improvements.
  • 1897: Mirrlees, Watson & Yaryan build the first British diesel engine under license from Rudolf Diesel. This is now displayed in the Anson Engine Museum at Poynton, Cheshire, UK.
  • 1898: Busch installs a Rudolf Diesel type engine in his brewery in St. Louis. It is the first in the United States. Rudolf Diesel perfects his compression start engine, patents, and licences it. This engine, pictured above, is in a German museum. Burmeister & Wain (B & W) of Copenhagen in Denmark buy rights to build diesel engines.
  • 1899: Diesel licences his engine to builders Krupp and Sulzer, who become famous builders.
  • 1902: F. Rundlof invents the two-stroke crankcase, scavenged hot bulb engine.
  • 1902: A company named Forest City started manufacturing diesel generators.
  • 1904: French build the first diesel submarine, the Z.
  • 1912: First diesel ship MS Selandia is built. SS Fram, polar explorer Amundsen’s flagship, is converted to a AB Atlas diesel.
  • 1913: Fairbanks Morse starts building its Y model semi-diesel engine. US Navy submarines use NELSECO units.
  • 1914: German U-Boats are powered by MAN diesels. War service proves engine's reliability.
  • 1920s: Fishing fleets convert to oil engines. Atlas-Imperial of Oakland, Union, and Lister diesels appear.
  • 1922: Mack Boring & Parts Company is established.
  • 1924: First diesel trucks appear.
  • 1928: Canadian National Railways employ a diesel shunter in their yards.
  • 1930: Edward McGovern Sr., founder of Mack Boring & Parts Company opens the first diesel-only engine institute in North America.
  • 1930s: Clessie Cummins starts with Dutch diesel engines, and then builds his own into trucks and a Duesenberg luxury car at the Daytona speedway.
  • 1930s: Caterpillar starts building diesels for their tractors.
  • 1933: Citroën introduced the Rosalie, a passenger car with the world’s first commercially available diesel engine developed with Harry Ricardo.
  • 1934: General Motors starts a GM diesel research facility. It builds diesel railroad engines—The Pioneer Zephyr—and goes on to found the General Motors Electro-Motive Division, which becomes important building engines for landing craft and tanks in the Second World War. GM then applies this knowledge to market control with its famous Green Leakers for buses and railroad engines.
  • 1936: Airship Hindenburg is powered by diesel engines.

[edit] How diesel engines work

Compressing any gas raises its temperature; this is the method by which fuel is ignited in diesel engines. Air is drawn into the cylinders and is compressed by the pistons at compression ratios as high as 25:1, much higher than used for spark-ignite engines. Near the end of the compression stroke, diesel fuel is injected into the combustion chamber through an injector (or atomizer). The fuel ignites from contact with the air that, due to compression, has been heated to a temperature of about 700 – 900 °C (1300 – 1650 °F). The resulting combustion causes increased heat and expansion in the cylinder, which increases pressure and moves the piston downward. A connecting rod transmits this motion to a crankshaft to convert linear motion to rotary motion for use as power in a variety of applications. Mechanical valves in the cylinder head usually control intake air to the engine. For increased power output and fuel economy, most modern diesel engines are equipped with a turbocharger, and in some derivatives, a supercharger to increase intake air volume. Use of an aftercooler/intercooler to cool intake air that has been compressed, and thus heated, by the turbocharger increases the density of the air and typically leads to power and efficiency improvements.

In cold weather, diesel engines can be difficult to start because the cold metal of the cylinder block and cylinder head draw out the heat created in the cylinder during the compression stroke, thus preventing ignition. Some diesel engines use small electric heaters called glow plugs inside the cylinder to help ignite fuel when starting. Some even use resistive grid heaters in the intake manifold to warm the inlet air until the engine reaches operating temperature. Engine block heaters (electric resistive heaters in the engine block) connected to the utility grid are often used when an engine is turned off for extended periods (more than an hour) in cold weather to reduce startup time and engine wear. Diesel fuel is also prone to "waxing" or "gelling" in cold weather, terms for the solidification of diesel oil into a partially crystalline state. The crystals build up in the fuel (especially in fuel filters), eventually starving the engine of fuel. Low-output electric heaters in fuel tanks and around fuel lines are used to solve this problem. Also, most engines have a "spill return" system, by which any excess fuel from the injector pump and injectors is returned to the fuel tank. Once the engine has warmed, returning warm fuel prevents waxing in the tank. Fuel technology has improved recently so that with special additives waxing no longer occurs in all but the coldest climates.

A vital component of all diesel engines is a mechanical or electronic governor, which limits the speed of the engine by controlling the rate of fuel delivery. Unlike Otto cycle engines, incoming air is not throttled and a diesel engine without a governor can easily overspeed. Mechanically governed fuel injection systems are driven by the engine's gear train. These systems use a combination of springs and weights to control fuel delivery relative to both load and speed. Modern, electronically controlled diesel engines control fuel delivery and limit the maximum RPM by use of an electronic control module (ECM) or electronic control unit (ECU). The ECM/ECU receives an engine speed signal from a sensor as well as other operating parameters such as intake manifold pressure, fuel temperature, and other critical items and controls the amount of fuel and start of injection timing through electric or hydraulic actuators to maximize power and efficiency and minimize emissions.

Controlling the timing of the start of injection of fuel into the cylinder is a key to minimizing emissions, and maximizing fuel economy (efficiency), of the engine. The timing is usually measured in units of crank angle of the piston before Top Dead Center (TDC). For example, if the ECM/ECU initiates fuel injection when the piston is 10 degrees before TDC, the start of injection, or timing, is said to be 10° BTDC. Optimal timing will depend on the engine design as well as its speed and load.

Advancing the start of injection (injecting before the piston reaches TDC) results in higher in-cylinder pressure and temperature, and higher efficiency, but also results in higher emissions of various oxides of nitrogen (NOx) through higher combustion temperatures. At the other extreme, delayed start of injection causes incomplete combustion and emits visible black smoke made of particulate matter (PM) and unburned hydrocarbons (HC).

[edit] Fuel injection in diesel engines

[edit] Early fuel injection systems

The modern diesel engine is a combination of two inventors' creations. In all major aspects, it holds true to Diesel's original design, that of igniting fuel by compression at an extremely high pressure within the cylinder. However, nearly all present-day diesel engines use the so-called solid injection system invented by Herbert Akroyd Stuart for his hot bulb engine (a compression-ignition engine that precedes the diesel engine and operates slightly differently). Solid injection raises the fuel to extreme pressures by mechanical pumps and delivers it to the combustion chamber by pressure-activated injectors in an almost solid-state jet. Diesel's original engine injected fuel with the assistance of compressed air, which atomized the fuel and forced it into the engine through a nozzle. This is called an air-blast injection. The size of the gas compressor needed to power such a system made early diesel engines very heavy and large for their power outputs, and the need to drive a compressor lowered power output even more. Early marine diesels often had smaller auxiliary engines whose sole purpose was to drive the compressors to supply air to the main engine's injector system. Such a system was too bulky and inefficient to be used for road-going automotive vehicles.

Solid injection systems are lighter, simpler, and allow for much higher speed, and so are universally used for automotive diesel engines. Air-blast systems provide very efficient combustion under low-speed, high-load conditions, especially when running on poor-quality fuels, so some large cathedral marine engines use this injection method. Air-blast injection also raises the fuel temperature during the injection process, so is sometimes known as hot-fuel injection. In contrast, solid injection is sometimes called cold-fuel injection.

Because the vast majority of diesel engines in service today use solid injection, the information below relates to that system. Diesel engines are used in mid-sized cruisers, trawlers, large yachts, work boats and commercial vessels. In the diesel engine, only air is introduced into the cylinder head. The air is then compressed to about 600 pounds per square inch (psi), compared to about 200 psi in the gasoline engine. This high compression heats the air to about 1000 degrees Fahrenheit. At this moment, fuel is injected directly into the compressed air. The fuel is ignited by the heat, causing a rapid expansion of gases that drive the piston downward, supplying power to the crankshaft.

Advantages of the diesel engine are numerous. It burns considerably less fuel than a gasoline engine performing the same work. It has no ignition system to attend to. It can deliver much more of its rated horsepower on a continuous basis than can a gasoline engine. The life of a diesel engine is generally longer than a gasoline engine. Although Diesel fuel will burn in open air, it will not explode.

Some disadvantages to diesel engines are that they're very heavy for the horsepower they produce, and their initial cost is much higher than a comparable gasoline engine.

