公告版位
Bewise Inc. www.tool-tool.com Reference source from the internet.

A Wikipédiából, a szabad lexikonból.

22 szkandiumtitánvanádium
-

Ti

Zr
Általános
Név, vegyjel, rendszám titán, Ti, 22
Elemi sorozat átmeneti fémek
Csoport, periódus, mező 4, 4, d
Megjelenés ezüstös fémes
Atomtömeg 47,867(1) g/mol
Elektronszerkezet [Ar] 3d2 4s2
Elektronok héjanként 2, 8, 10, 2
Fizikai tulajdonságok
Halmazállapot szilárd
Sűrűség (szobahőm.) 4,506 g/cm³
Sűrűség a f.p.-on 4,11 g/cm³
Olvadáspont 1941 K
(1668 °C, 3034 °F)
Forráspont 3560 K
(3287 °C, 5949 °F)
Olvadáshő 14,15 kJ/mol
Párolgáshő 425 kJ/mol
Hőkapacitás (25 °C) 25,060 J/(mol·K)
Gőznyomás
P/Pa 1 10 100 1 k 10 k 100 k
at T/K 1982 2171 (2403) 2692 3064 3558
Atomi tulajdonságok
Kristályszerkezet hexagonális
Oxidációs állapotok +4
(amfoter oxid)
Elektronegativitás 1,54 (Pauling-skála)
Ionizációs energia
(részletek)
1.: 658,8 kJ/mol
2.: 1309,8 kJ/mol
3.: 2652,5 kJ/mol
Atomsugár 140 pm
Atomsugár (számított) 176 pm
Kovalens sugár 136 pm
Egyebek
Mágnesség ???
Elektromos ellenállás (20 °C) 0,420 µΩ·m
Hővezetőképesség (300 K) 21,9 W/(m·K)
Hőtágulás (25 °C) 8,6 µm/(m·K)
Hangsebesség (vékony rúd) (r.t.) 5090 m/s
Young modulusz 116 GPa
Nyírási modulusz 44 GPa
Bulk modulusz 110 GPa
Poisson arányszám 0,32
Mohs keménység 6,0
Vickers keménység 970 MPa
Brinell keménység 716 MPa
CAS szám 7440-32-6
Fontosabb izotópok
Fő cikk: Titán izotópjai
Izotóp t.e. felezési idő B.m. B.e. (MeV) B.t.
44Ti mest. 63 y ε - 44Sc
γ 0,07D, 0,08D -
46Ti 8,0% Ti stabil 24 neutronnal
47Ti 7,3% Ti stabil 25 neutronnal
48Ti 73,8% Ti stabil 26 neutronnal
49Ti 5,5% Ti stabil 27 neutronnal
50Ti 5,4% Ti stabil 28 neutronnal
Hivatkozások
A további jelentéseket lásd a(z) Titán oldalon.

A titán a periódusos rendszer egy kémiai eleme. Vegyjele Ti, rendszáma 22. Az átmeneti fémek közé tartozik.

[szerkesztés] Története

Az elemet Klaproth német vegyész fedezte fel 1795-ben, és a Titánokról nevezte el, akik a görög mitológiában az Ég és a Föld gyermekei voltak, és akiket arra kárhoztattak, hogy a Föld mélyének rejtett tüzei között éljenek. Nagy tisztaságú formában csak sokkal később nyerték ki, Hunter 1910-ben a titán-kloridot (TiCl4) nátriummal (Na) redukálva állított elő először tisztán titánt.


\mathrm{TiCl_4 + 4Na \Rightarrow 4Ti + 4NaCl}\,\!

[szerkesztés] Előfordulása

A titán, amely a földkéreg 0,63%-át adja, nagyon gyakori elem (a kilencedik leggyakoribb elem). Annak oka, hogy régen kevéssé ismerték, annak tulajdonítható, hogy a tiszta fémet igen nehéz volt előállítani, illetve előfordulása meglehetősen szétszórt.
Két legfontosabb ásványa az ilmenit (FeTiO3) és a rutil (TiO2).

[szerkesztés] Előállítása és felhasználása

1932-ben a luxemburgi Wilhelm Kroll állította elő a titánt titán-kloridból fémkalciummal (Ca), majd később magnéziummal (Mg), illetve nátriummal. Ezen eljárások költségessége megakadályozta a titán kereskedelmi hasznosítását, azonban kedvező tulajdonságai (kis sűrűség, jó mechanikai szilárdság, előnyös ötvöző tulajdonságok) indokolták felhasználását. Fő felhasználási területe még ma is a repülőgépipar, mind a motorok, mind a repülőgéptestek előállításához, de széleskörűen használják vegyipari és hajózási berendezések gyártására is. Előállítására még ma is a Kroll-módszer a legelterjedtebb: ilmenitet vagy rutilt hevítenek klór (Cl2) és szén (C) jelenlétében 900 °C-on:


\mathrm{2FeTiO_3 + 7Cl_2 + 6C \Rightarrow 2TiCl_4 + 2FeCl_3 + 6 CO}\,\!


A TiCl4 kinyerhető, majd argonatmoszférában zárt kemencében magnéziumolvadékkal redukálható 900 °C-on:


\mathrm{TiCl_4 + 2 Mg \Rightarrow Ti + 2MgCl_2}\,\!


BW Bewise Inc. Willy Chen willy@tool-tool.com bw@tool-tool.com www.tool-tool.com skype:willy_chen_bw mobile:0937-618-190 Head &Administration Office No.13,Shiang Shang 2nd St., West Chiu Taichung,Taiwan 40356 TEL:+886 4 24710048 / FAX:+886 4 2471 4839 N.Branch 5F,No.460,Fu Shin North Rd.,Taipei,Taiwan S.Branch No.24,Sec.1,Chia Pu East Rd.,Taipao City,Chiayi Hsien,Taiwan

Welcome to BW tool world! We are an experienced tool maker specialized in cutting tools. We focus on what you need and endeavor to research the best cutter to satisfy usersdemand. Our customers involve wide range of industries, like mold & die, aerospace, electronic, machinery, etc. We are professional expert in cutting field. We would like to solve every problem from you. Please feel free to contact us, its our pleasure to serve for you. BW product including: cutting toolaerospace tool .HSS Cutting toolCarbide end millsCarbide cutting toolNAS Cutting toolCarbide end millAerospace cutting toolCarbide drillHigh speed steelMilling cutterCore drillTapered end millsMetric end millsMiniature end millsPilot reamerElectronics cutterStep drillMetal cutting sawDouble margin drillGun barrelAngle milling cutterCarbide burrsCarbide tipped cutterChamfering toolIC card engraving cutterSide cutterNAS toolDIN toolSpecial toolMetal slitting sawsShell end millsSide and face milling cuttersSide chip clearance sawsLong end millsStub roughing end millsDovetail milling cuttersCarbide slot drillsCarbide torus cuttersAngel carbide end millsCarbide torus cuttersCarbide ball-nosed slot drillsMould cutterTool manufacturer.

Bewise Inc. www.tool-tool.com

beeway 發表在 痞客邦 留言(0) 人氣()

Bewise Inc. www.tool-tool.com Reference source from the internet.
Osnovna svojstva
Ime elementa, simbol, redni broj Titanij, Ti, 22
Kemijska skupina prijelazni metal
Grupa, perioda, Blok 4,4,d
Gustoća, Tvrdoća 4507 kg/m3, 6
Atomska svojstva
Atomska masa 47.867 amu
Elektronska konfiguracija [ Ar ] 3d2 4s2

Titanij je kemijski element koji u periodnom sustavu elemenata nosi simbol Ti, redni broj mu je 22, a atomska masa mu iznosi 47.867. Titanij je lagan, snažan metal i otporan na koroziju. Pojavljuje se u mnogim mineralima, od koji su dva najznačajnija izvora rutil i ilmenit, koji su široko rasprostranjeni u zemlji. Jedna od najznačajnijih titanijevih karakteristika je da ima čvrstoću kao čelik, no u isto vrijeme je dvostruko lakši od njega. Ime je dobio po Titanima iz Grčke mitologije


BW Bewise Inc. Willy Chen willy@tool-tool.com bw@tool-tool.com www.tool-tool.com skype:willy_chen_bw mobile:0937-618-190 Head &Administration Office No.13,Shiang Shang 2nd St., West Chiu Taichung,Taiwan 40356 TEL:+886 4 24710048 / FAX:+886 4 2471 4839 N.Branch 5F,No.460,Fu Shin North Rd.,Taipei,Taiwan S.Branch No.24,Sec.1,Chia Pu East Rd.,Taipao City,Chiayi Hsien,Taiwan

Welcome to BW tool world! We are an experienced tool maker specialized in cutting tools. We focus on what you need and endeavor to research the best cutter to satisfy usersdemand. Our customers involve wide range of industries, like mold & die, aerospace, electronic, machinery, etc. We are professional expert in cutting field. We would like to solve every problem from you. Please feel free to contact us, its our pleasure to serve for you. BW product including: cutting toolaerospace tool .HSS Cutting toolCarbide end millsCarbide cutting toolNAS Cutting toolCarbide end millAerospace cutting toolCarbide drillHigh speed steelMilling cutterCore drillTapered end millsMetric end millsMiniature end millsPilot reamerElectronics cutterStep drillMetal cutting sawDouble margin drillGun barrelAngle milling cutterCarbide burrsCarbide tipped cutterChamfering toolIC card engraving cutterSide cutterNAS toolDIN toolSpecial toolMetal slitting sawsShell end millsSide and face milling cuttersSide chip clearance sawsLong end millsStub roughing end millsDovetail milling cuttersCarbide slot drillsCarbide torus cuttersAngel carbide end millsCarbide torus cuttersCarbide ball-nosed slot drillsMould cutterTool manufacturer.

