公告版位

 

Bewise Inc. www.tool-tool.com Reference source from the internet.

发表于《机械工人》2007年第10期

前言

十多年前,高速风冷等温正火生产线开始在齿轮行业推广应用。锻坯经过等温正火后,不仅改善了材料的组织和性能,还减小了齿轮在渗碳淬火后的淬火变形。良好的应用效果使等温正火得到越来越广泛的应用。但是,现用等温正火生产线存在的不足之处时有所闻。在分析研究所有不足之处后,我们发现:从等温正火前期快冷介质的选择入手,可以解决这些问题。

一、存在的不足及其产生原因

从其用途和使用效果方面反应的五类不足之处为:没有等温正火生产线就不能进行工件的等温正火;形状尺寸出格的工件无法进行等温正火;淬透性较差和厚度较大的工件,难以达到要求的正火组织和硬度;为保证风冷效果,锻坯必须装得很稀疏;等温正火后一些工件的硬度和组织差异仍然较大。

我们认为,高速风冷的缺点是所有这些问题的产生原因。和水、油等冷却介质相比,风冷的弱点是1.风冷总有迎风面和背风面。迎风面冷却得快,背风面冷却得慢。风速越大,二者的差异也越大。2.离出风口远近不同,获得的冷却速度差异很大。为避免风压衰减过快,风冷室大多很小。3.在不大的风冷室中,为保持风路畅通,工件必须装得尽量的少。4.风冷本身的冷却速度就不够快。

但是,高速风冷只是可供选择的冷却介质之中的一种。下文将从钢材转变特点和锻坯的有效厚度对等温正火前期快冷的要求出发,分析介绍冷却介质的选择原则,并建立一种简便的选择方法,供技术人员解决前述五类问题时参考。

二 钢种特点对前期冷却的要求

等温正火的工艺过程可表示如图1。到达等温温度之前的快冷阶段,就是本文所述的前期快冷。图中的等温转变包括开始的先共析铁素体析出和随后的珠光体转变。由于多数渗碳钢的先共析铁素体转变非常迅速,实际生产中不可能在钢材发生先共析铁素体转变之前把工件冷却到要求的等温温度。因此,等温正火的前期快冷只能要求在钢材发生珠光体转变之前把锻坯冷却到等温温度。图2是20CrMnTi的等温转变曲线图。从图中可以找出在600℃附近等温时,该钢材珠光体转变的开始与结束时间。作为例子,选几种常用渗碳钢,并把它们的这些数据汇集起来,成为表1。从表1中可以看出,钢种不同,珠光体转变的时间也不同。


图1等温正火过程的示意图
图2 20CrMnTi钢的等温转变曲线(选自胡志忠:钢及其热处理曲线手册,212页)

表1 几种常用钢的珠光体转变开始和结束时间

钢种

等温温度 /℃

珠光体转变开始时间 /s

珠光体转变完成时间 /min

20CrMnTi

600

35
7.5

20CrMo

600

300
12

20CrNi3

600

110
17

三 常用冷却介质的冷却速度对比

常用冷却介质和方式有:静止空气冷却、普通风冷、高速风冷、油冷、水冷,以及新近推出的匀速冷却液中冷却。多数齿轮锻坯属于中小型工件,水冷太快,可不予考虑。对淬透性较差钢种制造的中等厚度工件,有时需要冷却速度接近油的冷却介质。因为600℃左右的工件出油后向等温炉的转移过程必然引起烟火,用油都出于不得以。

匀速冷却液属于水性溶液。它具有水性介质不燃烧和没有烟火的特点。从高温冷却到三、四百度的过程中,在冷却过程曲线图上,匀速冷却液的冷却曲线接近一条直线。这说明,在这一温度范围,它的冷却速度变化很小。匀速冷却液的命名,就出自它的这一特点。

图3 常用冷却介质的冷却曲线

和快速风冷相比,匀速冷却液有以下优点:冷却速度变化很小。工件上不同部位都能接触介质,冷却效果均匀。不燃烧,无烟火。具有比油更好的流动性。冷却速度适中,可用于中小工件。不需要专门的设备,只要有装介质的槽子和等温炉,就可以完成不同形状大小工件的快冷处理。它的缺点是:冷却速度不如油快,不适于大型工件。

说明:普通风冷是用普通电扇吹风,高速风冷是用空压机产生的压缩空气吹冷,探棒离风口约20cm。

四 圆棒直径对冷却快慢的影响

常用渗碳钢多属低合金结构钢。一般认为,低合金结构钢的导热特性差别不大。因此,可以利用热处理书刊上提供的不同直径棒料在普通矿物油中的冷却曲线,来确定棒料在油中冷却时,表面和中心冷却到不同温度的时间。图4就是一张这样的冷却曲线图。图中,横坐标为对数坐标,表示冷却时间,单位为秒。纵坐标表示温度。几个纵坐标表示棒料经历的不同加热温度。图内用了实线和虚线两种曲线,分别表示棒料的中心和表面的温度变化情况。曲线上的数据,表示棒料的直径(mm)。本文将参考图中的数据,并把它们用到等温正火前期快冷介质的选择中。

图4 不同直径棒料在油中的冷却曲线(刘云旭主编《金属热处理原理》,机械工业出版社,1981

五 棒料直径与冷却到600℃所需时间的关系曲线

多数齿坯的等温温度在600℃附近,因此取600℃为等温温度的代表。图4中可以看出,棒料表面和心部冷却到600℃所需时间差别很大。为了简化问题,我们假定:油中表面冷却到500℃的棒料,在快速转移到等温炉的过程中内外温度能基本趋于一致,且大约为600℃。选定900℃的温度作为有代表性的正火加热温度。按照这些约定,从图4中读取不同直径棒料表面冷却到500℃所需时间的数据,作成棒料油冷到600℃所需时间和直径的关系曲线,如图5所示。

然后,在图3中比较不同冷却介质冷却到500℃所需的时间长短。办法是,先过纵坐标上500℃刻度作一水平线。该水平线与各冷却介质的冷却曲线的交点对应的冷却时间,可作为各介质使棒料冷却到600℃所需的时间。把这几个时间列成表,并以油冷时间为1,求出了其他介质中冷却到600℃所需时间相对于油冷的倍数值,并作成表2。

表2 不同介质中冷却到600℃所需时间对比

冷却介质

冷却速度比值

冷却时间比值

普通油

1

1

静止空冷

0.09

11

快速风冷

0.13

7.7

高速风冷

0.22

4.5

匀速冷却液

0.46

2.2

图5 冷却到600℃所需时间与棒料直径的关系曲线

再按表2所列冷却时间长短的比例关系,算出其他介质中冷却到600℃所需的冷却时间。具体的做法是,以匀速冷却液为例,把图5中油冷曲线上直径20mm、 40mm、60mm和80mm等的油冷时间乘上2.2,作为在匀速冷却液中,相应直径棒料冷却到600℃所需的时间。用这样算出的数据作成匀速冷却液中不同直径棒料冷却到600℃所需时间的曲线。依此类推,算出其他介质的相应数据,并把它们的曲线作在同一张图上,如图5所示。考虑到采用高速风冷时可对风量和风温进行调节,而采用匀速冷却液时可以调节液温,图中,把这两种介质的曲线画成为了一定宽度的曲线带。

在这样的曲线中,纵坐标反应的是正火加热后的过冷奥氏体的珠光体转变特性。横坐标反应的是工件的形状大小的影响。当形状确定下来之后,比如在图5中只针对棒料时,横坐标就只表示工件大小的影响。其他形状的工件,用同样的思路,也可以作出相应的类似图线来。图线内的曲线或者曲线带,则表示不同冷却介质(及其用法)的特性。

六 等温正火前期快冷用冷却介质的选择方法

到此,根据齿轮锻坯的钢种、棒料直径和图5所示曲线,就可以为等温正火前期快冷选择淬火介质了。 下面结合例子讲述选择方法。

例一,为直径30mm的20CrMnTi棒料选择介质。

图6 举例用介质选择图

首先,从表1中找到600℃等温时20CrMnTi开始珠光体转变的时间为35秒,接着在一张相当于图5的曲线中,从纵坐标35秒处作一条水平线,从横坐标直径30mm处向上作一条垂线。这两条直线的交点A,正好落在匀速冷却液曲线带中,如图6所示。普通风冷和高速风冷的相应曲线都在A点的左边,这说明它们的冷却速度都过慢,不适合用做该齿轮锻坯等温正火前期快冷的冷却介质;而匀速冷却液则正好可以选用。

例二, 为直径60mm的20CrNi3棒料选择介质。

从表1查出20CrNi3钢材开始珠光体转变的时间为110秒,并作成相应的水平线。再从直径60mm处作成相应的垂线。两线相交于B点。B点在高速风冷曲线带的右边。说明用高速风冷的办法,满足不了该类锻坯等温正火前期快冷的要求。匀速冷却液的曲线带在B点的右边。这说明应当选择匀速冷却液。

例三, 为直径80mm的20CrMo棒料选择介质。

从表1找出20CrMo开始珠光体转变的时间为5分钟(300秒),并在图6中作一条水平线。再从直径80mm作一条垂线。两线相交于C点。C点正好在高速风冷的曲线带内,说明高速风冷可以在钢材发生珠光体转变之前把该锻坯冷却到600℃左右的温度。当然,匀速冷却液的曲线也在C点的右边,同样适于该锻坯等温正火前期快冷之用。

例四, 为不同钢种确定最大棒料直径

从表2所举的四种钢开始珠光体的时间,可以确定各介质能处理的最大棒料直径。办法是,用珠光体转变的开始时间在图6中作水平线。这些水平线与各种介质的冷却曲线的交点对应的直径值,就是该介质可能处理的该钢种棒料的最大容许直径。表3汇集了这几种钢在不同介质中冷却的最大容许直径值。

表3 前期快冷用"钢种-介质-最大容许直径"

钢种

可处理的最大棒料直径 /mm

普通风冷

高速风冷

匀速冷却液
油冷

20CrMnTi

12

20
32
60

20CrNi3

17

50
65
110

20CrMo

37

95
140
218

在任何介质中冷却,直径超过表3所示的最大值的工件,其等温正火就不可能得到完全符合要求的组织和性能,且组织和性能的差异也必然增大。

七 几点说明

1. 本文建立的只是粗略估算法

建立本方法的主要依据是钢的等温转变曲线,油等介质的冷却曲线和棒料冷却曲线。而这些曲线或特性本身又受多种因素影响。即便钢种、介质和棒料尺寸都相同,所获得的这三项特性也不可能完全一致。同时,在建立本方法的过程中还采用了一些简化问题的假定。因此,本文介绍的只是粗略的估算方法。

2. 多个工件装挂在一起冷却时,锻坯获得的冷却速度通常比估算值要慢。

3. 其他形状的锻坯,须先凭经验换算成棒料直径再用此法。

歡迎來到Bewise Inc.的世界,首先恭喜您來到這接受新的資訊讓產業更有競爭力,我們是提供專業刀具製造商,應對客戶高品質的刀具需求,我們可以協助客戶滿足您對產業的不同要求,我們有能力達到非常卓越的客戶需求品質,這是現有相關技術無法比擬的,我們成功的滿足了各行各業的要求,包括:精密HSS DIN切削刀具協助客戶設計刀具流程DIN or JIS 鎢鋼切削刀具設計NAS986 NAS965 NAS897 NAS937orNAS907 航太切削刀具,NAS航太刀具設計超高硬度的切削刀具醫療配件刀具設計複合式再研磨機PCD地板專用企口鑽石組合刀具粉末造粒成型機主機版專用頂級電桿PCD V-Cut捨棄式圓鋸片組粉末成型機主機版專用頂級電汽車業刀具設計電子產業鑽石刀具木工產業鑽石刀具銑刀與切斷複合再研磨機銑刀與鑽頭複合再研磨機銑刀與螺絲攻複合再研磨機等等。我們的產品涵蓋了從民生刀具到工業級的刀具設計;從微細刀具到大型刀具;從小型生產到大型量產;全自動整合;我們的技術可提供您連續生產的效能,我們整體的服務及卓越的技術,恭迎您親自體驗!!

BW Bewise Inc. Willy Chen willy@tool-tool.com bw@tool-tool.com www.tool-tool.com skype:willy_chen_bw mobile:0937-618-190 Head &Administration Office No.13,Shiang Shang 2nd St., West Chiu Taichung,Taiwan 40356 http://www.tool-tool.com / FAX:+886 4 2471 4839 N.Branch 5F,No.460,Fu Shin North Rd.,Taipei,Taiwan S.Branch No.24,Sec.1,Chia Pu East Rd.,Taipao City,Chiayi Hsien,Taiwan

Welcome to BW tool world! We are an experienced tool maker specialized in cutting tools. We focus on what you need and endeavor to research the best cutter to satisfy users demand. Our customers involve wide range of industries, like mold & die, aerospace, electronic, machinery, etc. We are professional expert in cutting field. We would like to solve every problem from you. Please feel free to contact us, its our pleasure to serve for you. BW product including: cutting toolaerospace tool .HSS  DIN Cutting toolCarbide end millsCarbide cutting toolNAS Cutting toolNAS986 NAS965 NAS897 NAS937orNAS907 Cutting Tools,Carbide end milldisc milling cutter,Aerospace cutting toolhss drillФрезерыCarbide drillHigh speed steelCompound SharpenerMilling cutterINDUCTORS FOR PCDCVDD(Chemical Vapor Deposition Diamond )’PCBN (Polycrystalline Cubic Boron Nitride) Core drillTapered end millsCVD Diamond Tools Inserts’PCD Edge-Beveling Cutter(Golden FingerPCD V-CutterPCD Wood toolsPCD Cutting toolsPCD Circular Saw BladePVDD End Millsdiamond tool. INDUCTORS FOR PCD . POWDER FORMING MACHINE Single Crystal Diamond Metric end millsMiniature end millsСпециальные режущие инструменты Пустотелое сверло Pilot reamerFraisesFresas con mango PCD (Polycrystalline diamond) ‘FresePOWDER FORMING MACHINEElectronics cutterStep drillMetal cutting sawDouble margin drillGun barrelAngle milling cutterCarbide burrsCarbide tipped cutterChamfering toolIC card engraving cutterSide cutterStaple CutterPCD diamond cutter specialized in grooving floorsV-Cut PCD Circular Diamond Tipped Saw Blade with Indexable Insert PCD Diamond Tool Saw Blade with Indexable InsertNAS toolDIN or JIS toolSpecial toolMetal slitting sawsShell end millsSide and face milling cuttersSide chip clearance sawsLong end millsend mill grinderdrill grindersharpenerStub roughing end millsDovetail milling cuttersCarbide slot drillsCarbide torus cuttersAngel carbide end millsCarbide torus cuttersCarbide ball-nosed slot drillsMould cutterTool manufacturer.

