公告版位

[edit] Pigments, Additives and Coatings

Titanium dioxide is the most commonly used compound of titanium

Titanium dioxide is the most commonly used compound of titanium

About 95% of titanium ore extracted from the Earth is destined for refinement into titanium dioxide (TiO2), an intensely white permanent pigment used in paints, paper, toothpaste, and plastics.[32] It is also used in cement, in gemstones, as an optical opacifier in paper,[33] and a strengthening agent in graphite composite fishing rods and golf clubs.

TiO2 powder is chemically inert, resists fading in sunlight, and is very opaque: this allows it to impart a pure and brilliant white color to the brown or gray chemicals that form the majority of household plastics.[3] In nature, this compound is found in the minerals anatase, brookite, and rutile.[18] Paint made with titanium dioxide does well in severe temperatures, is somewhat self-cleaning, and stands up to marine environments.[3] Pure titanium dioxide has a very high index of refraction and an optical dispersion higher than diamond.[2]

Recently, it has been put to use in air purifiers (as a filter coating), or in film used to coat windows on buildings which when exposed to UV light (either solar or man-made) and moisture in the air produces reactive redox species like hydroxyl radicals that can purify the air or keep window surfaces clean.[34]

[edit] Aerospace and Marine

The engines alone of the Airbus A380 use about 11 tons of titanium

The engines alone of the Airbus A380 use about 11 tons of titanium

Because of its high tensile strength for its density,[6] high corrosion resistance,[2] and ability to withstand moderately high temperatures without creeping, titanium alloys are used in aircraft, armor plating, naval ships, spacecraft, and missiles.[3][2] For these applications, titanium alloyed with aluminum, vanadium, and other elements is used for a variety of components including critical structural parts, fire walls, landing gear, exhaust ducts (helicopters) and hydraulic systems. In fact, about two thirds of all titanium metal produced is used in aircraft engines and frames.[20] An estimated 58 tons are used in the Boeing 777, 43 in the 747, 18 in the 737, 24 in the Airbus A340, 17 in the A330 and 12 in the A320. The A380 may use 77 tons, including about 11 tons in the engines.[35] In engine applications, titanium is used for rotors, compressor blades, hydraulic system components and nacelles. The titanium 6AL-4V alloy accounts for almost 50% of all alloys used in aircraft applications. .[36]

Due to its high corrosion resistance to sea water, titanium is used to make propeller shafts and rigging and in the heat exchangers of desalination plants;[2] in heater-chillers for salt water aquariums, fishing line and leader, and diver knives as well. Titanium is used to manufacture the housings and other components of ocean-deployed surveillance and monitoring devices for scientific and military use.

[edit] Industrial

Welded titanium pipe and process equipment (heat exchangers, tanks, process vessels, valves) are used in the chemical and petrochemical industries primarily for corrosion resistance. Specific alloys are used in downhole and nickel hydrometallurgy applications due to their high strength (titanium Beta C) or corrosion resistance or combination of both. The pulp and paper industry uses titanium in process equipment exposed to corrosive media such as chlorine (in the bleachery).[37] Other applications include: ultrasonic welding, wave soldering,[38] and sputtering targets.[39]

[edit] Consumer and Architectural

The Guggenheim Museum Bilbao is sheathed in titanium panels.

The Guggenheim Museum Bilbao is sheathed in titanium panels.

Titanium metal is used in automotive applications, particularly in automobile or motorcycle racing, where weight reduction is critical while maintaining high strength and rigidity. The metal is generally too expensive to make it marketable to the general consumer market, other than high end products. Late model Corvettes have been available with titanium exhausts,[40] and racing bikes are frequently outfitted with titanium mufflers. Other automotive uses include piston rods and hardware (bolts, nuts, etc.).

Titanium is used in many sporting goods; tennis rackets, golf clubs, lacrosse stick shafts; cricket, hockey, lacrosse, and football helmet grills, and bicycle frames and components. Titanium alloys are also used in spectacle frames. This results in a rather expensive, but highly durable and long lasting frame which is light in weight and causes no skin allergies. Many backpackers use titanium equipment, including cookware, eating utensils, lanterns and tent stakes. Though slightly more expensive than traditional steel or aluminium alternatives, these titanium products can be significantly lighter without compromising strength. Titanium is also favored for use by farriers, since it is lighter and more durable than steel when formed into horseshoes. Titanium horseshoes can be found in horse racing, and are used by many Amish horse owners, who rely entirely on horse-drawn carriages for transportation.

Titanium has occasionally been used in architectural applications: the 120-foot (40 m) memorial to Yuri Gagarin, the first man to travel in space, in Moscow, is made of titanium for the metal's attractive color and association with rocketry.[41] The Guggenheim Museum Bilbao and the Cerritos Millennium Library were the first buildings in Europe and North America, respectively, to be sheathed in titanium panels. Other construction uses of titanium sheathing include the Frederic C. Hamilton Building in (Denver, Colorado).[42]

[edit] Medical

A titanium hip prosthesis, with a ceramic head and polyethylene acetabular cup.

A titanium hip prosthesis, with a ceramic head and polyethylene acetabular cup.

Because it is biocompatible (non-toxic and is not rejected by the body), titanium is used in a gamut of medical applications including surgical implements and implants, such as hip balls and sockets (joint replacement) that can stay in place for up to 20 years. Titanium has the inherent property to osseointegrate, enabling use in dental implants that can remain in place for over 30 years. This property is also useful for orthopedic implant applications.[8]

Since titanium is non-ferromagnetic, patients with titanium implants can be safely examined with magnetic resonance imaging (convenient for long-term implants). Preparing titanium for implantation in the body involves subjecting it to a high-temperature plasma arc which removes the surface atoms, exposing fresh titanium that is instantly oxidized.[8] Titanium is also used for the surgical instruments used in image-guided surgery, as well as wheelchairs, crutches, and any other product where high strength and low weight are important.

Its inertness and ability to be attractively colored makes it a popular metal for use in body piercing.[43] Titanium may be anodized to produce various colors.[44] A number of artists work with titanium to produce artworks such as sculptures, decorative objects and furniture.

[edit] Compounds

The +4 oxidation state dominates in titanium chemistry, but compounds in the +3 oxidation state are also common. Because of this high oxidation state, many titanium compounds have a high degree of covalent bonding.

Star sapphires and rubies get their asterism from the titanium dioxide impurities present in them.[8] Titanates are compounds made with titanium dioxide. Barium titanate has piezoelectric properties, thus making it possible to use it as a transducer in the interconversion of sound and electricity.[6] Esters of titanium are formed by the reaction of alcohols and titanium tetrachloride and are used to waterproof fabrics.[6]

TiN coated drill bit

TiN coated drill bit

Titanium nitride (TiN) is often used to coat cutting tools, such as drill bits. It also finds use as a gold-coloured decorative finish, and as a barrier metal in semiconductor fabrication.

Titanium tetrachloride (titanium(IV) chloride, TiCl4, sometimes called "Tickle") is a colourless liquid which is used as an intermediate in the manufacture of titanium dioxide for paint. It is widely used in organic chemistry as a Lewis acid, for example in the Mukaiyama aldol condensation. Titanium also forms a lower chloride, titanium(III) chloride (TiCl3), which is used as a reducing agent.

Titanocene dichloride is an important catalyst for carbon-carbon bond formation. Titanium isopropoxide is used for Sharpless epoxidation. Other compounds include; titanium bromide (used in metallurgy, superalloys, and high-temperature electrical wiring and coatings) and titanium carbide (found in high-temperature cutting tools and coatings).[3]

[edit] Isotopes

Main article: Isotopes of titanium

Naturally occurring titanium is composed of 5 stable isotopes; 46Ti, 47Ti, 48Ti, 49Ti and 50Ti with 48Ti being the most abundant (73.8% natural abundance). Eleven radioisotopes have been characterized, with the most stable being 44Ti with a half-life of 63 years, 45Ti with a half-life of 184.8 minutes, 51Ti with a half-life of 5.76 minutes, and 52Ti with a half-life of 1.7 minutes. All of the remaining radioactive isotopes have half-lives that are less than 33 seconds and the majority of these have half-lives that are less than half a second.[7]

The isotopes of titanium range in atomic weight from 39.99 u (40Ti) to 57.966 u (58Ti). The primary decay mode before the most abundant stable isotope, 48Ti, is electron capture and the primary mode after is beta emission. The primary decay products before 48Ti are element 21 (scandium) isotopes and the primary products after are element 23 (vanadium) isotopes.[7]

[edit] Precautions

Nettle contains up to 80 parts per million of titanium

Nettle contains up to 80 parts per million of titanium

Titanium is non-toxic even in large doses and does not play any natural role inside the human body. An estimated 0.8 milligrams of titanium is ingested by humans each day but most passes through without being absorbed. It does, however, have a tendency to bio-accumulate in tissues that contain silica. An unknown mechanism in plants may use titanium to stimulate the production of carbohydrates and encourage growth. This may explain why most plants contain about 1 part per million (ppm) of titanium, food plants have about 2 ppm and horsetail and nettle contain up to 80 ppm.[8]

As a powder or in the form of metal shavings, titanium metal poses a significant fire hazard and, when heated in air, an explosion hazard. Water and carbon dioxide-based methods to extinguish fires are ineffective on burning titanium; Class D dry powder fire fighting agents must be used instead.[3]

Even bulk titanium metal is susceptible to fire, when it is heated to its melting point. A number of titanium fires occur during breaking down devices containing titanium parts with cutting torches.

