コイル(英: inductor:インダクタ) は、流れる電流によって形成される磁場にエネルギーを蓄えることができる受動電子部品である。蓄えられる磁気エネルギーの量はそのインダクタンスで決ま り、単位はヘンリー (H) である。一般に電線を巻いた形状をしており、何回も巻くことでアンペールの法則に従いコイル内の磁場が強くなる。ファラデーの電磁誘導の法則に従い、コイ ル内の磁界の変化に比例して誘導起電力が生じ、レンツの法則に 従い、誘導電流は磁界の変化を妨げる方向に流れる。インダクタは交流電流を遅延させ再形成する能力があり、時間と共に電圧と電流が変化する電気回路の基本 的な部品となっている。英語ではコイル(インダクタ)のことを「チョーク」とも呼ぶが、これは特定の種類のコイルの名称である。
数式や回路図ではLで示される。なぜLとなったかは諸説あるがCOILからLを取ったという説が有力である。電磁誘導による磁力線を利用するため電線を巻いたもの(電磁石)は巻線と呼ばれる。古くは「線輪」とも呼ばれた。
概要
インダクタンス (L) は、電流の流れている電気伝導体の周囲に形成される磁場に起因し、電流の変化に抵抗する傾向を示す。伝導体を流れる電流に比例して磁束が形成され、電流が 変化するとそれに対応して磁束も変化し、ファラデーの電磁誘導の法則に従って電流の変化に抵抗する方向に起電力が生じる。インダクタンスとは電流の単位変 化当たりに生じる起電力の量を示すものである。例えば、1ヘンリー (H) のインダクタンスを持つコイルは、1秒間当たり1アンペア変化する電流が流れるときに1ボルトの起電力を生じる。コイルの巻き数、直径、芯の材質などがイ ンダクタンスに影響する。例えば、コイルを巻きつける芯(コア)に鉄などの高透磁率の材質を使うと、生じる磁束を強くすることができる。コアの材質によっ てはインダクタンスは2000倍にもなる。
理想的インダクタと実際のインダクタ
理想的イ ンダクタとは、インダクタンスはあるが電気抵抗や静電容量を全く持たず、エネルギーを消費したり放射したりしないものをいう。実際のインダクタには、イン ダクタンスだけでなく、電気抵抗(電線自体の持つ電気抵抗とコア材質による損失)と静電容量もある。周波数によっては(寄生容量によって)コイル単独で LC回路のように振舞うこともある。ある周波数ではインピーダンスの容量成分(容量性リアクタンス)が支配的になる。電線の電気抵抗や磁気コアのヒステリ シスによる損失から、エネルギーが消費される。実際の鉄芯コイルに大電流を流すと、磁気飽和による非線形性のために徐々に理想的特性からかけ離れていく。 周波数が高くなると、コイルの巻き線の表皮効果により電気抵抗と抵抗損失が増大する。コア損失も高周波におけるコイルの損失に寄与する。実際のインダクタ はアンテナと しても機能する。エネルギーの一部を電磁波として周辺の空間や回路に放射し、逆に周囲の電磁放射を電磁干渉の一部として受容する。コイルの周囲の回路や素 材はコイルの磁場との相互作用を起こし、さらなるエネルギー損失を引き起こすことがある。実際のコイルを使用する際には、これらの寄生的パラメータがイン ダクタンスと同程度に重要となることもある。
用途
47mHのコイルが2つ巻かれたチョークコイル。電源回路などによく見られる。
コ イルはアナログ回路や信号処理に広く使われている。コイルとコンデンサなどを組み合わせることで、特定の周波数の信号だけを取り出す共振回路やフィルタ回 路を構成できる。コイルには電源回路用の大型のもの(フィルタ用コンデンサと組合せ、出力の直流からハム音成分を取り除く)から、高周波の干渉を防ぐイン ダクタンス値の小さいものまで様々なものがある。小さなコイルとコンデンサの組合せはLC回路を構成し、無線の送受信機などに使われる。
2 つ以上のコイルの磁束を結合することで変圧器が 構成でき、電力網の基本的部品としてよく使われている。一般に高周波ではコア素材でのうず状電流や巻き線の表皮効果の増大によって変圧器の効率が低下す る。しかし周波数が高ければコアを小型化できるので、航空機では変圧器を小型化して重量を軽減するため、一般的な50/60Hzではなく400Hzの交流 電源を使っている[出典 1]。
コイルは一部のスイッチング電源で エネルギー蓄積装置として使われている。コイルはレギュレータのスイッチングサイクルの一部分でエネルギーを蓄積し、サイクルの残りの部分でエネルギーを 解放する。このエネルギー伝達比によって入力電圧と出力電圧の比率が決まる。コイルは半導体能動素子と組み合わせて、正確な電圧制御に使われる。
コイルは送電網でも使われており、落雷による電圧変化を弱めるなどの役割を果たしている。この用途のコイルは一般にリアクタ(リアクトル)と呼ばれる。