Bewise Inc. www.tool-tool.com

beeway 發表在 痞客邦 留言(0) 人氣()

Bewise Inc. www.tool-tool.com Reference source from the internet.
ונדיום - טיטניום - סקנדיום


Ti
Zr

כללי
מספר אטומי 22
סמל כימי Ti
סדרה כימית מתכות מעבר
צפיפות 4507 kg/m3
מראה כסוף מתכתי
תכונות אטומיות
משקל אטומי 47.867 amu
רדיוס ואן דר ולס _ pm
סידור אלקטרונים ברמות אנרגיה 2, 8, 10, 2
תכונות פיזיקליות
מצב צבירה בטמפ' החדר מוצק
טמפרטורת התכה 1668°C
טמפרטורת רתיחה 3287°C
לחץ אדים 0.49Pa ב 1933°K
מהירות הקול 4140 מטר לשנייה ב293.15°K
שונות
אלקטרושליליות 1.54
קיבול חום סגולי 520 J/(kg·K)
מוליכות חשמלית 2.34 106/m·Ω
מוליכות תרמית 21.9 W/(m·K)
אנרגיית יינון ראשונה 658.8 kJ/mol

טיטניום הוא יסוד כימי המסומל כ־Ti ומספרו האטומי הוא 22. טיטניום הוא מתכת מעבר קלה, חזקה, מבריקה ועמידה בפני קורוזיה. יסוד זה נקרא על שם הטיטנים מן המיתולוגיה היוונית.

[עריכה] תכונות

טיטניום ידוע כמתכת עמידה מאוד בפני חימצון (כמעט כמו פלטינה), היא גם עמידה נגד חומצות חזקות כגון תרכובות כלור ותמיסות מלח שונות. יש לה נקודת היתוך גבוהה והיא חזקה כמו פלדה (וקלה יותר ב-45% ממנה), היא גם כבדה ב-60% מאלומיניום אבל חזקה פי שניים ממנו. תכונות כמו אלו הופכות את הטיטניום למתכת שימושית מאוד.

טיטניום לא מגיב בקלות עם חמצן ורק בטמפרטורה של 610°C הופך לטיטניום דו חמצני. טיטניום הוא גם אחד היסודות היחידים שבוערים בסביבת חנקן, ב-800°C באטמוספרית חנקן טיטניום הופך לטיטניום חנקני.

ניסויים הראו שטיטניום טבעי הופך להיות מאוד רדיואקטיבי לאחר הפצצת דויטריום ופולט פוזיטרונים וקרינת גמא

[עריכה] שימושים



שעון עם ציפוי טיטניום

טיטניום דו חמצני (TiO2) משמש בתור פיגמנט לצבעים, נייר וחומרים פלסטיים. צבעים שמכילים טיטניום דו חמצני הם רפלקטורים מצוינים לקרינת אור תת אדום ומשמשים כחומרי צביעה במתקנים אסטרונומיים.

בזכות התכונות המצוינות של הטיטניום, סגסוגות טיטניום משמשות לבניית מטוסים, תחמושת, ספינות חלליות, קוצבי לב , גפיים מלאכותיות,תכשיטים ומחבטי גולף . טיטניום משולב לעתים קרובות עם אלומיניום, ונדיום, נחושת, ברזל, מנגן, מוליבדנום ומתכות אחרות. סגסוגת של טיטניום וואנדיום משמשת לציפוי מטוסים.

שימושים נוספים:

  • בזכות העמידות נגד מי ים, טיטניום משמש בתור חומר גלם לפרופלורים בסירות וספינות.
  • טיטניום משמש ליצירת אבני חן מלאכותיות.
  • טיטניום דו חמצני נמצא בתכשירי הגנה מהשמש.
מרטין היינריך קלפרות, הכימאי שנתן ליסוד את השם טיטניום

מרטין היינריך קלפרות, הכימאי שנתן ליסוד את השם טיטניום

[עריכה] היסטוריה

טיטניום התגלה לראשונה ב-1791 באנגליה על ידי הכומר של קהילת קרייד (Creed), ויליאם גרגור, שהיה גאולוג חובב. הוא זיהה את נוכחותו של היסוד החדש במינרל אילמניט כשמצא חול שחור ליד נחל בסמוך לקהיליית מאנאקן (Manaccan) שבקורנוול ושם לב כי חול זה נמשך למגנט. אנליזה של החול העלתה נוכחות של שתי תחמוצות מתכתיות, תחמוצת ברזל (שהסבירה את המשיכה למגנט), ו-45.25% של תחמוצת מתכתית לבנה שהוא לא הצליח לזהות. בהבחינו כי התחמוצת הבלתי מזוהה מכילה מתכת שתכונותיה לא תאמו לאף אחד מהיסודות הידועים, דיווח גרגור על ממצאיו ל"חברה הגאלוגית המלכותית של קורנוול" ובמגזין המדע הגרמני "Crell's Annalen".

בערך אותו הזמן הפיק פרנץ יוזץ מילר חומר דומה, אך לא יכול היה לזהותו. התחמוצת התגלתה במקביל ובאופן עצמאי על ידי הכימאי הגרמני מרטין היינריך קלפרות ב-1795 במינרל רוטיל מהונגריה. קלפרות גילה כי המינרל מכיל יסוד חדש שאותו כינה אותו טיטניום על שם הטיטאנים במיתולוגיה היוונית. לאחר ששמע על התגלית המוקדמת יותר של גרגור הוא השיג דגימה מה"מאנאקניט" ואימת שהיא הכילה טיטניום.

מיום גילויו היה קשה להפיק טיטניום טהור ממכרות. טיטניום טהור (99.9%) הופק לראשונה ב-1910 על ידי מאתיו א. האנטר כשהוא חימם טיטניום 4 כלורי (TiCl4) עם נתרן בטמפרטורה של 700-800 מעלות צלזיוס. עד 1946 לא השתמשו בטיטניום מחוץ למעבדות, רק כאשר ויליאם ג'סטין קארול הוכיח שאפשר להפיק טיטניום בצורה מסחרית, המצב השתנה.

[עריכה] צורה בטבע

טיטניום הוא היסוד התשיעי הכי נפוץ בקרום כדור הארץ (0.6% מהמסה) ומהווה חלק מסלעים, מכרות ברזל ומינרלים רבים. טיטניום התגלה במטאוריטים וכמו כן על השמש. סלעים שחזרו מהירח עם אפולו 17 הכילו 12.1% טיטניום דו חמצני (TiO2). טיטניום נמצא גם בצמחים ואפילו בבני אדם.

[עריכה] קישורים חיצוניים


BW Bewise Inc. Willy Chen willy@tool-tool.com bw@tool-tool.com www.tool-tool.com skype:willy_chen_bw mobile:0937-618-190 Head &Administration Office No.13,Shiang Shang 2nd St., West Chiu Taichung,Taiwan 40356 TEL:+886 4 24710048 / FAX:+886 4 2471 4839 N.Branch 5F,No.460,Fu Shin North Rd.,Taipei,Taiwan S.Branch No.24,Sec.1,Chia Pu East Rd.,Taipao City,Chiayi Hsien,Taiwan

Welcome to BW tool world! We are an experienced tool maker specialized in cutting tools. We focus on what you need and endeavor to research the best cutter to satisfy usersdemand. Our customers involve wide range of industries, like mold & die, aerospace, electronic, machinery, etc. We are professional expert in cutting field. We would like to solve every problem from you. Please feel free to contact us, its our pleasure to serve for you. BW product including: cutting toolaerospace tool .HSS Cutting toolCarbide end millsCarbide cutting toolNAS Cutting toolCarbide end millAerospace cutting toolCarbide drillHigh speed steelMilling cutterCore drillTapered end millsMetric end millsMiniature end millsPilot reamerElectronics cutterStep drillMetal cutting sawDouble margin drillGun barrelAngle milling cutterCarbide burrsCarbide tipped cutterChamfering toolIC card engraving cutterSide cutterNAS toolDIN toolSpecial toolMetal slitting sawsShell end millsSide and face milling cuttersSide chip clearance sawsLong end millsStub roughing end millsDovetail milling cuttersCarbide slot drillsCarbide torus cuttersAngel carbide end millsCarbide torus cuttersCarbide ball-nosed slot drillsMould cutterTool manufacturer.