Titanium can catch fire when a fresh, non-oxidized surface gets in contact with liquid oxygen. Such surface can appear when an oxidized surface is struck with a hard object, or when a mechanical strain causes an emergence of a crack. This poses a limit for use of titanium in liquid oxygen systems in eg. aerospace industry.

Salts of titanium are often considered to be relatively harmless but its chlorine compounds, such as TiCl2, TiCl3 and TiCl4, have unusual hazards. The dichloride takes the form of pyrophoric black crystals, and the tetrachloride is a volatile fuming liquid. All of titanium's chlorides are corrosive.

[edit] See also

[edit] References

  1. ^ a b c "Titanium". Encyclopædia Britannica Concise. (2005).
  2. ^ a b c d e f g h i j k l m Titanium. Los Alamos National Laboratory (2004). Retrieved on 2006-12-29.
  3. ^ a b c d e f g h i j k Krebs, Robert E. (2006). The History and Use of Our Earth's Chemical Elements: A Reference Guide (2nd edition). Westport, CT: Greenwood Press. ISBN 0313334382.
  4. ^ Matthew J. Donachie, Jr. (1988). TITANIUM: A Technical Guide. Metals Park, OH: ASM International, p.11. ISBN 0871703092.
  5. ^ a b c d e f g h i j k l m Barksdale, Jelks (1968). The Encyclopedia of the Chemical Elements. Skokie, Illinois: Reinhold Book Corporation, 732-38 "Titanium". LCCCN 68-29938.
  6. ^ a b c d e f g h "Titanium". Columbia Encyclopedia (6th edition). (2000 – 2006). New York: Columbia University Press. ISBN 0787650153.
  7. ^ a b c Barbalace, Kenneth L. (2006). Periodic Table of Elements: Ti - Titanium. Retrieved on 2006-12-26.
  8. ^ a b c d e f g h i j Emsley, John (2001). Nature's Building Blocks: An A-Z Guide to the Elements. Oxford: Oxford University Press, pp. 451 – 53. ISBN 0-19-850341-5.
  9. ^ Origins of the Element Names: Names Derived from Mythology or Superstition
  10. ^ van Arkel, A. E.; de Boer, J. H. (1925). "Preparation of pure titanium, zirconium, hafnium, and thorium metal". Z. Anorg. Allg. Chem. 148: 345 – 50.
  11. ^ Yanko, Eugene; Omsk VTTV Arms Exhibition and Military Parade JSC (2006). Submarines: general information. Retrieved on 2006-12-26.
  12. ^ Stainless Steel World. "VSMPO Stronger Than Ever", KCI Publishing B.V., July/August 2001, pp. 16–19. Retrieved on 2007-01-02.
  13. ^ NATIONAL MATERIALS ADVISORY BOARD, Commission on Engineering and Technical Systems (CETS), National Research Council (1983). Titanium: Past, Present, and Future. Washington, DC: national Academy Press, R9. NMAB-392.
  14. ^ Titanium Metals Corporation. Answers.com. Encyclopedia of Company Histories,. Answers Corporation (2006). Retrieved on 2007-01-02.
  15. ^ Defense National Stockpile Center (2006). Strategic and Critical Materials Report to the Congress. Operations under the Strategic and Critical Materials Stock Piling Act during the Period October 2004 through September 2005. United States Department of Defense, § 3304.
  16. ^ Bush, Jason. "Boeing's Plan to Land Aeroflot", BusinessWeek, 2006-02-15. Retrieved on 2006-12-29.
  17. ^ DuPont (2006-12-09). U.S. Defense Agency Awards $5.7 Million to DuPont and MER Corporation for New Titanium Metal Powder Process. Retrieved on 2006-12-26.
  18. ^ a b c d e f "Titanium". Encyclopædia Britannica. (2006). Retrieved on 2006-12-29.
  19. ^ Matthew J. Donachie, Jr. (1988). TITANIUM: A Technical Guide. Metals Park, OH: ASM International, Appendix J, Table J.2. ISBN 0871703092.
  20. ^ a b c Emsley, John (2001). Nature's Building Blocks: An A-Z Guide to the Elements. Oxford: Oxford University Press, 455. ISBN 0-19-850341-5.
  21. ^ Casillas, N.; Charlebois, S.; Smyrl, W. H.; White, H. S. (1994). "Pitting Corrosion of Titanium". J. Electrochem. Soc. 141 (3): 636 – 42. Abstract
  22. ^ a b "Titanium". Microsoft Encarta. (2005). Retrieved on 2006-12-29.
  23. ^ Cordellier, Serge; Didiot, Béatrice (2004). L'état du monde 2005: annuaire économique géopolitique mondial. Paris: La Découverte.
  24. ^ Matthew J. Donachie, Jr. (1988). TITANIUM: A Technical Guide. Metals Park, OH: ASM International, Chapter 4. ISBN 0871703092.
  25. ^ Chen, George Zheng; Fray, Derek J.; Farthing, Tom W. (2000). "Direct electrochemical reduction of titanium dioxide to titanium in molten calcium chloride". Nature 407: 361 – 64. DOI:10.1038/35030069. Abstract
  26. ^ Matthew J. Donachie, Jr. (1988). TITANIUM: A Technical Guide. Metals Park, OH: ASM International, p.16, Appendix J. ISBN 0871703092.

beeway 發表在 痞客邦 留言(0) 人氣()

Bewise Inc. www.tool-tool.com Reference source from the internet.

Από τη Βικιπαίδεια, την ελεύθερη εγκυκλοπαίδεια

Μετάβαση σε: πλοήγηση, αναζήτηση

Το χημικό στοιχείο Τιτάνιο είναι ένα μέταλλο με ατομικό αριθμό 22 και ατομικό βάρος 47,90 . Έχει θερμοκρασία τήξης 1660 C° και θερμοκρασία βρασμού 3287 C°. Το σύμβολό του είναι Ti και ανακαλύφτηκε το 1791.

Το τιτάνιο βρίσκεται σε μορφή διάφορων ορυκτών στη φύση. Τα κυριότερα ορυκτά του τιτάνιου είναι το ρουτίλιο (ΤiO2), ο ιλμενίτης (Fe Ti O3), ο βρουτήτης, ο περοβοκίτης, ο τιτανίτης κ.ά. Το χρώμα του είναι αργυρό και όταν έρχεται σε επαφή με τον αέρα, καλύπτεται από στρώμα οξειδίου. Έχει χαρακτηριστική αντοχή στη διάβρωση και στα διάφορα χημικά αντιδραστήρια. Προσβάλλεται από το φθόριο και το υδροχλωρικό οξύ, από το θερμό θειώδες και νιτρικό οξύ και το βασιλικό ύδωρ. Το τιτάνιο το παίρνουμε από τα ορυκτά του ύστερα από ειδική κατεργασία.

Από τις ενώσεις του τιτάνιου με αλογόνα αναφέρουμε το τετραφθοριούχο τιτάνιο (TiF4), το διχλωριούχο τιτάνιο (TiCl2), το τριχλωριούχο τιτάνιο (TiCl3) και το τετραχλωριούχο τιτάνιο (TiCl), που χρησιμοποιείται στην υαλουργία και στην κεραμευτική. Από τις οξυγονούχες ενώσεις του τιτανίου αναφέρουμε το διοξείδιο του τιτανίου (ΤiO2), που χρησιμοποιείται στην παρασκευή καλλυντικών, στη χαρτοποιία, στη σαπωνοποιία κ.ά. και το τριοξείδιο του τιτανίου (TiO3) που χρησιμοποιείται στην παρασκευή πορσελάνης και τσιμέντου, υλικών που χρησιμοποιεί η οδοντοτεχνική.

[Επεξεργασία] Χρήσεις

Το τιτάνιο άρχισε να αποκτά μεγάλη τεχνική σημασία μετά το 1945. Χρησιμοποιείται στην κατασκευή διάφορων ελαφρών κραμάτων και ανοξείδωτων χαλύβων. Η αντοχή του στη διάβρωση από το θαλάσσιο νερό και τα χημικά αντιδραστήρια επιτρέπει τη χρησιμοποίησή του στη ναυπηγική και στην κατασκευή μηχανημάτων της χημικής βιομηχανίας.