大きなインダクタンス値を実現したい場合、ジャイレータ回路を使ってシミュレートすることもある。
コイルの構造
様々なコイル
コ イルは電気伝導体の巻線として構成でき、一般に強磁性またはフェリ磁性の素材や空気を芯(コア)として、その周りに銅線を巻く。空気より高透磁率のコア素 材を使うことで磁場を強化してそれをコイル内に閉じ込めることができ、それによってインダクタンスが増大する。低周波用コイルは変圧器と同様の作り方で、 コアとしてケイ素鋼を積層したものを使い渦電流を防ぐ。音声周波数より高い周波数ではソフト・フェライトが広く使われている。これは、ソフト・フェライト が一般的な鉄合金よりも高周波でのコア損失が小さいためである。コイルには様々な形状のものがある。最も一般的な形状は、フェライト製ボビンの周りにエナ メルでコーティングされた銅線を巻いたもので、通常は巻線が見えているが、巻き線がフェライトに完全に囲まれたものもある。コアを調整可能なコイルもあ り、インダクタンスを変化させることができる。
小さいインダクタはプリント基板上に渦巻パターンを形成することでも実現できる。このような平坦なコイルに平坦なコアを付加してインダクタンス値を強化することもある。
小 さいインダクタは集積回路上にもトランジスタの形成と同様のプロセスで形成することができる。通常、アルミニウムの配線を渦巻パターンに形成する。しかし 寸法が小さいためインダクタンス値は極めて小さく、コンデンサと能動素子を組み合わせたジャイレータと呼ばれる回路でインダクタの振る舞いを再現する方が 一般的である。この場合、プロセスによって不可能なものもあるが、四角形で設計するよりも円形に近づけた形で設計する方がわずかながら高いインダクタンス 値が得られる。
種類
ハー ドディスクの内部に実装されているアキシャルリード型のコイル[出典 2]。印刷された色の帯を解読すると、このコイルは約47μHのインダクタンスをもち、ズレがあったとしてもその誤差は10%以内で、インダクタンスは 42.3μH-51.7μHの範囲にあるということがわかる。
空芯コイル
電線を円筒形に 巻き、円筒の中に何も入れない、あるいはベークライトなどの非磁性体で電線を保持するコイル。耐電力が大きく、インダクタンスが小さいため、コアコイルに 見られる高周波でのコア損失がほとんどないことから、主に高周波用に用いられる。芯にしっかり巻きつけたものではないため、周囲の物体の影響や、巻線の間 隔(ピッチ)の狂いによりインダクタンスが変動しやすい。
高周波コイル
高周波ではコイルは電気抵抗や他の損失が高くなる。電力損失だけでなく、LC回路では回路のQ値が低下し、帯域幅が広くなる。高周波インダクタはほとんどが空芯コイルであり、損失をなるべく最小限にする製作技法が使われている。損失の原因としては以下のものがある。
表皮効果
導 線の電気抵抗は直流電流のときよりも高周波電流のときに高くなる。その原因が表皮効果で ある。高周波交流電流は導体の中心部まで浸透せずその表面だけを流れる傾向がある。そのため導線でも断面の大部分に電流が流れず、表面付近の狭い部分だけ を流れる。もともと高周波コイルを構成する導線は細く抵抗値が相対的に高いが、表皮効果によってさらに抵抗値が増大する。
近接効果
高 周波領域でコイルの電気抵抗を増大させるもう1つの現象を近接効果という。これは複数の導線がごく近くに位置する場合に発生する。隣接する巻線それぞれの 形成する磁場が渦電流を誘導し、導体内の電流が隣接する導線と接する狭い領域に集中して流れるようになる。表皮効果と同様、導線の断面内で電流が流れる部 分が制限されることになるため、電気抵抗が増大する。
寄生容量
コイルを構成する個々の巻線間に発生する静電容量を寄生容量と 呼ぶ。これはエネルギー損失を発生させるわけではないが、コイルの挙動を変化させる。個々の巻線の電位は微妙に異なるため、隣接する巻線間に発生する電場 が電荷を蓄える。したがってコイルはコンデンサが並列接続されているかのように振舞うことになる。周波数が十分高くなるとコイル本来のインダクタンスと寄 生容量によってLC回路が構成され、コイル単独で共振してしまうようになる。
寄生容量や近接効果を低減するため、高周波コイルは多数の巻き 線が相互に近接しないよう設計する。したがって高周波コイルでは単層でしかも巻き線間 に隙間をあけるようにすることが多い。表皮効果を低減するため、送信機などの高出力用コイルでは金属の帯やパイプを導線として使い、銀メッキすることもあ る。
ハニカム・コイル
ハニカム・コイル