Bewise Inc. www.tool-tool.com

beeway 發表在 痞客邦 留言(0) 人氣()

Bewise Inc. www.tool-tool.com Reference source from the internet.

Na Galipedia, a wikipedia en galego.

Escandio - Titanio - Vanadio
Ti
Zr
Hf

Xeral
Nome, símbolo, número Titanio, Ti, 22
Serie química Metais de transición
Grupo, período, bloque 4, 4, d
Densidade, dureza Mohs 4507 kg/m³, 6
Aparencia Prateado
125px
Propiedades atómicas
Peso atómico 47,867 uma
Radio medio 140 pm
Radio atómico calculado 176 pm
Radio covalente 136 pm
Radio de Van der Waals Sen información
Configuración electrónica [Ar]3d²4s²
Estado de oxidación (óxido) 4 (anfótero)
Estrutura cristalina Hexagonal
Propiedades físicas
Estado da materia Sólido
Punto de fusión 1941 K
Punto de ebulición 3560 K

Entalpía de vaporización 421 kJ/mol
Entalpía de fusión 15,45 kJ/mol
Presión de vapor 0,49 Pa a 1933 K
Velocidade do son 4140 m/s a 293,15 K
Información diversa
Electronegatividade 1,54 (Pauling)
Calor específica 520 J/(kgK)
Condutividade eléctrica 2,34 x 106/m ?
Condutividade térmica 21,9 W/(mK)
Potenciais de ionización
1º = 658,8 kJ/mol 6º = 11533 kJ/mol
2º = 1309,8 kJ/mol 7º = 13590 kJ/mol
3º = 2652,5 kJ/mol 8º = 16440 kJ/mol
4º = 4174,6 kJ/mol 9º = 18530 kJ/mol
5º = 9581 kJ/mol 10º = 20833 kJ/mol
Isótopos máis estables
iso. AN vida media MD ED MeV PD
44Ti {sen.} 63 anos ? 0,268 44Sc
46Ti 8.0% Ti es estable con 24 neutróns
47Ti 7,3% Ti es estable con 25 neutróns
48Ti 73,8% Ti es estable con 26 neutróns
49Ti 5,5% Ti es estable con 27 neutróns
50Ti 5,4% Ti es estable con 28 neutróns
Valores no SI e en condicións normais
(0 ºC e 1 atm), salvo que se indique o contrario.
Calculado a partir de distintas lonxitudes
de enlace covalente, metálico o iónico.

O titanio é un elemento químico de número atómico 22 que se sitúa no grupo 4 da táboa periódica dos elementos e simbolízase como Ti.

É un metal de transición abundante na codia terrestre; atópase, en forma de óxido, na escoura de certos minerais de ferro e en cinzas de animais e plantas. O metal é de cor gris escura, de gran dureza, resistente á corrosión e de propiedades físicas parecidas ás do aceiro; úsase na fabricación de equipos para a industria química e, aliado co ferro e outros metais, emprégase na industria aeronáutica e aeroespacial.

[editar] Características principais

O titanio é un elemento metálico que presenta unha estrutura hexagonal compacta, é duro, refractario e bo condutor da electricidade e a calor. Presenta unha alta resistencia á corrosión (case tan resistente coma o platino) e cando está puro, tense un metal lixeiro, forte, brillante e branco metálico dunha relativa baixa densidade. Posúe moi boas propiedades mecánicas e ademais ten a vantaxe, fronte a outros metais de propiedades mecánicas similares, de que é relativamente lixeiro.

A resistencia á corrosión que presenta é debida ao fenómeno de pasivación que sofre (fórmase un óxido que o recobre). É resistente a temperatura ambiente ao ácido sulfúrico (H2SO4) diluído e ao ácido clorhídrico (HCl) diluído, así como a outros ácidos orgánicos; tamén é resistente ás bases, ata en quente. Así a todo pódese disolver en ácidos en quente. Así mesmo, disólvese ben en ácido fluorhídrico (HF), ou con fluoruros en ácidos. A temperaturas elevadas pode reaccionar doadamente co nitróxeno, o osíxeno, o hidróxeno, o boro e outros non metais.

[editar] Aplicacións



Reloxo con cuberta de titanio
  • Aproximadamente o 95% do titanio consómese como dióxido de titanio (TiO2), un pigmento branco permanente que se emprega en pinturas, papel e plásticos. Estas pinturas utilízanse en reflectores debido a que reflicten moi ben a radiación infravermella.
  • Debido á súa forza, baixa densidade e o que pode soportar temperaturas relativamente altas, as aliaxes de titanio empréganse en avións e mísiles. Tamén se atopa en distintos produtos de consumo como: paus de golf, bicicletas, etcétera. O titanio alíase xeralmente con aluminio, ferro, manganeso, molibdeno e outros metais.
  • Debido á súa gran resistencia á corrosión pódese aplicar en casos en que vai estar en contacto coa auga do mar, por exemplo, en aparellos ou hélices. Tamén se pode empregar en plantas desalinizadoras.
  • Emprégase para obter pedras preciosas artificiais.
  • O tetracloruro de titanio (TiCl4) úsase para irisar o vidro e debido a que en contacto co aire forma moito fume, emprégase para formar artificialmente pantallas de fume.
  • Considérase que é fisioloxicamente inerte, polo que o metal emprégase en implantes de titanio, consistentes en parafusos de titanio puro que foron tratados superficialmente para mellorar a súa oseointegración; por exemplo, utilízase na cirurxía maxilofacial debido a estas boas propiedades. Tamén por ser inerte e ademais poder colorealo emprégase como material de "piercings".
  • Tamén se empregaron láminas delgadas de titanio para recubrir algúns edificios, por exemplo o Museo Guggenheim de Bilbao.
  • Algúns compostos de titanio poden ter aplicacións en tratamentos contra o cancro. Por exemplo, o cloruro de titanoceno no caso de tumores gastrointestinais e de mama.

[editar] Historia

O titanio (chamado así polos Titáns, fillos de Urano e Xea na mitoloxía grega) foi descuberto en Inglaterra por Willian Gregor en 1791, a partir do mineral coñecido como ilmenita (FeTiO3). Este elemento foi descuberto de novo anos máis tarde polo químico alemán Heinrich Klaproth, neste caso no mineral rutilo (TiO2) e foi el quen en 1795 lle deu o nome de titanio.

Matthew A. Hunter preparou por primeira vez titanio metálico puro (cunha pureza do 99.9%) quentando tetracloruro de titanio (TiCl4) con sodio a 700-800ºC nun reactor de aceiro.

O titanio como metal non se usou fóra do laboratorio ata que en 1946 William Justin Kroll desenvolveu un método para poder producilo comercialmente: mediante a redución do TiCl4 con magnesio, e este é o método utilizado hoxe en día (proceso de Kroll).

[editar] Abundancia e obtención

O titanio como metal non se atopa libre na natureza, pero é o noveno en abundancia na cortiza terrestre e está presente na maioría das rochas ígneas e sedimentos derivados delas. Atópase principalmente nos minerais anatasa (TiO2), brookita (TiO2), ilmenita (FeTiO3), leucoxeno, perovskita (CaTiO3), rutilo (TiO2) e titanita (CaTiSiO5); tamén como titanato e en moitas menas de ferro. Destes minerais, só a ilmenita, o leucoxeno e o rutilo teñen unha significativa importancia económica. Atópanse depósitos importantes en Australia, a rexión de Escandinavia, Estados Unidos e Malaisia.

O titanio metal prodúcese comercialmente mediante a redución de tetracloruro de titanio (TiCl4) con magnesio a uns 800ºC baixo atmosfera de argon (se non reaccionaría co osíxeno e o nitróxeno do aire); este proceso foi desenvolvido en 1946 por William Justin Kroll e séguese coñecendo como proceso de Kroll. Deste xeito obtense un produto poroso coñecido como esponxa de titanio que posteriormente se purifica e compacta para obter o produto comercial.

Con obxecto de paliar o gran consumo enerxético do proceso Kroll (da orde de 1,7 veces o requirido polo aluminio) atópanse en desenvolvemento procedementos de electrólise en sales fundidos (cloruros ou óxidos) que aínda non atoparon aplicación comercial.

Se é necesario obter titanio máis puro pódese empregar un método, só aplicable en pequenas cantidades (a escala de laboratorio) mediante o método de van Arkel-de Boer. Este método baséase na reacción de titanio con iodo a unha determinada temperatura para dar tetraioduro de titanio (TiI4) e a súa posterior descomposición a unha temperatura distinta para volver dar o metal.

[editar] Isótopos

Atópanse 5 isótopos estables na natureza: Ti-46, Ti-47, Ti-48, Ti-49 e Ti-50, sendo o Ti-48 o máis abundante (73,8%). Caracterizáronse 11 radioisótopos, sendo os máis estables o Ti-44, cunha vida media de 5,76 minutos e o Ti-52, de 1,7 minutos. Para o resto, as súas vidas medias son de menos de 33 segundos, e a maioría de menos de medio segundo.