BW Bewise Inc. Willy Chen willy@tool-tool.com bw@tool-tool.com www.tool-tool.com skype:willy_chen_bw mobile:0937-618-190 Head &Administration Office No.13,Shiang Shang 2nd St., West Chiu Taichung,Taiwan 40356 TEL:+886 4 24710048 / FAX:+886 4 2471 4839 N.Branch 5F,No.460,Fu Shin North Rd.,Taipei,Taiwan S.Branch No.24,Sec.1,Chia Pu East Rd.,Taipao City,Chiayi Hsien,Taiwan

Welcome to BW tool world! We are an experienced tool maker specialized in cutting tools. We focus on what you need and endeavor to research the best cutter to satisfy users’ demand. Our customers involve wide range of industries, like mold & die, aerospace, electronic, machinery, etc. We are professional expert in cutting field. We would like to solve every problem from you. Please feel free to contact us, its our pleasure to serve for you. BW product including: cutting toolaerospace tool .HSS Cutting toolCarbide end millsCarbide cutting toolNAS Cutting toolCarbide end millAerospace cutting toolCarbide drillHigh speed steelMilling cutterCore drillTapered end millsMetric end millsMiniature end millsPilot reamerElectronics cutterStep drillMetal cutting sawDouble margin drillGun barrelAngle milling cutterCarbide burrsCarbide tipped cutterChamfering toolIC card engraving cutterSide cutterNAS toolDIN toolSpecial toolMetal slitting sawsShell end millsSide and face milling cuttersSide chip clearance sawsLong end millsStub roughing end millsDovetail milling cuttersCarbide slot drillsCarbide torus cuttersAngel carbide end millsCarbide torus cuttersCarbide ball-nosed slot drillsMould cutterTool manufacturer.

Bewise Inc. www.tool-tool.com

beeway 發表在 痞客邦 留言(0) 人氣()

Bewise Inc. www.tool-tool.com Reference source from the internet.
Eigenschaften

[Ar] 3d2 4s2
22
Ti
Allgemein
Name, Symbol, Ordnungszahl Titan, Ti, 22
Serie Übergangsmetalle
Gruppe, Periode, Block 4, 4, d
Aussehen silbrig metallisch
Massenanteil an der Erdhülle 0,41 %
Atomar
Atommasse 47,867 u
Atomradius (berechnet) 140 (176) pm
Kovalenter Radius 136 pm
Van-der-Waals-Radius pm
Elektronenkonfiguration [Ar] 3d2 4s2
Elektronen pro Energieniveau 2, 8, 10, 2
1. Ionisierungsenergie 658,8 kJ/mol
2. Ionisierungsenergie 1309,8 kJ/mol
3. Ionisierungsenergie 2652,5 kJ/mol
4. Ionisierungsenergie 4174,6 kJ/mol
Physikalisch
Aggregatzustand fest
Modifikationen
Kristallstruktur hexagonal (bis 882 °C, darüber krz)
Dichte 4507 kg/m3
Mohshärte 6
Magnetismus
Schmelzpunkt 1941 K (1668 °C)
Siedepunkt 3560 K (3287 °C)
Molares Volumen 10,64 · 10-6 m3/mol
Verdampfungswärme 421 kJ/mol
Schmelzwärme 15,45 kJ/mol
Dampfdruck 0,49 Pa bei 1933 K
Schallgeschwindigkeit 4140 m/s bei 293,15 K
Spezifische Wärmekapazität 520 J/(kg · K)
Elektrische Leitfähigkeit 2,34 · 106 S/m
Wärmeleitfähigkeit 21,9 W/(m · K)
Chemisch
Oxidationszustände +3, +4
Oxide (Basizität) TiO2 (amphoter)
Normalpotential 1,3 V (TiO2 + 4H+ + 4e-
→ Ti + 2H2O)
Elektronegativität 1,54 (Pauling-Skala)
Isotope
Isotop NH t1/2 ZM ZE MeV ZP
44Ti

{syn.}

49 a ε 0,268 44Sc
45Ti

{syn.}

184,8 m ε 2,062 45Sc
46Ti

8,0 %

Stabil
47Ti

7,3 %

Stabil
48Ti

73,8 %

Stabil
49Ti

5,5 %

Stabil
50Ti

5,4 %

Stabil
51Ti

{syn.}

5,76 m β 2,471 51V
52Ti

{syn.}

1,7 m β 1,973 52V
NMR-Eigenschaften

Spin γ in
rad/(T·s)
E fL bei
B = 4,7 T
in MHz
47Ti -5/2 1,508· 107 0,00209 11,3
49Ti -7/2 1,508· 107 0,00376 11,3
Sicherheitshinweise
Gefahrstoffkennzeichnung
Pulver
Gefahrensymbole
Leichtentzündlich
F
Leichtent-
zündlich
Reizend
Xi
Reizend

R- und S-Sätze R: 17-36/37/38 (Pulver)[1]
S: 26(Pulver)[1]
Soweit möglich und gebräuchlich, werden SI-Einheiten verwendet.
Wenn nicht anders vermerkt, gelten die angegebenen Daten bei Standardbedingungen.

Titan ist ein chemisches Element im Periodensystem der Elemente mit dem Symbol Ti und der Ordnungszahl 22. Es gehört zu den Übergangsmetallen. Leicht, fest, dehnbar, weiß-metallisch glänzend und korrosionsbeständig ist es besonders für Anwendungen geeignet, bei denen es auf hohe Korrosionsbeständigkeit, Festigkeit und geringes Gewicht ankommt.

Geschichte [Bearbeiten]

Titan wurde 1791 in England durch den Geistlichen und Amateurchemiker William Gregor im Titaneisen entdeckt. Mehrere Jahre später entdeckte es der deutsche Chemiker Heinrich Klaproth im Rutilerz erneut. 1795 benannte er das neue Element Titan.

Reines Titanmetall (99,9 %) stellte 1910 erstmals Matthew A. Hunter her, indem er in einer Stahlbombe Titantetrachlorid mit Natrium auf 700 bis 800 °C erhitzte.

Erst die Einführung der großtechnisch durchgeführten Reduktion von Titantetrachlorid mit Magnesium (Kroll-Prozess durch William Justin Kroll 1946) erschloss das Titan für kommerzielle Anwendungen.

Vorkommen [Bearbeiten]

Titan kommt in der Lithosphäre nur in Verbindungen mit Sauerstoff als Oxid vor. Es ist keineswegs selten, steht es doch an 10. Stelle der Elementhäufigkeit in der Erdkruste. Meist ist es aber nur in geringer Konzentration vorhanden.

Wichtige Mineralien sind :

Die Hauptvorkommen liegen in Australien, Skandinavien, Nordamerika und Malaysia.

Meteoriten können Titan enthalten. In der Sonne und in Sternen der Spektralklasse M wurde ebenfalls Titan nachgewiesen. Gesteinsproben der Mondmission Apollo 17 enthielten bis zu 12,1 % TiO2. Auch in Kohlenaschen, Pflanzen und im menschlichen Körper ist es enthalten.

Gewinnung [Bearbeiten]

Meist vom Ilmenit oder Rutil ausgehend, wird angereichertes Titandioxid mit Chlor zu Titantetrachlorid in der Hitze umgesetzt. Anschließend erfolgt eine Reduktion zum Titan durch flüssiges Magnesium (Kroll-Prozess nach William Justin Kroll). Zur Herstellung von bearbeitbaren Legierungen muss der erhaltene Titanschwamm im Vakuum-Lichtbogenofen umgeschmolzen werden.

Größter Produzent von Titan und Titanlegierungen ist die VSMPO-AVISMA, Berezniki (nahe Ural) [2], welche sich seit 12. September 2006 indirekt durch die Holding Rosoboronexport in russischem Staatsbesitz befindet.

Eigenschaften [Bearbeiten]

Armbanduhr mit Titanhülle

Armbanduhr mit Titanhülle

Titan bildet an Luft eine äußerst beständige oxidische Schutzschicht aus, die es in vielen Medien korrosionsbeständig macht. Bemerkenswert ist die hohe Festigkeit bei einer relativ geringen Dichte. Oberhalb einer Temperatur von 400 °C gehen die Festigkeitseigenschaften aber schnell zurück. Hochreines Titan ist duktil. Bei höheren Temperaturen versprödet es durch Aufnahme von Sauerstoff, Stickstoff und Wasserstoff sehr schnell. Zu beachten ist auch die hohe Reaktivität von Titan mit vielen Medien bei erhöhten Temperaturen oder erhöhtem Druck, wenn die Passivschicht dem chemischen Angriff nicht gewachsen ist. Hier kann die Reaktionsgeschwindigkeit bis zur Explosion anwachsen. In reinem Sauerstoff bei 25 °C und 25 bar verbrennt Titan von einer frischen Schnittkante ausgehend vollständig zum Titandioxid. Bei Temperaturen oberhalb von 880 °C reagiert es mit Sauerstoff, bei Temperaturen ab 550 °C mit Chlor trotz Passivierungsschicht. Titan reagiert („brennt“) auch mit reinem Stickstoff, was bei Hitzeentwicklung wie zum Beispiel bei spanender Bearbeitung unbedingt beachtet werden muss.

In verdünnter Schwefelsäure, Salzsäure, chloridhaltigen Lösungen und den meisten organischen Säuren ist Titan beständig. Wegen der Explosionsgefahr sind bei Anwendungen in Chlorgas die Betriebsbedingungen strikt einzuhalten.

Die mechanischen Eigenschaften und das korrosive Verhalten lassen sich durch meist geringfügige Legierungszusätze von Aluminium, Vanadium, Mangan, Molybdän, Palladium, Kupfer, Zirconium und Zinn erheblich verbessern.