上述した現象を低減するため、隣接する巻線をある角度で交差するパターンに巻いた高周波用の平坦な多層コイルである。「バスケット織りコイル」ともいう。
スパイダー・コイル
同様の平坦な多層のコイル。放射状のスポークがある絶縁体の芯材に巻きつけることが多い。円形板の周囲に奇数本の切り込みを入れたものに電線を巻いた平面状のコイルであり、蜘蛛の巣に形が似ていることからスパイダーコイルと呼ばれる。
リッツ線
表 皮効果を低減させるため、高周波用の特殊な導線であるリッツ線を 使ってコイルを構成することがある。リッツ線は複数の細い銅線を縒りあわせた導線であり、単一の銅線よりも表面積が大きい。しかも通常の細い銅線を縒りあ わせたものと異なり、全ての銅線がエナメルコーティングされている。また、縒り方のパターンによって、個々の銅線はある一定割合で導線全体の表面に顔を出 すようになっている。
コアコイル
棒状、あるいはE字型、鼓型などのコア(鉄心)に巻線を巻いたコイル。コアの材質としてはフェライトを用いることが多い。抵抗器などと同様に直線状の筐体の両端からリード線が出ている形式のコイルがあり、マイクロインダクタと呼ばれる。大電流の電源回路などは変圧器と同様に珪素鋼板も用いられ、チョークコイル・リアクトルと呼ばれる。
コアに用いられる材質には次のような種類がある。
- フェライト
- ダストコア…圧縮磁芯材ともいう。金属を粉末にして絶縁処理を施し、加圧成型したもの
- カーボニル鉄 Fe(CO)5
- モリブデンパーマロイ(モリブデン、ニッケル、鉄)
- センダスト(ケイ素、アルミニウム、鉄)
コ アコイルはコアに鉄やフェライトなどの強磁性またはフェリ磁性の素材を使用してインダクタンスを強化している。高透磁率の磁性コアを使うことで磁場が強化 され、コイルのインダクタンスは数千倍にもなる。しかし磁性材料の磁気特性によって次のようなコイルの挙動に影響を与える副作用が生じるため、特別な配慮 が必要となる。
- コア損失: コアコイルに時間と共に変化する電流が流れると、そのコアには時間と共に変化する磁場が発生し、次の2つのプロセスの結果としてコアでエネルギー損失が生じ、エネルギーの一部が熱となって放出される。
- 渦電流: ファラデーの電磁誘導の法則により、変化する磁場が導体のコアの中に渦状の電流を発生させる。この電流を発生したエネルギーはコア材の電気抵抗によって熱に変換される。失われるエネルギーの量は、電流の渦に囲まれる断面積に対応して増大する。
- ヒ ステリシス: コア内の磁場を変化あるいは反転させることは、それを構成する小さな磁区の動きによって損失を生じさせる。このエネルギー損失は、コア素材のBH図で描か れるヒステリシスループで囲まれた部分の面積に比例する。保磁力の低い素材は、ヒステリシスループの面積が小さく、エネルギー損失も小さい。
これらのプロセスでは、交流電流の1サイクル当たりのエネルギー損失が一定であり、周波数に比例して損失が増大していく。
- 非 線形性: 強磁性コアコイルを流れる電流がコアの磁気飽和を 起こすほど大きければ、インダクタンスは一定ではなくなり、電流の大きさに伴って変化する。これが発生すると信号に歪みが生じる。防ぐにはコイルに流れる 電流を磁気飽和しない範囲に抑える必要がある。ダストコア(鉄粉コア、圧粉コア)は磁束が強く、かなり大きな直流電流でも磁気飽和を起こさない[出典 3]。
積層コア
積層コアを使った変圧器
低 周波コイルは積層コアを使って渦電流を防ぐことが多い。電源用変圧器にもよく使われている。積層コアとは絶縁被覆した鋼の薄い板を磁場と平行な方向に重ね たものである。絶縁しているので、板と板をまたいだ渦電流が流れず、渦電流は板の狭い断面積内でのみ流れることになり、エネルギー損失が大幅に低減され る。板には低保磁力のケイ素鋼を使い、ヒステリシスによる損失も低減させる。
フェライトコア
フェライトコアを使った長中波用アンテナ
高 周波向けにはフェライトをコアに使用する。フェライトはフェリ磁性素材で導体ではないため、渦電流が流れない。フェライトの組成は xxFe2O4 で xx には様々な物質が入る。コイルに使われるのはソフト・フェライトで、低保磁力でヒステリシス損失も小さい。ダストコアも同様の特性を示す。
トロイダルコア
トロイダルコイル
ドーナツ形の強磁性体に巻線を巻いたコイル。これに用いるドーナツ形のコアをトロイダルコア(英: Toroidal Core)と呼び、コアだけでも市販されている。コアの透磁率によって色分けがされており、巻数とインダクタンスの関係を表す図表がメーカーから公表され ている。コイルの巻数はドーナツの穴を電線が通った回数で数える。周囲の物体の影響を受けにくい、漏れ磁束が少ない、インダクタンスの安定性・再現性が高 いなどの利点があり、高周波回路に多く用いられる。