[edit] Mechanical and electronic injection

Older engines make use of a mechanical fuel pump and valve assembly that is driven by the engine crankshaft, usually from the timing belt or chain. These engines use simple injectors that are basically very precise spring-loaded valves that open and close at a specific fuel pressure. The pump assembly consists of a pump that pressurizes the fuel and a disc-shaped valve that rotates at half crankshaft speed. The valve has a single aperture to the pressurized fuel on one side, and one aperture for each injector on the other. As the engine turns, the valve discs will line up and deliver a burst of pressurized fuel to the injector at the cylinder about to enter its power stroke. The injector valve is forced open by the fuel pressure, and the diesel is injected until the valve rotates out of alignment and the fuel pressure to that injector is cut off. Engine speed is controlled by a third disc, which rotates only a few degrees and is controlled by the throttle lever. This disc alters the width of the aperture through which the fuel passes, and therefore how long the injectors are held open before the fuel supply is cut, which controls the amount of fuel injected.

This contrasts with the more modern method of having a separate fuel pump which supplies fuel constantly at high pressure to each injector. Each injector has a solenoid, is operated by an electronic control unit, which enables more accurate control of injector opening times that depend on other control conditions, such as engine speed and loading, resulting in better engine performance and fuel economy. This design is also mechanically simpler than the combined pump and valve design, making it generally more reliable, and less noisy, than its mechanical counterpart.

Both mechanical and electronic injection systems can be used in either direct or indirect injection configurations.

Older diesel engines with mechanical injection pumps could be inadvertently run in reverse, albeit very inefficiently, as witnessed by massive amounts of soot being ejected from the air intake. This was often a consequence of push starting a vehicle using the wrong gear.

[edit] Indirect injection

Main article: Indirect injection

An indirect injection diesel engine delivers fuel into a chamber off the combustion chamber, called a prechamber or ante-chamber, where combustion begins and then spreads into the main combustion chamber, assisted by turbulence created in the chamber. This system allows for a smoother, quieter running engine, and because combustion is assisted by turbulence, injector pressures can be lower, which in the days of mechanical injection systems allowed high-speed running suitable for road vehicles (typically up to speeds of around 4,000 rpm). The prechamber had the disadvantage of increasing heat loss to the engine's cooling system, introducing pumping losses in the narrow throat connecting it to the main cylinder, and restricting the combustion burn, which reduced the efficiency by between 5% – 10% in comparison to a direct injection engine, and nearly all require some form of cold start device such as glow plugs. Indirect injection engines were used widely in small-capacity, high-speed diesel engines in automotive, marine and construction uses from the 1950s, until direct injection technology advanced in the 1980s. Indirect injection engines are cheaper to build and it is easier to produce smooth, quiet-running vehicles with a simple mechanical system, so such engines are still often used in applications that carry less stringent emissions controls than highway vehicles, such as small marine engines, generators, tractors, and pumps. With electronic injection systems, indirect injection engines are still used in some road-going vehicles, but most prefer the greater efficiency of direct injection.

During the development of the high-speed diesel engine in the 1930s, various engine manufacturers developed their own type of pre-combustion chamber. Some, such as Mercedes-Benz, had complex internal designs. Others, such as Lanova, used a mechanical system to adjust the shape of the chamber for starting and running conditions. However, the most commonly used design turned out to be the "Comet" series of swirl chambers developed by Sir Harry Ricardo, using a two-piece spherical chamber with a narrow "throat" to induce turbulence. Most European manufacturers of high-speed diesel engines used Comet-type chambers or developed their own versions (Mercedes stayed with their own design for many years), and this trend continues with current indirect injection engines.

[edit] Direct injection

Modern diesel engines make use of one of the following direct injection methods:

[edit] Distributor pump direct injection

The first incarnations of direct injection diesels used a rotary pump much like indirect injection diesels; however the injectors were mounted in the top of the combustion chamber rather than in a separate pre-combustion chamber. Examples are vehicles such as the Ford Transit and the Austin Rover Maestro and Montego with their Perkins Prima engine. The problem with these vehicles was the harsh noise that they made and particulate (smoke) emissions. This is the reason that in the main this type of engine was limited to commercial vehicles, the notable exceptions being the Maestro, Montego and Fiat Croma passenger cars. Fuel consumption was about fifteen to twenty percent lower than indirect injection diesels, which for some buyers was enough to compensate for the extra noise.

One of the first small-capacity, mass produced direct injection engines that could be called refined was developed by the Rover Group.[citation needed] The 200Tdi 2.5-litre four-cylinder turbodiesel was used by Land Rover in their vehicles from 1989, and the engine used an aluminum cylinder head, Bosch two-stage injection and multi-phase glow plugs to produce a smooth-running and economical engine while still using mechanical fuel injection.

This type of engine was transformed by electronic control of the injection pump, pioneered by the Volkswagen Group with the Audi 100 TDI introduced in 1989. The injection pressure was still only around 300 bar, but the injection timing, fuel quantity, EGR and turbo boost were all electronically controlled. This gave much more precise control of these parameters which made refinement much more acceptable and emissions acceptably low. Fairly quickly the technology trickled down to more mass market vehicles such as the Mark 3 Golf TDI where it proved to be very popular. These cars were both more economical and more powerful than indirect injection competitors of their day.

[edit] Unit direct injection

Unit direct injection also injects fuel directly into the cylinder of the engine. However, in this system the injector and the pump are combined into one unit positioned over each cylinder. Each cylinder thus has its own pump, feeding its own injector, which prevents pressure fluctuations and allows more consistent injection to be achieved. This type of injection system, also developed by Bosch, is used by Volkswagen AG in cars (where it is called a Pumpe-Düse-System — literally "pump-nozzle system") and by Mercedes Benz (PLD) and most major diesel engine manufacturers in large commercial engines (CAT, Cummins, Detroit Diesel). With recent advancements, the pump pressure has been raised to 2,050 bar (205 MPa), allowing injection parameters similar to common rail systems.

[edit] Common rail direct injection

Main article: Common rail

In older diesel engines, a distributor-type injection pump, regulated by the engine, supplies bursts of fuel to injectors which are simply nozzles through which the diesel is sprayed into the engine's combustion chamber.

In common rail systems, the distributor injection pump is eliminated. Instead, a high-pressure pump pressurises fuel at up to 2,000 bar (200 MPa, 29,000 psi)[3], in a "common rail". The common rail is a tube that branches off to computer-controlled injector valves, each of which contains a precision-machined nozzle and a plunger driven by a solenoid or piezoelectric actuators. (For example, Mercedes uses piezoelectric actuators in their high power output 3.0L V6 common rail diesel).

Most European automakers have common rail diesels in their model lineups, even for commercial vehicles. Some Japanese manufacturers, such as Toyota, Nissan and recently Honda, have also developed common rail diesel engines. Some Indian companies have also successfully implemented this technology.

Different car makers refer to their common rail engines by different names, e.g., DaimlerChrysler's CDI, Ford Motor Company's TDCi (most of these engines are manufactured by PSA), Fiat Group's (Fiat, Alfa Romeo and Lancia) JTD, Renault's dCi, GM/Opel's CDTi (most of these engines are manufactured by Fiat, other by Isuzu), Hyundai's CRDi, Mitsubishi's DI-D, PSA Peugeot Citroën's HDi (Engines for commercial diesel vehicles are made by Ford Motor Company), Toyota's D-4D, and so on.Mahindra & Mahindra for their 'Scorpio-CRDe' and Tata Motors for their 'Safari-DICOR'.

[edit] Types of diesel engines

[edit] Early diesel engines

Rudolph Diesel intended his engine to replace the steam engine as the primary power source for industry. As such diesel engines in the late 19th- and early 20th-centuries used the same basic layout and form as industrial steam engines, with long-bore cylinders, external valve gear, cross-head bearings and an open crankshaft connected to a large flywheel. Smaller engines would be built with vertical cylinders, whilst most medium- and large-sized industrial engines were built with horizontal cylinders, just as steam engines had been. Engines could be built with more than one cylinder in both cases. The largest early diesels resembled the triple-expansion reciprocating engine steam engine, being tens of feet high with vertical cylinders arranged in-line. These early engines ran at very slow speeds — partly due to the limitations of their air-blast injector equipment and partly so they would be compatible with the majority of industrial equipment designed for steam engines — speed ranges of between 100 and 300 RPM were common. Engines were usually started by allowing compressed air into the cylinders to turn the engine, although smaller engines could be started by hand.