Durch Beschuss mit Deuteronen (= Ionen des Deuteriums) wird Titan radioaktiv. Es emittiert dann Positronen und Gammastrahlung. Unterhalb von 880 °C liegt Titan in einer hexagonal dichtesten Kugelpackung vor. Oberhalb von 880 °C bildet sich eine kubisch-raumzentrierte Gitterstruktur aus.

Theoretisch ist die Bildung von Titansäure Ti(OH)4 durch Reaktion von Titandioxid mit Wasser möglich. Aber wegen der starken Neigung von Titan, mit Sauerstoff das außerordentlich stabile Titandioxid zu bilden, zerfällt Titansäure sofort zu Titandioxid und Wasser. Die Bildung von Titansäure ist ohnehin sehr unwahrscheinlich. Stabile Titansäure ist nur unter extremen oder besonderen Bedingungen denkbar. Titandioxid hingegen ist so stabil, dass es nicht einmal von konzentrierter Salzsäure angegriffen werden kann.

Verbindungen [Bearbeiten]

Während metallisches Titan wegen der hohen Herstellungskosten oft anspruchsvollen technischen Anwendungen vorbehalten bleibt, ist das relativ preiswerte und ungiftige Farbpigment Titandioxid ein Begleiter des alltäglichen Lebens geworden. Praktisch alle heutigen weißen Kunststoffe und Farben, auch Lebensmittelfarben (Titanweiß in Lebensmitteln als E 171 zu finden), enthalten Titandioxid. Aber auch im Bereich der Elektro- und Werkstofftechnik und neuerdings auch in der Herstellung von Hochleistungs-Akkumulatoren für den Fahrzeug-Antrieb (Lithiumtitanat) werden Titanverbindungen eingesetzt.

Titansorten [Bearbeiten]

Einige der wichtigsten Titanarten, die hauptsächlich in der Luftfahrtindustrie eingesetzt werden.

Bezeichnung chem. Zusammensetzung Elastizitätsmodul in GPa Dichte in g·cm−3
Ti6246 Ti-6Al-2Sn-4Zr-6Mo 125,4 4,51
Ti6242 Ti-6Al-2Sn-4Zr-2Mo
4,50

Verwendung [Bearbeiten]

  • Vor allem als Legierungsbestandteil von Stahl. Es verleiht Stahl eine hohe Zähigkeit, Festigkeit und Duktilität. Titanstähle haben auch ein gutes Verhältnis von Gewicht zu Festigkeit.
  • Anwendungen in Seewasser und chloridhaltigen Medien:
  • Verwendungen im Outdoor-Bereich
    • (Taucher-)Messer mit Titan- oder Titanlegierungsklingen, ebenso Essbestecke
    • als Zeltheringe (geringes Gewicht trotz hoher Festigkeit)

In der Mittelohrchirurgie findet Titan als Material für Gehörknöchelchenersatz-Prothesen und für Paukenröhrchen bevorzugte Verwendung.

  • über 90 % der Titanerzförderung wird hauptsächlich nach dem Chlorid- und im geringeren Maße nach dem Sulfatverfahren zu Titandioxid verarbeitet
  • Schmuck aus Titan
  • Brillengestelle aus Titan
  • in Flugzeugen und Raumschiffen für besonders beanspruchte Teile, die trotzdem leicht sein müssen
  • bei hochwertigen Fahrrädern in Verbindung mit Aluminium und Vanadium als Rahmenmaterial
  • bei Golfschlägern als Schlägerkopf
  • bei Tennisschlägern im Rahmen
  • beim Stockschießen als äußerst stabiler Stab beim Eisstockstiel
  • in Dampfturbinen für die am stärksten belasteten Schaufeln des Niederdruckteiles
  • in der Rüstung: Viele U-Boote der ehemaligen Sowjetunion hatten Druckkörper aus einer Titanlegierung (z.B. Mike-Klasse, Alfa-Klasse, Typhoon-Klasse oder Delta-Klasse). Daneben kommt Titan, stärker als bei zivilen Luftfahrt, in der militärischen Luftfahrt zum Einsatz. Dies führte dazu, dass zu Hochzeiten der sowjetischen Rüstungsproduktion ein Großteil der weltweiten Titanproduktion sowohl in Russland produziert als auch wieder verbaut wurde.
  • als Beschichtungsmetall in der Halbleiterindustrie sowohl in fester (Targets) wie vergaster (Gasderivate) Form

Titan wird als Brillenrahmen verwendet.

Verbindungen des Titans mit Bor, Kohlenstoff oder Stickstoff finden Verwendung als Hartstoffe. Auch zur Herstellung von Cermets, Verbundwerkstoffen aus Keramik und Metall, werden Titanverbindungen eingesetzt.

Analytik [Bearbeiten]

TiO2+ bildet mit Wasserstoffperoxid einen charakteristischen gelben Komplex, der auch zum photospektrometrischen Nachweis geeignet ist.

Normen [Bearbeiten]

Titan und Titanlegierungen sind unter anderem genormt in:

  • DIN 17850, Ausgabe:1990-11 Titan; Chemische Zusammensetzung
  • ASTM B 348: Standard Specification for Titanium and Titanium Alloy, Bars and Billets
  • ASTM B 265: Standard Specification for Titanium and Titanium Alloy, Sheets and Plates
  • ASTM F 67: Standard Specification for Unalloyed Titanium, for Surgical Implant Applications
  • ASTM F 136: Standard Specification for Wrought Titanium-6Aluminum-4Vanadium ELI (Extra Low Interstitial) Alloy for Surgical Implant Applications
  • ASTM B 338: Standard Specification for Seamless and Welded Titanium and Titanium Alloy Tubes for Condensers and Heat Exchangers
  • ASTM B 337: Specification for Seamless and Welded Titanium and Titanium Alloy Pipe

Sicherheitshinweise [Bearbeiten]

Titan ist als Pulver feuergefährlich, kompakt ungefährlich. Die meisten Titansalze gelten als harmlos. Unbeständige Verbindungen wie Titantrichlorid sind stark korrosiv, da sie mit Spuren von Wasser Salzsäure bilden.

Titantetrachlorid wird in Nebelkerzen und Nebelgranaten eingesetzt; es reagiert mit der Luftfeuchte und bildet einen weißen Rauch aus Titandioxid, außerdem Salzsäurenebel.

Im Körpergewebe neigt Titan zur Anreicherung. Eine biologische Rolle des Titans im menschlichen Körper ist zur Zeit nicht bekannt.

Quelle [Bearbeiten]

  1. a b Sicherheitsdatenblatt (alfa-aesar)
  2. Avisma

Weblinks [Bearbeiten]




BW Bewise Inc. Willy Chen willy@tool-tool.com bw@tool-tool.com www.tool-tool.com skype:willy_chen_bw mobile:0937-618-190 Head &Administration Office No.13,Shiang Shang 2nd St., West Chiu Taichung,Taiwan 40356 TEL:+886 4 24710048 / FAX:+886 4 2471 4839 N.Branch 5F,No.460,Fu Shin North Rd.,Taipei,Taiwan S.Branch No.24,Sec.1,Chia Pu East Rd.,Taipao City,Chiayi Hsien,Taiwan

Welcome to BW tool world! We are an experienced tool maker specialized in cutting tools. We focus on what you need and endeavor to research the best cutter to satisfy users’ demand. Our customers involve wide range of industries, like mold & die, aerospace, electronic, machinery, etc. We are professional expert in cutting field. We would like to solve every problem from you. Please feel free to contact us, its our pleasure to serve for you. BW product including: cutting toolaerospace tool .HSS Cutting toolCarbide end millsCarbide cutting toolNAS Cutting toolCarbide end millAerospace cutting toolCarbide drillHigh speed steelMilling cutterCore drillTapered end millsMetric end millsMiniature end millsPilot reamerElectronics cutterStep drillMetal cutting sawDouble margin drillGun barrelAngle milling cutterCarbide burrsCarbide tipped cutterChamfering toolIC card engraving cutterSide cutterNAS toolDIN toolSpecial toolMetal slitting sawsShell end millsSide and face milling cuttersSide chip clearance sawsLong end millsStub roughing end millsDovetail milling cuttersCarbide slot drillsCarbide torus cuttersAngel carbide end millsCarbide torus cuttersCarbide ball-nosed slot drillsMould cutterTool manufacturer.

Bewise Inc. www.tool-tool.com

beeway 發表在 痞客邦 留言(0) 人氣()

Bewise Inc. www.tool-tool.com Reference source from the internet.