Bewise Inc. www.tool-tool.com

ようこそBewise Inc.の世界へお越し下さいませ、先ず御目出度たいのは新たな

情報を受け取って頂き、もっと各産業に競争力プラス展開。

弊社は専門なエンドミルの製造メーカーで、客先に色んな分野のニーズ

豊富なパリエーションを満足させ、特にハイテク品質要求にサポート致します。

弊社は各領域に供給できる内容は:

(1)精密HSSエンドミルのR&D

(2)Carbide Cutting tools設計

(3)鎢鋼エンドミル設計

(4)航空エンドミル設計

(5)超高硬度エンドミル

(6)ダイヤモンドエンドミル

(7)医療用品エンドミル設計

(8)自動車部品&材料加工向けエンドミル設計

弊社の製品の供給調達機能は:

(1)生活産業~ハイテク工業までのエンドミル設計

(2)ミクロエンドミル~大型エンドミル供給

(3)小Lot生産~大量発注対応供給

(4)オートメーション整備調達

(5)スポット対応~流れ生産対応

弊社の全般供給体制及び技術自慢の総合専門製造メーカーに貴方のご体験を御待ちしております。

Bewise Inc. talaşlı imalat sanayinde en fazla kullanılan ve üç eksende (x,y,z) talaş kaldırabilen freze takımlarından olan Parmak Freze imalatçısıdır. Çok geniş ürün yelpazesine sahip olan firmanın başlıca ürünlerini Karbür Parmak Frezeler, Kalıpçı Frezeleri, Kaba Talaş Frezeleri, Konik Alın Frezeler, Köşe Radyüs Frezeler, İki Ağızlı Kısa ve Uzun Küresel Frezeler, İç Bükey Frezeler vb. şeklinde sıralayabiliriz.

BW специализируется в научных исследованиях и разработках, и снабжаем самым высокотехнологичным карбидовым материалом для поставки режущих / фрезеровочных инструментов для почвы, воздушного пространства и электронной индустрии. В нашу основную продукцию входит твердый карбид / быстрорежущая сталь, а также двигатели, микроэлектрические дрели, IC картонорезальные машины, фрезы для гравирования, режущие пилы, фрезеры-расширители, фрезеры-расширители с резцом, дрели, резаки форм для шлицевого вала / звездочки роликовой цепи, и специальные нано инструменты. Пожалуйста, посетите сайт  www.tool-tool.com  для получения большей информации.

BW is specialized in R&D and sourcing the most advanced carbide material with high-tech coating to supply cutting / milling tool for mould & die, aero space and electronic industry. Our main products include solid carbide / HSS end mills, micro electronic drill, IC card cutter, engraving cutter, shell end mills, cutting saw, reamer, thread reamer, leading drill, involute gear cutter for spur wheel, rack and worm milling cutter, thread milling cutter, form cutters for spline shaft/roller chain sprocket, and special tool, with nano grade. Please visit our web  www.tool-tool.com  for more info.

beeway 發表在 痞客邦 留言(0) 人氣()

 

Bewise Inc. www.tool-tool.com Reference source from the internet.

发表于《热处理技术与装备》2007年第2期

摘 要:在标准测试仪检测淬火介质冷却特性的同时,用摄像机摄录了探棒周围的状况。对比发现,按测得的冷却特性曲线的形状划分的冷却阶段,与探棒表面实际发生的冷却情况大不相同。说明了产生这种差异的原因。通过分析和推理,得出了结论:不能从淬火介质的冷却特性曲线去划分探棒所处的冷却阶段;凭测出的冷却特性曲线不可能准确推算实际工件可能获得的冷却情况;淬火介质的冷却特性曲线只宜用在介质冷却特性的相互对比中。

关键词:淬火介质;冷却特性曲线;冷却特性检测;冷却过程计算;热处理工艺

中图分类号:TG154.4  文献分类号:B  文章编号:1673-4971(2007)02-0025-04


What Cooling Rate Curve of Quenching Media Implies?

Zhang Ke-jian
Beijing Huali Fine Chemical Company Ltd. Beijing 102200

Abstract:The visual phenomena occurred around the quench probe were recorded with digital video camera during standard test of quenching media. It was found that partition of cooling process according to the measured cooling rate curve is not totally corresponding to what were visually observed. The reasons of this discrepancy are discussed. It is concluded the cooling process of actual quenched parts can not be accurately predicted by merely using the measured cooling rate curves of quenching media, which are only applicable for comparison of characteristics of different quenching media.

Keywords:quenchant; cooling curve; cooling curve test; simulation of quenching process; heat treatment technology

一、淬火介质冷却特性曲线的应用情况与存在的疑问

图1 液态介质中淬火冷却的阶段划分和各阶段的散热机理

近二十年来,淬火介质冷却特性曲线的应用给热处理行业带来了不小的技术进步。现在,淬火介质的开发研究,介质的比较和选择,热处理生产中的产品质量控制,甚至分析和解决生产中遇到的热处理质量和技术问题,都已离不开淬火介质的冷却特性曲线了。但是,这些冷却特性曲线究竟能告诉我们些什么?对这个问题,行业内已经有了基本一致的答案。极具权威性的美国金属手册[1]上,以及行业内知名专家G.E.Totten的专著[2]上提供的解释很具代表性,如图1所示。图中阶段A通称冷却的蒸汽膜阶段(也称膜沸腾阶段),阶段B通称沸腾阶段(也称泡沸腾阶段),阶段C称为对流阶段。在蒸汽膜阶段,整个试块被蒸汽膜包围着。在沸腾冷却阶段,整个试块表面都在发生沸腾。而到了对流冷却阶段,则通过对流传热使试块冷却。图中任一曲线上的点,都可以通过时间或者温度坐标找到另一曲线上的对应点。其它的书刊资料上,液态淬火介质的冷却特性曲线,不管采用什么样的检测标准,都按图1所示的方式划分冷却的阶段和解释各阶段的冷却机理。

在淬火介质的研究和评价中,通常用图1所示的两种曲线来表示和比较介质的冷却特性。从冷却速度曲线上,指出淬火介质的特性温度、出现最高冷却速度的温度和最高冷却速度值,以及对流开始温度。从冷却过程曲线上,通常指出从800℃冷却到400℃(或者300℃)所需的时间。有人还把冷却速度曲线上各温度对应的冷却速度值,直接或间接作为实际生产中工件在相同温度下获得的冷却速度值来加以利用。

众所周知,在同样冷却条件下小工件冷得快,而大工件冷得慢。根据这一常理,人们会理所当然地把它与淬火介质的冷却速度曲线联系起来。由此产生这样的认识:在相同冷却条件下,工件上具有相同有效厚度的部分,都应当获得相同的冷却进程和冷却效果;并且,都可以在淬火介质的冷却特性曲线上找到它们的温度、冷却速度和冷却时间的对应关系。

考虑到测温的热电偶热端在探棒的几何中心,以及探棒形状因素的影响,对上述认识和做法的准确性,我们一直持有一些怀疑。为了澄清这方面的诸多疑团,在完成“液态淬火介质中冷却的四阶段理论”的研究后,通过试验和观测,研究了本课题。研究的目的有三个:

1、审查现行认识和用途的合理性。2、如果有问题,就找出产生问题的原因。3、并确定淬火介质冷却特性曲线的合理应用场合和合理应用限度。

二、试验方法和试验结果

图2 50℃基础油的试验和观测结果对照图

1、试验方法和仪器

在检测淬火介质的冷却特性的过程中,用摄像机同步观测记录探棒表面发生的现象。为了获得更清晰的图像,采用的是无色或者颜色很浅,而且透明性很好的淬火介质品种。比如清水、盐水、精炼程度很高的基础油、快速淬火油和PAG淬火液等介质。

检测淬火介质冷却特性用的是ivf仪。摄像用的是松下NV-GS11型摄像机。采用1/100秒的快门速度,每秒拍摄25张图片。

试验中通常采用850℃的加热温度。水性介质的液温在10℃~70℃内选取;油性介质的液温在30℃~100℃内选取。

2、试验结果

试验获得了通常所见的淬火介质的冷却特性曲线,又获得了探棒冷却过程中表面附近冷却情况的摄像资料。下面以清水、基础油和快速淬火油作为代表,介绍本文的试验结果。其中,把冷却速度曲线上一些选定点对应的摄像观测结果以示意图形式画在同一张图上。

基础油的冷却特性曲线与多个选定点的冷却状况如示如图2。快速淬火油的冷却特性曲线与多个选定点的冷却状况如图3所示。60℃清水的冷却特性曲线与多个选定点的冷却状况如图4所示。


图3 50℃快速淬火油的试验和观测结果对照图
图4 60℃清水的试验和观测结果对照图

三、试验结果分析

1、冷却特性曲线与冷却介质散热阶段的关系

研究分析的重点放在三方面:一是介质的冷却特性曲线与摄像观测到的冷却情况之间的关系。二是不同淬火介质的冷却特性和摄像结果之间的共性规律。三是冷却特性曲线与工件实际的冷却情况之间的关系

稍加注意就会发现:冷却特性曲线上选定点所处的冷却阶段,和同一时刻探棒上实际发生的冷却阶段大不相同。主要表现在:

a)除了蒸汽膜阶段之初,如图2中第1点以外,在所有其它的选定点上,实际发生的冷却状况都与介质冷却特性曲线上所指的阶段构成不同。

b)在介质的冷却特性曲线上,除冷却阶段的分界点外,一定的探棒温度,都对应着一种单一的冷却阶段。但是,摄像结果表明,在大部分冷却过程中,探棒上不同部位都存在二、三个冷却阶段。比如,即便在特别令人关注的特性温度点上,在基础油中试验时,探棒的上下两端都早已进入了沸腾冷却阶段。这说明当时探棒表明同时存在两个冷却阶段。在快速淬火油和60℃清水的特性温度点,探棒上同时存在着三种冷却阶段。在出现最高冷却速度的时刻,三种介质中探棒上都同时存在三个冷却阶段;但是不同介质中各阶段所占的比例却不相同。对流开始温度上,在基础油和快速淬火油中也还存在三个冷却阶段。清水中试验时,在对流开始点,探棒的中上段还处在沸腾冷却阶段;说明同时存在两个冷却阶段。

c)对不同介质品种,比较了冷却特性曲线上的特性温度、出现最高冷却速度的温度,以及对流开始温度时,摄像图片上的冷却阶段数和各阶段所占的比例。结果证明,不同介质之间没有找到共同之处。

d)所有这些结果都说明:现行的淬火介质冷却特性曲线与摄像观测到的冷却阶段之间,没有简单的对应关系。因此,不能从淬火介质的冷却特性曲线去划分探棒所处的冷却阶段。

2、 淬火介质的冷却特性曲线是如何形成的

凭淬火介质中冷却的三阶段理论(如图1所示的划分法),以及有效厚度就能决定冷却进程的认识,无法解释图1所示冷却特性曲线的形成原因。比如,按图1所示的阶段划分,一冷到所谓的特性温度点,整个探棒就会进入沸腾冷却阶段。由于当时探棒的温度很高,相应的冷却速度曲线上应当出现整个冷却过程的最高冷却速度值。但图线中最高冷却速度值都出现在更低的温度上。事实上,这里涉及到两个问题:一是测量温度的热电偶热端位于探棒的几何中心。它所测出的是内部点的温度变化。二是决定探棒某点冷却特性的因素,除了探棒本身的传热学特性外,冷却介质在不同温度的散热机理(阶段)又起着非常重要的作用。最新提出的“液态淬火介质中冷却的四阶段理论”则容易解释这一问题。四阶段理论认为,在液态淬火介质中冷却的机理,可按工件温度高低划分成:蒸汽膜阶段、中间阶段、沸腾阶段和对流阶段。中间阶段有其特定的成因和独有的特性[3]。详细内容请查看原文。这里只分析内部点的温度变化,用以说明图2~4对应的观测结果上常常存在2,3个冷却阶段的原因。

图5 冷却过程中,内部点向其更外部分散热的方向

淬火冷却过程中,内部某点P的温度降低是通过向更外部分散热来实现的,如图5所示。产生这种散热的最终原因是液体介质对工件表面的冷却作用。远近不同的表面部分被冷却,再通过热传导使P点冷却下来。不管参与冷却的表面处于蒸汽膜阶段、沸腾阶段、还是对流阶段,离P点越近,其降温情况对P点产生影响就越早;离 P点越远,其降温情况对P点产生影响就越迟。因此,任何时刻P点实际的冷却情况是在该时刻之前一定时间范围内,远近不同的表面所受冷却情况的综合影响的结果。内部点的冷却特性曲线,表述的就是这种影响随时间的变化和随P点温度的变化情况。通常用来描述淬火介质冷却特性的图线,也正是这类曲线。它们既不是工件(探棒)表面的冷却过程曲线,也不是工件(探棒)表面获得的冷却速度随表面温度变化的曲线。用这样的曲线来划分液态淬火介质中冷却的三阶段,无疑是不恰当的。

