Bewise Inc. www.tool-tool.com Reference source from the internet.

Die metallorganische Gasphasenepitaxie (engl. metal organic chemical vapor phase epitaxy, MOVPE) ist eine Epitaxiemethode zum Wachstum von kristallinen Schichten. Weitere Synonyme für diese Beschichtungstechnologie sind organo-metallic vapor phase epitaxy (OMVPE), metallorganische Gasphasenabscheidung (engl. metal organic chemical vapor deposition, MOCVD) oder organo metallic chemical vapor deposition (OMCVD). Im Gegensatz zu Molekularstrahlepitaxie (MBE) findet das Wachstum der Kristalle nicht im Vakuum, sondern aus der Gasphase bei moderaten Drücken (20 bis 1000 hPa) statt.

Die MOVPE ist das bedeutendste Herstellungsverfahren für III-V-Verbindungshalbleiter insbesondere für Galliumnitrid (GaN) basierte Halbleiter, welches heutzutage das wichtigste Basismaterial für blaue, weiße und grüne LEDs darstellt.

Metallorganische Ausgangsstoffe [Bearbeiten]

Da die Ausgangsstoffe für Verbindungshalbleiter oft Metalle sind, können diese nicht bei niedrigen Temperaturen in elementarer Form in die Gasphase eingebracht werden. Daher werden bei dieser Epitaxiemethode die Ausgangsstoffe in Form von metallorganischen Verbindungen (z. B. Trimethylgallium) und Hydriden (z. B. Ammoniak, Phosphin, Arsin) zur Verfügung gestellt. Der Vorteil dieser Verbindungen ist ein moderater Dampfdruck bei Raumtemperatur, so dass sie nahe Normbedingungen verdampft und durch Rohrleitungen transportiert werden können.

Die metallorganischen Verbindungen werden in sogenannten Bubblern aufbewahrt (vom Aufbauprinzip her Gaswaschflaschen) und bilden darin einen gesättigten Dampf über der Flüssigkeit oder dem Feststoff, der mit einem durchfließenden Trägergas (üblich Wasserstoff oder Stickstoff früher auch Argon) in die Reaktionskammer (Reaktor) transportiert wird. Die Bubbler befinden sich in Thermostaten mit deren Hilfe sie auf einer konstanten Temperatur gehalten werden, um einen definierten konstanten Dampfdruck des Metallorganikums pmet zu erhalten. Über den Gesamtdruck ptot und den Durchfluss des Trägergases ft kann der molare Fluss des Metallorganikums fmet bestimmt werden:

f_\mathrm{met} = f_\mathrm{t} \cdot \frac{p_\mathrm{met}}{p_\mathrm{tot}}

Reaktionsprozesse [Bearbeiten]

Die Bruttoreaktionsformel von Trimethylgallium ((CH3)3Ga) und Ammoniak (NH3) beim Wachstum von Galliumnitrid kann als

\left(\mathrm{CH}_3\right)_3\mathrm{Ga} + \mathrm{NH}_3 \rightarrow \mathrm{GaN_{\,(fest)} + 3\ \mathrm{CH}_{4\,(gas)}}

geschrieben werden. Diese Reaktion ist aber eine starke Vereinfachung der tatsächlichen Gegebenheiten vor und während des Kristallwachstums. So finden zwischen den Ausgangsstoffen in der Gasphase Vorreaktionen statt und es bilden sich häufig reaktionsträge Addukte. Die möglichen Einzelreaktionen sind je nach Art der eingesetzten Ausgangsstoffe und Trägergase vielfältig, und lassen sich unter anderem wegen der schwer bestimmbaren katalytischen Eigenschaften der verschiedenen Oberflächen des MOCVD-Reaktors nur vage vorhersagen.

Durch die prinzipbedingte Anwesenheit großer Mengen Kohlenstoff und Wasserstoff werden geringe Mengen dieser Stoffe immer mit in den Halbleiterkristall eingebaut. Wasserstoff passiviert häufig die für die p-Typ-Leitung notwendigen Akzeptoren, lässt sich aber meist einfach durch Tempern in einer Inertgasatmosphäre oder im Vakuum entfernen. Kohlenstoff ist meist nicht störend und wird beim Galliumarsenid Wachstum gezielt zur p-Typ-Dotierung eingesetzt.