Fra Wikipedia, den frie encyklopædi

Gå til: navigation, søg
For alternative betydninger, se Titan.
22 ScandiumTitanVanadium
Udseende

Sølv-metallisk
Generelt
Navn(e): Titan, titanium
Kemisk symbol: Ti
Atomnummer: 22
Atommasse: 47.867(1) g/mol
Grundstofserie: Overgangsmetal
Gruppe: 4
Periode: 4
Blok: d
Elektronkonfiguration: [Ar] 3d2 4s2
Elektroner i hver skal: 2, 8, 10, 2
Atomradius: 140 pm
Kovalent radius: 136 pm
Kemiske egenskaber
Oxidationstrin: 2, 3, 4
Elektronegativitet: 1,54 (Paulings skala)
Fysiske egenskaber
Tilstandsform: Fast stof
Krystalstruktur: Hexagonal (α-form)
Kubisk (β-form)
Massefylde: 4,506 g/cm3
Massefylde på væskeform: 4,11 g/cm3
Smeltepunkt: 1668 °C
Kogepunkt: 3287 °C
Smeltevarme: 14,15 kJ/mol
Fordampningsvarme: 425 kJ/mol
Varmefylde: 25,060 J·mol–1K–1
Varmeledningsevne: 21,9 W·m–1K–1
Varmeudvidelseskoeff.: 8,6
Elektrisk resistivitet: 0.420 µ
Magnetiske egenskaber: Ukendt
Mekaniske egenskaber
Youngs modul: 116 GPa
Forskydningsmodul: 44 GPa
Kompressibilitetsmodul: 110 GPa
Poissons forhold: 0,32
Hårdhed (Mohs' skala): 6,0
Hårdhed (Vickers): 970 MPa
Hårdhed (Brinell): 716 MPa

Titan eller titanium (opkaldt efter titanerne fra den græske mytologi) er det 22. grundstof i det periodiske system, og har det kemiske symbol Ti: Under normale temperatur- og trykforhold optræder dette overgangsmetal som et sølvskinnende metal der er lige så stærkt som stål, men blot har 60 procent af stålets massefylde.

[redigér] Egenskaber

Titan antager en af to allotropiske former, afhængigt af temperaturen: Under cirka 880°C fremtræder stoffet i α-formen med hexagonal krystalstruktur, mens det over denne temperatur ganske langsomt forandres til den kubiske β-form.

[redigér] Titans kemi

Titan er forbløffende korrosionsbestandigt, og angribes hverken af syrer, klor-gas i forbindelse med fugt, eller saltvand, herunder havvand. Rent titan opløses ikke i vand, men i koncentrerede syrer. Titan kan brænde; ved 610°C reagerer det med ilten i den atmosfæriske luft og danner titandioxid, og ved 800°C også med luftens kvælstof under dannelse af titannitrid.

[redigér] Mekaniske egenskaber

Titan er velkendt for sin store styrke i forhold til vægten, og har desuden et relativt højt smeltepunkt; begge dele gør det til et velegnet materiale til krævende opgaver. Det er dertil meget formbart, navnlig i iltfrie omgivelser. Kommercielt tilgængeligt titan har en trækstyrke der kan måle sig med de stærkeste former for stål, men vejer 43 % mindre.

[redigér] Tekniske anvendelser

Titan finder stigende anvendelse i en lang række forskellige produkter; ketsjere, golfkøller, cykler, camping-udstyr, armbåndsure, vielsesringe, laptop-computere og i mange forskellige former for laboratorieudstyr. Der findes også køkkengrej i titan, men da metallets termiske egenskaber kan føre til ujævn fordeling af varmen, er dette udstyr ikke lige velegnet til alle kulinariske formål.

Svejsede rør af titan bruges i den kemiske industri og på boreplatforme på grund af metallets korrosionsbestandighed. Metallets korrosionsbestandighed er udnyttet i aksler til skibsskruer, varmevekslere til afsaltningsanlæg og saltvands-akvarier, i ubåde og andre steder hvor metallet er i direkte kontakt med havvand.

[redigér] Titan i og på kroppen

Titan irriterer ikke levende væv; tværtimod kan eksempelvis benvæv ligefrem "vokse sammen" med et implantat af dette metal. Da titan samtidig let lader sig farve ved anodisering, er det populært til smykker i piercinger, og bruges til at fremstille dyre men robuste brillestel, som ikke generer huden.

[redigér] Legeringer

Legeringer med titan har mange af titans "karaktertræk"; stor trækstyrke (selv ved høje temperaturer), lav vægt og stor modstandsdygtighed mod iltning ("rust"); derfor bruges disse legeringer til krævende opgaver i flyvemaskiner, pansring, krigsskibe, rumfartøjer og missiler. I stål og i aluminium-legeringer medvirker titan til at reducere materialets kornstørrelse. I stål fjerner titan envidere ilt og, i rustfrit stål, også kulstof. Titan legeres også med kobber for at gøre dette hårdere, og med flere andre metaller, eksempelvis vanadium (denne legering bruges i stigende grad i flyvemaskiner; op mod 77 tons i et større moderne passagerfly), molybdæn og mangan.

[redigér] Titandioxid

Langt det meste titan der bruges, indgår i titandioxid; et kridhvidt, bestandigt farvestof med god dækkeevne, som bruges i en lang række produkter, for eksempel maling, rettelak, papir, tandpasta og plastic. Titanoxid tilbagekaster også infrarødt og ultraviolet lys, og bruges derfor også i solcreme.

[redigér] Andre anvendelser

Titan bruges i fyrværkeri der skal vise hvide effekter. Titantetraklorid, en farveløs væske, danner en tyk "røg" (tåge) i fugtig luft, og det udnyttes til røgslør og skywriting. Titan bruges som ydre beklædning på bygninger. I Moskva står der et 45 meter højt monument for Yuri Gagarin, udført i titan.

[redigér] Forekomst

Titan er med 0,69 % det niende-mest udbredte grundstof i jordskorpen: Det findes aldrig i fri, metallisk form i naturen, men altid bundet i kemiske forbindelser med andre stoffer. Disse forbindelser findes i de fleste magmatiske bjergarter og i sedimenter af disse bjergarter, primært mineralerne anatas, brookit, ilmenit, perovskit, rutil, titanit og i mange jernmalme. Titanindholdet er meget jævnt fordelt over hele Jorden, så det er svært at finde forekomster med særlig højt indhold af titan. Af de mange forskellige titanholdige mineraler er det dog kun ilmenit og rutil der har betydning for den kommercielle udvidning af titan, og selv dem er det svært at finde store koncentrerede forekomster af. De mest betydelige forekomster ligger i Australien, New Zealand, Skandinavien, Nordamerika, Malaysia og i Kwale-regionen i Kenya.

Titan er også blevet påvist i meteoritter, og i Solen samt i stjerner af spektralklasse M, og prøver hentet fra Månen af astronauterne i Apollo 17 indeholder 12,1 % titandioxid.

[redigér] Udvinding

Da titan reagerer med ilt ved høje temperaturer, kan man ikke som med andre metaller reducere oxidet med et andet metal, så til kommerciel fremstilling af titan benyttes Kroll-processen; en omstændelig og omkostningstung metode der blev udviklet i 1946 af William Justin Kroll: Først omdannes titandioxid til titantetraklorid, som fortættes og oprenses ved destillation. Til sidst reduceres kloridet til det rene metal ved hjælp af 800 °C varm, smeltet magnesium under en atmosfære af argon.

Den nyere, såkaldte FFC Cambridge-proces kan muligvis erstatte Kroll-processen: Denne reaktion tager udgangspunkt i titandioxid, og resulterer i titan i enten pulverform eller som et "svampet" stykke metal med en masse porer og åbninger i. Man håber at denne proces kan gøre titan meget billigere, og introducere materialet på områder hvor man idag bruger specielle aliuminium-legeringer og ståltyper.

[redigér] Historie

Titan blev opdaget i 1791 af amatør-geologen William Gregor fra Creed i Cornwall i England: Han fandt ud af at mineralet ilmenit indeholdt et hidtil ukendt grundstof, og kaldte det for menachite (alternativ stavemåde manaccanite) efter det nærliggende Manaccan sogn. Omtrent samtidig lykkedes det Franz Joseph Muller at isolere stoffet, men han formåede ikke at identificere det.

Uafhængigt af Gregir og Muller, men flere år senere, "genopdagede" tyskeren Martin Heinrich Klaproth stoffet, denne gang i mineralet rutil. Han bekræftede at der var tale om et "nyt" grundstof, og i 1795 navngav han det efter titanerne fra den græske mytologi.

Titan har altid været svært at udskille i ren form; først i 1910 lykkedes det Matthew A. Hunter at isolere 99,9 % rent titan ved at opvarme titantetraklorid med natrium i den såkaldte Hunter-proces. Først i 1946, da Kroll-processen blev opfundet, fandt titan anvendelse udenfor laboratoriet, og det er stadig denne proces der bruges i dag.

[redigér] Isotoper af titan

Naturligt forekommende titan består af fem forskellige isotoper; 46Ti, 47Ti, 48Ti, 49Ti og 50Ti, hvoraf 48Ti er den mest udbredte isotop med 73,8 %. Hertil kender man 11 radioaktive isotoper, hvoraf 44Ti er den mest "sejlivede" med en halveringstid på 63 år — de øvrige titan-isotoper har halveringstider fra få timer og nedefter.