O peso atómico dos isótopos vai dende 39,99 uma (Ti-40) ata 57,966 uma (Ti-58). O primeiro modo de decaemento antes do isótopo máis estable, o Ti-48, é a captura electrónica, mentres que logo deste é a desintegración beta. Os isótopos do elemento 21 (escandio) son os principais produtos de decaemento antes do Ti-48, mentres que despois son os isótopos do elemento 23 (vanadio).

[editar] Precaucións

O po metálico é pirofórico. Por outra banda, crese que os seus sales non son especialmente perigosos. Así a todo, os seus cloruros, como TiCl3 ou TiCl4, son considerados como corrosivos. O titanio ten tamén a tendencia a acumularse nos tecidos biolóxicos.

En principio, non se observa que xogue ningún papel biolóxico.

[editar] Ligazóns exteriores


BW Bewise Inc. Willy Chen willy@tool-tool.com bw@tool-tool.com www.tool-tool.com skype:willy_chen_bw mobile:0937-618-190 Head &Administration Office No.13,Shiang Shang 2nd St., West Chiu Taichung,Taiwan 40356 TEL:+886 4 24710048 / FAX:+886 4 2471 4839 N.Branch 5F,No.460,Fu Shin North Rd.,Taipei,Taiwan S.Branch No.24,Sec.1,Chia Pu East Rd.,Taipao City,Chiayi Hsien,Taiwan

Welcome to BW tool world! We are an experienced tool maker specialized in cutting tools. We focus on what you need and endeavor to research the best cutter to satisfy users’ demand. Our customers involve wide range of industries, like mold & die, aerospace, electronic, machinery, etc. We are professional expert in cutting field. We would like to solve every problem from you. Please feel free to contact us, its our pleasure to serve for you. BW product including: cutting toolaerospace tool .HSS Cutting toolCarbide end millsCarbide cutting toolNAS Cutting toolCarbide end millAerospace cutting toolCarbide drillHigh speed steelMilling cutterCore drillTapered end millsMetric end millsMiniature end millsPilot reamerElectronics cutterStep drillMetal cutting sawDouble margin drillGun barrelAngle milling cutterCarbide burrsCarbide tipped cutterChamfering toolIC card engraving cutterSide cutterNAS toolDIN toolSpecial toolMetal slitting sawsShell end millsSide and face milling cuttersSide chip clearance sawsLong end millsStub roughing end millsDovetail milling cuttersCarbide slot drillsCarbide torus cuttersAngel carbide end millsCarbide torus cuttersCarbide ball-nosed slot drillsMould cutterTool manufacturer.

Bewise Inc. www.tool-tool.com

beeway 發表在 痞客邦 留言(0) 人氣()

Bewise Inc. www.tool-tool.com Reference source from the internet.
Données v · d · m
Scandium - Titane - Vanadium
-
Ti
Zr

Général
Nom, Symbole, Numéro Titane, Ti, 22
Série chimique métaux de transition
Groupe, Période, Bloc 4, 4, d
Masse volumique 4507 kg/m3
Couleur Blanc argenté
Propriétés atomiques
Masse atomique 47,867 u
Rayon atomique (calc) 140 (176) pm
Rayon de covalence 136 pm
Rayon de van der Waals ND pm
Configuration électronique [Ar]3d2 4s2
Électrons par niveau d'énergie 2, 8, 10, 2
État(s) d'oxydation 4
Oxyde Amphotère
Structure cristalline Hexagonal
Propriétés physiques
État ordinaire solide
Température de fusion 1941 K
Température de vaporisation 3560 K
Énergie de fusion 15,45 kJ/mol
Énergie de vaporisation 421 kJ/mol
Volume molaire 10,64×10-6 m3/mol
Pression de la vapeur 0,49 Pa à 1933 K
Vélocité du son 5990 m/s à 20 °C
Divers
Électronégativité (Pauling) 1,54
Chaleur massique 520 J/(kg·K)
Conductivité électrique 2,34×106 S/m
Conductivité thermique 21,9 W/(m·K)
1er potentiel d'ionisation 658,8 kJ/mol
2e potentiel d'ionisation 1 309,8 kJ/mol
3e potentiel d'ionisation 2 652,5 kJ/mol
4e potentiel d'ionisation 4 174,6 kJ/mol
5e potentiel d'ionisation 9 581 kJ/mol
6e potentiel d'ionisation 11 533 kJ/mol
7e potentiel d'ionisation 13 590 kJ/mol
8e potentiel d'ionisation 16 440 kJ/mol
9e potentiel d'ionisation 18 530 kJ/mol
10e potentiel d'ionisation 20 833 kJ/mol
Isotopes les plus stables
iso AN période MD Ed MeV PD
44Ti {syn.} 63 a ε 0,268 44Sc
46Ti 8,0% stable avec 24 neutrons
47Ti 7,3% stable avec 25 neutrons
48Ti 73,8% stable avec 26 neutrons
49Ti 5,5% stable avec 27 neutrons
50Ti 5,4% stable avec 28 neutrons
Unités du SI & CNTP, sauf indication contraire.

Le titane est un élément chimique métallique de symbole Ti et de numéro atomique 22.

C'est un métal de transition léger, résistant, d'un aspect blanc métallique, qui résiste à la corrosion. Le titane est principalement utilisé dans les alliages légers et résistants, et son oxyde est utilisé comme pigment blanc. On trouve cet élément dans de nombreux minerais mais ses principales sources sont le rutile et l'ilménite. Il appartient au groupe des Titane avec le Zirconium (Zr), Hafnium (Hf) et Rutherfordium (Rf).

Histoire [modifier]

Le titane a été découvert par le révérend William Gregor en 1791 , minéralogiste et chimiste britannique. En analysant des sables de la rivière Helford dans la vallée de Menachan en Cornouailles, il isola ce qu’il nomma du ‘sable noir’, connu aujourd’hui sous le nom d’Ilménite. Suite à plusieurs manipulations physico-chimiques (extraction du fer par des procédés magnétiques et traitement du résidu par de l’acide chlorhydrique), il produisit un oxyde impur d’un métal inconnu. Il nomma cet oxyde ‘Menachanite’. Indépendamment de cette découverte, quatre ans plus tard, Martin Heinrich Klaproth, professeur de Chimie Analytique à l’Université de Berlin, identifia le même métal. Alors qu’il analysait les propriétés du ‘schörlite rouge’, aujourd’hui connu sous le nom de Rutile, il conclut que le minerai contenait un métal inconnu identique à celui de Gregor. Il lui donna son nom actuel de « Titane », tiré de la mythologie grecque, en ignorant totalement ses propriétés physico-chimiques. Il a fallu attendre plus d’un siècle après la découverte de Gregor pour que l’américain Matthew Albert Hunter, chercheur au Rensselaer Polytechnic Institute à Troy (New-York), soit capable, en 1910, de produire du titane pur à 99 %. Les premières obtentions de titane par Hunter ne furent pas suivies du moindre développement industriel. En 1939, le procédé industriel de production fut finalement mis au point par Wilhelm Justin Kroll, métallurgiste et chimiste luxembourgeois, consultant au Union Carbide Research Laboratory de Niagara Falls (New-York) par réduction du TiCl4 avec du magnésium

Propriétés Physiques [modifier]

1. Propriétés Physique de base

Caractéristiques physiques remarquables du titane :

  • Sa masse volumique est environ 60 % de celle de l’acier.
  • Sa tenue à la corrosion est exceptionnelle dans de nombreux milieux tels que l’eau de mer ou l’organisme humain.
  • Ses caractéristiques mécaniques restent élevées jusqu’à une température d’environ 600°C et restent excellentes jusqu’aux températures cryogéniques.
  • Sa transformation en demi-produits et en pièces de formes différentes par les techniques usuelles (forage, emboutissage, filage, coulée, soudage, usinage, etc.) est raisonnablement aisée.
  • Il est disponible sous des formes et des types de produits très variés : lingots, billettes, barres, fils, tubes, brames, tôles, feuillard.
  • Il est non magnétisable.
  • Son coefficient de dilatation, légèrement inférieur à celui de l’acier, est moitié moins que celui de l’aluminium. On prendra pour valeur moyenne un coefficient de dilatation de 10,5 ×10-6 K-1.

2. Propriétés cristallographiques

Le titane pur est le siège d’une transformation allotropique de type martensitique au voisinage de 882 °C. En-dessous de cette température, la structure est hexagonale pseudo-compacte (a=0,295nm ; c = 0,468 nm : c/a = 1,633) et est appelée Ti α (groupe d'espace 194 / P63/mmc). Au dessus de cette température la structure est cubique centrée (a=0,332 nm) et est appelée Ti β. La température de transition α→β est appelée transus β. La température exacte de transformation est largement influencée par les éléments substitutifs et interstitiels. Elle dépend donc fortement de la pureté du métal.

Le dessin ci-dessous représente la structure cristallographique des mailles α et β.