In the early decades of the 20th century, when large diesel engines were first being fitted to ships, the engines took a form similar to the compound steam engines common at the time, with the piston being connected to the connecting rod via a crosshead bearing. Following steam engine practice, double-acting 4-stroke diesel engines were constructed to increase power output, with combustion taking place on both sides of the piston, with two sets of valve gear and fuel injection. This system also meant that the engine's direction of rotation could be reversed by altering the injector timing. This meant the engine could be coupled directly to the propeller without the need for a gearbox. Whilst producing large amounts of power and being very efficient, the double-acting diesel engine's main problem was producing a good seal where the piston rod passed through the bottom of the lower combustion chamber to the crosshead bearing. By the 1930s it was found easier and more reliable to fit turbochargers to the engines, although crosshead bearings are still used to reduce the stress on the crankshaft bearings, and the wear on the cylinders, in large long-stroke cathedral engines.

[edit] Modern diesel engines

As with gasoline engines, there are two classes of Diesel engines in current use: two-stroke and four-stroke. The four-stoke type is the "classic" version, tracing its lineage back to Dr. Diesel's prototype. It is also the most commonly used type, being the preferred power source for many motor vehicles, especially buses and trucks. Much larger engines, such as used for railroad locomotion and marine propulsion, are often two-stroke units, offering a more favorable horsepower-to-weight ratio, as well as better fuel economy. The most powerful engines in the world are two-cycle Diesels of mammoth proportions. These so-called low speed Diesels are able to achieve thermal efficiencies approaching fifty percent.

Two-stroke Diesel operation is similar to that of gasoline counterparts, except that fuel is not mixed with air prior to induction, and the crankcase does not take an active role in the cycle. The two-stroke Diesel depends upon forced aspiration to charge the cylinders with air and to scavenge exhaust gasses. The traditional two-stroke design relies upon a mechanically driven, positive displacement blower to charge the cylinders prior to compression and ignition. The archetype of this design is the Detroit Diesel engine, in which the blower pressurizes a chamber in the engine block often referred to as the "air box." The (much larger) Electromotive prime mover utilized in EMD Diesel-electric locomotives is built to the same principle.

In the EMD prime mover the movement of the piston in its cycle uncovers direct openings through the cylinder shaft into intake and exhaust manifolds; which through their blower generated higher air pressure either charge or scavenge the internal volume of each cylinder, at the correct time in the piston stroke. That is, at the end of exhaust, through intake, and prior to the compression stroke. Then at the end of the power stroke and through the exhaust stroke. Thus in the EMD two-stroke cycle engine there is no separate mechanical cylinder valving or other complex appratus which controls access to the cylinder(s) for feeding a cylinder its air charge or scavenging a cylinder of its waste gases. This mechanical simplicity greatly enhanced the early acceptance of this type of engine.

When the cylinder's piston approaches bottom dead center in a two-stroke Diesel, a passage between the air box and the cylinder is opened, permitting air flow into the cylinder. During this time, the exhaust valves are opened and some of the air flow forces the remaining combustion gasses from the cylinder. As the piston passes bottom center and starts upward, the passage is closed and compression commences, culminating in fuel injection and ignition. Refer to two-stroke Diesel engines for more discussion concerning aspiration issues with a two-stroke engine.

Normally, the number of cylinders are used in multiples of two, although any number of cylinders can be used as long as the load on the crankshaft is counterbalanced to prevent excessive vibration. The inline-six cylinder design is the most prolific in light to medium-duty engines, though small V8 and larger inline-four displacement engines are also common. Small-capacity engines (generally considered to be those below five litres in capacity) are generally four or six cylinder types, with the four cylinder being the most common type found in automotive uses. Five cylinder diesel engines have also been produced, being a compromise between the smooth running of the six cylinder and the space-efficient dimensions of the four cylinder. Diesel engines for smaller plant machinery, boats, tractors, generators and pumps may be four, three or two cylinder types, with the single cylinder Diesel engine remaining for light stationary work.

The desire to improve the diesel engine's power-to-weight ratio produced several novel cylinder arrangements to extract more power from a given capacity. The Napier Deltic engine, with three cylinders arranged in a triangular formation, each containing two opposed-action pistons, the whole engine having three crankshafts, is one of the better known. The Commer van company of the United Kingdom used a similar design for road vehicles,designed by Tillings-Stevens,member of the Rootes Group,the TS3. The Commer TS3 engine had 3 horizontal in-line cylinders,each with two opposed action pistons that worked through rocker arms,to connecting rods and had one crankshaft. While both these designs succeeded in producing greater power for a given capacity, they were complex and expensive to produce and operate, and when turbocharger technology improved in the 1960s this was found to be a much more reliable and simple way of extracting more power.

As a footnote, prior to 1949, Sulzer started experimenting with two-stroke engines with boost pressures as high as 6 atmospheres, in which all of the output power was taken from an exhaust turbine. The two-stroke pistons directly drove air compressor pistons to make a positive displacement gas generator. Opposed pistons were connected by linkages instead of crankshafts. Several of these units could be connected together to provide power gas to one large output turbine. The overall thermal efficiency was roughly twice that of a simple gas turbine. (Source Modern High-Speed Oil Engines, Volume II by C. W. Chapman, published by The Caxton Publishing Co. Ltd. Reprinted in July 1949)

[edit] Carbureted compression ignition model engines

Simple compression ignition engines are made for model propulsion. This is quite similar to the typical glow-plug engine that runs on a mixture of methanol (methyl alcohol) and lubricant (typically castor oil) (and occasionally nitro-methane to improve performance) with a hot wire filament to provide ignition. Rather than containing a glow plug the head has an adjustable contra piston above the piston, forming the upper surface of the combustion chamber. This contra piston is restrained by an adjusting screw controlled by an external lever (or sometimes by a removable hex key). The fuel used contains ether, which is highly volatile and has an extremely low flash point, combined with kerosene and a lubricant plus a very small proportion (typically 2%) of ignition improver such as Amyl nitrate or preferably Isopropyl nitrate nowadays. The engine is started by reducing the compression and setting the spray bar mixture rich with the adjustable needle valve, gradually increasing the compression while cranking the engine. The compression is increased until the engine starts running. The mixture can then be leaned out and the compression increased. Compared to glow plug engines, model diesel engines exhibit much higher fuel economy, thus increasing endurance for the amount of fuel carried. They also exhibit higher torque, enabling the turning of a larger or higher pitched propeller at slower speed. Since the combustion occurs well before the exhaust port is uncovered, these engines are also considerably quieter (when unmuffled) than glow-plug engines of similar displacement. Compared to glow plug engines, model diesels are more difficult to throttle over a wide range of powers, making them less suitable for radio control models than either two or four stroke glow-plug engines although this difference is claimed to be less noticeable with the use of modern schneurle-ported engines.

[edit] Advantages and disadvantages versus spark-ignition engines

[edit] Power and fuel economy

Diesel engines are more efficient than gasoline (petrol) engines of the same power, resulting in lower fuel consumption. A common margin is 40% more miles per gallon for an efficient turbodiesel. For example, the current model Škoda Octavia, using Volkswagen Group engines, has a combined Euro rating of 38 miles per US gallon (6.2 L/100 km) for the 102 bhp (76 kW) petrol engine and 54 mpg (4.4 L/100 km) for the 105 bhp (78 kW) diesel engine. However, such a comparison doesn't take into account that diesel fuel is denser and contains about 15% more energy by volume. Although the calorific value of the fuel is slightly lower at 45.3 MJ/kg (megajoules per kilogram) than gasoline at 45.8 MJ/kg, liquid diesel fuel is significantly denser than liquid gasoline. When this is taken into account, diesel fuel has a higher energy density than petrol; this volumetric measure is the main concern of many people, as diesel fuel is sold by volume, not weight, and must be transported and stored in tanks of fixed size.

Adjusting the numbers to account for the energy density of diesel fuel, one finds the overall energy efficiency of the aforementioned paragraph is still about 20% greater for the diesel version, despite the weight penalty of the diesel engine. When comparing engines of relatively low power for the vehicle's weight (such as the 75 hp VW Golf), the diesel's overall energy efficiency advantage is reduced further but still between 10 and 15 percent.