四、冷却特性曲线和实际工件的冷却情况的关系

淬火介质的冷却特性大多采用热电偶法来测量。因所用探棒的材质、形状大小和热电偶位置不同,又形成了不同的测量标准。标准不同,测得的冷却特性曲线也不同。出于对英寸和厘米,华氏和摄氏等换算关系的习惯,人们曾试图建立不同标准测出的冷却特性之间的换算关系。但是,这方面的努力都以失败告终。至今,热处理行业不得不面对这样一个事实:同一种淬火介质,用不同标准检测所得的冷却特性曲线之间,没有固定关系的可比性。在此,“没有可比性”指的是不同标准检测的冷却特性之间没有能通用的,即有规律的换算关系。为什么没有可比性?关于这一问题,将在后续的文章中用四阶段理论来加以解释。在此,只想借用这一事实来帮助我们分析本节提出的问题。

以上述“不同标准检测出的冷却特性曲线之间没有可比性”这一事实为依据,如果把实际工件看成是具有不同材质、形状大小和热电偶位置的另一种探棒;那么,在一种淬火介质中淬火的工件所获得的冷却特性,与采用某种标准的冷却特性仪检测出来的同一介质的冷却特性之间也同样没有可比性。换句话说说,淬火介质的冷却特性曲线不能用来(准确)推算实际工件的冷却过程。

再进一步,依据同样的推理,又可以得出下一个结论:所有标准方法检测出的冷却特性曲线与实际工件的冷却特性之间都没有可比性。

最后,依据同样的道理,还可以得出这样的结论:在同一淬火介质中冷却时,不同形状大小和材质的工件的冷却特性之间,也没有可比性。

五、淬火介质冷却特性曲线的合理用途

前面的讨论已经说明,虽然淬火介质的冷却特性曲线对热处理工作者很有帮助,但它们的作用也不宜扩大化。简单说,淬火介质的冷却特性曲线的合理应用范围可以归纳成以下几方面:

1、检测淬火介质产品的冷却特性。对比不同产品在冷却特性上的差异。既可定性,也可定量。主要适于淬火介质的研究开发、产品的检验、选择等场合。

2、了解使用中淬火介质冷却特性的稳定性和变化程度。既可定性,也可定量。主要适于热处理生产单位的质量管理,以及分析解决工件热处理技术和质量问题等场合。

3、定性预测不同工件的淬火硬度高低和淬硬层深度的大小。主要用于为不同工件选择淬火介质,以及介绍不同淬火介质的适于范围等场合。

参考文献

[1]ASM,HandbookTM,Vol.4 Heat Treating[M], SAM International,1991:69

[2]G.E.Totten, C.E.Bates, et al. Handbook of Quenchants and Quenching Technology [M]. SAM International, 1993 :70

[3]张克俭,王水,郝学志,液态淬火介质中冷却的四阶段理论[J],热处理技术与装备,2006,6:14-25.

歡迎來到Bewise Inc.的世界,首先恭喜您來到這接受新的資訊讓產業更有競爭力,我們是提供專業刀具製造商,應對客戶高品質的刀具需求,我們可以協助客戶滿足您對產業的不同要求,我們有能力達到非常卓越的客戶需求品質,這是現有相關技術無法比擬的,我們成功的滿足了各行各業的要求,包括:精密HSS DIN切削刀具協助客戶設計刀具流程DIN or JIS 鎢鋼切削刀具設計NAS986 NAS965 NAS897 NAS937orNAS907 航太切削刀具,NAS航太刀具設計超高硬度的切削刀具醫療配件刀具設計複合式再研磨機PCD地板專用企口鑽石組合刀具粉末造粒成型機主機版專用頂級電桿PCD V-Cut捨棄式圓鋸片組粉末成型機主機版專用頂級電汽車業刀具設計電子產業鑽石刀具木工產業鑽石刀具銑刀與切斷複合再研磨機銑刀與鑽頭複合再研磨機銑刀與螺絲攻複合再研磨機等等。我們的產品涵蓋了從民生刀具到工業級的刀具設計;從微細刀具到大型刀具;從小型生產到大型量產;全自動整合;我們的技術可提供您連續生產的效能,我們整體的服務及卓越的技術,恭迎您親自體驗!!

BW Bewise Inc. Willy Chen willy@tool-tool.com bw@tool-tool.com www.tool-tool.com skype:willy_chen_bw mobile:0937-618-190 Head &Administration Office No.13,Shiang Shang 2nd St., West Chiu Taichung,Taiwan 40356 http://www.tool-tool.com / FAX:+886 4 2471 4839 N.Branch 5F,No.460,Fu Shin North Rd.,Taipei,Taiwan S.Branch No.24,Sec.1,Chia Pu East Rd.,Taipao City,Chiayi Hsien,Taiwan

Welcome to BW tool world! We are an experienced tool maker specialized in cutting tools. We focus on what you need and endeavor to research the best cutter to satisfy users demand. Our customers involve wide range of industries, like mold & die, aerospace, electronic, machinery, etc. We are professional expert in cutting field. We would like to solve every problem from you. Please feel free to contact us, its our pleasure to serve for you. BW product including: cutting toolaerospace tool .HSS  DIN Cutting toolCarbide end millsCarbide cutting toolNAS Cutting toolNAS986 NAS965 NAS897 NAS937orNAS907 Cutting Tools,Carbide end milldisc milling cutter,Aerospace cutting toolhss drillФрезерыCarbide drillHigh speed steelCompound SharpenerMilling cutterINDUCTORS FOR PCDCVDD(Chemical Vapor Deposition Diamond )’PCBN (Polycrystalline Cubic Boron Nitride) Core drillTapered end millsCVD Diamond Tools Inserts’PCD Edge-Beveling Cutter(Golden FingerPCD V-CutterPCD Wood toolsPCD Cutting toolsPCD Circular Saw BladePVDD End Millsdiamond tool. INDUCTORS FOR PCD . POWDER FORMING MACHINE Single Crystal Diamond Metric end millsMiniature end millsСпециальные режущие инструменты Пустотелое сверло Pilot reamerFraisesFresas con mango PCD (Polycrystalline diamond) ‘FresePOWDER FORMING MACHINEElectronics cutterStep drillMetal cutting sawDouble margin drillGun barrelAngle milling cutterCarbide burrsCarbide tipped cutterChamfering toolIC card engraving cutterSide cutterStaple CutterPCD diamond cutter specialized in grooving floorsV-Cut PCD Circular Diamond Tipped Saw Blade with Indexable Insert PCD Diamond Tool Saw Blade with Indexable InsertNAS toolDIN or JIS toolSpecial toolMetal slitting sawsShell end millsSide and face milling cuttersSide chip clearance sawsLong end millsend mill grinderdrill grindersharpenerStub roughing end millsDovetail milling cuttersCarbide slot drillsCarbide torus cuttersAngel carbide end millsCarbide torus cuttersCarbide ball-nosed slot drillsMould cutterTool manufacturer.

Bewise Inc. www.tool-tool.com

ようこそBewise Inc.の世界へお越し下さいませ、先ず御目出度たいのは新たな

情報を受け取って頂き、もっと各産業に競争力プラス展開。

弊社は専門なエンドミルの製造メーカーで、客先に色んな分野のニーズ

豊富なパリエーションを満足させ、特にハイテク品質要求にサポート致します。

弊社は各領域に供給できる内容は:

(1)精密HSSエンドミルのR&D

(2)Carbide Cutting tools設計

(3)鎢鋼エンドミル設計

(4)航空エンドミル設計

(5)超高硬度エンドミル

(6)ダイヤモンドエンドミル

(7)医療用品エンドミル設計

(8)自動車部品&材料加工向けエンドミル設計

弊社の製品の供給調達機能は:

(1)生活産業~ハイテク工業までのエンドミル設計

(2)ミクロエンドミル~大型エンドミル供給

(3)小Lot生産~大量発注対応供給

(4)オートメーション整備調達

(5)スポット対応~流れ生産対応

弊社の全般供給体制及び技術自慢の総合専門製造メーカーに貴方のご体験を御待ちしております。

Bewise Inc. talaşlı imalat sanayinde en fazla kullanılan ve üç eksende (x,y,z) talaş kaldırabilen freze takımlarından olan Parmak Freze imalatçısıdır. Çok geniş ürün yelpazesine sahip olan firmanın başlıca ürünlerini Karbür Parmak Frezeler, Kalıpçı Frezeleri, Kaba Talaş Frezeleri, Konik Alın Frezeler, Köşe Radyüs Frezeler, İki Ağızlı Kısa ve Uzun Küresel Frezeler, İç Bükey Frezeler vb. şeklinde sıralayabiliriz.

BW специализируется в научных исследованиях и разработках, и снабжаем самым высокотехнологичным карбидовым материалом для поставки режущих / фрезеровочных инструментов для почвы, воздушного пространства и электронной индустрии. В нашу основную продукцию входит твердый карбид / быстрорежущая сталь, а также двигатели, микроэлектрические дрели, IC картонорезальные машины, фрезы для гравирования, режущие пилы, фрезеры-расширители, фрезеры-расширители с резцом, дрели, резаки форм для шлицевого вала / звездочки роликовой цепи, и специальные нано инструменты. Пожалуйста, посетите сайт  www.tool-tool.com  для получения большей информации.

BW is specialized in R&D and sourcing the most advanced carbide material with high-tech coating to supply cutting / milling tool for mould & die, aero space and electronic industry. Our main products include solid carbide / HSS end mills, micro electronic drill, IC card cutter, engraving cutter, shell end mills, cutting saw, reamer, thread reamer, leading drill, involute gear cutter for spur wheel, rack and worm milling cutter, thread milling cutter, form cutters for spline shaft/roller chain sprocket, and special tool, with nano grade. Please visit our web  www.tool-tool.com  for more info.

beeway 發表在 痞客邦 留言(0) 人氣()

 

Bewise Inc. www.tool-tool.com Reference source from the internet.

发表于《热处理技术与装备》2006年第6期

工件在水性介质中淬火,有时会听到爆炸声响。本项研究工作是从探讨这种声响的产生原因开始的。通过试验和研究,对爆炸声响的产生提出了一种解释。试验中发现了几种用当前通行的液体介质中冷却的三阶段(蒸汽膜阶段、沸腾阶段和对流阶段)理论[1]无法解释的现象。为解释这些现象,本文提出了液体淬火介质中淬火冷却的四阶段理论。

一 对爆炸声响产生原因的初期分析

经过分析,把此项研究观测的内容归结成两个:一个是完整蒸汽膜保持稳定的条件;另一个是蒸汽膜阶段的结束过程。对这两个内容做了如下分析:

1、在完整蒸汽膜阶段,是工件表面向外散失的热量使周围的液态介质变成了蒸汽,且形成的蒸汽足以使蒸汽膜保持完整。是蒸汽膜把液态介质和工件表面分隔开,如图 1a)。因此,粗略地说,能使蒸汽膜保持稳定的条件是:从工件侧进入气液界面的热量Q1,多于、等于从气液界面向液相侧散失的热量Q2,如图1b)。进而可以得出这样的关系:

当Q1=Q2时,蒸汽膜厚度保持不变。

当Q1 > Q2时,蒸汽膜厚度会增大。

当Q1 < Q2时,蒸汽膜厚度会减小。


a)蒸汽膜把球体和液态介质分隔开
b)气液界面的热量收支Q1和Q2

图1 完整蒸汽膜的稳定性分析

影响这种关系的重要因素有:工件表面温度高低、介质的沸点高低和饱和蒸汽压大小、气液界面液态侧的温度梯度大小,以及气液界面能(或者表面张力)高低等。其中,气液界面能大小不太引人注意。但是,众所周知,要费一点力气才能把肥皂泡吹大。但停止吹气后,如果不堵着吹气口,肥皂泡就会把里面的空气压出来。这是肥皂泡膜的表面张力引起的附加压力使泡内的气压高于外面气压的缘故。由于气液界面的表面张力,蒸汽膜内的气压高于膜外的液压。气液界面张力越大,内部气压也就越高。只有更高的表面温度,才能烤出更多的蒸汽来形成更厚的蒸汽膜。因此,在其它条件相同时,气液界面张力越大,蒸汽膜就越薄;相反,气液界面张力越小,蒸汽膜就越厚。

为了排除工件形状因素的影响,本文选定均匀球体为研究对象。按照上面所述的道理,球体表面温度越高,蒸汽膜会越厚。球体表面温度降低,蒸汽膜厚度就会减小。人们会顺理成章地认为,当厚度减小到零时,冷却的蒸汽膜阶段便结束了,如图2所示。整个球体会同时进入沸腾冷却阶段。这时的球体表面温度记为T*。我们认为,现行的、有关液态淬火介质中冷却的三阶段理论,就是在这种设想的基础上建立起来的。

2、大量的事例告诉我们,复杂系统的变化往往是分步完成的。我们认为,由于不可避免的扰动,在完整蒸汽膜阶段,气液界面上的扰动使蒸汽膜的厚度始终处在起伏变化之中。当蒸汽膜厚度降低到一定的值时,在某个厚度起伏很大的部位,气液界面可能与工件表面接触,如图3所示。