Image:Maille Titane.jpg

3. Isotopes

On trouve le titane sous la forme de 5 isotopes dans la nature: 46Ti, 47Ti, 48Ti, 49Ti, 50Ti. Le Ti-48 représente l'isotope majoritaire avec une abondance naturelle de 73,8%. 11 radioisotopes ont été observés, le plus stable le 44Ti possède une demi-vie de 63 ans.

L'activité photocatalytique de TiO2 est fortement affectée par sa cristallinité et dimension particulaire (Pecchi et al, 2001). La modification d'anatase est seulement suffisamment active dans la photocatalyse ayant une énergie Ebg d’espace de bande de 3,2 eV. Hombikat UV-100 TiO2 se compose de la modification pure d'anatase et ses particules ont une superficie de PARI d'environ 186 m2 g-1 (en appliquant la théorie de Brunauer-Emmett-Teller d'adsorption de gaz pour la détermination de l'isotherme d'adsorption). Cependant, la majorité d'investigations ont été effectuées en utilisant Degussa P-25 TiO2. Ce matériel se compose au sujet de l'anatase 80% et du rutile 20% et à une surface spécifique de BET à peu près 55 m2/g. Le diamètre de ses particules se trouve habituellement entre 25 nm et 35 nm.


4. Oxydes

  • Monoxyde de titane TiO
  • Trioxyde de dititane Ti2O3
  • Bioxyde de titane TiO2
  • Trioxyde de titane TiO3

Masse molaire M(Ti) : (K)2 (L)8 (M)8 (N)4

Propriétés Mécaniques [modifier]

1. Erosion

La couche d’oxyde très adhérente et dure explique la longévité de pièces en titane soumises aux chocs de particules en suspension dans les fluides. Cet effet est amplifié par la capacité qu’a cette couche de se régénérer. L’érosion dans l’eau de mer est augmentée par un débit plus élevé ou une granulométrie plus faible.

2. Résistance et ductilité

Le titane est considéré comme un métal ayant une résistance mécanique importante et une bonne ductilité dans les conditions standard de température. Sa résistance spécifique (rapport résistance à la traction / densité) surclasse l’aluminium et l’acier. Sa résistance est inversement proportionnelle à la température avec un replat entre -25°C et 400°C. En dessous de -50°C, dans les domaines de températures cryogéniques, l’augmentation de résistance est spectaculaire ; néanmoins, elle s’accompagne d’une ductilité très basse. Au dessus de 400°C, la résistance mécanique commence à diminuer. Sans qu’il n’y ait aucun fondement théorique, l’endurance en fatigue vaut environ 70% de la résistance à la traction.

3. Usure et grippage

Jusqu’à ce jour aucune solution satisfaisante n’a encore été mise au point. On a essayé principalement l’oxydation, la nitruration, la boruration et la carburation. On se heurte à de nombreuses difficultés technologiques de réalisation et d’adhérence. Ajoutons que les traitements de surface du titane, modifiant la nature ou la structure de la surface, ne sont à employer qu’avec la plus grande prudence et après une étude approfondie de leur influence ; ils ont généralement un effet néfaste plus ou moins prononcé sur la résistance et la fatigue.

4. Biocompatibilité / Résistance au feu

Le titane est l’un des métaux les plus biocompatibles, avec l’or et le platine, c’est-à-dire qu’il résiste totalement aux fluides corporels. Il n’a absolument aucune toxicité. De plus, il possède une haute résistance mécanique et un module d’élasticité très bas, ce qui le rend compatible avec les structures osseuses. Sa résistance au feu, notamment d’hydrocarbures, est très bonne. Il a été démontré qu’un tube de 2 mm d’épaisseur pouvait sans dommage ni risque de déformation ou d’explosion supporter une pression de dix atmosphères tout en étant soumis à un feu d’hydrocarbures à une température de 600°C. Cela est dû en premier lieu à la résistance de la couche d’oxyde qui évite la pénétration de l’hydrogène dans le matériau. En outre, la faible conductivité thermique du titane protège plus longtemps les éléments internes d’une élévation de température.


Propriétés Chimiques [modifier]

1. Corrosion classique du titane

Le titane est un métal extrêmement oxydable. Dans la série des potentiels électrochimiques standards, il se place au voisinage de l’aluminium, entre le magnésium et le zinc. Il n’est donc pas un métal noble, son domaine de stabilité thermodynamique ne présente, en effet, aucune partie commune avec le domaine de stabilité thermodynamique de l’eau et est situé fortement au-dessous de ce dernier. L’une des causes de la résistance à la corrosion du titane est le développement d’une couche protectrice passivante de quelques fractions de micromètre, constituée majoritairement d’oxyde TiO2, mais il est reconnu qu’elle peut contenir d’autres variétés. Cette couche est intègre et très adhérente. En cas de rayure de la surface, l’oxyde se reforme spontanément en présence d’air ou d’eau. Il y a donc inaltérabilité du titane dans l’air, l’eau et l’eau de mer. De plus, cette couche est très stable sur une large gamme de pH, de potentiel et de température.

Des conditions très réductrices, ou des environnements très oxydants, ou encore la présence d’ions fluor (agent complexant), diminuent le caractère protecteur de cette couche d’oxyde ; les réactifs d’attaque pour relever les micrographies sont le plus souvent à base d’acide fluorhydrique. Lors d’une réaction par cet acide, il y a formation de cation titane (II) et (III). La réactivité des solutions acides peut néanmoins être réduite par l’adjonction d’agents oxydants et/ou d’ions lourds métalliques. L’acide chromique ou nitrique et les sels de fer, nickel, cuivre ou chrome sont alors d’excellents agents inhibiteurs. Cela explique pourquoi le titane peut être utilisé dans des procédés industriels et des environnements où les matériaux conventionnels se corroderaient. On peut bien entendu modifier les équilibres électrochimiques par adjonction d’éléments d’addition qui réduisent l’activité anodique du titane ; cela conduit à améliorer la tenue à la corrosion. Selon les desiderata de modifications, on ajoute des éléments spécifiques. Une liste non exhaustive de quelques adjuvants classiques est reprise ci-dessous.

• Déplacement du potentiel de corrosion et renforcement du caractère de cathode : adjonction de platine, palladium ou rhodium.

• Accroissement de la stabilité thermodynamique et réduction de la propension à la dissolution anodique : adjonction de nickel, molybdène ou tungstène.

• Augmentation de la tendance à la passivation : adjonction de zirconium, tantale, chrome ou molybdène.

Ces trois méthodes peuvent être combinées.

2. Corrosion spécifique du Titane

Le titane est très peu sensible aux modes particuliers de corrosion tels que la corrosion caverneuse ou la corrosion par piqûre. Ces phénomènes ne sont observés qu’en cas d’utilisation dans un domaine proche d’une limite pratique de tenue à la corrosion générale. Les risques de corrosion sous contrainte apparaissent dans les conditions suivantes :

(*) à froid dans l’eau de mer (en présence d’entailles aiguës seulement).

(*) dans certains milieux particuliers tels que le méthanol anhydre.

(*) à chaud, en présence de NaCl fondu.

Les deux structures allotropiques se distinguent au niveau de la résistance à ce dernier type de corrosion ; le titane α y est fort sensible alors que le β quasiment pas.

Le procédé Kroll et l'Obtention du Titane Haute pureté [modifier]

1 Le procédé Kroll

La première étape consiste à opérer une carbochloration sur le dioxyde de titane. Le produit est obtenu par action du chlore gazeux sur l’oxyde vers 800°C, le tout sur lit fluidisé selon la réaction:

TiO2(s) + 2 C(s) + 2 Cl2(g) → TiCl4(g) + 2 CO(g)

Le tétrachlorure de titane, dont la température d’ébullition est de 136°C, est récupéré par condensation, décanté, filtré et purifié par distillation fractionnée. Le procédé de réduction qui s’ensuit consiste alors à faire réagir ce tétrachlorure en phase gazeuse sur du magnésium liquide selon la réaction :

TiCl4 (g) + 2 Mg (l) → 2MgCl 2 (l) + Ti (s)

La réaction est réalisée sous vide ou sous gaz inerte (argon). Le chlorure de magnésium est séparé par décantation, puis, dans une seconde étape, par distillation sous vide vers 900-950°C, ou par lavage à l’acide. Le titane obtenu est un solide poreux faisant penser à une éponge, d’où son nom d’éponge de titane.

Depuis le début de sa mise en exploitation industrielle en 1945, le procédé Kroll n’a pas subi d’évolution notable dans son principe physico-chimique, si ce n’est dans le rendement de la réaction.

2 Elaboration du titane haute pureté

Une fois l’éponge obtenue, on la broie afin d’obtenir des copeaux de titane. Ce lot est ensuite homogénéisé dans un mélangeur soit sous gaz neutre soit sous aspiration violente, de manière à prévenir toute inflammation des fines de titane (particules d’une centaine de micromètre) pouvant conduire à la formation d’oxynitrure de titane fragilisant et insoluble dans le bain liquide. Le lot homogène est ensuite introduit dans la matrice d’une presse où il est comprimé à froid, sous forme de cylindre dense appelé compact. La densité relative du compact autorise alors toute manutention en vue de constituer une électrode par empilement de ces compacts, étage par étage, et soudage entre eux par plasma ou faisceau d’électrons. On fabrique ainsi une électrode primaire.