While higher compression ratio is helpful in raising efficiency, diesel engines are much more economical than gasoline (petrol) engines when at low power and at engine idle. Unlike the petrol engine, diesels lack a butterfly valve (throttle) in the inlet system, which closes at idle. This creates parasitic drag on the incoming air, reducing the efficiency of petrol/gasoline engines at idle. Due to their lower heat losses, diesel engines have a lower risk of gradually overheating if left idling for long periods of time. In many applications, such as marine, agriculture, and railways, diesels are left idling unattended for many hours or sometimes days. These advantages are especially attractive in locomotives (see dieselization).

Naturally aspirated diesel engines are heavier than gasoline engines of the same power for two reasons. The first is that it takes a larger displacement diesel engine to produce the same power as a gasoline engine. This is essentially because the diesel must operate at lower engine speeds.[4] Diesel fuel is injected just before ignition, leaving the fuel little time to reach all the oxygen in the cylinder. In the gasoline engine, air and fuel are mixed for the entire compression stroke, ensuring complete mixing even at higher engine speeds. The second reason for the greater weight of a diesel engine is it must be stronger to withstand the higher combustion pressures needed for ignition, and the shock loading from the detonation of the ignition mixture. As a result, the reciprocating mass (the piston and connecting rod), and the resultant forces to accelerate and to decelerate these masses, are substantially higher the heavier, the bigger and the stronger the part, and the laws of diminishing returns of component strength, mass of component and inertia — all come into play to create a balance of offsets, of optimal mean power output, weight and durability.

Yet it is this same build quality that has allowed some enthusiasts to acquire significant power increases with turbocharged engines through fairly simple and inexpensive modifications. A gasoline engine of similar size cannot put out a comparable power increase without extensive alterations because the stock components would not be able to withstand the higher stresses placed upon them. Since a diesel engine is already built to withstand higher levels of stress, it makes an ideal candidate for performance tuning with little expense. However, it should be said that any modification that raises the amount of fuel and air put through a diesel engine will increase its operating temperature which will reduce its life and increase its service interval requirements. These are issues with newer, lighter, high performance diesel engines which aren't "overbuilt" to the degree of older engines and are being pushed to provide greater power in smaller engines.

The addition of a turbocharger or supercharger to the engine greatly assists in increasing fuel economy and power output, mitigating the fuel-air intake speed limit mentioned above for a given engine displacement. Boost pressures can be higher on diesels than gasoline engines, due to the latter's susceptibility to knock, and the higher compression ratio allows a diesel engine to be more efficient than a comparable spark ignition engine. Because the burned gases are expanded further in a diesel engine cylinder, the exhaust gas is cooler, meaning turbochargers require less cooling, and can be more reliable, than on spark-ignition engines.

The increased fuel economy of the diesel engine over the gasoline engine means that the diesel produces less carbon dioxide (CO2) per unit distance. Recently, advances in production and changes in the political climate have increased the availability and awareness of biodiesel, an alternative to petroleum-derived diesel fuel with a much lower net-sum emission of CO2, due to the absorption of CO2 by plants used to produce the fuel.

The two main factors that held diesel engine back in private vehicles until quite recently were their low power outputs and high noise levels, characterised by knock or clatter, especially at low speeds and when cold. This noise was caused by the sudden ignition of the diesel fuel when injected into the combustion chamber. This noise was a product of the sudden temperature change, hence it was more pronounced at low engine temperatures. A combination of improved mechanical technology (such as two-stage injectors which fire a short "pilot charge" of fuel into the cylinder to warm the combustion chamber before delivering the main fuel charge) and electronic control (which can adjust the timing and length of the injection process to optimise it for all speeds and temperatures) have partially mitigated these problems in the latest generation of common-rail designs. Poor power and narrow torque bands have been helped by the use of turbochargers and intercoolers.

[edit] Emissions

Diesel engines produce very little carbon monoxide as they burn the fuel in excess air even at full load, at which point the quantity of fuel injected per cycle is still about 50% lean of stoichiometric. However, they can produce black soot (or more specifically diesel particulate matter) from their exhaust, which consists of unburned carbon compounds. This is often caused by worn injectors, which do not atomize the fuel sufficiently, or a faulty engine management system, allowing more fuel to be injected than can be burned completely in the available time.

The full load limit of a diesel engine in normal service is defined by the "black smoke limit", beyond which point the fuel cannot be completely combusted; as the "black smoke limit" is still considerably lean of stoichiometric it is possible to obtain more power by exceeding it, but the resultant inefficient combustion means that the extra power comes at the price of reduced combustion efficiency, high fuel consumption and dense clouds of smoke, so this is only done in specialised applications (such as tractor pulling) where these disadvantages are of little concern.

Likewise, when starting from cold, the engine's combustion efficiency is reduced because the cold engine block draws heat out of the cylinder in the compression stroke. The result is that fuel is not combusted fully, resulting in blue/white smoke and lower power outputs until the engine has warmed through. This is especially the case with indirect injection engines, which are less thermally efficient. With electronic injection, the timing and length of the injection sequence can be altered to compensate for this. Older engines with mechanical injection can have manual control to alter the timing, or multi-phase electronically-controlled glow plugs, that stay on for a period after start-up to ensure clean combustion — the plugs are automatically switched to a lower power to prevent them burning out.

Particles of the size normally called PM10 (particles of 10 micrometres or smaller) have been implicated in health problems, especially in cities. Some modern diesel engines feature diesel particulate filters, which catch the black soot and when saturated are automatically regenerated by burning the particles. Other problems associated with the exhaust gases (nitrogen oxides, sulfur oxides) can be mitigated with further investment and equipment; some diesel cars now have catalytic converters in the exhaust.

[edit] Power and torque

For commercial uses requiring towing, load carrying and other tractive tasks, diesel engines tend to have better torque characteristics. Diesel engines tend to have their torque peak quite low in their speed range (usually between 1600 – 2000 rpm for a small-capacity unit, lower for a larger engine used in a truck). This provides smoother control over heavy loads when starting from rest, and, crucially, allows the diesel engine to be given higher loads at low speeds than a petrol engine, making them much more economical for these applications. This characteristic is not so desirable in private cars, so most modern diesels used in such vehicles use electronic control, variable geometry turbochargers and shorter piston strokes to achieve a wider spread of torque over the engine's speed range, typically peaking at around 2500 – 3000 rpm.

[edit] Reliability

The lack of an electrical ignition system greatly improves the reliability. The high durability of a diesel engine is also due to its overbuilt nature (see above) as well as the diesel's combustion cycle, which creates less-violent changes in pressure when compared to a spark-ignition engine, a benefit that is magnified by the lower rotating speeds in diesels. Diesel fuel is a better lubricant than gasoline so is less harmful to the oil film on piston rings and cylinder bores; it is routine for diesel engines to cover 250,000

beeway 發表在 痞客邦 留言(0) 人氣()

Bewise Inc. www.tool-tool.com Reference source from the internet.

A diesel engine built by MAN AG in 1906

A diesel engine built by MAN AG in 1906
Rudolf Diesel&apos;s 1893 patent on his engine design

Rudolf Diesel's 1893 patent on his engine design

A Diesel engine is an internal combustion engine which operates using the Diesel cycle. German engineer Rudolf Diesel invented it in 1892, basing it on the hot bulb engine. He received a patent for it on February 23, 1893. The Diesel cycle uses compression ignition: the fuel ignites upon being injected into the highly compressed air in the combustion chamber. By contrast, petrol engines utilize the Otto cycle, in which fuel and air are typically mixed before entering the combustion chamber. The mixture is then ignited by a spark plug. Compression ignition is generally considered undesirable in Otto cycle engines (see engine knocking).

[edit] Patent controversy

It is possible that Rudolf Diesel was not the first to invent the diesel engine. His patent (No. 7241) was filed in 1892.[1] However, Herbert Akroyd Stuart and Charles Richard Binney had already obtained a patent (No. 7146) in 1890 entitled: "Improvements in Engines Operated by the Explosion of Mixtures of Combustible Vapour or Gas and Air" which described the world's first compression-ignition engine.[2]. Akroyd-Stuart constructed the first compression-ignition oil engine in Bletchley, England in 1891 and leased the rights to Richard Hornsby & Sons, who by July 1892, five years before Diesel's prototype, had a diesel engine working for Newport Sanitary Authority. By 1896, diesel tractors and locomotives were being built in some quantity in Grantham. Importantly, Diesel's airblast injection system did not become part of subsequent "diesel" engines, with direct injection (DI) (as found in Akroyd-Stuart's engine) used instead, developed by Robert Bosch GmbH in 1927.