图2 球体表面温度高低与球体蒸汽膜厚度的关系
图3 扰动引起蒸汽膜厚度波动,在波动很大的部位气液界面与球体表面接触

那些虽然接触了固态表面,却在极短的时间内因接触点处的液体被汽化而瞬间消失的接触,我们把它称为“瞬时接触”。因为接触面积小,时间又很短,瞬时接触对球体的冷却过程影响很小。如果接触部位不被马上汽化,则接触部位的气、固、液交界线上,接触角就可能因三个表面张力(汽液δvl,汽固δvs,液固δls)的大小关系,而向两类不同的平衡接触角演变,如图4所示。

a)液体不润湿固体表面
b)液体润湿固体表面

图4 两类不同的平衡接触角

图 4中,上排表示在波动引起的气液接触点处可能形成的两类平衡接触角。下排表示在相同条件下,把同样的液体滴到相同的水平固体表面上所形成的两类平衡液滴的形状。其中,左图表示液体对固体表面不润湿,因此接触角小于90°时的情况。右图表示液体对固体表面有润湿性,因此接触角大于90°时的情况。在左上图中,由于瞬时接触点产生的接触角度已经接近不润湿条件下的平衡接触角,接触区就不可能向蒸汽膜区扩展。因为不能扩展,高温的固体表面很快就会把接触区的液体变成蒸汽。其结果,接触点很快消失。完整蒸汽膜得以维持。而在右上图所示的情况下,液体和固体表面的接触区是否能继续扩大,将决定于液体对固态表面的润湿性大小。液态介质对固体表面的润湿性越好(接触角越大),接触区的扩展速度就越快。在固体表面温度不太高,比如不超过T0,且接触区边界的扩展速度足够快,能保证接触部的液体不马上被汽化时,该接触区就会持续向固体表面区扩展。本文把能够成功扩展下去的上述接触点称为“超前扩展点”。说它“超前”,是因为当时固体表面温度还远高于T*。接触区的扩展过程,也就是蒸汽膜笼罩区的缩小过程。固体表面上蒸汽膜区的边界,是固、气、液三相区的交界线。以下简称“ 三相交界线”,或者“交界线”。交界线的移动反应的是液、固接触区的扩大过程。缓慢的交界线移动可以直接观测到。较快的交界线移动,可以用摄像加以记录。

如果液体对固体表面有较好的润湿性,三相交界线达到表面张力平衡时,交界线部位应当具有图4之右上图所示的平衡关系。但是,在扰动引起瞬时接触点时,接触点部位应当具有图4之左上图所示的情形。显然,在该处三个表面张力没有达到平衡。在向平衡关系的过渡过程中,交界线就会自动向蒸汽膜区推进,如图5所示。

3、关于爆炸声响的产生原因(推测):当扩展速度非常快时,蒸汽膜中的水蒸气被推成偏向一侧的大气泡。该大气泡因深入温度较低的液层而被迅速冷凝。蒸汽冷凝的结果,在原来气泡所在位置,形成了一个有一定真空度的偏心真空球。周围的液体在填补该真空区时发生冲撞,就产生了爆炸声响,如图6所示。


图5 在三相交界线上,因三个表面张力的关系趋于平衡而引起交界线的扩展
图6 爆炸声响的产生过程(推测)

据资料介绍,由高温水蒸气在较冷的水中冷凝而引起爆炸声响,叫做“冷凝爆炸”[2]或者“水锤现象”[3]

按照上述思路,我们确定了几个实验观测内容:一是找出至少一个可能使蒸汽膜厚度发生起伏的扰动因素。二是用事实证明出现超前扩展点是一种普遍现象。三是验证关于爆炸声响产生原因的推测;或者找到另外的成因。

二 实验方法和试验内容

图7 球体试样及其吊挂方式

为减少表面氧化的影响和避免冷却过程中的相变,选用了在加热和冷却过程中无相变的耐热不锈钢来加工成试样。为了避开形状因素的影响,采用的主要是直径 30mm和60mm的球体试样。为保证球体的吊挂部位不成为超前扩展点,球体上的吊挂部位稍凹下去了一点,并采用很细的电炉丝来吊挂球体,如图7所示。

为便于观测和摄像,主要选用无色透明冷却介质品种。如清水,盐水、优质矿物油基础油、快速淬火油、汽•液匀速冷却液,以及PAG淬火液。

用普通摄像机摄像。摄像速率为每秒25帧。曝光时间选在1/500~1/2000秒之间,多数情况下用1/1000秒。

试样的加热温度一般为900℃。试样先在实验箱式炉中加热透烧,再转移到盛有冷却介质的大烧杯中冷却。用摄像机对试样的冷却过程做了观测记录。

三 实验结果与分析

1、扰动和超前扩展点

图8 球形蒸汽膜从上方形成并分离的过程引起蒸汽膜厚度变化

在实际工件的冷却过程中,可能引起蒸汽膜厚度波动的因素(即扰动因素)很多。试验发现,在不做附加搅动的条件下,从球体完整蒸汽膜的上方排出水蒸汽泡所引起的扰动最大。排出这种气泡的过程有周期性。球体表面温度高,单位时间内排出的气泡的个数就多,排出气泡的周期就短;球体表面温度降低,排出气泡的周期就加长。图8是对这一周期过程能引起蒸汽膜厚度波动的简单推测。图中,1表示刚刚恢复成球形的蒸汽膜。2表示球形蒸汽膜的上方开始鼓泡和鼓出的泡涨大。鼓起的泡长大并向上升时,自然会把球体气泡向上拉长。3表示鼓出的气泡向上长大并拉长到一定程度时,发生拉断。一旦发生了拉断,球体上方凸出的蒸汽膜就会向下回弹。回弹对蒸汽膜产生压迫作用。4表示蒸汽膜因上述回弹而被压扁。压缩到其最大限度后,就会再向球形蒸汽膜位置反弹回来,直至再成为球形蒸汽膜,如1。球体蒸汽膜所做的,基本上是一种阻尼受迫振动。

图9 基础油中17个超前扩展点的出现位置

当然,除了图8所示的扰动因素外,还有其它的因素可能引起蒸汽膜厚度的波动。试样上发生的扰动,是所有引起扰动的因素共同作用的结果。扰动引起的蒸汽膜厚度波动,使球体不同部位的蒸汽膜的厚度不等。在蒸汽膜厚度最薄的部位,当其它条件满足时,就可能出现超前扩展点。试验发现,即便是均匀的球体,其表面出现超前扩展点的位置也有很强的随机偶然性。图9标出了基础油中试验时,17个出现在正面的超前扩展点的位置分布。

我们认为,超前扩展点的出现位置除与扰动引起的蒸汽膜厚度波动有关外,还可能与液体介质内部温度的不均匀性有关。把这种液体内部温度的不均匀性简称为液体内部的“热起伏”。有关的研究指出,扰动波引起的蒸汽膜厚度波动通常都有强烈随机特性(3)。应当说,只有蒸汽膜厚度波动引起的瞬时接触,还不足以形成超前扩展点。只有加上液体内部的热起伏正好使该接触部位的液温偏低,才能产生超前扩展点。这就是球体上出现超前扩展点的位置有很强的随机性的原因。

2、分界线的扩展速度

试验发现,匀速冷却液中,蒸汽膜阶段结束时,上一张图片还看到完整的蒸汽膜,0.04秒后的下一张图片上就已经完成了“爆炸”过程,且总是发出爆炸声响。我们既没能观测到其中的超前扩展点,也没能观测到随后的分界线扩展过程。有幸的是,在PAG淬火液的试验中,我们既看到超前扩展点和分界线的扩展过程,也听到爆炸声响。相比之下,基础油的扩展速度相当慢。图10是直径60mm球体试样在基础油中冷却时的完整蒸汽膜、超前扩展点和扩展中的交界线的图像。



a) 完整蒸汽膜时的图片
b) 1秒后超前扩展点已经出现且开始扩展
c) 14秒后交界线已经扫过了大半个球面

图10 基础油中试验时的完整蒸汽膜、超前扩展点和交界线的扩展过程

淬火油的冷却速度越快,其扩展速度也越快。快速淬火油的扩展速度就比基础油快。PAG淬火液的扩展速度比油性介质快。匀速冷却液的扩展速度则更快。几类冷却介质中交界线的扩展速度大小排序如下:

基础油 < 快速油 <清水< PAG淬火液 < 盐水 < 匀速冷却液

图11 可以把交界线的移动过程看成其端部边界的平移过程

扩展过程中,气液界面和气固界面在减少,而液固界面在增加。假定:在很短的扩展时间内,蒸汽膜缩短了dl1,而液固界面则增加了dl2。可以把该扩展过程简单地看成是蒸汽膜边缘的平移过程,如图11所示。

由于蒸汽膜的厚度很小,在这种平移过程中,dl1 ≈ dl2。此时,每增加单位面积的液固界面,就正好减少了一个单位面积的气液界面和一个单位面积的气固界面。设这一过程的自由能变化为G,则G与液固、液气、以及气固界面能的关系,可以表示成式(3):

G=δls-δlv-δsv (1)

G<0时,扩展才可能进行。从式(1)中可知:液固界面能越小,而液气界面能和固气界面能越大,则上述扩展过程的驱动力就越大,分界线的扩展速度也就越快。

从观测结果推算了几种介质中分界线的平均扩展速度:基础油时最低,约在每秒0.006米;快速油的速度稍快,约为每秒0.015米。图12画出了基础油中直径60mm球体上交界线的扩展进程,图中的数字“0”所指的是观测记录的第1条交界线,并以它作为计算时间的起点。其余的数字1、3、5、……等所指的曲线,是过了约1、3、5、……秒时,交界线的位置。图13是30mm直径的球体在基础油中试验时交界线的扩展过程记录。


图12 在基础油中,直径60mm球体上分界线的扩展过程,数字是不同的绘图时间(秒)
图13 在基础油中,30mm直径球体上交界线的扩展进程(超前扩展点出现在背面),数字是不同的绘图时间(秒)

PAG淬火液中的平均扩展速度约为每秒0.6米。匀速冷却液中,超前扩展点产生、交界线的扩展全过程都在0.04秒内完成。由此可以推算出,其交界线扩展速度高于每秒1.2米。

3、爆炸声响的成因

试验中没有获得图6所推测的“水锤现象”引起爆炸声响的任何摄像记录。但是,根据发生爆炸声响的情况,本文提出了产生爆炸声响的另一种机制。

研究发现,在基础油和快速油等交界线扩展速度很慢的介质中听不到爆炸声响。只有在扩展速度特别快的冷却介质中,才可能听到爆炸声响。图14是10%PAG淬火液中拍摄到的扩展过程图片。第1张是出现超前扩展点之后不久的图像。第2、3、4张可以看到扩展过程。第5张扩展刚刚完成。相邻图片之间的时间间隔都是0.04秒。从第1张到第5张图片之间总时间间隔是4x0.04=0.16秒。在扩展中的交界线前沿,可以看到水接触高温固体表面时迅速形成蒸汽泡并发生爆炸的带状区域。这一带状区域随分界线的扩展连续向前推进。就这样一个经历0.16秒的交界线扩展过程,让我们听到了一次爆炸声响。





1)
2)
3)
4)
5)

图14 PAG淬火液的“爆炸”过程

归纳以上情况,我们对爆炸声响的产生原因作如下的解释。第一,水的沸点低而容易汽化。水的饱和蒸汽压很高,在室温下大约为矿物油的105倍,因此能使气泡快速形成和破裂。少量的水注入干热的炒菜锅中,会发出轻微的近于爆炸的声响。水的这些特性是水性介质才可能发生爆炸声响的原因。第二,声音的延续时间称为“ 时长”。一般说,时长超过0.3秒后,人耳就能听到稳定的声响。当时长短于0.3秒后,人感觉到的声音强度会随声音的时长缩短而迅速降低。时长缩短到一定程度,人就听不到声音了[4]。同时,人的听觉功能对声音的反应时间为0.12~0.18秒[5]。根据听觉的这些特点,我们粗略地设定了一个时间长度0.15秒。当交界线快速扩展时,在液固交界线前沿,0.15秒内水接触高温固态表面时发出的一连串的、微弱的气泡爆裂声,会被人耳听成一次强烈的声响,也就是爆炸声响。第三,工件表面温度越高,气泡的形成越快,气泡爆炸越剧烈,爆炸声响也会越大。第四,声音的强度可以直接相加,I总=I1+I2+I3[6]。因此,移动中的交界线越长,同时发出气泡爆裂声的气泡数就越多,能听到的爆炸声响也就越大。第五,交界线的移动速度(V)越快,在人的听觉反应时间内交界线扫过的面积就越大,前后参与爆炸的气泡就越多,能听到的爆炸声响也就越大。因此,爆炸声响的大小I总,与移动中的交界线的总长度(L)成正比;也与约0.15秒内交界线移动的距离(0.15V)成正比。于是,可以建立如下关系式:

I总 ∝ 0.15 L•V (2)。

总之,由交界线快速移动引起的爆炸声响有以下特点:在水性介质中交界线以足够快的速度扩展时才产生;移动中的交界线总长度越大、固体表面温度越高、交界线扩展速度越快,爆炸声响就越大。

4、蒸汽膜消失过程的几个表面温度值

在上述讨论中,蒸汽膜阶段结束过程涉及到四个球体表面温度值,它们是:

T0 – 能出现超前扩展点的最高温度。

T1 – 实际出现超前扩展点的最高温度,也是进入沸腾冷却阶段的温度。

T2 – 最后一部分蒸汽膜消失处的温度,也是进入沸腾冷却阶段的最低温度。

T* - 按外推法确定的蒸汽膜厚度最后变成零时的球体表面温度。

图15 有关蒸汽膜阶段结束过程的四点图

把它们和蒸汽膜厚度的变化结合在一起,可以作成图15。本文把该图称为有关蒸汽膜厚度的“四点图”。

四 三阶段理论不能解释的几个现象

试验中我们发现了4种现行三阶段理论不能解释的“怪”现象。

1、有效厚度相同但冷却进程却大不一样

由三阶段理论很容易得出这样的结论:在均匀冷却条件下,工件表面某部分获得的冷却速度快慢,决定于该部分的有效厚度大小。然而,试验发现,在基础油和快速淬火油中冷却的球体试样,从出现超前扩展点开始,球体表面不同部位冷却速度的差距就迅速拉开了。超前扩展点是最早发生沸腾冷却的部位。而后,随着交界线向蒸汽膜笼罩区扩展,已经进入沸腾冷却区域的球体表面获得的冷却速度很快;而在蒸汽膜笼罩区,随所在球体表面温度的降低,冷却速度却在减慢。它们之间的温度差越来越大。在基础油和快速油中,当超前扩展点所在部位冷到对流冷却阶段时,在球体的另一面,却还有部分表面被蒸汽膜笼罩着。有效厚度相同,冷却的“命运” 却不相同,这是三阶段理论无法解释的第一个怪现象。