棒状のコアを使うと、コアの一方の端から磁力線が必ず空気中に飛び出し、もう一方の端に 繋がる。従って磁場の大部分が高透磁率のコア素材ではなく空気中を通ることになり、磁場が弱くなる。トロイダルコアはこれを防ぐもので、磁力線が常にコア 素材を通る。また同じ理由で、電波障害を起こしにくいという特徴もある。
可変コイル
可変 コイルはコアをスライドさせて巻き線との位置をずらすことで透磁率を 変化させ、インダクタンスを変更できる素子である。円筒形のボビンに電線を巻き、内部のコアをドライバで回して上下に動かし、インダクタンスを調整する。 一般にコイルのインダクタンス値は一定の誤差をもって生産されているため、無線関係(100MHz未満)で可変コイルを使い、目標値に合わせることが多 い。
電気回路におけるコイル
電気回路におけるコイルは、流れる電流の変化に比例した起電力を生じることで電流の変化に抵抗を示す効果がある。理想的インダクタは定常的な直流には全く抵抗を示さないが、電気抵抗が本当にゼロになるコイルは超伝導コイルしかない。
インダクタンス L のコイルにかかる電圧の経時変化 v(t) と電流の経時変化 i(t) は次の微分方程式で表される。
正弦波の交流 (AC) をコイルに流すと、正弦波の電圧(起電力)が誘導される。電圧の振幅は、電流の振幅 (IP) と周波数 ( f ) の積に比例する。
このとき、電流の位相は電圧の位相から π/2 だけ遅れる。
コイルを電流値 I で内部抵抗 R の直流電流源に接続して閉回路を形成すると、上述の微分方程式から次のような指数関数的減衰を示す電流が流れる。
複数コイルの組合せ
詳細は「直列回路と並列回路」を参照
コイルを並列接続すると、それぞれに同じ電位差(電圧)がかかる。この回路全体と等価なインダクタンス (Leq) は次のように表される。
コイルを直列接続すると、全体を同じ電流が流れるが、それぞれにかかる電圧は異なる。全体の電位差(電圧)はこの回路全体にかかる電圧と等しい。全体のインダクタンスは次のように表される。
この単純な式が成り立つのは、個々のコイル間に磁場の結合が起きない場合のみである。
コイルが蓄えるエネルギー
コイルが蓄えるエネルギーはコイルを流れる電流がなした仕事量に等しく、したがって形成される磁場に等しい。これは次の式で表される。
ここで L はインダクタンス、I はコイルを流れる電流の値である。
この関係は、鎖交磁束数と電流の関係が線形の(飽和していない)領域でのみ成り立つ。
Q値
理 想的インダクタでは、流れる電流の量に関わらず常に無損失である。しかし実際の巻線で構成されるコイルでは巻線抵抗が発生する。回路的には理想的 インダクタと直列に抵抗器を接続したのと等価である。巻線抵抗はコイルに流れる電流の一部を熱に変換するため、誘導性能の劣化を招く。コイルのQ値とは、 ある周波数におけるコイルの誘導性リアクタンスと抵抗の比であり、コイルの性能を数値化したものである。コイルのQ値が高ければ高いほど、そのコイルは理 想的インダクタに近いということになる。
コイルのQ値は次の式で得られる。ここで R は内部電気抵抗、ωL は共振周波数における容量性または誘導性のリアクタンスである。
強 磁性コアを使うと、同じ巻き数でもインダクタンスが劇的に増大し、Q値も大きくなる。しかしコアを使うことで周波数と共に増大するコア損失が生じる。この ため、使用する周波数にあわせて最適なコア素材を選択する。超短波 (VHF) やそれ以上の周波数では空芯がよく使われる。
強磁性コアを使ったコイルは、大電流を流すと磁気飽和を起こし、インダクタンス(とQ値)が劇的に低下することがある。同じインダクタンスを実現するには物理的にもっと大きくなるが、この現象は空芯コイルでは起きない。うまく設計された空芯コアなら、Q値が数百になる。
理 想的インダクタに近いコイル(Q値が無限大に近づく)を実現するには、超伝導合金でコイルを作り、それを液体窒素やヘリウムに浸せばよい。導線を超低温に することで巻線抵抗が生じなくなる。超伝導コイルは事実上無損失なので、そこに生じた磁場に大量のエネルギーを蓄えることができる。ただし、コアがあると 超低温でもコア損失は消えない。
インダクタンスの公式
次の表は、様々な単純化した形状のインダクタについてインダクタンスを近似的に求める公式である。
構造 式 摘要 線条コンダクタ
(直線状、あるいは曲率の小さい円弧状の導線)[出典 4]
- L = インダクタンス (H)
- l = 導線の長さ (m)
- d = 導線の直径 (m)
- L = インダクタンス (μH)