[edit] Early history timeline

  • 1862: Nicholas Immel develops his coal gas engine, similar to a modern gasoline engine.
  • 1891: Justin Simerson, of Bletchley perfects his oil engine, and leases rights to Hornsby of England to build engines. They build the first cold start, compression ignition engines.
  • 1892: Hornsby engine No. 101 is built and installed in a waterworks. It was in the MAN truck museum in Stockport, and is now in the Anson Engine Museum in Poynton. T.H. Barton at Hornsbys builds an experimental version where the vaporiser was replaced with a cylinder head and the pressure increased. Automatic ignition was achieved through compression alone (the first time this had happened), and the engine ran for six hours. Diesel would achieve much the same thing five years later, claiming the achievement for himself.
  • 1892: Rudolf Diesel develops the principles of his proposed Carnot heat engine type motor which would burn powdered coal dust. He is employed by refrigeration genius Carl von Linde, then Munich iron manufacturer MAN AG, and later by the Sulzer engine company of Switzerland. He borrows ideas from them and leaves a legacy with all firms.
  • 1892: John Froelich builds his first oil engine powered farm tractor.
  • 1893: August 10th — Diesel builds a working version of his ideas.
  • 1894: Witte, Reid, and Fairbanks start building oil engines with a variety of ignition systems.
  • 1896: Hornsby builds diesel tractors and railway engines.
  • 1897: Winton produces and drives the first US built gas automobile; he later builds diesel plants. On February 17th, Diesel builds his first working prototype, which narrowly avoids a catastrophic explosion in Augsburg. The engine was not really ready for market until 1908, thanks to other people's improvements.
  • 1897: Mirrlees, Watson & Yaryan build the first British diesel engine under license from Rudolf Diesel. This is now displayed in the Anson Engine Museum at Poynton, Cheshire, UK.
  • 1898: Busch installs a Rudolf Diesel type engine in his brewery in St. Louis. It is the first in the United States. Rudolf Diesel perfects his compression start engine, patents, and licences it. This engine, pictured above, is in a German museum. Burmeister & Wain (B & W) of Copenhagen in Denmark buy rights to build diesel engines.
  • 1899: Diesel licences his engine to builders Krupp and Sulzer, who become famous builders.
  • 1902: F. Rundlof invents the two-stroke crankcase, scavenged hot bulb engine.
  • 1902: A company named Forest City started manufacturing diesel generators.
  • 1904: French build the first diesel submarine, the Z.
  • 1912: First diesel ship MS Selandia is built. SS Fram, polar explorer Amundsen’s flagship, is converted to a AB Atlas diesel.
  • 1913: Fairbanks Morse starts building its Y model semi-diesel engine. US Navy submarines use NELSECO units.
  • 1914: German U-Boats are powered by MAN diesels. War service proves engine's reliability.
  • 1920s: Fishing fleets convert to oil engines. Atlas-Imperial of Oakland, Union, and Lister diesels appear.
  • 1922: Mack Boring & Parts Company is established.
  • 1924: First diesel trucks appear.
  • 1928: Canadian National Railways employ a diesel shunter in their yards.
  • 1930: Edward McGovern Sr., founder of Mack Boring & Parts Company opens the first diesel-only engine institute in North America.
  • 1930s: Clessie Cummins starts with Dutch diesel engines, and then builds his own into trucks and a Duesenberg luxury car at the Daytona speedway.
  • 1930s: Caterpillar starts building diesels for their tractors.
  • 1933: Citroën introduced the Rosalie, a passenger car with the world’s first commercially available diesel engine developed with Harry Ricardo.
  • 1934: General Motors starts a GM diesel research facility. It builds diesel railroad engines—The Pioneer Zephyr—and goes on to found the General Motors Electro-Motive Division, which becomes important building engines for landing craft and tanks in the Second World War. GM then applies this knowledge to market control with its famous Green Leakers for buses and railroad engines.
  • 1936: Airship Hindenburg is powered by diesel engines.

[edit] How diesel engines work

Compressing any gas raises its temperature; this is the method by which fuel is ignited in diesel engines. Air is drawn into the cylinders and is compressed by the pistons at compression ratios as high as 25:1, much higher than used for spark-ignite engines. Near the end of the compression stroke, diesel fuel is injected into the combustion chamber through an injector (or atomizer). The fuel ignites from contact with the air that, due to compression, has been heated to a temperature of about 700 – 900 °C (1300 – 1650 °F). The resulting combustion causes increased heat and expansion in the cylinder, which increases pressure and moves the piston downward. A connecting rod transmits this motion to a crankshaft to convert linear motion to rotary motion for use as power in a variety of applications. Mechanical valves in the cylinder head usually control intake air to the engine. For increased power output and fuel economy, most modern diesel engines are equipped with a turbocharger, and in some derivatives, a supercharger to increase intake air volume. Use of an aftercooler/intercooler to cool intake air that has been compressed, and thus heated, by the turbocharger increases the density of the air and typically leads to power and efficiency improvements.

In cold weather, diesel engines can be difficult to start because the cold metal of the cylinder block and cylinder head draw out the heat created in the cylinder during the compression stroke, thus preventing ignition. Some diesel engines use small electric heaters called glow plugs inside the cylinder to help ignite fuel when starting. Some even use resistive grid heaters in the intake manifold to warm the inlet air until the engine reaches operating temperature. Engine block heaters (electric resistive heaters in the engine block) connected to the utility grid are often used when an engine is turned off for extended periods (more than an hour) in cold weather to reduce startup time and engine wear. Diesel fuel is also prone to "waxing" or "gelling" in cold weather, terms for the solidification of diesel oil into a partially crystalline state. The crystals build up in the fuel (especially in fuel filters), eventually starving the engine of fuel. Low-output electric heaters in fuel tanks and around fuel lines are used to solve this problem. Also, most engines have a "spill return" system, by which any excess fuel from the injector pump and injectors is returned to the fuel tank. Once the engine has warmed, returning warm fuel prevents waxing in the tank. Fuel technology has improved recently so that with special additives waxing no longer occurs in all but the coldest climates.

A vital component of all diesel engines is a mechanical or electronic governor, which limits the speed of the engine by controlling the rate of fuel delivery. Unlike Otto cycle engines, incoming air is not throttled and a diesel engine without a governor can easily overspeed. Mechanically governed fuel injection systems are driven by the engine's gear train. These systems use a combination of springs and weights to control fuel delivery relative to both load and speed. Modern, electronically controlled diesel engines control fuel delivery and limit the maximum RPM by use of an electronic control module (ECM) or electronic control unit (ECU). The ECM/ECU receives an engine speed signal from a sensor as well as other operating parameters such as intake manifold pressure, fuel temperature, and other critical items and controls the amount of fuel and start of injection timing through electric or hydraulic actuators to maximize power and efficiency and minimize emissions.

Controlling the timing of the start of injection of fuel into the cylinder is a key to minimizing emissions, and maximizing fuel economy (efficiency), of the engine. The timing is usually measured in units of crank angle of the piston before Top Dead Center (TDC). For example, if the ECM/ECU initiates fuel injection when the piston is 10 degrees before TDC, the start of injection, or timing, is said to be 10° BTDC. Optimal timing will depend on the engine design as well as its speed and load.

Advancing the start of injection (injecting before the piston reaches TDC) results in higher in-cylinder pressure and temperature, and higher efficiency, but also results in higher emissions of various oxides of nitrogen (NOx) through higher combustion temperatures. At the other extreme, delayed start of injection causes incomplete combustion and emits visible black smoke made of particulate matter (PM) and unburned hydrocarbons (HC).

[edit] Fuel injection in diesel engines

[edit] Early fuel injection systems

The modern diesel engine is a combination of two inventors' creations. In all major aspects, it holds true to Diesel's original design, that of igniting fuel by compression at an extremely high pressure within the cylinder. However, nearly all present-day diesel engines use the so-called solid injection system invented by Herbert Akroyd Stuart for his hot bulb engine (a compression-ignition engine that precedes the diesel engine and operates slightly differently). Solid injection raises the fuel to extreme pressures by mechanical pumps and delivers it to the combustion chamber by pressure-activated injectors in an almost solid-state jet. Diesel's original engine injected fuel with the assistance of compressed air, which atomized the fuel and forced it into the engine through a nozzle. This is called an air-blast injection. The size of the gas compressor needed to power such a system made early diesel engines very heavy and large for their power outputs, and the need to drive a compressor lowered power output even more. Early marine diesels often had smaller auxiliary engines whose sole purpose was to drive the compressors to supply air to the main engine's injector system. Such a system was too bulky and inefficient to be used for road-going automotive vehicles.