Par la suite on fusionne les électrodes de titane par refusion à l’arc sous vide (VAR : Vacuum Arc Remelting). Cela revient à créer un arc électrique de faible voltage et haute intensité (30 à 40 V ; 20000 à 40000 A) entre le bas de l’électrode de titane et un creuset en cuivre refroidi par eau. Le bas de l’électrode s’échauffe et sa température passe au-delà du liquidus ; les gouttelettes de métal tombent alors dans un puits liquide contenu dans une gaine de métal que l’on nomme la peau du lingot. On refond ainsi le lingot plusieurs fois selon la pureté désirée. A chaque refusion, on augmente le diamètre des lingots ; ces derniers pèsent couramment entre 1 et 10 tonnes et ont un diamètre de 0,5 à 1 mètre.

Composés [modifier]

Bien que le titane métallique soit assez rare de par son prix, le dioxyde de titane est bon marché et largement répandu comme pigment blanc pour les peintures et les plastiques. La poudre de TiO2 est chimiquement inerte, résiste à la lumière du soleil et est très opaque. Le dioxyde de titane pur possède un indice de réfraction très haut, et une dispersion optique plus élevée que celle du diamant.

Précautions / Toxicologie [modifier]

Lorsqu'il est sous forme métallique divisée le titane est très inflammable, mais on considère généralement que les sels de titane sont sans danger. Les composés chlorés comme le TiCl4 et le TiCl3 sont corrosifs. Le titane peut s'accumuler dans les tissus vivants qui contiennent du silicium, mais il ne possède aucun rôle biologique connu.

Occurrence et Production [modifier]

On trouve du titane dans les météorites, dans le soleil et dans les étoiles de type M. Les roches ramenées depuis la lune par la mission apollo 17 sont composées à 12,1% de TiO2. On en trouve également dans le charbon, les plantes et même dans le corps humain.

Sur terre, le titane n’est pas une substance rare. Il est le dixième élément le plus abondant de la croûte terrestre, sa teneur moyenne y est de 0,63 %, Seuls les éléments suivants le précèdent par ordre décroissant : l'azote, l’oxygène, le silicium, l’aluminium, le fer, le magnésium, le calcium, le sodium et le potassium. La plupart des minéraux, roches et sols contiennent de petites quantités de titane. On dénombre 87 minéraux ou roches contenant au moins 1% de titane pur. Les minerais riches en titane sont par contre très peu nombreux, à savoir, l’anatase (TiO2), la brookite(TiO2), l’ilménite (Fe(TiO3)2) et ses altérations par carence de fer : le leucoxène, la perovskite (CaTiO3), le rutile (TiO2), la sphène ou titanite (CaTiO(SiO4)) et la titanomagnétite (Fe(Ti)Fe2O4).

La majorité du titane sur terre se trouve sous forme d’anatase ou de titanomagnétite, mais ces derniers ne peuvent être exploités avec les technologies actuelles de manière rentable. Seuls l’ilménite, le leucoxène et le rutile sont intéressants économiquement, étant donné la facilité avec laquelle ils peuvent être traités.

On trouve des gisements de titane en Australie, Scandinavie, Amérique du Nord, Malaisie, Chine, Afrique du Sud et Inde.

La réserve mondiale totale, à savoir celle qui n’est pas encore technologiquement et économiquement exploitable, est estimée à 2 milliards de tonnes. Les réserves prouvées de rutile et d’ilménite, calculées en pourcentage de TiO2 utilisable et technologiquement extractible en 2005, sont estimées à 600 millions de tonnes.

Répartition des réserves exploitables d'oxyde de titane en 2005

Image:Restitane.jpg

Source : U.S. Geological Survey, January 2005

Principaux producteurs d'oxyde de titane en 2003

Pays Milliers de tonnes % du total
Australie 1291,0 30,6
Afrique du Sud 850,0 20,1
Canada 767 18,2
Norvège 382,9 9,1
Ukraine 357 8,5
Total 5 pays 3647,9 86,4
Total monde 4221,0 100,0

Chiffres de 2003, en milliers de tonnes de dioxyde de titane

Source : L'état du monde 2005, annuaire économique géopolique mondial

Enjeux économiques [modifier]

Le nombre de producteurs de titane à haute pureté est très limité et est concentré dans les régions à forte demande intérieure. En effet, le titane étant un matériau stratégique pour les secteurs aéronautique, énergétique et militaire, les gouvernements des pays industrialisés ont organisé leur propre industrie de production. L’émergence récente de production en Chine et en Inde dans le cadre des plans pluriannuels de développement de l’industrie de défense, confirme cette analyse. Le fait que cette industrie soit destinée en premier lieu à satisfaire des besoins intérieurs stratégiques explique en partie le flou de l’information sur les capacités réelles de production.

Le développement de l’industrie dans le monde libéral a permis aux producteurs occidentaux d’accroître leur offre jusqu’à l’arrivée des producteurs des pays de l’ex-URSS. On peut considérer que le niveau des prix du marché, avant 1990, était principalement basé sur les coûts de production des pays occidentaux (États-Unis, Europe de l’ouest, Japon) et sur le positionnement par spécialisation de produit de ces fournisseurs aboutissant à un certain lobbying. L’arrivée sur le marché des producteurs russe, ukrainien et, à plus long terme, chinois marque de nouvelles étapes dans l’évolution du marché du titane. Ainsi, une pression sur les prix s’exerce pour gagner des parts sur le marché actuellement dominé par les États-Unis et le Japon. Cette pression se caractérise par une baisse des prix que les coûts de production rendent possible. Et, par le jeu de la concurrence, la diversification de l’offre peut contribuer à briser le positionnement par spécialisation de produit.

Image:Evolution Ti.jpg

Utilisations [modifier]



Montre en titane.

Aspects généraux [modifier]

La plus grande utilisation du titane (95%) est faite sous sa forme de dioxyde de titane TiO2 (anatase), qui est un pigment important utilisé à la fois dans les peintures domestiques et les pigments des artistes, les matières plastiques, le papier, les médicaments… Il a un bon pouvoir couvrant et est assez résistant au temps. Les peintures à base de titane sont de très bons réflecteurs des infrarouges, et sont donc très utilisées par les astronomes.

Autrefois réputé cher à cause de sa valeur d’achat, le titane est de plus en plus considéré comme économique dans les coûts d’exploitation. La clé du succès pour sa rentabilité est d’utiliser au maximum ses propriétés et caractéristiques uniques dès la conception, plutôt que de les substituer ex abrupto à un autre métal. Les coûts d’installation et d’exploitation des tubes de forage en titane dans des exploitations pétrolières offshore sont entre 50 et 200 % plus bas qu’avec la référence acier. En effet, d’une part, la résistance à la corrosion évite les opérations de revêtement des tubes et permet des durées de vie trois à cinq fois supérieures à l’acier et d’autre part, la valeur élevée de sa résistance spécifique permet de réaliser des tubes fins et ultralégers. Cet exemple montre bien que le titane, initialement employé dans le domaine aéronautique touche de plus en plus de secteurs.

Industries aéronautiques et aérospatiales [modifier]

Les domaines de l’aéronautique et de l’aérospatiale constituent la première des applications historiques du titane. Dans ce secteur on utilise totalement ses caractéristiques spécifiques.

De nos jours, le titane constitue 6 à 9% de la masse des avions. On en trouve tout d’abord sous forme de pièces forgées, dont la plus impressionnante est le train d’atterrissage du Boeing 777, mais aussi sous forme de boulons. Il ne faut pas oublier les éléments de moteurs, à savoir les étages basses et moyennes températures : disques de turbine, carter, etc. ; la température maximale d’utilisation étant limitée à 600 °C.

Dans le domaine de l’espace, il est utilisé pour les éléments du moteur Vulcain d’Ariane 5 en contact avec le mélange H2 / O2 et sa combustion ; les rouets centrifuges sont ainsi soumis à des températures cryogéniques d’un côté (température H2 liquide) et à celles de la combustion de l’autre. Il sert aussi de réservoir aux gaz de propulsion pour les satellites grâce à ses bonnes propriétés cryogéniques et à sa résistance à la corrosion des gaz propulseurs. Enfin, comme c’est un métal faiblement magnétique, il est embarqué sur les stations spatiales sous forme d'outil du fait qu’il peut évoluer en apesanteur près des appareillages électriques sans risque de créer un arc.

Industrie chimique [modifier]

Le secteur de la chimie au sens large correspond à la seconde utilisation historique du titane.

On trouve des tubes en titane dans de nombreux condenseurs, où sa résistance à la corrosion et à l’abrasion permet des durées de vie élevées.

Il sert aussi sous forme de réacteurs dans les raffineries (résistance à H2S et CO2) et pour le blanchiment de la pâte à papier (résistance au Cl).

Au Japon, il est également utilisé dans les traitements des eaux en raison de sa résistance à la corrosion et aux agents biologiques.