- l = 導線の長さ (cm)
- d = 導線の直径 (cm)
- μ = 周囲の透磁率
- L = インダクタンス (nH)
- l = 導線の長さ (in)
- d = 導線の直径 (in)
1回巻きコイル
- L = インダクタンス (μH)
- d = 導線の直径 (cm)
- R = コイルの半径 (cm)
- d = 導線の直径 (cm)
- a = 定数(高周波では2.00)
円筒状単層空芯コイル[出典 5]
- L = インダクタンス (H)
- μ0 = 自由空間の透磁率 = 4π × 10−7 H/m
- K = 長岡係数[出典 5]
- N = 巻き数
- A = コイルの断面積 (m2)
- l = コイルの軸方向の長さ (m)
短い円筒状単層空芯コイル
- L = インダクタンス (μH)
- r = コイルの外径 (in)
- l = コイルの長さ (in)
- N = 巻き数
多層空芯コイル
- L = インダクタンス (μH)
- r = コイルの平均半径 (in)
- l = コイルの長さ (in)
- N = 巻き数
- d = コイルの厚さ(外径と内径の差) (in)
平坦な多層空芯コイル
(蚊取り線香状の巻き方)
- L = インダクタンス (H)
- r = コイルの平均半径 (m)
- N = 巻き数
- d = コイルの厚さ(外径と内径の差) (m)
- L = インダクタンス (μH)
- r = コイルの平均半径 (in)
- N = 巻き数
- d = コイルの厚さ(外径と内径の差) (in)
トロイダルコア
- L = インダクタンス (H)
- μ0 = 自由空間の透磁率 = 4π × 10−7 H/m
- μr = コア素材の比透磁率
- N = 巻き数
- r = コイル自体の半径 (m)
- D = トロイダル全体の直径 (m)
巻数の大きなコイルのインダクタンスはさらに複雑な式になるため、実測によりインダクタンスを求めることが多い。
直流重畳特性
インダクタに直流バイアス電流を流すとインダクタンス値が低下する。この特性を直流重畳特性と呼び、この低下が始まる値を、直流バイアス電流値と呼ぶ。直流バイアス電流値が高ければ、直流重畳特性が高いといえる[出典 6]。
引用出處:
http://ja.wikipedia.org/wiki/%E3%82%B3%E3%82%A4%E3%83%AB
歡迎來到Bewise Inc.的世界,首先恭喜您來到這接受新的資訊讓產業更有競爭力,我們是提供專業刀具製造商,應對客戶高品質的刀具需求,我們可以協助客戶滿足您對產業的不同要求,我們有能力達到非常卓越的客戶需求品質,這是現有相關技術無法比擬的,我們成功的滿足了各行各業的要求,包括:精密HSS DIN切削刀具、協助客戶設計刀具流程、DIN or JIS 鎢鋼切削刀具設計、NAS986 NAS965 NAS897 NAS937orNAS907 航太切削刀具,NAS航太刀具設計、超高硬度的切削刀具、醫療配件刀具設計、複合式再研磨機、PCD地板專用企口鑽石組合刀具、粉末造粒成型機、主機版專用頂級電桿、SMD一体化粉末合金電感全自動無人化設備、common mode電感全自動設備、PCBN刀具、PCD刀具、單晶刀具、PCD V-Cut刀、捨棄式圓鋸片組、粉末成型機、航空機械鉸刀、主機版專用頂級電感、’汽車業刀具設計、電子產業鑽石刀具、木工產業鑽石刀具、銑刀與切斷複合再研磨機、銑刀與鑽頭複合再研磨機、銑刀與螺絲攻複合再研磨機等等。我們的產品涵蓋了從民生刀具到工業級的刀具設計;從微細刀具到大型刀具;從小型生產到大型量產;全自動整合;我們的技術可提供您連續生產的效能,我們整體的服務及卓越的技術,恭迎您親自體驗!!
BW Bewise Inc. Willy Chen willy@tool-tool.com bw@tool-tool.com www.tool-tool.com skype:willy_chen_bw Head &Administration Office No.13,Shiang Shang 2nd St., West Chiu Taichung,Taiwan 40356 http://www.tool-tool.com/ / FAX:+886 4 2471 4839 N.Branch 5F,No.460,Fu Shin North Rd.,Taipei,Taiwan S.Branch No.24,Sec.1,Chia Pu East Rd.,Taipao City,Chiayi Hsien,Taiwan