Solid injection systems are lighter, simpler, and allow for much higher speed, and so are universally used for automotive diesel engines. Air-blast systems provide very efficient combustion under low-speed, high-load conditions, especially when running on poor-quality fuels, so some large cathedral marine engines use this injection method. Air-blast injection also raises the fuel temperature during the injection process, so is sometimes known as hot-fuel injection. In contrast, solid injection is sometimes called cold-fuel injection.

Because the vast majority of diesel engines in service today use solid injection, the information below relates to that system. Diesel engines are used in mid-sized cruisers, trawlers, large yachts, work boats and commercial vessels. In the diesel engine, only air is introduced into the cylinder head. The air is then compressed to about 600 pounds per square inch (psi), compared to about 200 psi in the gasoline engine. This high compression heats the air to about 1000 degrees Fahrenheit. At this moment, fuel is injected directly into the compressed air. The fuel is ignited by the heat, causing a rapid expansion of gases that drive the piston downward, supplying power to the crankshaft.

Advantages of the diesel engine are numerous. It burns considerably less fuel than a gasoline engine performing the same work. It has no ignition system to attend to. It can deliver much more of its rated horsepower on a continuous basis than can a gasoline engine. The life of a diesel engine is generally longer than a gasoline engine. Although Diesel fuel will burn in open air, it will not explode.

Some disadvantages to diesel engines are that they're very heavy for the horsepower they produce, and their initial cost is much higher than a comparable gasoline engine.

[edit] Mechanical and electronic injection

Older engines make use of a mechanical fuel pump and valve assembly that is driven by the engine crankshaft, usually from the timing belt or chain. These engines use simple injectors that are basically very precise spring-loaded valves that open and close at a specific fuel pressure. The pump assembly consists of a pump that pressurizes the fuel and a disc-shaped valve that rotates at half crankshaft speed. The valve has a single aperture to the pressurized fuel on one side, and one aperture for each injector on the other. As the engine turns, the valve discs will line up and deliver a burst of pressurized fuel to the injector at the cylinder about to enter its power stroke. The injector valve is forced open by the fuel pressure, and the diesel is injected until the valve rotates out of alignment and the fuel pressure to that injector is cut off. Engine speed is controlled by a third disc, which rotates only a few degrees and is controlled by the throttle lever. This disc alters the width of the aperture through which the fuel passes, and therefore how long the injectors are held open before the fuel supply is cut, which controls the amount of fuel injected.

This contrasts with the more modern method of having a separate fuel pump which supplies fuel constantly at high pressure to each injector. Each injector has a solenoid, is operated by an electronic control unit, which enables more accurate control of injector opening times that depend on other control conditions, such as engine speed and loading, resulting in better engine performance and fuel economy. This design is also mechanically simpler than the combined pump and valve design, making it generally more reliable, and less noisy, than its mechanical counterpart.

Both mechanical and electronic injection systems can be used in either direct or indirect injection configurations.

Older diesel engines with mechanical injection pumps could be inadvertently run in reverse, albeit very inefficiently, as witnessed by massive amounts of soot being ejected from the air intake. This was often a consequence of push starting a vehicle using the wrong gear.

[edit] Indirect injection

Main article: Indirect injection

An indirect injection diesel engine delivers fuel into a chamber off the combustion chamber, called a prechamber or ante-chamber, where combustion begins and then spreads into the main combustion chamber, assisted by turbulence created in the chamber. This system allows for a smoother, quieter running engine, and because combustion is assisted by turbulence, injector pressures can be lower, which in the days of mechanical injection systems allowed high-speed running suitable for road vehicles (typically up to speeds of around 4,000 rpm). The prechamber had the disadvantage of increasing heat loss to the engine's cooling system, introducing pumping losses in the narrow throat connecting it to the main cylinder, and restricting the combustion burn, which reduced the efficiency by between 5% – 10% in comparison to a direct injection engine, and nearly all require some form of cold start device such as glow plugs. Indirect injection engines were used widely in small-capacity, high-speed diesel engines in automotive, marine and construction uses from the 1950s, until direct injection technology advanced in the 1980s. Indirect injection engines are cheaper to build and it is easier to produce smooth, quiet-running vehicles with a simple mechanical system, so such engines are still often used in applications that carry less stringent emissions controls than highway vehicles, such as small marine engines, generators, tractors, and pumps. With electronic injection systems, indirect injection engines are still used in some road-going vehicles, but most prefer the greater efficiency of direct injection.

During the development of the high-speed diesel engine in the 1930s, various engine manufacturers developed their own type of pre-combustion chamber. Some, such as Mercedes-Benz, had complex internal designs. Others, such as Lanova, used a mechanical system to adjust the shape of the chamber for starting and running conditions. However, the most commonly used design turned out to be the "Comet" series of swirl chambers developed by Sir Harry Ricardo, using a two-piece spherical chamber with a narrow "throat" to induce turbulence. Most European manufacturers of high-speed diesel engines used Comet-type chambers or developed their own versions (Mercedes stayed with their own design for many years), and this trend continues with current indirect injection engines.

[edit] Direct injection

Modern diesel engines make use of one of the following direct injection methods:

[edit] Distributor pump direct injection

The first incarnations of direct injection diesels used a rotary pump much like indirect injection diesels; however the injectors were mounted in the top of the combustion chamber rather than in a separate pre-combustion chamber. Examples are vehicles such as the Ford Transit and the Austin Rover Maestro and Montego with their Perkins Prima engine. The problem with these vehicles was the harsh noise that they made and particulate (smoke) emissions. This is the reason that in the main this type of engine was limited to commercial vehicles, the notable exceptions being the Maestro, Montego and Fiat Croma passenger cars. Fuel consumption was about fifteen to twenty percent lower than indirect injection diesels, which for some buyers was enough to compensate for the extra noise.

One of the first small-capacity, mass produced direct injection engines that could be called refined was developed by the Rover Group.[citation needed] The 200Tdi 2.5-litre four-cylinder turbodiesel was used by Land Rover in their vehicles from 1989, and the engine used an aluminum cylinder head, Bosch two-stage injection and multi-phase glow plugs to produce a smooth-running and economical engine while still using mechanical fuel injection.

This type of engine was transformed by electronic control of the injection pump, pioneered by the Volkswagen Group with the Audi 100 TDI introduced in 1989. The injection pressure was still only around 300 bar, but the injection timing, fuel quantity, EGR and turbo boost were all electronically controlled. This gave much more precise control of these parameters which made refinement much more acceptable and emissions acceptably low. Fairly quickly the technology trickled down to more mass market vehicles such as the Mark 3 Golf TDI where it proved to be very popular. These cars were both more economical and more powerful than indirect injection competitors of their day.

[edit] Unit direct injection

Unit direct injection also injects fuel directly into the cylinder of the engine. However, in this system the injector and the pump are combined into one unit positioned over each cylinder. Each cylinder thus has its own pump, feeding its own injector, which prevents pressure fluctuations and allows more consistent injection to be achieved. This type of injection system, also developed by Bosch, is used by Volkswagen AG in cars (where it is called a Pumpe-Düse-System — literally "pump-nozzle system") and by Mercedes Benz (PLD) and most major diesel engine manufacturers in large commercial engines (CAT, Cummins, Detroit Diesel). With recent advancements, the pump pressure has been raised to 2,050 bar (205 MPa), allowing injection parameters similar to common rail systems.

[edit] Common rail direct injection

Main article: Common rail

In older diesel engines, a distributor-type injection pump, regulated by the engine, supplies bursts of fuel to injectors which are simply nozzles through which the diesel is sprayed into the engine's combustion chamber.

In common rail systems, the distributor injection pump is eliminated. Instead, a high-pressure pump pressurises fuel at up to 2,000 bar (200 MPa, 29,000 psi)[3], in a "common rail". The common rail is a tube that branches off to computer-controlled injector valves, each of which contains a precision-machined nozzle and a plunger driven by a solenoid or piezoelectric actuators. (For example, Mercedes uses piezoelectric actuators in their high power output 3.0L V6 common rail diesel).