2、超前扩展点的出现部位有很大的随机偶然性

按三阶段理论,在均匀冷却条件下,均匀球体上不同部位进入沸腾冷却阶段的时间是相同的。然而如图9所示,在球体上出现超前扩展点的部位有很强的随机偶然性。某处能出现超前扩展点,一是该处蒸汽膜厚度波动的振幅很大;二是液体内部的热起伏使该处的液温偏低程度也很大。只有这两项有利因素凑合在一起,才能在该处出现超前扩展点。这就进一步加大了超前扩展点出现位置的随机性。而超前扩展点的出现部位不同,球体随后的冷却情况也就随之不同。球体上其它部位的冷却命运也随之改变。表面某确定部位在冷却中的命运无法确定。这是三阶段理论无法解释的第二个怪现象。

3、有时只有一个超前扩展点现象

在基础油和快速淬火油中,当球体试样表面光洁程度较高时,多次出现这样的现象:出现一个超前扩展点后,在交界线的扩展过程中,直至蒸汽膜区消失,不再出现第2个超前扩展点。

图16 出现第一个超前扩展点后,蒸汽膜厚度的波动减小,不易再形成第二个及以上的超前扩展点

可以这样解释此现象:球体试样上形成的完整蒸汽膜把液体和球体隔离开。在扰动的强度相同时,这种结构产生的蒸汽膜厚度波动振幅最大。因而,在完整蒸汽膜条件下,容易产生瞬时扩展点。而超前扩展点出现后,与球体表面连接的蒸汽膜的边界线对蒸汽膜扰动起了牵制作用,使扰动的振幅大大减小。如图16所示。而且,随着蒸汽膜区的缩小,蒸汽膜边界线会越长,牵制作用也必然越来越大。而另一方面,蒸汽膜区域越小,也使它可能产生的扰动减小。其结果,再出现新的超前扩展点的可能性越来越小。这是三阶段理论无法解释的第三个怪现象。

试验发现,水性介质,特别是盐水中容易出现第2个以上的超前扩展点。不光洁的球体表面容易出现第二个及以上的超前扩展点。

4、判定“是处于蒸汽膜阶段,还是处于沸腾冷却阶段?”遇到的困难

按照三阶段理论,工件淬火冷却中,由高温到低温,过了蒸汽膜阶段,就是沸腾冷却阶段。因此,所有有效厚度相同的部分都应当同时进入沸腾冷却阶段。按这样的道理,均匀圆球上的不同部分应当同时进入沸腾冷却阶段。但是,球体试样在油中冷却时,从出现第一个超前扩展点,到最后一部分蒸汽膜笼罩区消失为止,球体表面上的不同部位,有的处在蒸汽膜笼罩阶段,有的处在沸腾冷却阶段。这种状况在直径60mm的球体上,最长的维持了二十多秒。这期间,球体上某个特定点部位究竟处于哪个冷却阶段,又无法预先确定,而只能听天由命。人们不禁要问,对于这个均匀的球体,或者有效厚度相同的表面,这一期间究竟属于哪个冷却阶段?

图17 PAG淬火液中,完整蒸汽膜结束后,出现了局部蒸汽膜区与沸腾冷却区共存的冷却阶段

同样难以解释的另一类现象是,在对PAG淬火液、其它水性介质、甚至快速淬火油的试验中,当蒸汽膜以爆炸方式,或者交界线以相当快的速度扫过试样表面后,在大部分处于沸腾冷却阶段的区域内,常常能看到一些大小不等、形状不规则,且出现部位又无规律的成片的蒸汽膜笼罩区。这种状况要一段时间才会全部消失。而只有到它们完全消失后,才能看到单纯的沸腾冷却现象。图17是球体在匀速冷却液中冷却,听到爆炸声响时,我们看到的却是在沸腾冷却区内包含一些局部蒸汽膜冷却区的球体表面。这种混合阶段冷却过程持续了好几秒钟。而后才是单纯的沸腾冷却阶段。我们这样解释局部蒸汽膜的成因:只有球体表面温度比较高时,交界线扩展过去后,才可能出现局部蒸汽膜区。这类局部蒸汽膜区的出现,应当与液体中的热起伏有关。在热起伏引起局部液温偏高的区域,一些本来孤立的蒸汽泡有可能连成片。这就成为所指的局部蒸汽膜。人们不禁又要问:在具有相同有效厚度的球体上,这类同时存在蒸汽膜笼罩区和沸腾冷却区的冷却阶段,是属于蒸汽膜冷却阶段,还是沸腾冷却阶段?

上述两类在同一有效厚度表面出现的蒸汽膜区和沸腾冷却区的共存现象,不能用现行的三阶段理论来加以解释。而相应的冷却阶段既不能归入蒸汽膜冷却阶段,也不能归入沸腾冷却阶段。这是第4个怪现象。

五 液体淬火介质中淬火冷却的四阶段理论

鉴于目前普遍采用的三阶段理论不能解释上面提出的诸多现象,本文认为,应当在蒸汽膜阶段与沸腾冷却阶段之间增加一个冷却阶段。这个阶段是局部蒸汽膜区和沸腾冷却区共存的阶段。可以把它叫做“中间阶段”。加上原来的三个阶段,就成为液态冷却介质中冷却的四阶段。有关四阶段的理论应能包含和解释本文第四部分所列举的所有奇怪现象,并能说明它和现行三阶段理论的关系。

1、表面特定点及其等效厚度点集的冷却特性曲线

a)
b)

图18 特定点的冷却过程曲线a)和冷却速度曲线b)

为了阐明三阶段理论和四阶段理论的差别,有必要提出工件(试样)上的等效厚度问题。热电偶测出的温度,实质上就是热电偶热端的温度。计量工件的温度和冷却速度,就是以该热端反应的温度来决定的。因此,从实用的角度看,在有关淬火冷却的问题中,可以把工件上热电偶热端大小的一小部分,作为组成工件的最小单元,并把它看成是一个“点”。在受到均匀加热或者均匀冷却的条件下,把工件上几何关系相同而“应当”获得相同的加热和冷却效果的部分,称为工件上的“等效厚度部分”,或者“等效厚度点集”,包括等效厚度表面、等效厚度区和等效厚度中心线等。热处理工作面对的不是工件上的某个点,而是包含各组成部分的整个工件或者说点集。四阶段理论描述的是工件上所有具有某种相同几何位置关系的特定点的总体(点集)的情况。这既包括所有某种特定等效厚度表面,也包括所有某种特定等效厚度部位。无疑,等效厚度点集的冷却特性是由组成它的各特定点的冷却特性汇集成的。

先讨论表面特定点的冷却特性曲线。以球体试样为例,在液态介质中冷却时,一次测量的冷却过程曲线和冷却速度曲线分别可以表示成图18a)和18b)。

再来讨论工件的表面部分。对于球体试样的整个表面,可以把相应的冷却过程曲线和冷却速度曲线表示成图19a)和19b)所示的形式。在图19a)中,按球体的表面温度来划分四个阶段:T1以上是蒸汽膜阶段,T1~T2是中间阶段。如以所用介质的沸点温度Tb作为沸腾冷却的终止温度,那么T2~Tb就是沸腾阶段的温度范围。球体的表面是有效厚度相同的表面,因中间阶段的存在,到最后一部分蒸汽膜消失时,球体表面不同部位的最大温度差为BC。这样大的差异,实在难以与它们具有相同的有效厚度联系在一起。在图19b)中,abef表示中间阶段的冷却速度分布情况。值得注意的是,按该图线所示,球体表面上特定点可能获得的冷却速度值不在ab线上,就在ef线上。总之,不可能取ab线和ef线之间的值。


a) 点集的冷却过程曲线
b) 点集的冷却速度曲线

图19 球体表面点集的冷却过程曲线a)和冷却速度曲线b)

图 19a)中,曲线上A点以上部分为球体表面的蒸汽膜阶段。此阶段球体表面不同部位始终具有基本相同的冷却速度。从A点开始,不同的部位先后进入沸腾冷却阶段。最早进入沸腾阶段的是第一个超前扩展点所在部位。它的冷却过程用曲线AC表示。随后进入沸腾冷却阶段的表面部分,从AB线上的对应点开始,沿大致与 AC曲线相似而又平行的曲线冷却下去。最后进入沸腾冷却阶段的部位,其沸腾阶段的冷却过程曲线从B点开始。

图 19b)中T1温度以上是球体的完整蒸汽膜阶段。在T1温度时,球体表面某处出现了第一个超前扩展点。a点表示成为超前扩展点之前该点的冷却速度。e点则表示成为超前扩展点后该点获得的冷却速度。此后,进入沸腾冷却阶段的该点及其周围部分的冷却速度大小沿ef线变化,而在交界线还没有扩展到的蒸汽膜笼罩区,它们的冷却速度则随其所在部位的表面温度降低而沿ab线变化。这种分道扬镳的状况到最后那部分蒸汽膜消失才结束。无疑,到最后一部分蒸汽膜消失时,最早开始沸腾冷却的部分已经沿ef的延长线冷到低得多的温度了。

根据出现超前扩展点的随机性,不难推测:在保持试验条件不变的前提下,对球体表面任何一个特定点,反复很多次测量其冷却特性,并把测量结果画在同一张图线上,得到的必然是图19所示形式的曲线。

对于特定试样和介质的组合,表面温度降低到T0以下时的某个值,比如T1时,才可能出现第一个超前扩展点。在随后的交界线扩展过程中,在残存的蒸汽膜笼罩区,如果再产生更多的超前扩展点,则可以加快蒸汽膜区的消亡。最后一片蒸汽膜区消失时,该部位的表面温度为T2 。T2总是高于T*点。参照四点图,把理论和实际的四个阶段划分原则作成表1。

表1 四个阶段的划分原则

阶段名称

理论的划分

实际的划分

蒸汽膜阶段

T0以上

T1以上

中间阶段

T0 ~T*

T1 ~ T2

沸腾阶段

T* ~Tb

T2 ~ Tb

对流阶段

Tb ~液温

Tb ~液温

2、一般工件表面的冷却过程也应划分成四个阶段

从研究均匀球体表面的冷却情况,建立了上述四阶段理论。有人不禁会问:球体表面的冷却情况与一般工件的冷却情况是不同的。研究球体表面冷却情况而建立起来的理论,是否能代表其它形状工件表面的冷却情况?是的,它们确实有所不同。但是,要描述工件上某一点的冷却情况,不管这个点位于工件表面,还是工件内部某处,该点总有其相当的有效厚度值。如果它所在的部位呈圆柱形,它就是一定直径圆柱体内或者表面上的一点。如果它所在的部位呈平板形,它就是一定厚度平板内上的一点。除了孤立的球体中心点之外,工件上所有其它的特定部位,都有与它们具有相同几何位置关系的等效厚度部位。从一般道理上说,在均匀冷却条件下,工件上所有具有等效厚度的部位都应当获得相同的冷却效果。如果用模拟计算的方法来研究实际工件的冷却情况,恐怕都会以“具有相同等效厚度的部位总是获得相同的冷却效果”作为开展工作的原则。四阶段理论定性地描述了球体表面的冷却规律。推而广之,在一般工件上,具有任何相同等效厚度的表面,也不可能具有完全相同的冷却进程。因此,它的冷却过程也能划分成相似的四个阶段,并具有上述四阶段理论的特性。

综上所述,球体试样表面的四阶段理论,说明了实际工件上等效厚度表面冷却过程的基本规律。而工件上等效厚度表面的冷却情况,又决定了工件内部各种等效厚度部位的冷却情况。因此,可以说,从球体表面冷却情况建立的四阶段理论,也是描述实际工件冷却情况的基础。

3、内部特定点与其等效厚度部分的冷却特性曲线

图20 工件内部点的冷却特性曲线

图21 工件内部特定等效厚度点集的四阶段理论曲线

工件内部任何一个点的冷却,都是工件表面与冷却介质的热交换使表面降温之后,再根据该特定点所在的位置关系,经过复杂的传热过程来实现的。因此,工件表面获得的冷却情况,决定了内部点的冷却进程。工件所有等效厚度表面都获得相同的冷却效果时,工件内部某等效厚度点获得的是一种冷却进程。而当工件上具有等效厚度的表面获得的冷却情况由四阶段理论决定时,工件内部某等效厚度部分获得的冷却进程也必然具有四阶段的特点。推算已经证明(将在另外的文章中介绍),按四阶段理论,工件内部点的冷却过程曲线和冷却速度曲线可以分别作成图20a)和20b)的形式。而工件内部特定等效厚度部分相应的冷却过程曲线和冷却速度曲线,则可以表示成图21a)和21b)所示的形式。

根据出现超前扩展点的随机性,不难推测:在保持试验条件不变的前提下,对球体内部任何一个特定点,反复很多次测量其冷却特性,并把测量结果画在同一张图线上,得到的必然是图21所示形式的曲线。

4、关于现行的三阶段理论

图22 冷却过程中,内部点向其更外部分散热的方向

淬火冷却过程中,内部某点P的温度降低是通过向更外部分散热来实现的,如图22所示。产生这种散热的最终原因是液体介质对工件表面的冷却作用。远近不同的表面部分被冷却,再通过热传导使P点冷却下来。不管参与冷却的表面处于蒸汽膜阶段、沸腾阶段、还是对流阶段,离P点越近,其降温情况对P点产生影响就越早;离P点越远,其降温情况对P点产生影响就越迟。因此,任何时刻P点实际的冷却情况是在该时刻之前一定时间范围内,远近不同的表面所受冷却情况的综合影响的结果。图22的内部点冷却特性曲线,表述的就是这种影响随时间的变化和随P点温度的变化情况。我们通常用来描述淬火介质冷却特性的图线,也正是这类曲线。它们既不是工件(探棒)表面的冷却过程曲线,也不是工件(探棒)表面获得的冷却速度随表面温度变化的曲线。用这样的曲线来划分液态淬火介质中冷却的三阶段,无疑是不恰当的。这些曲线只能用来检验淬火介质产品,或者用来比较不同介质的冷却特性差异。