BW Bewise Inc. Willy Chen willy@tool-tool.com bw@tool-tool.com www.tool-tool.com skype:willy_chen_bw mobile:0937-618-190 Head &Administration Office No.13,Shiang Shang 2nd St., West Chiu Taichung,Taiwan 40356 TEL:+886 4 24710048 / FAX:+886 4 2471 4839 N.Branch 5F,No.460,Fu Shin North Rd.,Taipei,Taiwan S.Branch No.24,Sec.1,Chia Pu East Rd.,Taipao City,Chiayi Hsien,Taiwan

Welcome to BW tool world! We are an experienced tool maker specialized in cutting tools. We focus on what you need and endeavor to research the best cutter to satisfy users’ demand. Our customers involve wide range of industries, like mold & die, aerospace, electronic, machinery, etc. We are professional expert in cutting field. We would like to solve every problem from you. Please feel free to contact us, its our pleasure to serve for you. BW product including: cutting toolaerospace tool .HSS Cutting toolCarbide end millsCarbide cutting toolNAS Cutting toolCarbide end millAerospace cutting toolCarbide drillHigh speed steelMilling cutterCore drillTapered end millsMetric end millsMiniature end millsPilot reamerElectronics cutterStep drillMetal cutting sawDouble margin drillGun barrelAngle milling cutterCarbide burrsCarbide tipped cutterChamfering toolIC card engraving cutterSide cutterNAS toolDIN toolSpecial toolMetal slitting sawsShell end millsSide and face milling cuttersSide chip clearance sawsLong end millsStub roughing end millsDovetail milling cuttersCarbide slot drillsCarbide torus cuttersAngel carbide end millsCarbide torus cuttersCarbide ball-nosed slot drillsMould cutterTool manufacturer.

Bewise Inc. www.tool-tool.com

beeway 發表在 痞客邦 留言(0) 人氣()

Bewise Inc. www.tool-tool.com Reference source from the internet.
Titan
Atomové číslo 22
Atomová hmotnost 47,867(1) amu
Elektronová konfigurace [Ar] 3d2 4s2
Skupenství Pevné
Teplota tání 1668 °C, 1941 K
Teplota varu 3287 °C, 3560 K
Elektronegativita (Pauling) 1,54
Hustota 4,506 g/cm3
Tvrdost 6,0
Registrační číslo CAS 7440-32-6

Titan, chemická značka Ti, (lat. Titanium) je šedý až stříbřitě bílý, lehký kov, poměrně hojně zastoupený v zemské kůře. Je poměrně tvrdý a mimořádně odolný proti korozi. Jeho výrazně většímu technologickému uplatnění brání doposud vysoká cena výroby čistého kovu. Hlavní uplatnění nalézá jako složka různých slitin a protikorozních ochranných vrstev, ve formě chemických sloučenin slouží často jako složka barevných pigmentů.

[editovat] Objev prvku

Titan byl objeven roku 1791 anglickým chemikem Williamem Gregorem v minerálu ilmenitu a poprvé pojmenován Martinem H. Klaprothem roku 1795. Izolován byl až v roce 1910 M. A. Hunterem zahříváním chloridu titaničitého TiCl4 s kovovým sodíkem v ocelové tlakové bombě.

[editovat] Základní fyzikálně-chemické vlastnosti

kovový elementární titan

kovový elementární titan

Titan je šedý až stříbřitě bílý, lehký a tvrdý kov. Je dobrým vodičem tepla i elektřiny. Vyznačuje se mimořádnou chemickou stálostí - je zcela netečný k působení vody a atmosférických plynů a odolává působení většiny běžných minerálních kyselin i roztoků alkalických hydroxidů. Zvolna se rozpouští v horké HCl, naopak kyselina dusičná jeho povrch pasivuje. Pro jeho rozpouštění je nejúčinnější kyselina fluorovodíková HF nebo její směsi s jinými minerálními kyselinami.

Za zvýšených teplot však titan přímo reaguje s většinou nekovů, například s vodíkem, kyslíkem, dusíkem, uhlíkem, borem, křemíkem, sírou a halogeny.

Ve sloučeninách se vyskytuje v mocenství Ti+3 a Ti+4. Sloučeniny čtyřmocného titanu jsou neomezeně stálé, sloučeniny Ti+3 jsou silnými redukčními činidly a působením vzdušného O2 rychle přecházejí na Ti+4.

[editovat] Výskyt a výroba

Titan je sedmým nejrozšířenějším kovem v zemské kůře, jeho obsah se odhaduje na 5,7 – 6,3 g/kg. V mořské vodě je díky své chemické stálosti přítomen pouze v koncentraci 0,001 mg/l. Ve vesmíru připadá na jeden atom titanu 1 milion atomů vodíku.

V malém množství je titan obsažen ve většině minerálů a mezi jeho nejvýznamnější rudy patří ilmenit - (FeTiO3 oxid železnato-titaničitý) a rutil (TiO2 - oxid titaničitý). Významné zásoby těchto minerálů se nacházejí v Austrálii, Severní Americe, Skandinávii a Malajsii. Významně je titan zastoupen i na Měsíčním povrchu – horniny, které získala mise Apollo 17 obsahují přibližně 12 % TiO2.

Přes své vysoké zastoupení v zemské kůře byl čistý kovový titan po dlouhou dobu velmi vzácným a drahým materiálem. Důvodem je skutečnost, že běžné hutní metody, které se využívají k výrobě jiných kovů jsou v případě titanu neúčinné díky ochotě titanu reagovat za zvýšené teploty s kyslíkem, vodíkem, uhlíkem a dusíkem.

V současné době se při průmyslové výrobě titanu používá především tzv. Krollův proces. Přitom se nejprve pyrolýzou ilmenitu nebo rutilu s uhlíkem a chlorem získává chlorid titaničitý TiCl4. Po přečištění se jeho páry redukují hořčíkem v inertní argonové atmosféře při teplotě kolem 800 °C.

TiCl4 + 2 Mg → Ti + 2 MgCl2

Titan vzniklý touto reakcí je tuhá, pórovitá látka, která se po odstranění chloridu hořečnatého a nezreagovaného hořčíku dále čistí.

Pro zajímavost lze uvést, že v 50. a 60. letech 20. století byla výroba kovového titanu soustředěna prakticky pouze do Sovětského svazu. Zde byl postup jeho výroby přísně utajován a titan byl v probíhající Studené válce považován za jednu ze základních strategických surovin. Teprve později byl výrobní postup špionážně odhalen a předán do západní Evropy a USA.

[editovat] Použití

Náramkové hodinky pokryté čistým titanem

Náramkové hodinky pokryté čistým titanem

Praktické využití elementárního titanu vyplývá především z jeho mimořádné chemické odolnosti a malé hustoty. Je přitom třeba vzít v úvahu, že výroba titanu je v současné době relativně značně finančně náročná a provozní nasazení titanových komponentů je účelné pouze v případech, kdy není možno použít levnější alternativu na bázi slitin hliníku a hořčíkuduralů.

Již od počátku průmyslové výroby kovového titanu spočívalo těžiště jeho využití v kosmických technologiích a speciálních aplikacích leteckého průmyslu. Titan a jeho slitiny jsou proto základním materiálem při výrobě skeletů nebo povrchových ochranných štítů kosmických objektů (družice, vesmírné sondy a vesmírné stanice). V leteckém průmyslu nacházejí využití při výrobě zvláště namáhaných součástí letadel, tedy především při konstrukci vojenských stíhacích letounů a dnes i při konstrukci komerčních dopravních letadel.

V chemickém průmyslu je titan stále populárnějším materiálem pro výrobu nebo pouhou vystýlku chemických reaktorů, které pracují v extrémních podmínkách a vyžadují vysokou odolnost proti korozi.

Titan je stále častěji používán v zařízeních, která dlouhodobě pracují ve styku s mořskou vodou. Mohou to být součásti lodí nebo ponorek (lodní šrouby), ale i komponenty průmyslových celků, sloužících k odsolování (desalianci ) mořské vody.

V běžném každodenním životě se s titanem můžeme setkat například jako s materiálem pro výrobu luxusních náramkových hodinek nebo částí šperků.

Titan se používá těž na výrobu golfových holí.

[editovat] Sloučeniny

Ve sloučeninách se titan vyskytuje v mocenství Ti+3 a Ti+4, z nichž pouze sloučeniny čtyřmocného titanu jsou neomezeně stálé.

  • Prakticky nejvýznamnější sloučeninou titanu je oxid titaničitý TiO2. Je to velmi stabilní sloučenina, která se v krystalickém stavu vyskytuje ve 3 krystalických modifikacích, kterým odpovídají 3 různé minerály – rutil, anatas a brookit. Pro praktické použití je však nejvíce vhodná amorfní prášková forma, nazývaná titanová běloba. Tento bílý pigment je mimořádně stálý, zdravotně zcela nezávadný s vysokou krycí schopností a patří proto mezi nejkvalitnější dostupné bílé pigmenty. Praktické použití nachází jak při výrobě barev, tak ve sklářském a keramickém průmyslu, používá se i při výrobě vysoce kvalitního papíru, jako plnivo při výrobě plastických hmot a někteří výrobci jej přidávají i do zubních past. Díky tomu, že prochází trávícím traktem nepozměněn, je používán i v potravinářském průmyslu k bělení mléka. Odhaduje se, že oxid titaničitý tvoří více než 90 % celosvětové spotřeby produktů z titanu.
  • Chlorid titaničitý TiCl4 je bezbarvá kapalina o bodu varu 137 °C. Je základním meziproduktem při přípravě čistého titanu Krollovým procesem. Při kontaktu s atmosférickou vlhkostí dochází k jeho postupné hydrolýze podle rovnice:
TiCl4 + 2 H2O → TiO2 + 4 HCl
Vznikající TiO2 vytváří intenzivní bílý dým, který není prakticky toxický. Uvedený jev nachází využití v pyrotechnice při výrobě zadýmovacích granátů, při vytváření umělé mlhy (například při natáčení filmů) nebo při leteckých show.
TiCl4 také slouží jako katalyzátor (Ziegler-Natta. NP v roce 1963) při polymeracích nenasycených uhlovodíků.
  • Chlorid titanitý TiCl3 se používá v titanometrii. Má redukční účinky. Lze taktéž použít jako Ziegler-Nattův katalyzátor.
  • Nitrid titanu TiN2 patří k jedněm z nejtvrdších známých látek a převyšuje svou tvrdostí i korund, 9. prvek z 10-stupňové Mohsovy stupnice tvrdosti. Jeho aplikací jsou brusné materiály, ale i povrchová úprava titanových nástrojů – nitridování, kdy je na povrchu nástroje určeného pro extrémní fyzické namáhání vytvořena tenká ochranná vrstva TiN2.
  • Superpružné Ti-Cu slitiny. Drát z této slitiny lze ohnout do pravého úhlu, přičemž nedochází k deformaci (= vrátí se do původního stavu).