Most European automakers have common rail diesels in their model lineups, even for commercial vehicles. Some Japanese manufacturers, such as Toyota, Nissan and recently Honda, have also developed common rail diesel engines. Some Indian companies have also successfully implemented this technology.

Different car makers refer to their common rail engines by different names, e.g., DaimlerChrysler's CDI, Ford Motor Company's TDCi (most of these engines are manufactured by PSA), Fiat Group's (Fiat, Alfa Romeo and Lancia) JTD, Renault's dCi, GM/Opel's CDTi (most of these engines are manufactured by Fiat, other by Isuzu), Hyundai's CRDi, Mitsubishi's DI-D, PSA Peugeot Citroën's HDi (Engines for commercial diesel vehicles are made by Ford Motor Company), Toyota's D-4D, and so on.Mahindra & Mahindra for their 'Scorpio-CRDe' and Tata Motors for their 'Safari-DICOR'.

[edit] Types of diesel engines

[edit] Early diesel engines

Rudolph Diesel intended his engine to replace the steam engine as the primary power source for industry. As such diesel engines in the late 19th- and early 20th-centuries used the same basic layout and form as industrial steam engines, with long-bore cylinders, external valve gear, cross-head bearings and an open crankshaft connected to a large flywheel. Smaller engines would be built with vertical cylinders, whilst most medium- and large-sized industrial engines were built with horizontal cylinders, just as steam engines had been. Engines could be built with more than one cylinder in both cases. The largest early diesels resembled the triple-expansion reciprocating engine steam engine, being tens of feet high with vertical cylinders arranged in-line. These early engines ran at very slow speeds — partly due to the limitations of their air-blast injector equipment and partly so they would be compatible with the majority of industrial equipment designed for steam engines — speed ranges of between 100 and 300 RPM were common. Engines were usually started by allowing compressed air into the cylinders to turn the engine, although smaller engines could be started by hand.

In the early decades of the 20th century, when large diesel engines were first being fitted to ships, the engines took a form similar to the compound steam engines common at the time, with the piston being connected to the connecting rod via a crosshead bearing. Following steam engine practice, double-acting 4-stroke diesel engines were constructed to increase power output, with combustion taking place on both sides of the piston, with two sets of valve gear and fuel injection. This system also meant that the engine's direction of rotation could be reversed by altering the injector timing. This meant the engine could be coupled directly to the propeller without the need for a gearbox. Whilst producing large amounts of power and being very efficient, the double-acting diesel engine's main problem was producing a good seal where the piston rod passed through the bottom of the lower combustion chamber to the crosshead bearing. By the 1930s it was found easier and more reliable to fit turbochargers to the engines, although crosshead bearings are still used to reduce the stress on the crankshaft bearings, and the wear on the cylinders, in large long-stroke cathedral engines.

[edit] Modern diesel engines

As with gasoline engines, there are two classes of Diesel engines in current use: two-stroke and four-stroke. The four-stoke type is the "classic" version, tracing its lineage back to Dr. Diesel's prototype. It is also the most commonly used type, being the preferred power source for many motor vehicles, especially buses and trucks. Much larger engines, such as used for railroad locomotion and marine propulsion, are often two-stroke units, offering a more favorable horsepower-to-weight ratio, as well as better fuel economy. The most powerful engines in the world are two-cycle Diesels of mammoth proportions. These so-called low speed Diesels are able to achieve thermal efficiencies approaching fifty percent.

Two-stroke Diesel operation is similar to that of gasoline counterparts, except that fuel is not mixed with air prior to induction, and the crankcase does not take an active role in the cycle. The two-stroke Diesel depends upon forced aspiration to charge the cylinders with air and to scavenge exhaust gasses. The traditional two-stroke design relies upon a mechanically driven, positive displacement blower to charge the cylinders prior to compression and ignition. The archetype of this design is the Detroit Diesel engine, in which the blower pressurizes a chamber in the engine block often referred to as the "air box." The (much larger) Electromotive prime mover utilized in EMD Diesel-electric locomotives is built to the same principle.

In the EMD prime mover the movement of the piston in its cycle uncovers direct openings through the cylinder shaft into intake and exhaust manifolds; which through their blower generated higher air pressure either charge or scavenge the internal volume of each cylinder, at the correct time in the piston stroke. That is, at the end of exhaust, through intake, and prior to the compression stroke. Then at the end of the power stroke and through the exhaust stroke. Thus in the EMD two-stroke cycle engine there is no separate mechanical cylinder valving or other complex appratus which controls access to the cylinder(s) for feeding a cylinder its air charge or scavenging a cylinder of its waste gases. This mechanical simplicity greatly enhanced the early acceptance of this type of engine.

When the cylinder's piston approaches bottom dead center in a two-stroke Diesel, a passage between the air box and the cylinder is opened, permitting air flow into the cylinder. During this time, the exhaust valves are opened and some of the air flow forces the remaining combustion gasses from the cylinder. As the piston passes bottom center and starts upward, the passage is closed and compression commences, culminating in fuel injection and ignition. Refer to two-stroke Diesel engines for more discussion concerning aspiration issues with a two-stroke engine.

Normally, the number of cylinders are used in multiples of two, although any number of cylinders can be used as long as the load on the crankshaft is counterbalanced to prevent excessive vibration. The inline-six cylinder design is the most prolific in light to medium-duty engines, though small V8 and larger inline-four displacement engines are also common. Small-capacity engines (generally considered to be those below five litres in capacity) are generally four or six cylinder types, with the four cylinder being the most common type found in automotive uses. Five cylinder diesel engines have also been produced, being a compromise between the smooth running of the six cylinder and the space-efficient dimensions of the four cylinder. Diesel engines for smaller plant machinery, boats, tractors, generators and pumps may be four, three or two cylinder types, with the single cylinder Diesel engine remaining for light stationary work.

The desire to improve the diesel engine's power-to-weight ratio produced several novel cylinder arrangements to extract more power from a given capacity. The Napier Deltic engine, with three cylinders arranged in a triangular formation, each containing two opposed-action pistons, the whole engine having three crankshafts, is one of the better known. The Commer van company of the United Kingdom used a similar design for road vehicles,designed by Tillings-Stevens,member of the Rootes Group,the TS3. The Commer TS3 engine had 3 horizontal in-line cylinders,each with two opposed action pistons that worked through rocker arms,to connecting rods and had one crankshaft. While both these designs succeeded in producing greater power for a given capacity, they were complex and expensive to produce and operate, and when turbocharger technology improved in the 1960s this was found to be a much more reliable and simple way of extracting more power.

As a footnote, prior to 1949, Sulzer started experimenting with two-stroke engines with boost pressures as high as 6 atmospheres, in which all of the output power was taken from an exhaust turbine. The two-stroke pistons directly drove air compressor pistons to make a positive displacement gas generator. Opposed pistons were connected by linkages instead of crankshafts. Several of these units could be connected together to provide power gas to one large output turbine. The overall thermal efficiency was roughly twice that of a simple gas turbine. (Source Modern High-Speed Oil Engines, Volume II by C. W. Chapman, published by The Caxton Publishing Co. Ltd. Reprinted in July 1949)

[edit] Carbureted compression ignition model engines

Simple compression ignition engines are made for model propulsion. This is quite similar to the typical glow-plug engine that runs on a mixture of methanol (methyl alcohol) and lubricant (typically castor oil) (and occasionally nitro-methane to improve performance) with a hot wire filament to provide ignition. Rather than containing a glow plug the head has an adjustable contra piston above the piston, forming the upper surface of the combustion chamber. This contra piston is restrained by an adjusting screw controlled by an external lever (or sometimes by a removable hex key). The fuel used contains ether, which is highly volatile and has an extremely low flash point, combined with kerosene and a lubricant plus a very small proportion (typically 2%) of ignition improver such as Amyl nitrate or preferably Isopropyl nitrate nowadays. The engine is started by reducing the compression and setting the spray bar mixture rich with the adjustable needle valve, gradually increasing the compression while cranking the engine. The compression is increased until the engine starts running. The mixture can then be leaned out and the compression increased. Compared to glow plug engines, model diesel engines exhibit much higher fuel economy, thus increasing endurance for the amount of fuel carried. They also exhibit higher torque, enabling the turning of a larger or higher pitched propeller at slower speed. Since the combustion occurs well before the exhaust port is uncovered, these engines are also considerably quieter (when unmuffled) than glow-plug engines of similar displacement. Compared to glow plug engines, model diesels are more difficult to throttle over a wide range of powers, making them less suitable for radio control models than either two or four stroke glow-plug engines although this difference is claimed to be less noticeable with the use of modern schneurle-ported engines.