5、影响中间阶段特性的因素

影响四点图中四个温度值的因素,就是影响中间阶段的因素。液态介质的特性和使用温度,以及与固态表面的配对关系主要影响TO和T*温度值,也影响T1值的高低。工件的形状特点、冷却时的装挂方式和介质的搅动情况等主要影响T1和T2的高低和超前扩展点的数量。作为例子,图23介绍了几种因素对四点图的影响趋势,包括清水和盐水、基础油和快速淬火油,以及冷水和热水的四点图对比。



a)盐水和清水的四点图对比
b)基础油和快速淬火油的四点图对比
c)冷水和热水的四点图对比

图23 几种影响因素对四点图的作用举例

试样(工件)形状的影响规律是:凸出部位的蒸汽膜较薄,凹下部位的蒸汽膜较厚。球体以外形状的试样,容易从凸出的部位产生最早的超前扩展点。交界线在凸出或者薄小部位完成扩展后,可能向相邻厚大部位推进。后者就不必形成自己的超前扩展点,而“借用”前者的交界线直接向前扩展,从而提早厚大部位中间阶段的到来。因此,形状复杂的工件,有效厚度相同部位之间的冷却进程差异,反而要比球体的小。

本文的试验是在不加搅拌的条件下进行的。实际生产中,对介质的搅拌是不可少的。搅拌引起更大的扰动。搅拌使T1温度提高,并缩短T1和T2之间的距离。搅拌可能引发多个超前扩展点。其结果,搅拌将使图17的中间阶段区变窄并且向左上方偏移。

六 研究四阶段理论的意义

淬火冷却中,我们习惯于凭有效厚度来推算工件上不同部位的冷却进程。实际上,具有等效厚度的不同部位却有不同的冷却进程。本文建立的四阶段理论初步描述它的规律。现在看来,容易引起工件无规律淬火变形的特性温度问题[7],就是冷却的中间阶段所引起的。因此,研究冷却的四阶段规律,至少具有以下几方面的意义。

1、研究和控制淬火冷却的中间阶段,有利于改善工件淬火冷却效果和冷却的均匀性,并因此提高工件的热处理质量和减小淬火变形程度。当前的淬火冷却技术,是在设想“冷却条件相同时,工件上相同有效厚度部分就具有相同的冷却进程”的基础上建立起来的。因为它没有考虑中间阶段的特性并加以控制,只能称为“粗放的淬火冷却技术”。相对说来,能够控制好中间阶段的淬火冷却技术,则可以称为“精细淬火冷却技术”。精细淬火冷却技术涉及到工件的外形设计、淬火冷却时工件的装挂方式、冷却的工艺参数、超前扩展点的诱导技术、淬火介质的品种和特性等设计和工艺环节,无疑,还有很多工作要做。

2、对工件淬火冷却过程的计算机模拟计算是本行业当前的一类热门课题。我们认为,通过研究并控制具体工件淬火冷却的中间阶段,定能进一步提高这类模拟技术的准确程度。

3、研究淬火介质对中间阶段的影响,是精细淬火冷却技术中的一项重要内容。

4、淬火介质冷却特性的检测方法一直受到热处理行业的关注。在了解了液体介质的四阶段理论后,有必要对采用过的标准探棒在设计上的合理性,以及所测冷却特性曲线的意义做一次审查和评价。

参考文献

1、ASM Handbook™,Vol.4 Heat Treating[M],1991:69.

2、徐继均,沸腾传热和气液两相流(修订本)[M],北京:原子能出版社,2001:186.

3、郭烈锦,两相与多相流体力学[M],西安:西安交通大学出版社,2002:269,292.

4、林达悃,录音声学[M],北京:中国电影出版社,1995:298-305.

5、机械工程师手册(第二版)[M],北京:机械工业出版社,2000:1460.

6、[德国]Horst Stöcker, 物理学手册[M],吴锡真等译,北京:北京大学出版社,2004:283.

7、张克俭,自来水的两大缺点[J],金属热处理,2005,30(1):66-71.

歡迎來到Bewise Inc.的世界,首先恭喜您來到這接受新的資訊讓產業更有競爭力,我們是提供專業刀具製造商,應對客戶高品質的刀具需求,我們可以協助客戶滿足您對產業的不同要求,我們有能力達到非常卓越的客戶需求品質,這是現有相關技術無法比擬的,我們成功的滿足了各行各業的要求,包括:精密HSS DIN切削刀具協助客戶設計刀具流程DIN or JIS 鎢鋼切削刀具設計NAS986 NAS965 NAS897 NAS937orNAS907 航太切削刀具,NAS航太刀具設計超高硬度的切削刀具醫療配件刀具設計複合式再研磨機PCD地板專用企口鑽石組合刀具粉末造粒成型機主機版專用頂級電桿PCD V-Cut捨棄式圓鋸片組粉末成型機主機版專用頂級電汽車業刀具設計電子產業鑽石刀具木工產業鑽石刀具銑刀與切斷複合再研磨機銑刀與鑽頭複合再研磨機銑刀與螺絲攻複合再研磨機等等。我們的產品涵蓋了從民生刀具到工業級的刀具設計;從微細刀具到大型刀具;從小型生產到大型量產;全自動整合;我們的技術可提供您連續生產的效能,我們整體的服務及卓越的技術,恭迎您親自體驗!!

BW Bewise Inc. Willy Chen willy@tool-tool.com bw@tool-tool.com www.tool-tool.com skype:willy_chen_bw mobile:0937-618-190 Head &Administration Office No.13,Shiang Shang 2nd St., West Chiu Taichung,Taiwan 40356 http://www.tool-tool.com / FAX:+886 4 2471 4839 N.Branch 5F,No.460,Fu Shin North Rd.,Taipei,Taiwan S.Branch No.24,Sec.1,Chia Pu East Rd.,Taipao City,Chiayi Hsien,Taiwan

Welcome to BW tool world! We are an experienced tool maker specialized in cutting tools. We focus on what you need and endeavor to research the best cutter to satisfy users demand. Our customers involve wide range of industries, like mold & die, aerospace, electronic, machinery, etc. We are professional expert in cutting field. We would like to solve every problem from you. Please feel free to contact us, its our pleasure to serve for you. BW product including: cutting toolaerospace tool .HSS  DIN Cutting toolCarbide end millsCarbide cutting toolNAS Cutting toolNAS986 NAS965 NAS897 NAS937orNAS907 Cutting Tools,Carbide end milldisc milling cutter,Aerospace cutting toolhss drillФрезерыCarbide drillHigh speed steelCompound SharpenerMilling cutterINDUCTORS FOR PCDCVDD(Chemical Vapor Deposition Diamond )’PCBN (Polycrystalline Cubic Boron Nitride) Core drillTapered end millsCVD Diamond Tools Inserts’PCD Edge-Beveling Cutter(Golden FingerPCD V-CutterPCD Wood toolsPCD Cutting toolsPCD Circular Saw BladePVDD End Millsdiamond tool. INDUCTORS FOR PCD . POWDER FORMING MACHINE Single Crystal Diamond Metric end millsMiniature end millsСпециальные режущие инструменты Пустотелое сверло Pilot reamerFraisesFresas con mango PCD (Polycrystalline diamond) ‘FresePOWDER FORMING MACHINEElectronics cutterStep drillMetal cutting sawDouble margin drillGun barrelAngle milling cutterCarbide burrsCarbide tipped cutterChamfering toolIC card engraving cutterSide cutterStaple CutterPCD diamond cutter specialized in grooving floorsV-Cut PCD Circular Diamond Tipped Saw Blade with Indexable Insert PCD Diamond Tool Saw Blade with Indexable InsertNAS toolDIN or JIS toolSpecial toolMetal slitting sawsShell end millsSide and face milling cuttersSide chip clearance sawsLong end millsend mill grinderdrill grindersharpenerStub roughing end millsDovetail milling cuttersCarbide slot drillsCarbide torus cuttersAngel carbide end millsCarbide torus cuttersCarbide ball-nosed slot drillsMould cutterTool manufacturer.

Bewise Inc. www.tool-tool.com

ようこそBewise Inc.の世界へお越し下さいませ、先ず御目出度たいのは新たな

情報を受け取って頂き、もっと各産業に競争力プラス展開。

弊社は専門なエンドミルの製造メーカーで、客先に色んな分野のニーズ

豊富なパリエーションを満足させ、特にハイテク品質要求にサポート致します。

弊社は各領域に供給できる内容は:

(1)精密HSSエンドミルのR&D

(2)Carbide Cutting tools設計

(3)鎢鋼エンドミル設計

(4)航空エンドミル設計

(5)超高硬度エンドミル

(6)ダイヤモンドエンドミル

(7)医療用品エンドミル設計

(8)自動車部品&材料加工向けエンドミル設計

弊社の製品の供給調達機能は:

(1)生活産業~ハイテク工業までのエンドミル設計

(2)ミクロエンドミル~大型エンドミル供給

(3)小Lot生産~大量発注対応供給

(4)オートメーション整備調達

(5)スポット対応~流れ生産対応

弊社の全般供給体制及び技術自慢の総合専門製造メーカーに貴方のご体験を御待ちしております。

Bewise Inc. talaşlı imalat sanayinde en fazla kullanılan ve üç eksende (x,y,z) talaş kaldırabilen freze takımlarından olan Parmak Freze imalatçısıdır. Çok geniş ürün yelpazesine sahip olan firmanın başlıca ürünlerini Karbür Parmak Frezeler, Kalıpçı Frezeleri, Kaba Talaş Frezeleri, Konik Alın Frezeler, Köşe Radyüs Frezeler, İki Ağızlı Kısa ve Uzun Küresel Frezeler, İç Bükey Frezeler vb. şeklinde sıralayabiliriz.

BW специализируется в научных исследованиях и разработках, и снабжаем самым высокотехнологичным карбидовым материалом для поставки режущих / фрезеровочных инструментов для почвы, воздушного пространства и электронной индустрии. В нашу основную продукцию входит твердый карбид / быстрорежущая сталь, а также двигатели, микроэлектрические дрели, IC картонорезальные машины, фрезы для гравирования, режущие пилы, фрезеры-расширители, фрезеры-расширители с резцом, дрели, резаки форм для шлицевого вала / звездочки роликовой цепи, и специальные нано инструменты. Пожалуйста, посетите сайт  www.tool-tool.com  для получения большей информации.

BW is specialized in R&D and sourcing the most advanced carbide material with high-tech coating to supply cutting / milling tool for mould & die, aero space and electronic industry. Our main products include solid carbide / HSS end mills, micro electronic drill, IC card cutter, engraving cutter, shell end mills, cutting saw, reamer, thread reamer, leading drill, involute gear cutter for spur wheel, rack and worm milling cutter, thread milling cutter, form cutters for spline shaft/roller chain sprocket, and special tool, with nano grade. Please visit our web  www.tool-tool.com  for more info.

beeway 發表在 痞客邦 留言(0) 人氣()

 

Bewise Inc. www.tool-tool.com Reference source from the internet.

在研究自来水作为淬火介质的两大缺点的文章中,附带提出了液态淬火介质具有两个共性的缺点[1]。缺点之一是:任何一种确定的液态淬火介质,都只有相当有限的适用范围,用于要求更高冷却速度的工件,将淬不硬;用于要求更低冷却速度的工件,又会淬裂。缺点之二是:当淬火工件从高于介质的特性温度冷却下来时,往往在工件的局部区域发生冷却速度突变,因此引起很大的内应力,从而可能造成超差的淬火变形。本文将全面讨论液态淬火介质这两个共性的缺点,而重点是介绍克服第一类缺点的各种措施。

一 关于第一个缺点

图1 自来水和N32#机油的冷速曲线对比

某些工件“油淬不硬,水淬要裂”曾经是困扰热处理生产的一个难题。究其原因,普通机油和自来水都只有有限的适用范围。从冷却速度分布情况看,在自来水和普通机油之间有一个相当宽的空白地带,如图1所示。以填补这一空白为目标,通过几十年的工作,研究开发了多种油性和水性介质,基本上填补了水和普通机油之间的空白。到现在,常用的淬火介质,按冷却速度由慢到快的次序排列:使用温度较高的等温分级淬火油(热油)、普通机油、使用温度较低的等温分级淬火油(半热油)、中快速淬火油、快速淬火油,随后是高浓度的PAG淬火液、中浓度的PAG淬火液、低浓度的PAG淬火液,自来水、低浓度盐(或者碱)水等。它们都有各自的优缺点和各自的适用范围。一种淬火油是一种确定的淬火介质。同种水性淬火剂,配成不同的浓度,就是不同的淬火介质。填补自来水和普通机油之间的空白,需要这么多种不同的淬火介质!这是液态介质共性的第一个缺点所决定的。当今的高压气淬,选定一种适当的气体,通过改变气压,就可以获得从静止空冷到中等快速淬火油的不同冷却效果。相比之下,液态介质的这个缺点也实在太严重了。

二 克服第一类共性缺点的措施

由于清水的适用范围很有限,从古至今,人们不得不去寻找各式各样的淬火介质,并摸索出多种巧妙的淬火技术,来满足不同工件的热处理要求。这方面的工作,大致可以归纳成以下几类。

1 寻找或者研究开发多种不同适用范围的淬火介质,来满足不同的需要。这才有我们现在可以选用的多种淬火介质品种。

2 选择适用范围尽可能宽的淬火介质品种,而不是选择适用范围很窄的和特别专用的淬火介质。影响淬火介质使用范围宽窄的因素,包括介质的冷却特性对液温的敏感性、对相对流速的敏感性、介质的使用温度范围宽窄,以及介质的粘度对液温的敏感性等。