Welcome to BW tool world! We are an experienced tool maker specialized in cutting tools. We focus on what you need and endeavor to research the best cutter to satisfy users’ demand. Our customers involve wide range of industries, like mold & die, aerospace, electronic, machinery, etc. We are professional expert in cutting field. We would like to solve every problem from you. Please feel free to contact us, its our pleasure to serve for you. BW product including: cutting tool、aerospace tool .HSS DIN Cutting tool、Carbide end mills、Carbide cutting tool、NAS Cutting tool、NAS986 NAS965 NAS897 NAS937orNAS907 Cutting Tools,Carbide end mill、disc milling cutter,Aerospace cutting tool、hss drill’Фрезеры’Carbide drill、High speed steel、Compound Sharpener’Milling cutter、INDUCTORS FOR PCD’CVDD(Chemical Vapor Deposition Diamond )’PCBN (Polycrystalline Cubic Boron Nitride) ’Core drill、Tapered end mills、CVD Diamond Tools Inserts’PCD Edge-Beveling Cutter(Golden Finger’PCD V-Cutter’PCD Wood tools’PCD Cutting tools’PCD Circular Saw Blade’PVDD End Mills’diamond tool. INDUCTORS FOR PCD . POWDER FORMING MACHINE ‘Single Crystal Diamond ‘Metric end mills、Miniature end mills、Специальные режущие инструменты ‘Пустотелое сверло ‘Pilot reamer、Fraises’Fresas con mango’ PCD (Polycrystalline diamond) ‘Frese’POWDER FORMING MACHINE’Electronics cutter、Step drill、Metal cutting saw、Double margin drill、Gun barrel、Angle milling cutter、Carbide burrs、Carbide tipped cutter、Chamfering tool、IC card engraving cutter、Side cutter、Staple Cutter’PCD diamond cutter specialized in grooving floors’V-Cut PCD Circular Diamond Tipped Saw Blade with Indexable Insert’ PCD Diamond Tool’ Saw Blade with Indexable Insert’NAS tool、DIN or JIS tool、Special tool、Metal slitting saws、Shell end mills、Side and face milling cutters、Side chip clearance saws、Long end mills’end mill grinder’drill grinder’sharpener、Stub roughing end mills、Dovetail milling cutters、Carbide slot drills、Carbide torus cutters、Angel carbide end mills、Carbide torus cutters、Carbide ball-nosed slot drills、Mould cutter、Tool manufacturer.