[editovat] Biologický význam

Díky své vysoké chemické netečnosti se titan v okolním prostředí nevyskytuje v takové formě, která by mohla být metabolizována živými organizmy. Není proto známo žádné zapojení titanu do enzymatických reakcí nebo jejich jiné biologické uplatnění.

Naopak vysoká odolnost titanu je využívána při výrobě některých chirurgických nástrojů a v současné době jsou modní piercingové ozdoby pokryté titanem pro jejich zdravotní nezávadnost a současně žádaný vzhled.


BW Bewise Inc. Willy Chen willy@tool-tool.com bw@tool-tool.com www.tool-tool.com skype:willy_chen_bw mobile:0937-618-190 Head &Administration Office No.13,Shiang Shang 2nd St., West Chiu Taichung,Taiwan 40356 TEL:+886 4 24710048 / FAX:+886 4 2471 4839 N.Branch 5F,No.460,Fu Shin North Rd.,Taipei,Taiwan S.Branch No.24,Sec.1,Chia Pu East Rd.,Taipao City,Chiayi Hsien,Taiwan

Welcome to BW tool world! We are an experienced tool maker specialized in cutting tools. We focus on what you need and endeavor to research the best cutter to satisfy users’ demand. Our customers involve wide range of industries, like mold & die, aerospace, electronic, machinery, etc. We are professional expert in cutting field. We would like to solve every problem from you. Please feel free to contact us, its our pleasure to serve for you. BW product including: cutting toolaerospace tool .HSS Cutting toolCarbide end millsCarbide cutting toolNAS Cutting toolCarbide end millAerospace cutting toolCarbide drillHigh speed steelMilling cutterCore drillTapered end millsMetric end millsMiniature end millsPilot reamerElectronics cutterStep drillMetal cutting sawDouble margin drillGun barrelAngle milling cutterCarbide burrsCarbide tipped cutterChamfering toolIC card engraving cutterSide cutterNAS toolDIN toolSpecial toolMetal slitting sawsShell end millsSide and face milling cuttersSide chip clearance sawsLong end millsStub roughing end millsDovetail milling cuttersCarbide slot drillsCarbide torus cuttersAngel carbide end millsCarbide torus cuttersCarbide ball-nosed slot drillsMould cutterTool manufacturer.

Bewise Inc. www.tool-tool.com

beeway 發表在 痞客邦 留言(0) 人氣()

Bewise Inc. www.tool-tool.com Reference source from the internet.
Escandi - Titani - Vanadi
Ti
Zr
Hf

General
Nom, símbol, nombre Titani, Ti, 22
Sèrie química Metalls de transició
Grup, període, bloc 4, 4, d
Densitat, duresa Mohs 4507 kg/m3, 6
Aparença Platejat
Aparença del titani
Propietats atòmiques
Pes atòmic 47,867 uma
Radi mitjà 140 pm
Radi atòmic calculat 176 pm
Radi covalent 136 pm
Radi de Van der Waals Sense informació
Configuració electrònica [Ar]3d24s2
Estat d'oxidació (òxid) 4 (amfòter)
Estructura cristal·lina Hexagonal
Propietats físiques
Estat de la matèria Sòlid
Punt de fusió 1941 K
Punt d'ebullició 3560 K

Entalpia de vaporització 421 kJ/mol
Entalpia de fusió 15,45 kJ/mol
Pressió de vapor 0,49 Pa a 1933 K
Velocitat del so 4140 m/s a 293,15 K
Informació diversa
Electronegativitat 1,54 (Pauling)
Calor específica 520 J/(kg·K)
Conductivitat elèctrica 2,34 x 106/m ohm
Conductivitat tèrmica 21,9 W/(m·K)
Potencials d'ionització
1er = 658,8 kJ/mol 6è = 11533 kJ/mol
2on = 1309,8 kJ/mol 7è = 13590 kJ/mol
3er = 2652,5 kJ/mol 8è = 16440 kJ/mol
4t = 4174,6 kJ/mol 9è = 18530 kJ/mol
5è = 9581 kJ/mol 10è = 20833 kJ/mol
Isòtops més estables
iso. AN Període de semidesintegració CD ED MeV PD
44Ti {sin.} 63 anys ε 0,268 44Sc
46Ti 8.0% Ti és estable amb 24 neutrons
47Ti 7,3% Ti és estable amb 25 neutrons
48Ti 73,8% Ti és estable amb 26 neutrons
49Ti 5,5% Ti és estable amb 27 neutrons
50Ti 5,4% Ti és estable amb 28 neutrons
Valors en el SI d'unitats i en CNPT (0º C i 1 atm),
excepte quan s'indica el contrari.
Calculat a partir de distintes longituds
d'enllaç covalent, metàl·lic o iònic.

El titani és un element químic de nombre atòmic 22 que se situa en el grup 4 de la taula periòdica dels elements i se simbolitza com Ti.

És un metall de transició abundant en l'escorça terrestre; es troba, en forma d'òxid, en l'escòria de certs minerals de ferro i en cendres d'animals i plantes. El metall és de color gris fosc, de gran duresa, resistent a la corrosió i de propietats físiques semblants a les de l'acer; s'usa en la fabricació d'equips per a la indústria química i, aliat amb el ferro i altres metalls, s'empra en la indústria aeronàutica i aeroespacial.

[edita] Característiques principals

El titani és un element metàl·lic que presenta una estructura hexagonal compacta, és dur, refractari i bon conductor de l'electricitat i la calor. Presenta una alta resistència a la corrosió (quasi tan resistent com el platí) i quan és pur, és un metall lleuger, fort, brillant i blanc metàl·lic d'una relativa baixa densitat. Posseix molt bones propietats mecàniques i a més té l'avantatge, enfront d'altres metalls de propietats mecàniques semblants, que és relativament lleuger.

La resistència a la corrosió que presenta és deguda al fenomen de passivació que sofreix (es forma un òxid que el recobreix). És resistent a temperatura ambient a l'àcid sulfúric (H2SO4) diluït i a l'àcid clorhídric (HCl) diluït, així com a altres àcids orgànics; també és resistent a les bases, inclús en calent. No obstant es pot dissoldre en àcids en calent. Així mateix, es dissol bé en àcid fluorhídric (HF), o amb fluorurs en àcids. A temperatures elevades pot reaccionar fàcilment amb el nitrogen, l'oxigen, l'hidrogen, el bor i altres no metalls.

[edita] Aplicacions

Rellotges amb coberta de titani.

Rellotges amb coberta de titani.
  • Aproximadament el 95% del titani es consumeix com a diòxid de titani (TiO2), un pigment blanc permanent que s'empra en pintures, paper i plàstics. Aquestes pintures s'utilitzen en reflectors pel fet que reflectixen molt bé la radiació infraroja.
  • A causa de la seva força, baixa densitat i el que pot aguantar temperatures relativament altes, els aliatges de titani s'empren en avions i míssils. També es troba en distints productes de consum, com a pals de golf, bicicletes, etcètera. El titani es mescla generalment amb alumini, ferro, manganès, molibdè i altres metalls.
  • A causa de la seva gran resistència a la corrosió es pot aplicar en casos en què estarà en contacte amb l'aigua del mar, per exemple, en aparells o hèlices. També es pot emprar en plantes dessalinitzadores.
  • S'empra per a obtindre pedres precioses artificials.
  • El tetraclorur de titani (TiCl4) s'usa per a irisar el vidre i pel fet que en contacte amb l'aire forma molt de fum, s'empra per a formar artificialment pantalles de fum.
  • Es considera que és fisiològicament inert, per la qual cosa el metall s'empra en implants de titani, consistents en caragols de titani pur que han estat tractats superficialment per a millorar la seva oseointegració; per exemple, s'utilitza en la cirurgia maxil·lofacial a causa d'aquestes bones propietats. També pel fet de ser inert i a més poder-se pintar, s'empra com a material de pircings.
  • També s'han emprat làmines primes de titani per a recobrir alguns edificis, com per exemple el Museu Guggenheim de Bilbao.
  • Alguns compostos de titani poden tindre aplicacions en tractaments contra el càncer. Per exemple, el clorur de titanocè en el cas de tumors gastrointestinals i de mama.