Aufgrund der hohen Reinheitsanforderungen von Halbleitern (typ. < href="http://de.wikipedia.org/wiki/Ppb" title="Ppb">ppb) müssen alle Ausgangsstoffe in hochreiner Form vorliegen. Die Trägergase Wasserstoff (Palladiumzelle), Stickstoff und Argon (Getterfilter) lassen sich einfach in hochreiner Form (9N = 99,9999999 %) darstellen. Auch für die Hydride gibt es heutzutage effiziente Getterfilter die die gängigen Verunreinigungen (z. B. H2O, O2, CH4) fast vollständig entfernen. Die Metallorganika sind trotz aufwendiger Herstellungsverfahren immer noch eine der Hauptverunreinigungsquellen, insbesondere von Sauerstoff.

Wachstumsprozess [Bearbeiten]

Das MOVPE-Wachstum lässt sich in drei Bereiche einteilen:

Unterteilung der Wachstumsbereiche in der MOVPE

Zum Schichtwachstum diffundieren die Reaktanden aus dem Gasstrom an die Substratoberfläche, wo der Einbau in den Kristall stattfindet. Bei niedrigen Temperaturen wird der Einbau der Reaktanden durch deren Zerlegung bestimmt. Dies ist der kinetisch kontrollierte Bereich. Da die Zerlegung der Ausgangsstoffe oder Oberflächenreaktionen eine exponentielle Abhängigkeit von der Temperatur besitzen, ist die Wachstumsrate in diesem Bereich sehr stark Temperaturabhängig und daher schwer zu kontrollieren. Bei höheren Temperaturen wird das Wachstum wiederum durch den Nachschub, also die Diffusionsgeschwindigkeit begrenzt. Die Diffusion ist jedoch in erster Näherung nicht temperaturabhängig. Daher wird üblicherweise im diffusionskontrollierten Bereich gearbeitet. Bei höheren Temperaturen treten verstärkt das Wachstum hemmende Vorreaktionen auf bzw. wird der Dampfdruck des Halbleiters so hoch, dass sich die Wachstumsrate wieder reduziert (Desorption). Diese Reduktion der Wachstumsrate besitzt auch eine exponentielle Abhängigkeit von der Temperatur. Daher ist dieser Bereich ebenfalls schwer zu kontrollieren und wird vermieden.

Die Oberflächenprozesse während des Wachstums spielen eine weitere entscheidende Rolle. Die Prozesse lassen sich einteilen in den Transport der Reaktanden zur Oberfläche, chemische Reaktionen sowie der Adsorption an der Oberfläche, oberflächenkinetische Prozesse und die Desorption sowie der Abtransport der Reaktanden. Angestrebt ist wie oben schon erwähnt, dass das Wachstum diffusionslimitiert, also transportbegrenzt stattfindet. Das Wachstum ist dann nur limitiert durch die Diffusion der Ausgangsstoffe zum Substrat oder durch den Abtransport der Produkte vom Substrat. Im kinetisch begrenzten Bereich kann z. B. die Desorption der Reaktionsprodukte behindert sein. Dann ist aufgrund des unvollständigen Abtransports der übriggebliebenen Reaktanden mit einem erhöhten Kohlenstoffeinbau zu rechnen. Für die normalerweise erwünschten glatten Oberflächen ist außerdem eine ausreichende Mobilität der Ausgangsstoffe an der Oberfläche wichtig um ein Stufenwachstum zu erzielen.

Oberflächenprozesse während des MOVPE Wachstums

Wesentlich für den Wachstumsprozeß ist neben der Temperatur und dem Gesamtdruck im Reaktor der Partialdruck der eingesetzten Reaktanden und deren Partialdruckverhältnisse. Dies ist unter anderem bestimmend für die Stöchiometrie und den Wachstumsmode, d. h. ob ein Inselwachstum oder ein Stufenwachstum stattfindet. So lassen sich über diese Parameter die Wachstumsraten verschiedener Kristallfacetten aber auch der Einbau von Verunreinigungen beeinflussen. Wird darüber hinaus eine verspannte ternäre Schicht gewachsen so kann diese je nach Materialkombination und Wachstumsparametern im Frank-van der Merwe Modus als zweidimensionale Schicht, im Stranski-Krastanow Modus als Benetzungsschicht mit anschließendem dreidimensionalen Inselwachstum oder direkt als dreidimensionale Inseln im Volmer-Weber Wachstumsmode aufwachsen. Unter Ausnutzung des Stranski-Krastanow Wachstumsmodus werden heutzutage häufig selbstorganisierte Quantenpunkte, bevorzugt im System In(Ga)As/GaAs für Anwendungen wie z. B. Quantenpunktlaser gewachsen.