Bewise Inc. www.tool-tool.com
ようこそBewise Inc.の世界へお越し下さいませ、先ず御目出度たいのは新たな
情報を受け取って頂き、もっと各産業に競争力プラス展開。
弊社は専門なエンド・ミルの製造メーカーで、客先に色んな分野のニーズ、
豊富なパリエーションを満足させ、特にハイテク品質要求にサポート致します。
弊社は各領域に供給できる内容は:
(1)精密HSSエンド・ミルのR&D
(2)Carbide Cutting tools設計
(3)鎢鋼エンド・ミル設計
(4)航空エンド・ミル設計
(5)超高硬度エンド・ミル
(6)ダイヤモンド・エンド・ミル
(7)医療用品エンド・ミル設計
(8)自動車部品&材料加工向けエンド・ミル設計
弊社の製品の供給調達機能は:
(1)生活産業~ハイテク工業までのエンド・ミル設計
(2)ミクロ・エンド・ミル~大型エンド・ミル供給
(3)小Lot生産~大量発注対応供給
(4)オートメーション整備調達
(5)スポット対応~流れ生産対応
弊社の全般供給体制及び技術自慢の総合専門製造メーカーに貴方のご体験を御待ちしております。
Bewise Inc. talaşlı imalat sanayinde en fazla kullanılan ve üç eksende (x,y,z) talaş kaldırabilen freze takımlarından olan Parmak Freze imalatçısıdır. Çok geniş ürün yelpazesine sahip olan firmanın başlıca ürünlerini Karbür Parmak Frezeler, Kalıpçı Frezeleri, Kaba Talaş Frezeleri, Konik Alın Frezeler, Köşe Radyüs Frezeler, İki Ağızlı Kısa ve Uzun Küresel Frezeler, İç Bükey Frezeler vb. şeklinde sıralayabiliriz.
BW специализируется в научных исследованиях и разработках, и снабжаем самым высокотехнологичным карбидовым материалом для поставки режущих / фрезеровочных инструментов для почвы, воздушного пространства и электронной индустрии. В нашу основную продукцию входит твердый карбид / быстрорежущая сталь, а также двигатели, микроэлектрические дрели, IC картонорезальные машины, фрезы для гравирования, режущие пилы, фрезеры-расширители, фрезеры-расширители с резцом, дрели, резаки форм для шлицевого вала / звездочки роликовой цепи, и специальные нано инструменты. Пожалуйста, посетите сайт www.tool-tool.com для получения большей информации.
BW is specialized in R&D and sourcing the most advanced carbide material with high-tech coating to supply cutting / milling tool for mould & die, aero space and electronic industry. Our main products include solid carbide / HSS end mills, micro electronic drill, IC card cutter, engraving cutter, shell end mills, cutting saw, reamer, thread reamer, leading drill, involute gear cutter for spur wheel, rack and worm milling cutter, thread milling cutter, form cutters for spline shaft/roller chain sprocket, and special tool, with nano grade. Please visit our web www.tool-tool.com for more info.
留言列表