一般说,冷却特性对液温的敏感性越大,介质的适用范围越窄。相反,冷却特性对液温的敏感性越小,介质的适用范围就越宽。这是因为,多个工件同时淬火时,位于不同部位的工件,以及同一工件的不同部位,接触的液温是不相同的。于是,液温对介质冷却特性的影响越大,淬火后工件的性能均匀性就会越差。按这一规律,盐(或者碱)水溶液的适用范围就比自来水要宽。而淬火油的适用范围比相同冷却速度范围的水溶性介质要宽。

相对流速对冷却特性的影响越大,介质的适用范围就越窄。相反,相对流速对冷却特性的影响越小,介质的适用范围就越宽。这是因为,同时淬火时,位于不同部位的工件,以及同一工件的不同部位,与之接触的介质的相对流速是不相同的。于是,相对流速对介质冷却特性的影响越大,淬火后工件的性能均匀性就会越差。一般说,淬火油的冷却特性对相对流速的敏感性较小,而自来水的敏感性较大。PAG淬火液主要靠粘附在工件表明的聚合物膜来控制工件冷却速度,只要相对流速控制在不会冲掉那层聚合物膜的程度,流速大小对冷却特性的影响就会比自来水要小。

介质的使用温度范围宽是我们所希望的。使用范围宽的介质,可以在更广的范围使用,来满足不同工件的热处理要求。自来水的使用范围窄。淬火油的使用范围相对较宽。对于PAG淬火介质,浊点太低的品种使用的温度范围就很窄,而浊点相对较高的品种使用的温度范围就较宽。

当外力使液体发生流动时,其内部分子之间会产生一定的阻力来妨碍这种流动。这种阻力的大小就是液体的粘度。粘度是表征润滑油的流动性的主要指标。在其它条件相同时,粘度不同,液体的流动情况不同。流动情况不同,会进而影响工件获得的冷却效果。尤其是在工件形状较复杂,或者多个工件同时淬火时,冷却效果的差别会更大些。介质的粘度越高,其实际的冷却能力就越差;相反,介质的粘度越低,其实际的冷却能力就越强。因为这一原因,在我们凭冷却特性曲线比较不同油品的冷却能力时,也应同时考虑到油的粘度的影响。

3 改进已有介质,以扩展它们的适用范围。比如,纯净水的适用范围窄。水中溶解适量的盐或者碱,配成盐水或碱水后,可以扩大水的使用温度上限和下限;而且可以获得更快的高温冷却速度和浓度较高时稍慢的低温冷却速度。

4 开发适用范围更宽的液态淬火介质。在关于液态淬火介质的选择方法的文章中,已经得出了这样的结论“对于淬火用油,一般说,蒸汽膜阶段越短,冷却速度越快,适用的工件和钢种就越多。对于水溶性介质,在保持蒸汽膜阶段较短的前提下,介质的300℃冷却速度越低,适用的工件和钢种也就越多”[2]。几年前有人宣传介绍过的“多级淬火油”,说是能“在低温时是快速淬火油,提高温度使用又是热油”的油品。无疑,其出发点是对的。可能是没有考虑到油温改变对油的粘度的影响,实际使用中,大多得不到预期的效果。

5 在一个车间配备多种不同适用范围的淬火介质,以满足不同工件的需要。比如,配备3~5种淬火油和2、3种不同浓度的水性淬火介质。又如,有些网带炉,通过配备可互换的两个淬火槽,一个装快速淬火油,一个装水性淬火介质,从而大大增加了该炉型的处理工件的范围。就是这方面的例子。

6 配合使用液态以外的淬火冷却介质,或者多种物态混和成的淬火介质,来获得不同的冷却特性。比如,流态炉淬火冷却、喷雾淬火和浆状介质淬火冷却等。

7 调节液温和相对流速,以扩大液态介质的适用范围。在介质品种和浓度不变的情况下,现场热处理工作者还可以通过调节液温和相对流速来扩大介质的适用范围。在上文已经讨论了这些因素的影响规律。下面再介绍一种叫做摆停结合的淬火方法,用了说明调节工艺参数在热处理生产中的作用。

图2 摆停结合技术得到不同冷速曲线的示意图

汽车板簧通常用淬火机淬火。为了提高淬火冷却速度和改善冷却的均匀性,淬火机可以夹持着工件在淬火液中来回摆动。利用板簧淬火机的摆动功能,我们在板簧厂推广过一种叫做“摆停结合技术”的淬火方法。虽然使用的是同一的淬火介质,通过调节摆动次数,可以获得完全不同的淬火冷却效果。图2是摆停结合调节冷却速度的示意图。如果以不同的冷却速度曲线代表不同的淬火介质,摆停结合技术就把一种介质变成了几种不同冷却速度的多种介质。这无疑是扩大液态淬火介质适用范围的一种有效方法。

上世纪90年代中,某汽车板簧厂在普通机油中淬材质为60CrMnBA,中间最大厚度17mm,两端最薄处7.5mm 的载重汽车变截面板簧时,曾经发生过不少淬裂问题。也就在那段时间,在成都飞力弹簧厂的板簧生产线上,用15%PAG水溶液却又成功地处理了同样的变截面板簧,淬、回火硬度以及金相组织全部合格,经严格探伤检查都未发现任何淬火裂纹。


图3 普通机油与15%今禹8-20的冷速对比

图4 普通机油静止、搅动的冷速对比

图5 15%今禹8-20不搅动与普通机油搅动的冷速曲线对比

图3是普通机油和所用15%的今禹8-20的冷却特性对比。仅凭图3的冷却速度曲线,热处理行家也难以相信上述结果的。实际上,上述变截面板簧在普通机油中做淬火冷却时,所用淬火机一直在不停地摆动。而在上述PAG水溶液中淬火时,淬火机却始终保持在停止不动的状态。图4是上述普通机油中探棒静止不动,以及始终摆动状态下测出的两条冷却速度曲线。可以看出,摆动可以加快冷却效果。再把静止状态检测出的15%PAG淬火液的冷却速度曲线与摆动状态测出的普通机油的冷却速度曲线画在同一张图上,如图5。容易发现,摆动中普通机油的低温冷却速度比静止的15%今禹8-20水溶液的要快。这是在普通机油中淬裂而在冷却速度更快的水溶液中未淬裂的原因。

8 采用双(或者多)介质淬火等操作方法来解决特定的热处理问题。水淬-油冷是最普通的例子。这类方法的思路是在工件的不同温度范围使用不同的淬火介质。高温阶段水冷却快,有利于防止过冷奥氏体发生珠光体转变,因此选择水来加以冷却。低温阶段油的冷却烈度比较缓和,能够防止工件发生淬火开裂,因此选择油来加以冷却。按照这种思路,高温阶段还可以选择PAG水溶液、盐水或者碱水等等。低温阶段可以选择快速淬火油、PAG水溶液、低温盐浴、浆状介质、风冷以及静止空冷等等。不同的搭配,就有不同的适用范围。图6是采用水淬-油冷,以及采用水淬-浆状介质冷却方法获得的冷却特性曲线图。双介质淬火中,水淬-油冷的难点有两个,一是工件从前一种介质向后一种介质的转移时间,另一个是转移操作。从图6(a)和(b)的对比中,可以看出,由于浆状介质具有适当快的低温冷却速度,水淬-浆状介质冷却对转移时间的要求不那么苛刻。一般说,只要能解决好这一转移过程的操作和时间控制问题,双介质淬火法就可能在大生产中得到推广应用。分级淬火、间断淬火等方法,实质上也属于多介质淬火方法。


图6 双液淬火的冷却速度曲线

a)水-普通机油

b)水-浆状介质

三 关于液态淬火介质的第二个共性缺点

图7 160℃硝盐浴与今禹Y15-II淬火油的冷速曲线对比

图7是某厂使用的一种快速淬火油与160℃低温盐浴的冷却特性对比。图中,淬火油的冷却速度相当快:到300℃的时间 11.2秒,300℃的冷却速度18℃/S。在淬火冷却的所有温度范围,160℃的低温盐浴的冷却速度都高于该快速淬火油。生产应用证明,多数工件在上述 160℃低温盐浴中淬火后,变形程度比在上述快速油中淬火要小。在热处理行业,至今还有这样的说法:“淬火介质的冷却速度越快,工件的淬火变形就越大”。显然,上述生产实践与这种说法是不一致的。在上述快速淬火油中淬火变形更大的原因,是工件在淬火冷却过程中遇到了特性温度问题;而低温盐浴的特性温度高于工件的加热温度,冷却过程中就没有特性温度问题。

在淬火冷却过程中,放在不同位置的工件,以及同一工件的不同部位,因为冷却条件不同,会在不同时间遭遇特性温度麻烦,结果由此引起的淬火变形量就具有很大的分散性。这是特性温度问题引起的淬火变形的一个重要特点。图8是一种齿轮在220℃低温盐浴和120℃热油中淬火后的淬火变形情况对比[3]。图中,和盐浴淬火相比,热油淬火的变形程度大而且特别分散。除了引起淬火变形之外,包含特性温度问题的淬火冷却,还常常因为蒸汽膜阶段的冷却速度慢,而引起工件的淬火硬度不均。

图8 100℃油浴与220℃盐浴的变形情况

凡是工件的入液温度高于介质的特性温度,而冷却的终止温度又低于介质的特性温度的淬火冷却过程,都会遇到特性温度问题。自来水的特性温度随着水温升高而迅速降低,会使工件上接触不同水温的部分遇到不同的特性温度问题。所以,在自来水中淬火,常常出现硬度不均和大的淬火变形。淬火油的特性温度比较稳定,即油温变化对油的蒸汽膜阶段的长短影响很小。因此,工件在油中淬火时,特性温度问题较小。

在最近发表的文章中,对液态淬火介质的特性温度问题已做了详细讨论,并指出了热处理生产中避开、克服或者减轻这一缺点的7种原则方法[1],可供参考。

四 淬火介质的研究开发历程就是克服这两个共性缺点的过程

虽然液态淬火介质都具有共性的两个缺点,在热处理生产中,过去使用,现在使用,将来还要大量使用它们。回顾中外冶金史,从寻找合适的淬火介质、研究开发新的淬火介质品种、创造新的淬火方法、采用各种工装具和相关设备等等,所有这些工作都与液态淬火介质共性的两个缺点密切相关。过去的多数工作,重点在克服液态介质的第一个缺点上。这是因为过去对热处理质量要求不很高,尤其是在淬火变形上。现在和将来的热处理,对工件的淬火变形提出了越来越高的要求。因此,我们认为,研究液态淬火介质的特性温度问题,开发和使用特性温度问题比较小的淬火介质,发展能减轻特性温度问题的不利影响的使用技术等工作,应当成为现在和今后一定时期的一项重要课题。

自来水是既清洁又廉价的冷却介质。任何场合,只要自来水能满足热处理要求,恐怕就不会再有人去寻找其他的冷却介质。按这个道理,一种新型的液态淬火介质是否能得到推广应用,关键是看它能否克服自来水的至少一个缺点。否则,就不如用自来水了。由此,有理由说,“能同时克服自来水的两大缺点,又有更宽的适用范围的新型淬火介质及其相关的配套技术”,是我们今后冷却技术研究开发工作共同的努力目标。

参考文献

[1] 张克俭. 对自来水作为淬火介质的两大缺点的研究[J]. 金属热处理,2005,30(1):66-71.

[2] 张克俭.从冷却特性选择淬火介质,《当代热处理技术与工艺装备精品集》,中国热处理行业协会、机械工业技术交流中心编,机械工业出版社,2002年3月,451-460。

[3] 渡边阳一.浸炭ぉふび浸炭窒化烧入れにふる变形ヒテの低减策[J].热处理,2003,43 (4):250.

歡迎來到Bewise Inc.的世界,首先恭喜您來到這接受新的資訊讓產業更有競爭力,我們是提供專業刀具製造商,應對客戶高品質的刀具需求,我們可以協助客戶滿足您對產業的不同要求,我們有能力達到非常卓越的客戶需求品質,這是現有相關技術無法比擬的,我們成功的滿足了各行各業的要求,包括:精密HSS DIN切削刀具協助客戶設計刀具流程DIN or JIS 鎢鋼切削刀具設計NAS986 NAS965 NAS897 NAS937orNAS907 航太切削刀具,NAS航太刀具設計超高硬度的切削刀具醫療配件刀具設計複合式再研磨機PCD地板專用企口鑽石組合刀具粉末造粒成型機主機版專用頂級電桿PCD V-Cut捨棄式圓鋸片組粉末成型機主機版專用頂級電汽車業刀具設計電子產業鑽石刀具木工產業鑽石刀具銑刀與切斷複合再研磨機銑刀與鑽頭複合再研磨機銑刀與螺絲攻複合再研磨機等等。我們的產品涵蓋了從民生刀具到工業級的刀具設計;從微細刀具到大型刀具;從小型生產到大型量產;全自動整合;我們的技術可提供您連續生產的效能,我們整體的服務及卓越的技術,恭迎您親自體驗!!