Vor- und Nachteile der MOVPE [Bearbeiten]

Mit der MOVPE lassen sich die für die Bauelementefunktion wichtigen Halbleiterkristallschichten reproduzierbar bis auf weniger als eine Monolage genau (<~2,5 Å) wachsen. Typische Wachstumsraten liegen zwischen 0,1 nm/s bis 1 nm/s und damit höher als bei der MBE. Die Methode wurde in den 1980er Jahren vor allen Dingen durch die einfache Möglichkeit phosphorbasierte Halbleiterkristalle wie z. B. Indiumphosphid zu wachsen befördert. Dies war bis dahin mit der MBE nicht bzw. nur eingeschränkt möglich. In der 1990er Jahren wurde durch die Realisierung der blauen LED auf der Basis von Galliumnitrid und zu geringerem Anteil durch den wachsenden Markt für GaAs und InP basierte Bauelemente für die dispersions- bzw. dämpfungsarme Datenkommunikation um 1310 und 1550 nm über Glasfaserkabel und Mikrowellenanwendungen für Mobiltelefone und Militäranwendungen (Radar) ein Boom für die MOVPE-Technik ausgelöst. Speziell GaN lässt sich mit der MBE nicht in ausreichender Qualität und Menge für LEDs produzieren. Durch die einfache Skalierbarkeit der Anlagen und Prozesse (von einfachen 2-Zoll-Singlewafer Anlagen bis zu 95×2-Zoll- bzw. 25×4-Zoll-Wafern) ist sie ideal für die Massenherstellung geeignet. Durch den Verzicht auf Hochvakuumapparaturen, wie sie bei der MBE benötigt werden, ist die MOVPE-Technik relativ preiswert und einfach zu warten.

Hauptkostenfaktor sind die teuren hochreinen Ausgangsstoffe. Durch das Arbeiten mit Elementverbindungen werden im Gegensatz zur MBE immer relativ große Mengen von Fremdatomen (C, O, H) in den Kristall eingebaut und es lassen sich daher keine so reinen Halbleiterkristalle wie mit der MBE herstellen.


歡迎來到Bewise Inc.的世界,首先恭喜您來到這接受新的資訊讓產業更有競爭力,我們是提供專業刀具製造商,應對客戶高品質的刀具需求,我們可以協助客戶滿足您對產業的不同要求,我們有能力達到非常卓越的客戶需求品質,這是現有相關技術無法比擬的,我們成功的滿足了各行各業的要求,包括:精密HSS DIN切削刀具協助客戶設計刀具流程DIN or JIS 鎢鋼切削刀具設計NAS986 NAS965 NAS897 NAS937orNAS907 航太切削刀具,NAS航太刀具設計超高硬度的切削刀具醫療配件刀具設計汽車業刀具設計電子產業鑽石刀具木工產業鑽石刀具等等。我們的產品涵蓋了從民生刀具到工業級的刀具設計;從微細刀具到大型刀具;從小型生產到大型量產;全自動整合;我們的技術可提供您連續生產的效能,我們整體的服務及卓越的技術,恭迎您親自體驗!!

BW Bewise Inc. Willy Chen willy@tool-tool.com bw@tool-tool.com www.tool-tool.com skype:willy_chen_bw mobile:0937-618-190 Head &Administration Office No.13,Shiang Shang 2nd St., West Chiu Taichung,Taiwan 40356 http://www.tool-tool..com / FAX:+886 4 2471 4839 N.Branch 5F,No.460,Fu Shin North Rd.,Taipei,Taiwan S.Branch No.24,Sec.1,Chia Pu East Rd.,Taipao City,Chiayi Hsien,Taiwan