Industrie militaire [modifier]

On l’emploie comme blindage (porte-avions américains) où ses propriétés mécaniques et sa résistance à la corrosion et au feu sont mises en avant. Aux États-Unis, on a même été jusqu’à concevoir des véhicules légers, dont la carrosserie en titane possède une résistance spécifique inégalable et facilite le transport par hélicoptère.

Mais la plus spectaculaire des utilisations est bien sûr la réalisation de plusieurs sous-marins nucléaires par les russes dont la coque entière est en titane. L'avantage du titane dans ce cas est double:

  • sa grande résistance permet au sous-marin d'atteindre de plus grandes profondeurs,
  • le titane n'étant pas magnétisable, le sous-marin échappe aux détections satellitales qui utilisent les changements ponctuels du champ magnétique terrestre créés par les coques en aciers. (Cette méthode est devenu obsolète à cause de l'adjonction de circuits électroniques spécialisés qui rendent imperceptible la signature magnétique d'un sous-marin)[1].

Le seul défaut majeur de ces coques est le prix du titane qui les rend extrêmement onéreuses.

Secteur biomédical [modifier]

On dispose actuellement d’un retour d’expérience d’une petite trentaine d’années d’utilisation dans le domaine médical. Son emploi s’est développé en raison de son caractère biocompatible. En effet, l'os adhère spontanément au titane ce qui en fait un matériau privilégié pour la réalisation de prothèses. En plus de cet aspect biocompatible, le titane est mécanocompatible. Le titane a aussi fait une percée importante dans le domaine de l’odontologie où il sert d’implant dans la gencive pour les supports de prothèses.

Il faut enfin signaler l’apparition d’outillage en titane pour la chirurgie, comme les forets creux refroidis à l’eau. À l’inverse de l’acier, tout débris d’outil en titane pouvant rester dans le corps n’occasionnera pas d’infection postopératoire, du fait de sa biocompatibilité.

Enfin, le titane rentre dans la composition des bobines supraconductrices des appareils IRM en association avec un autre métal de transition : le niobium.

Industrie énergétique [modifier]

Le titane est également utilisé, notamment aux États-Unis, dans les circuits secondaires de réacteurs nucléaires afin de minimiser le nombre d’arrêts de tranches qui sont extrêmement coûteux. Il faut aussi noter son utilisation dans la géothermie sous forme de canalisations et de carters et dans les échangeurs de chaleurs (tubes droits ou en U), toujours pour sa tenue à la corrosion et sa résistance à l’érosion. Enfin grâce à sa résistance spécifique élevée, on en utilise dans les turbines génératrices de vapeur sous forme d’aubes ; dans ce cas, on réduit fortement les arrêts de centrale dus aux ruptures d’aubes.

Industrie automobile [modifier]

Un nouveau secteur d’application semble bien être la construction automobile. C’est surtout les marques allemandes, japonaises et américaines qui introduisent des pièces de titane dans les voitures de tourisme. Ce qui est recherchée est l’allègement des structures visant à réduire à la fois les émanations du moteur et le bruit ; on trouve ainsi des valves, des ressorts et des bielles en titane. Le cas des ressorts est typique d’une bonne utilisation des propriétés du titane : comme son module de Young est deux fois plus faible que celui de l’acier, il faut deux fois moins de spires ; comme il est deux fois moins dense que l’acier, le ressort est quatre fois plus léger, et il faut deux fois moins de place pour le loger dans la suspension. Si on ajoute à cela qu’il a une durée de vie quasi illimitée, même sur les routes à haut degré de salinité, on comprend l’intérêt de l’industrie automobile.


beeway 發表在 痞客邦 留言(0) 人氣()

Bewise Inc. www.tool-tool.com Reference source from the internet.
SkandiumTitaaniVanadiini
-

Ti

Zr

Yleistä
Nimi Titaani
Tunnus Ti
Järjestysluku 22
Luokka siirtymämetalli
Lohko d-lohko
Ryhmä 4
Jakso 4
Tiheys 4,506×103 kg/m3
Kovuus - (Mohsin asteikko)
Väri hopea
Löytövuosi, löytäjä 1791, William Gregor
Atomiominaisuudet
Atomipaino 47.867 amu
Atomisäde, mitattu (laskennallinen) 140 pm
Kovalenttisäde 136 pm
Van der Waalsin säde - pm
Orbitaalirakenne [Ar] 3d2 4s2
Elektroneja elektronikuorilla 2, 8, 10, 2
Hapetusluvut 4
Kiderakenne heksagonaalinen (HCP)
Fysikaaliset ominaisuudet
Olomuoto kiinteä
Sulamispiste 1941 K (1668 °C)
Kiehumispiste 3560 K (3560 °C)
Moolitilavuus -×10−6 m3/mol
Höyrystymislämpö 14,15 kJ/mol
Sulamislämpö 425 kJ/mol
Höyrynpaine - Pa - K:ssa
Äänen nopeus 5090 m/s 293 K:ssa
Muuta
Elektronegatiivisuus 1,54 (Paulingin asteikko)
Ominaislämpökapasiteetti 0,523 kJ/kg K
Sähkönjohtavuus - S/m
Lämmönjohtavuus 21.9 W/(m×K)
Tiedot normaalipaineessa

Titaani (lat. titanium) on metallinen alkuaine. Sen kemiallinen merkki on Ti, järjestysluku 22 ja atomimassa 47,867.

[muokkaa] Ominaisuudet

Titaani kestää korroosiota erittäin hyvin. Happi-ilmakehässä se muodostaa pinnalleen inertin oksidikerroksen, joka kestää laimeaa rikki- ja suolahappoa, orgaanisia happoja ja klooria. Titaani on lähes yhtä lujaa kuin teräs, mutta 45 % kevyempää. Se on 60 % painavampaa kuin alumiini, mutta kaksi kertaa vahvempaa. Titaani on myös erittäin väsymiskestävää ja sillä on korkea sulamispiste.

Titaani palaa normaali-ilmakehässä (610°C >) muodostaen titaanidioksidia. Hapettumaton titaanipinta palaa jo huoneenlämmössä välittömästi paljastuessaan, esimerkiksi titaanikappaleen murtuessa, jolloin saatetaan nähdä jopa valonvälähdys. Syntynyt lämpö ei yleensä riitä sytyttämään koko kappaletta. Reaktioherkkyyden vuoksi lastuamisnopeus on pidettävä hitaana. Titaani on myös niitä harvoja aineita, jotka reagoivat typen kanssa (800°C>), jolloin muodostuu titaaninitridiä. Ominaisuus tekee titaanista vaikean hitsattavan. Titaani on hitsattava typpeä sisältämättömässä suojakaasussa.

[muokkaa] Käyttökohteet



Titaanikuorinen kello


95 % titaanista käytetään titaanidioksidina (TiO2), joka on maaleissa, muoveissa, paperissa ja meikeissä käytettävä valkoinen pigmentti. Titaanidioksidi ei läpäise valoa, ja sitä käytetään myös aurinkovoiteissa. Titaanioksidi ei ole myrkyllistä kuten lyijyoksidi, jota aiemmin käytettiin yleisesti valkoisena pigmenttinä. Suomessa titaanioksidia valmistaa Kemira Oy Porin tehtaalla.

Vaikka metallinen titaani on lujuudessa teräkseen verrattavissa, niin sen kimmokerroin on vain noin puolet teräksen vastaavasta. Tämän vuoksi pyrittäessä samaan jäykkyyteen kuin teräsrakenteissa, joudutaan titaanin kanssa käyttämään suurempaa ainepaksuutta, jolloin menetetään osa titaanin keveyden tuomasta edusta. Koneenrakennuksessa jäykkyys on usein mitoituksessa määräävämpi ominaisuus kuin lujuus. Kun lisäksi titaanin työstäminenkin on kallista, niin käyttökohteiksi ovat tulleet vaativat sovellukset, joissa haponkestävän teräksen kemiallinen kestävyys ei riitä ja joissa vaaditaan lisäksi keveyttä.