[edit] Advantages and disadvantages versus spark-ignition engines

[edit] Power and fuel economy

Diesel engines are more efficient than gasoline (petrol) engines of the same power, resulting in lower fuel consumption. A common margin is 40% more miles per gallon for an efficient turbodiesel. For example, the current model Škoda Octavia, using Volkswagen Group engines, has a combined Euro rating of 38 miles per US gallon (6.2 L/100 km) for the 102 bhp (76 kW) petrol engine and 54 mpg (4.4 L/100 km) for the 105 bhp (78 kW) diesel engine. However, such a comparison doesn't take into account that diesel fuel is denser and contains about 15% more energy by volume. Although the calorific value of the fuel is slightly lower at 45.3 MJ/kg (megajoules per kilogram) than gasoline at 45.8 MJ/kg, liquid diesel fuel is significantly denser than liquid gasoline. When this is taken into account, diesel fuel has a higher energy density than petrol; this volumetric measure is the main concern of many people, as diesel fuel is sold by volume, not weight, and must be transported and stored in tanks of fixed size.

Adjusting the numbers to account for the energy density of diesel fuel, one finds the overall energy efficiency of the aforementioned paragraph is still about 20% greater for the diesel version, despite the weight penalty of the diesel engine. When comparing engines of relatively low power for the vehicle's weight (such as the 75 hp VW Golf), the diesel's overall energy efficiency advantage is reduced further but still between 10 and 15 percent.

While higher compression ratio is helpful in raising efficiency, diesel engines are much more economical than gasoline (petrol) engines when at low power and at engine idle. Unlike the petrol engine, diesels lack a butterfly valve (throttle) in the inlet system, which closes at idle. This creates parasitic drag on the incoming air, reducing the efficiency of petrol/gasoline engines at idle. Due to their lower heat losses, diesel engines have a lower risk of gradually overheating if left idling for long periods of time. In many applications, such as marine, agriculture, and railways, diesels are left idling unattended for many hours or sometimes days. These advantages are especially attractive in locomotives (see dieselization).

Naturally aspirated diesel engines are heavier than gasoline engines of the same power for two reasons. The first is that it takes a larger displacement diesel engine to produce the same power as a gasoline engine. This is essentially because the diesel must operate at lower engine speeds.[4] Diesel fuel is injected just before ignition, leaving the fuel little time to reach all the oxygen in the cylinder. In the gasoline engine, air and fuel are mixed for the entire compression stroke, ensuring complete mixing even at higher engine speeds. The second reason for the greater weight of a diesel engine is it must be stronger to withstand the higher combustion pressures needed for ignition, and the shock loading from the detonation of the ignition mixture. As a result, the reciprocating mass (the piston and connecting rod), and the resultant forces to accelerate and to decelerate these masses, are substantially higher the heavier, the bigger and the stronger the part, and the laws of diminishing returns of component strength, mass of component and inertia — all come into play to create a balance of offsets, of optimal mean power output, weight and durability.

Yet it is this same build quality that has allowed some enthusiasts to acquire significant power increases with turbocharged engines through fairly simple and inexpensive modifications. A gasoline engine of similar size cannot put out a comparable power increase without extensive alterations because the stock components would not be able to withstand the higher stresses placed upon them. Since a diesel engine is already built to withstand higher levels of stress, it makes an ideal candidate for performance tuning with little expense. However, it should be said that any modification that raises the amount of fuel and air put through a diesel engine will increase its operating temperature which will reduce its life and increase its service interval requirements. These are issues with newer, lighter, high performance diesel engines which aren't "overbuilt" to the degree of older engines and are being pushed to provide greater power in smaller engines.

The addition of a turbocharger or supercharger to the engine greatly assists in increasing fuel economy and power output, mitigating the fuel-air intake speed limit mentioned above for a given engine displacement. Boost pressures can be higher on diesels than gasoline engines, due to the latter's susceptibility to knock, and the higher compression ratio allows a diesel engine to be more efficient than a comparable spark ignition engine. Because the burned gases are expanded further in a diesel engine cylinder, the exhaust gas is cooler, meaning turbochargers require less cooling, and can be more reliable, than on spark-ignition engines.

The increased fuel economy of the diesel engine over the gasoline engine means that the diesel produces less carbon dioxide (CO2) per unit distance. Recently, advances in production and changes in the political climate have increased the availability and awareness of biodiesel, an alternative to petroleum-derived diesel fuel with a much lower net-sum emission of CO2, due to the absorption of CO2 by plants used to produce the fuel.

The two main factors that held diesel engine back in private vehicles until quite recently were their low power outputs and high noise levels, characterised by knock or clatter, especially at low speeds and when cold. This noise was caused by the sudden ignition of the diesel fuel when injected into the combustion chamber. This noise was a product of the sudden temperature change, hence it was more pronounced at low engine temperatures. A combination of improved mechanical technology (such as two-stage injectors which fire a short "pilot charge" of fuel into the cylinder to warm the combustion chamber before delivering the main fuel charge) and electronic control (which can adjust the timing and length of the injection process to optimise it for all speeds and temperatures) have partially mitigated these problems in the latest generation of common-rail designs. Poor power and narrow torque bands have been helped by the use of turbochargers and intercoolers.

[edit] Emissions

Diesel engines produce very little carbon monoxide as they burn the fuel in excess air even at full load, at which point the quantity of fuel injected per cycle is still about 50% lean of stoichiometric. However, they can produce black soot (or more specifically diesel particulate matter) from their exhaust, which consists of unburned carbon compounds. This is often caused by worn injectors, which do not atomize the fuel sufficiently, or a faulty engine management system, allowing more fuel to be injected than can be burned completely in the available time.

The full load limit of a diesel engine in normal service is defined by the "black smoke limit", beyond which point the fuel cannot be completely combusted; as the "black smoke limit" is still considerably lean of stoichiometric it is possible to obtain more power by exceeding it, but the resultant inefficient combustion means that the extra power comes at the price of reduced combustion efficiency, high fuel consumption and dense clouds of smoke, so this is only done in specialised applications (such as tractor pulling) where these disadvantages are of little concern.

Likewise, when starting from cold, the engine's combustion efficiency is reduced because the cold engine block draws heat out of the cylinder in the compression stroke. The result is that fuel is not combusted fully, resulting in blue/white smoke and lower power outputs until the engine has warmed through. This is especially the case with indirect injection engines, which are less thermally efficient. With electronic injection, the timing and length of the injection sequence can be altered to compensate for this. Older engines with mechanical injection can have manual control to alter the timing, or multi-phase electronically-controlled glow plugs, that stay on for a period after start-up to ensure clean combustion — the plugs are automatically switched to a lower power to prevent them burning out.

Particles of the size normally called PM10 (particles of 10 micrometres or smaller) have been implicated in health problems, especially in cities. Some modern diesel engines feature diesel particulate filters, which catch the black soot and when saturated are automatically regenerated by burning the particles. Other problems associated with the exhaust gases (nitrogen oxides, sulfur oxides) can be mitigated with further investment and equipment; some diesel cars now have catalytic converters in the exhaust.

[edit] Power and torque

For commercial uses requiring towing, load carrying and other tractive tasks, diesel engines tend to have better torque characteristics. Diesel engines tend to have their torque peak quite low in their speed range (usually between 1600 – 2000 rpm for a small-capacity unit, lower for a larger engine used in a truck). This provides smoother control over heavy loads when starting from rest, and, crucially, allows the diesel engine to be given higher loads at low speeds than a petrol engine, making them much more economical for these applications. This characteristic is not so desirable in private cars, so most modern diesels used in such vehicles use electronic control, variable geometry turbochargers and shorter piston strokes to achieve a wider spread of torque over the engine's speed range, typically peaking at around 2500 – 3000 rpm.

[edit] Reliability

The lack of an electrical ignition system greatly improves the reliability. The high durability of a diesel engine is also due to its overbuilt nature (see above) as well as the diesel's combustion cycle, which creates less-violent changes in pressure when compared to a spark-ignition engine, a benefit that is magnified by the lower rotating speeds in diesels. Diesel fuel is a better lubricant than gasoline so is less harmful to the oil film on piston rings and cylinder bores; it is routine for diesel engines to cover 250,000

beeway 發表在 痞客邦 留言(0) 人氣()