Welcome to BW tool world! We are an experienced tool maker specialized in cutting tools. We focus on what you need and endeavor to research the best cutter to satisfy users demand. Our customers involve wide range of industries, like mold & die, aerospace, electronic, machinery, etc. We are professional expert in cutting field. We would like to solve every problem from you. Please feel free to contact us, its our pleasure to serve for you. BW product including: cutting toolaerospace tool .HSS DIN Cutting toolCarbide end millsCarbide cutting toolNAS Cutting toolNAS986 NAS965 NAS897 NAS937orNAS907 Cutting Tools,Carbide end milldisc milling cutter,Aerospace cutting toolhss drillФрезерыCarbide drillHigh speed steelMilling cutterCVDD(Chemical Vapor Deposition Diamond )PCBN (Polycrystalline Cubic Boron Nitride) Core drillTapered end millsCVD Diamond Tools InsertsPCD Edge-Beveling Cutter(Golden FingerPCD V-CutterPCD Wood toolsPCD Cutting toolsPCD Circular Saw BladePVDD End Millsdiamond tool Single Crystal Diamond Metric end millsMiniature end millsСпециальные режущие инструменты Пустотелое сверло Pilot reamerFraisesFresas con mango PCD (Polycrystalline diamond) FreseElectronics cutterStep drillMetal cutting sawDouble margin drillGun barrelAngle milling cutterCarbide burrsCarbide tipped cutterChamfering toolIC card engraving cutterSide cutterNAS toolDIN or JIS toolSpecial toolMetal slitting sawsShell end millsSide and face milling cuttersSide chip clearance sawsLong end millsStub roughing end millsDovetail milling cuttersCarbide slot drillsCarbide torus cuttersAngel carbide end millsCarbide torus cuttersCarbide ball-nosed slot drillsMould cutterTool manufacturer.

Bewise Inc. www.tool-tool.com

ようこそBewise Inc.の世界へお越し下さいませ、先ず御目出度たいのは新たな

情報を受け取って頂き、もっと各産業に競争力プラス展開。

弊社は専門なエンド・ミルの製造メーカーで、客先に色んな分野のニーズ、

豊富なパリエーションを満足させ、特にハイテク品質要求にサポート致します。

弊社は各領域に供給できる内容は:

(1)精密HSSエンド・ミルのR&D

(2)Carbide Cutting tools設計

(3)鎢鋼エンド・ミル設計

(4)航空エンド・ミル設計

(5)超高硬度エンド・ミル

(6)ダイヤモンド・エンド・ミル

(7)医療用品エンド・ミル設計

(8)自動車部品&材料加工向けエンド・ミル設計

弊社の製品の供給調達機能は:

(1)生活産業~ハイテク工業までのエンド・ミル設計

(2)ミクロ・エンド・ミル~大型エンド・ミル供給

(3)小Lot生産~大量発注対応供給

(4)オートメーション整備調達

(5)スポット対応~流れ生産対応

弊社の全般供給体制及び技術自慢の総合専門製造メーカーに貴方のご体験を御待ちしております。

BW специализируется в научных исследованиях и разработках, и снабжаем самым высокотехнологичным карбидовым материалом для поставки режущих / фрезеровочных инструментов для почвы, воздушного пространства и электронной индустрии. В нашу основную продукцию входит твердый карбид / быстрорежущая сталь, а также двигатели, микроэлектрические дрели, IC картонорезальные машины, фрезы для гравирования, режущие пилы, фрезеры-расширители, фрезеры-расширители с резцом, дрели, резаки форм для шлицевого вала / звездочки роликовой цепи, и специальные нано инструменты. Пожалуйста, посетите сайт www.tool-tool.com для получения большей информации.

BW is specialized in R&D and sourcing the most advanced carbide material with high-tech coating to supply cutting / milling tool for mould & die, aero space and electronic industry. Our main products include solid carbide / HSS end mills, micro electronic drill, IC card cutter, engraving cutter, shell end mills, cutting saw, reamer, thread reamer, leading drill, involute gear cutter for spur wheel, rack and worm milling cutter, thread milling cutter, form cutters for spline shaft/roller chain sprocket, and special tool, with nano grade. Please visit our web www.tool-tool.com for more info.
arrow
arrow
    全站熱搜
    創作者介紹
    創作者 beeway 的頭像
    beeway

    BW Professional Cutter Expert www.tool-tool.com

    beeway 發表在 痞客邦 留言(0) 人氣()