[edita] Història

El titani (anomenat així pels Titans, fills d'Urà i Gea en la mitologia grega) va ser descobert a Anglaterra per Willian Gregor el 1791, a partir del mineral conegut com ilmenita (FeTiO3). Aquest element va ser descobert novament anys més tard pel químic alemany Heinrich Klaproth, en aquest cas en el mineral rútil (TiO2) i va ser ell qui el 1795 li va donar el nom de titani.

Matthew A. Hunter va preparar per primera vegada titani metàl·lic pur (amb una puresa del 99.9%) escalfant tetraclorur de titani (TiCl4) amb sodi a 700-800ºC en un reactor d'acer.

El titani com a metall no es va usar fora del laboratori fins que el 1946 William Justin Kroll va desenvolupar un mètode per a poder produir-lo comercialment: per mitjà de la reducció del TiCl4 amb magnesi, i aquest és el mètode utilitzat avui en dia (procés de Kroll).

[edita] Abundància i obtenció

Metall de Titani

Metall de Titani
Mineral concentrat de titani en pols

Mineral concentrat de titani en pols

El titani com a metall no es troba lliure en la naturalesa, però és el nové en abundància en l'escorça terrestre i està present en la majoria de les roques ígnies i sediments derivats d'elles. Es troba principalment en els minerals anatasa (TiO2), brookita (TiO2), ilmenita (FeTiO3), leucoxè, perovskita (CaTiO3), rútil (tio2) i titanita (CaTiSiO5); també com titanat i en moltes menes de ferro. D'aquests minerals, només la ilmenita, el leucoxè i el rútil tenen una significativa importància econòmica. Es troben dipòsits importants a Austràlia, la regió d'Escandinàvia, Estats Units i Malàisia.

El titani metall es produeïx comercialment per mitjà de la reducció de tetraclorur de titani (TiCl4) amb magnesi a uns 800ºC sota atmosfera d'argó (si no reaccionaria amb l'oxigen i el nitrogen de l'aire); aquest procés va ser desenvolupat el 1946 per William Justin Kroll i es continua coneixent com a procés de Kroll. D'aquesta manera s'obté un producte porós conegut com esponja de titani que posteriorment es purifica i compacta per a obtindre el producte comercial.

A fi de pal·liar el gran consum energètic del procés Kroll (de l'orde d'1,7 vegades el requerit per l'alumini) es troben en desenvolupament procediments d'electròlisi en sals foses (clorurs o òxids) que encara no han trobat aplicació comercial.

Si és necessari obtindre titani més pur es pot emprar un mètode, només aplicable en petites quantitats (a escala de laboratori) per mitjà del mètode de van Arkel-de Boer. Aquest mètode es basa en la reacció de titani amb iode a una determinada temperatura per a donar tetraiodur de titani (TiI4) i la seua posterior descomposició a una temperatura distinta per a tornar a donar el metall.

[edita] Isòtops

Es troben 5 isòtops estables en la naturalesa: Ti-46, Ti-47, Ti-48, Ti-49 i Ti-50, sent el Ti-48 el més abundant (73,8%). S'han caracteritzat 11 radioisòtops, sent els més estables el Ti-44, amb un període de semidesintegració de 5,76 minuts i el Ti-52, d'1,7 minuts. Per a la resta, els seus períodes de semidesintegració són inferiors als 33 segons, i la majoria de menys de mig segon.

El pes atòmic dels isòtops va des de 39,99 uma (Ti-40) fins a 57,966 uma (Ti-58). El primer mode de decaïment abans de l'isòtop més estable, el Ti-48, és la captura electrònica, mentres que després d'aquest és la desintegració beta. Els isòtops de l'element 21 (escandi) són els principals productes de decaïment abans del Ti-48, mentres que després són els isòtops de l'element 23 (vanadi).

[edita] Precaucions

La pols metàl·lica és pirofòrica. D'altra banda, es creu que les seves sals no són especialment perilloses. No obstant, els seus clorurs, com TiCl3 o TiCl4, són considerats corrosius. El titani té també la tendència a acumular-se en els teixits biològics.

En principi, no s'observa que jugui cap paper biològic.

[edita] Enllaços externs


A Wikimedia Commons hi ha contingut multimèdia relatiu a:

Titani


BW Bewise Inc. Willy Chen willy@tool-tool.com bw@tool-tool.com www.tool-tool.com skype:willy_chen_bw mobile:0937-618-190 Head &Administration Office No.13,Shiang Shang 2nd St., West Chiu Taichung,Taiwan 40356 TEL:+886 4 24710048 / FAX:+886 4 2471 4839 N.Branch 5F,No.460,Fu Shin North Rd.,Taipei,Taiwan S.Branch No.24,Sec.1,Chia Pu East Rd.,Taipao City,Chiayi Hsien,Taiwan

Welcome to BW tool world! We are an experienced tool maker specialized in cutting tools. We focus on what you need and endeavor to research the best cutter to satisfy users’ demand. Our customers involve wide range of industries, like mold & die, aerospace, electronic, machinery, etc. We are professional expert in cutting field. We would like to solve every problem from you. Please feel free to contact us, its our pleasure to serve for you. BW product including: cutting toolaerospace tool .HSS Cutting toolCarbide end millsCarbide cutting toolNAS Cutting toolCarbide end millAerospace cutting toolCarbide drillHigh speed steelMilling cutterCore drillTapered end millsMetric end millsMiniature end millsPilot reamerElectronics cutterStep drillMetal cutting sawDouble margin drillGun barrelAngle milling cutterCarbide burrsCarbide tipped cutterChamfering toolIC card engraving cutterSide cutterNAS toolDIN toolSpecial toolMetal slitting sawsShell end millsSide and face milling cuttersSide chip clearance sawsLong end millsStub roughing end millsDovetail milling cuttersCarbide slot drillsCarbide torus cuttersAngel carbide end millsCarbide torus cuttersCarbide ball-nosed slot drillsMould cutterTool manufacturer.

Bewise Inc. www.tool-tool.com

beeway 發表在 痞客邦 留言(0) 人氣()

Bewise Inc. www.tool-tool.com Reference source from the internet.

Sa Wikipedije, slobodne enciklopedije

Titanijum (Ti, latinski - titanium) je metal IVB grupe. Ima 18 izotopa čije se atomske mase nalaze između 46 do 50. Izotopi od 46 do 50 su postojani. Zastupljen je u zemljinoj kori u količini od 5000 ppm (ang. parts per million), u obliku minerala: ilmenita, rutila i titanita.

Otkrio ga je G.W. Creeda 1791 godine, i takođe nezavisno od prvog otkrića otkrio ga je M.H. Klaproth w 1795 godine.

Najvažnije jedinjenje titanijuma je bez sumnje titanijumoksid TiO2 koji se koristi kao dodatak za izbjeljivanje u pastama, prašcima i farbama.

Biološki značaj - Elementarni titanijum nije otrovan, ali neke njegove soli jesu.

Legure titanijuma su veoma lake i mehanički izdržljive - posebno na razvlačenje i zbog toga se koriste u avioindustriji, a takođe i za pravljenje bicikli i drugih sportskih sprava. Legure titanijuma imaju mnogo bolje osobine od legura aluminija ali su od njih značno skuplje te su zbog toga manje zastupljene


BW Bewise Inc. Willy Chen willy@tool-tool.com bw@tool-tool.com www.tool-tool.com skype:willy_chen_bw mobile:0937-618-190 Head &Administration Office No.13,Shiang Shang 2nd St., West Chiu Taichung,Taiwan 40356 TEL:+886 4 24710048 / FAX:+886 4 2471 4839 N.Branch 5F,No.460,Fu Shin North Rd.,Taipei,Taiwan S.Branch No.24,Sec.1,Chia Pu East Rd.,Taipao City,Chiayi Hsien,Taiwan

Welcome to BW tool world! We are an experienced tool maker specialized in cutting tools. We focus on what you need and endeavor to research the best cutter to satisfy users’ demand. Our customers involve wide range of industries, like mold & die, aerospace, electronic, machinery, etc. We are professional expert in cutting field. We would like to solve every problem from you. Please feel free to contact us, its our pleasure to serve for you. BW product including: cutting toolaerospace tool .HSS Cutting toolCarbide end millsCarbide cutting toolNAS Cutting toolCarbide end millAerospace cutting toolCarbide drillHigh speed steelMilling cutterCore drillTapered end millsMetric end millsMiniature end millsPilot reamerElectronics cutterStep drillMetal cutting sawDouble margin drillGun barrelAngle milling cutterCarbide burrsCarbide tipped cutterChamfering toolIC card engraving cutterSide cutterNAS toolDIN toolSpecial toolMetal slitting sawsShell end millsSide and face milling cuttersSide chip clearance sawsLong end millsStub roughing end millsDovetail milling cuttersCarbide slot drillsCarbide torus cuttersAngel carbide end millsCarbide torus cuttersCarbide ball-nosed slot drillsMould cutterTool manufacturer.

Bewise Inc. www.tool-tool.com

beeway 發表在 痞客邦 留言(0) 人氣()