Titaanin käyttökohteita:

  • Prosessiteollisuuden putkistot, lämmönvaihtimet ja venttiilit, joissa merivettä käytetään lauhdutukseen, esim. voimalaitokset ja suolanpoistolaitokset, ydinvoimaloiden putkistot, etikkahappolaitokset, klooritehtaat, paperi- ja lannoiteteollisuus
  • Merenalaisissa kohteissa kauko-ohjattavien laitteiden rungot ja välineet (kestävät jopa 3000 m syvyyteen), seurantalaitteiden kotelot, prosessilaitteet ja työkalut, sukellusvälineiden osat
  • Avomeriteollisuudessa porauslauttojen ja alusten pakokaasuputkistot, jäähdytys- ja palokaluston putkistot, joissa suolapitoisuus on korkea
  • Puolustusteollisuudessa kuten nopeissa lentokoneissa, esim. Lockheed SR-71, ohjuksissa, sukellusveneet, torpedot, ammukset, henkilösuojaimet
  • Kilpa-autoissa titaanille on monia käyttökohteita, kuten jousitus ja monet moottorin liikkuvat osat; mm. venttiilit, kiertokanget ja männäntapit.
  • Keveyden ja lujuuden ansiosta sitä käytetään ilmailusovelluksissa, mutta myös kuluttajatuotteissa kuten golf-mailoissa, polkupyörissä ja kannettavissa tietokoneissa.
  • Kaksi kolmasosaa titaanimetallista käytetään lentokoneisiin. Yli puolet titaanidioksidista menee maaleihin.
  • Lääketieteellisissä sovelluksissa, esimerkiksi implanteissa, koska elimistön hylkimisreaktio titaania kohtaan on pieni. Samasta syystä sitä käytetään koruissa, esimerkiksi lävistyskorut.
  • Titaania on käytetty 1950-luvulta lähtien kirurgiassa murtuneiden luiden yhteen kiinnittämiseen. Polven ja lonkan tekonivelet ja myös kallonmurtuman paikkalevyt ovat titaania.
  • Titaania käytetään seosaineena teräksissä ja alumiineissa. Teräksessä titaania käytetään titaaninitridinä kiteiden kasvun säätämiseen.

[muokkaa] Titaanin erikoisominaisuuksia

Lockheedin pohtiessa 1960-luvun alussa vedyn käyttämistä lentokoneen polttoaineena havaittiin titaanin hauraus kylmänä. Kylmähaurauden lisäksi vety kulkeutuu titaanin kiteiden raerajoille ja tekee siitä lasimaisen hauraan. Ilmiö voi aiheutua myös titaanin työstön koneistusnesteistä. Hiilikuiturakenteissa titaanin ja hiilikuidun kontakti pitää estää titaanin galvaanisen korroosion estämiseksi.

Vety haurastuttaa titaanin, mutta toisaalta titaanijauhe kykenee varastoimaan itseensä suuren määrän vetyä.

Titaanin lämpölaajenemiskerroin on pieni, samaa luokkaa kuin lasin. Titaania voidaan jopa hitsata yhteen lasin kanssa, mitä ominaisuutta on hyödynnetty joissakin laboratoriosovelluksia.

Titaaninitridiä ja titaanikarbidia käytetään pinnoitteena kovuutensa ja kulutuksenkestonsa vuoksi työstökoneiden terissä.

[muokkaa] Historia

Titaani on saanut nimensä kreikkalaisen mytologian titaaneilta, Gaian ensimmäisiltä lapsilta. Sen löysi englantilainen pastori William Gregor 1791 mineraali ilmeniitistä (FeTiO3) ja uudelleen saksalainen kemisti Martin Heinrich Klaproth rutiilista. Klaproth nimesi alkuaineen 1795 titaanien mukaan.

Metallia valmistettiin ensimmäisen kerran laboratorion ulkopuolella 1946, kun Willam Justin Kroll keksi keinon valmistaa sitä pelkistämällä titaanitetrakloridia (TiCl4) magnesiumin avulla.

[muokkaa] Esiintyminen

Titaania ei esiinny vapaana luonnossa, vaikka se onkin maan yhdeksänneksi yleisin alkuaine (0,9 % massasta). Merkittävimmät titaanivarannot ovat Australiassa, Skandinaviassa, Pohjois-Amerikassa ja Malesiassa. Titaania esiintyy meteoriiteissä, Auringossa ja muissa M-tyypin tähdissä. Apollo 17:n Kuusta tuomissa näytteissä sitä oli 12,1 % kuukivistä.

[muokkaa] Isotoopit

Titaania

Titaania

Luonnontitaanissa esiintyy viittä isotooppia: Ti-46, Ti-47, Ti-48, Ti-49 ja Ti-50. Ti-48 on yleisin (73,8%). Yhtätoista radioaktiivista isotooppia on valmistettu, vakain on Ti-44 63 vuoden puoliintumisajalla. Ti-45 isotoopin puoliintumisaika on 184,8 minuuttia, Ti-51:n 5,76 minuuttia ja Ti-52:n 1,7 minuuttia. Muiden isotooppien puoliintumisajat ovat alle 33 sekuntia ja suurimman osan alle puoli sekuntia.


BW Bewise Inc. Willy Chen willy@tool-tool.com bw@tool-tool.com www.tool-tool.com skype:willy_chen_bw mobile:0937-618-190 Head &Administration Office No.13,Shiang Shang 2nd St., West Chiu Taichung,Taiwan 40356 TEL:+886 4 24710048 / FAX:+886 4 2471 4839 N.Branch 5F,No.460,Fu Shin North Rd.,Taipei,Taiwan S.Branch No.24,Sec.1,Chia Pu East Rd.,Taipao City,Chiayi Hsien,Taiwan

Welcome to BW tool world! We are an experienced tool maker specialized in cutting tools. We focus on what you need and endeavor to research the best cutter to satisfy users’ demand. Our customers involve wide range of industries, like mold & die, aerospace, electronic, machinery, etc. We are professional expert in cutting field. We would like to solve every problem from you. Please feel free to contact us, its our pleasure to serve for you. BW product including: cutting toolaerospace tool .HSS Cutting toolCarbide end millsCarbide cutting toolNAS Cutting toolCarbide end millAerospace cutting toolCarbide drillHigh speed steelMilling cutterCore drillTapered end millsMetric end millsMiniature end millsPilot reamerElectronics cutterStep drillMetal cutting sawDouble margin drillGun barrelAngle milling cutterCarbide burrsCarbide tipped cutterChamfering toolIC card engraving cutterSide cutterNAS toolDIN toolSpecial toolMetal slitting sawsShell end millsSide and face milling cuttersSide chip clearance sawsLong end millsStub roughing end millsDovetail milling cuttersCarbide slot drillsCarbide torus cuttersAngel carbide end millsCarbide torus cuttersCarbide ball-nosed slot drillsMould cutterTool manufacturer.

Bewise Inc. www.tool-tool.com

beeway 發表在 痞客邦 留言(0) 人氣()

Bewise Inc. www.tool-tool.com Reference source from the internet.
Perioda tabelo
H















He
Li Be









B C N O F Ne
Na Mg









Al Si P S Cl Ar
K Ca Sc Ti V Cr Mn Fe Co Ni Cu Zn Ga Ge As Se Br Kr
Rb Sr Y Zr Nb Mo Tc Ru Rh Pd Ag Cd In Sn Sb Te I Xe
Cs Ba * Hf Ta W Re Os Ir Pt Au Hg Tl Pb Bi Po At Rn
Fr Ra ** Rf Db Sg Bh Hs Mt Ds Rg Uub Uut Uuq Uup Uuh Uus Uuo


* La Ce Pr Nd Pm Sm Eu Gd Tb Dy Ho Er Tm Yb Lu


** Ac Th Pa U Np Pu Am Cm Bk Cf Es Fm Md No Lr


Titanio estas kemia elemento en la perioda tabelo tiu havas la simbolo Ti kaj atomnumero 22. Ĝi estas malpeza, forta, blank-metal-kolora, brila, senrustema transira metalo, uzita en fortaj malpezaj alojoj kaj blankaj pigmentoj.

Ĉi tiu elemento okazis en multaj mineraloj. La ĉefaj fontoj estas rutilo kaj ilmenito.



BW Bewise Inc. Willy Chen willy@tool-tool.com bw@tool-tool.com www.tool-tool.com skype:willy_chen_bw mobile:0937-618-190 Head &Administration Office No.13,Shiang Shang 2nd St., West Chiu Taichung,Taiwan 40356 TEL:+886 4 24710048 / FAX:+886 4 2471 4839 N.Branch 5F,No.460,Fu Shin North Rd.,Taipei,Taiwan S.Branch No.24,Sec.1,Chia Pu East Rd.,Taipao City,Chiayi Hsien,Taiwan

Welcome to BW tool world! We are an experienced tool maker specialized in cutting tools. We focus on what you need and endeavor to research the best cutter to satisfy users’ demand. Our customers involve wide range of industries, like mold & die, aerospace, electronic, machinery, etc. We are professional expert in cutting field. We would like to solve every problem from you. Please feel free to contact us, its our pleasure to serve for you. BW product including: cutting toolaerospace tool .HSS Cutting toolCarbide end millsCarbide cutting toolNAS Cutting toolCarbide end millAerospace cutting toolCarbide drillHigh speed steelMilling cutterCore drillTapered end millsMetric end millsMiniature end millsPilot reamerElectronics cutterStep drillMetal cutting sawDouble margin drillGun barrelAngle milling cutterCarbide burrsCarbide tipped cutterChamfering toolIC card engraving cutterSide cutterNAS toolDIN toolSpecial toolMetal slitting sawsShell end millsSide and face milling cuttersSide chip clearance sawsLong end millsStub roughing end millsDovetail milling cuttersCarbide slot drillsCarbide torus cuttersAngel carbide end millsCarbide torus cuttersCarbide ball-nosed slot drillsMould cutterTool manufacturer.

Bewise Inc. www.tool-tool.com

beeway 發表在 痞客邦 留言(0) 人氣()