BW Bewise Inc. Willy Chen willy@tool-tool.com bw@tool-tool.com www.tool-tool.com skype:willy_chen_bw mobile:0937-618-190 Head &Administration Office No.13,Shiang Shang 2nd St., West Chiu Taichung,Taiwan 40356 http://www.tool-tool.com / FAX:+886 4 2471 4839 N.Branch 5F,No.460,Fu Shin North Rd.,Taipei,Taiwan S.Branch No.24,Sec.1,Chia Pu East Rd.,Taipao City,Chiayi Hsien,Taiwan

Welcome to BW tool world! We are an experienced tool maker specialized in cutting tools. We focus on what you need and endeavor to research the best cutter to satisfy users demand. Our customers involve wide range of industries, like mold & die, aerospace, electronic, machinery, etc. We are professional expert in cutting field. We would like to solve every problem from you. Please feel free to contact us, its our pleasure to serve for you. BW product including: cutting toolaerospace tool .HSS  DIN Cutting toolCarbide end millsCarbide cutting toolNAS Cutting toolNAS986 NAS965 NAS897 NAS937orNAS907 Cutting Tools,Carbide end milldisc milling cutter,Aerospace cutting toolhss drillФрезерыCarbide drillHigh speed steelCompound SharpenerMilling cutterINDUCTORS FOR PCDCVDD(Chemical Vapor Deposition Diamond )’PCBN (Polycrystalline Cubic Boron Nitride) Core drillTapered end millsCVD Diamond Tools Inserts’PCD Edge-Beveling Cutter(Golden FingerPCD V-CutterPCD Wood toolsPCD Cutting toolsPCD Circular Saw BladePVDD End Millsdiamond tool. INDUCTORS FOR PCD . POWDER FORMING MACHINE Single Crystal Diamond Metric end millsMiniature end millsСпециальные режущие инструменты Пустотелое сверло Pilot reamerFraisesFresas con mango PCD (Polycrystalline diamond) ‘FresePOWDER FORMING MACHINEElectronics cutterStep drillMetal cutting sawDouble margin drillGun barrelAngle milling cutterCarbide burrsCarbide tipped cutterChamfering toolIC card engraving cutterSide cutterStaple CutterPCD diamond cutter specialized in grooving floorsV-Cut PCD Circular Diamond Tipped Saw Blade with Indexable Insert PCD Diamond Tool Saw Blade with Indexable InsertNAS toolDIN or JIS toolSpecial toolMetal slitting sawsShell end millsSide and face milling cuttersSide chip clearance sawsLong end millsend mill grinderdrill grindersharpenerStub roughing end millsDovetail milling cuttersCarbide slot drillsCarbide torus cuttersAngel carbide end millsCarbide torus cuttersCarbide ball-nosed slot drillsMould cutterTool manufacturer.

Bewise Inc. www.tool-tool.com

ようこそBewise Inc.の世界へお越し下さいませ、先ず御目出度たいのは新たな

情報を受け取って頂き、もっと各産業に競争力プラス展開。

弊社は専門なエンドミルの製造メーカーで、客先に色んな分野のニーズ

豊富なパリエーションを満足させ、特にハイテク品質要求にサポート致します。

弊社は各領域に供給できる内容は:

(1)精密HSSエンドミルのR&D

(2)Carbide Cutting tools設計

(3)鎢鋼エンドミル設計

(4)航空エンドミル設計

(5)超高硬度エンドミル

(6)ダイヤモンドエンドミル

(7)医療用品エンドミル設計

(8)自動車部品&材料加工向けエンドミル設計

弊社の製品の供給調達機能は:

(1)生活産業~ハイテク工業までのエンドミル設計

(2)ミクロエンドミル~大型エンドミル供給

(3)小Lot生産~大量発注対応供給

(4)オートメーション整備調達

(5)スポット対応~流れ生産対応

弊社の全般供給体制及び技術自慢の総合専門製造メーカーに貴方のご体験を御待ちしております。

Bewise Inc. talaşlı imalat sanayinde en fazla kullanılan ve üç eksende (x,y,z) talaş kaldırabilen freze takımlarından olan Parmak Freze imalatçısıdır. Çok geniş ürün yelpazesine sahip olan firmanın başlıca ürünlerini Karbür Parmak Frezeler, Kalıpçı Frezeleri, Kaba Talaş Frezeleri, Konik Alın Frezeler, Köşe Radyüs Frezeler, İki Ağızlı Kısa ve Uzun Küresel Frezeler, İç Bükey Frezeler vb. şeklinde sıralayabiliriz.

BW специализируется в научных исследованиях и разработках, и снабжаем самым высокотехнологичным карбидовым материалом для поставки режущих / фрезеровочных инструментов для почвы, воздушного пространства и электронной индустрии. В нашу основную продукцию входит твердый карбид / быстрорежущая сталь, а также двигатели, микроэлектрические дрели, IC картонорезальные машины, фрезы для гравирования, режущие пилы, фрезеры-расширители, фрезеры-расширители с резцом, дрели, резаки форм для шлицевого вала / звездочки роликовой цепи, и специальные нано инструменты. Пожалуйста, посетите сайт  www.tool-tool.com  для получения большей информации.

BW is specialized in R&D and sourcing the most advanced carbide material with high-tech coating to supply cutting / milling tool for mould & die, aero space and electronic industry. Our main products include solid carbide / HSS end mills, micro electronic drill, IC card cutter, engraving cutter, shell end mills, cutting saw, reamer, thread reamer, leading drill, involute gear cutter for spur wheel, rack and worm milling cutter, thread milling cutter, form cutters for spline shaft/roller chain sprocket, and special tool, with nano grade. Please visit our web  www.tool-tool.com  for more info.

beeway 發表在 痞客邦 留言(0) 人氣()

 

Bewise Inc. www.tool-tool.com Reference source from the internet.

发表于《金属热处理》2002年第10期

摘要:研究了以水和细小粘土粉末等固体颗粒混合而成的浆状介质的稳定性、冷却特性及其影响因素。比较发现,浆状介质具有高于风冷而又低于普通机油的冷却速度,可用于一些高合金钢的淬火冷却、铝合金固溶处理,也可用于结构钢工件做等温正火的冷却。提出了两种新的淬火冷却方法:(1)先水或水溶液而后浆状介质的双介质淬火方法,(2)工件在浆状介质中先做摆动以加快冷却,而后再停止摆动以防止淬裂的淬火方法。浆状介质完全不污染环境,使用浆状介质成本极低,值得推广应用。
关键词:浆状液;粘土粉末冷却介质;淬火冷却
中图分类号:TGl54.4    文献标识码:A    文章编号:0254-6051(2002)10-0044-06

The Characteristics and Uses of Muddy Quenching Media

Zhang Kejian

(Beijing Huali Fine Chemical Co. ,Changping ,Beijing 102200,China)

Abstract: The present paper investigates the stability, cooling characteristics and the effecting factors of a muddy quenching medium, a mixture of water and fine clay powders. Comparisons show that the cooling rate of the muddy quenching medium is higher than that of wind cooling, while lower than that of oil, thus it can be used for quenching certain high alloy steels, solution treatment of aluminum alloys, and also for isothermal normalizing of structural steel components. Two new quenching methods are proposed as follows: 1. Interrupted quenching, whereby the work-piece is first cooled in water or a water-based solution,then cooled in the muddy quenching medium. 2. The work-piece is first cooled by swinging in the muddy quenchant for fast cooling, then kept still to avoid cracking. The muddy quenching medium is environmentally non-pollutant, the costs of its use are especially low, therefore its use is worth advertising.

Key Words:muddy quenchant;clay powders cooling medium;quenching

本文所指的浆状介质,是在水(或其他液体)中加入质量比例达20%以上的不溶解的固体粉末,并经搅拌而成的悬浊液,本文中也简称为浆液。这种介质的冷却特性是,蒸汽膜冷却阶段可以持续到相当低的温度,而后的沸腾阶段的冷却速度又远比自来水相同温度的冷却速度低。这种介质的冷却特性可以在一定范围内调整。当处于静止状态时,浆状介质总的冷却速度大致可以降低到风冷和油冷之间,这正好填补了常用冷却介质中,冷却速度低于普通机油而又快于普通风冷中间的空白。浆状介质不燃烧,淬火时无烟气,淬火后的工件一般可不清洗或只用清水稍做冲洗就十分干净。使用中除补充一些水外,浆状介质几乎没有什么消耗。浆状介质可以直接排放,完全不污染环境。

本文介绍了作者研究浆状介质的成果,包括浆状介质的组成和配制,浆状介质的冷却特性及其影响因素。文章最后把浆状介质单独用或与其他介质配合用,开发了几类全新的热处理冷却技术,包括能获得高于风冷但又低于普通机油的冷却速度的技术,能部分代替淬火油和水溶性淬火液的技术,快速正火技术和能代替水淬油冷的技术等。浆状介质的应用涉及高速钢、固溶加热铝合金、合金结构钢、碳素钢直到低碳钢。我们认为,浆状介质的使用,可能把淬火油和PAG淬火介质等水溶性介质部分地代换下来。

1 对浆状介质的研究经过

10年前,在研究不同介质的冷却特性时,作者曾经配制了几种水的黄泥浆和油的黄泥浆,用ivf仪测量过它们的冷却特性。从测量结果看,它们都以蒸汽膜阶段特别长,沸腾出现的温度特别低为特点。因为当时未遇到合适的用途,就没有做进一步的研究。

近几年来,随着对冷却介质研究面加宽,我们发现,在一般条件下容易获得的冷却介质 ,如果按由慢到快的冷速排列,可以得到如下的排序:

静止空气-风冷-普通机油-快速油-水溶性介质-自来水-低浓度碱水或盐水-喷流水。

比较发现,在这一排序中,一般能够获得的风冷冷速总是远低于普通机油的冷速。也就是说,在风冷到普通机油之间,还存在一段空缺。在向各地用户工厂作技术咨询中,也常有人问到:是否能提供比普通机油慢而又比一般风 冷快的介质?出于这方面的需要,从2000年初起,我们再次把注意力转到泥浆上, 从而对浆状介质做了进一步较全面的研究。

2 浆状介质的组成和特性

这里所说的浆状介质是由液体和在其中不溶解的固体粉末混和而成的悬浊液。可用的液体首选自来水,也可以用矿物油或其他液体。可选用的固体粉末的材料应当有很高的化学稳定性,保证在使用过程中不发生化学变化。在使用过程中,这些粉末的颗粒应当不会互相粘连,且也不会粘连到钢件和所接触的容器和管道上。同时要求粉体材料价廉,且不污染环境。

细粒粘土,尤其是重质粘土都可以选用。对新取的粘土须作一次烘烧,以去除其中的草根等有机杂质。然后将粘土打成细粉。最后是过筛,选用粒度适合部分作为配制浆状介质的粉体材料。为保证粒度均匀稳定,在没有合适粘土粉体材料时,也可以采用滑石粉等。

浆状介质中粉体材料的量(按质量分数计)通常在20%~60%范围内选用。粉末含量过低,冷却的蒸汽膜阶段过短,得不到低于普通机油的冷却速度。粉末含量过高,浆状介质的流动性差,不利于使用。

配制浆状介质的办法很简单,按质量比备料,在槽子中通过搅拌混合成浆状就成了。可以用液体比重仪测量和控制浆状介质的固体粉末含量。

混合好的浆状介质是选定的液体中不溶固体颗粒的悬浊液。液体是它的分散介质,不溶颗粒是它的分散相。悬浊液不同于真溶液,也不同于胶体。悬浊液中分散相颗粒的一般大小在10-7~10-3m范围。胶体中分散相微粒大小在 10-9~10-7m;而真溶液溶解的是溶质的分子。真溶液和胶体都是透明而稳定的,而悬浊液则是不透明而易分层的。悬浊液中的固体颗粒是通过搅拌而悬浮起来的。颗粒比较细时,悬浊液分层慢些。

固体颗粒的质量分数比不太高时,悬浊液有较好的流动性,可以通过泵和管道象水一样进行输送。这一特点使悬浊液可以象油和水一样做搅动、循环和加热或冷却。由于它的分散介质是水,循环冷却中也就不会象融熔盐那样发生凝固而堵塞管路。

3 浆状介质的冷却特性

3.1 在浆状介质中冷却

观察在浆状介质中冷却红热钢件的过程,我们能够看到的状况是:浸入介质后,钢件冷却的初期,浆状介质表面会显得很平静。如果钢件上部露在介质外,此时在浆状介质与红热钢件相接触部位,可以看到介质完全不能浸润钢件,钢件是被一层气体包围着的。在这一阶段把钢件从浆状介质中提出来,钢件会非常干净,表面完全不会带粉末污迹。一旦到发现有气体从介质表面突然冲出,这一阶段就结束了。

从有气体冲出起就进入了在浆状介质中冷却的第二阶段。从表面看,气体冲出与玉米面糊糊沸腾时的状况很相似。气体冲出一旦开始就迅速加剧。经过其最激烈冲气沸腾后,冲出的气体逐渐减少,直至停止冲气。在这一阶段把钢件提出,工件会有介质粉末带出。

冲气停止后,继续冷却钢件 ,介质表面又归于平静。这时候提出钢件,看到的将是粘满粉末浆的表面。由于配制浆状介质用的固体颗粒不会相互粘连,也不会粘连到钢件表面,用少量的水一冲,就能将附在表面的粉浆冲掉。

图1是用ivf仪测量出的,典型的浆状介质的冷却特性曲线,可以用它来介绍在浆状介质中的冷却的特点。

图 1的冷却特性与普通的淬火油、自来水和水溶性淬火液的冷却特性有很大差异。其特点是:蒸汽膜冷却阶段从高温延伸到约400℃,随后进入沸腾冷却阶段,最后在100℃附近进入对流冷却阶段。其蒸汽膜阶段的冷却速度不高,且是随钢件的温度降低而逐渐减慢的。沸腾开始后,冷却速度再增大。在图1中,沸腾的最大冷却速度出现在300℃附近,但最大冷却速度只有35℃/s,仍然远低于相同条件下在自来水中淬火时的300℃冷却速度(大约90℃/s)。沸腾期结束后,进入冷却的对流阶段。由于浆液流动性差,其对流阶段的冷却速度也低于自来水的对流阶段的冷却速度。

图1所示的冷却特性曲线上,有几个指标可以说明它的特征。这几个指标是:首要指标是蒸汽膜阶段与沸腾阶段交界点的温度,即蒸汽膜阶段的长度;第二是蒸汽膜阶段的冷却速度大小。第三是沸腾阶段的最高冷却速度及其对应的温度。

和上面外观描述的状况相对照,图1中的蒸汽膜阶段对应的是冷却初期比较平静的阶段,沸腾阶段对应的是从浆状介质中冲出气体的阶段,而对流阶段对应的是停止冲出气体后继续冷却的阶段。

3.2 特殊冷却特性的成因

和自来水或油中冷却相比,在浆状介质中冷却有:蒸汽膜阶段特别长,蒸汽膜阶段的冷却速度更快,和沸腾阶段的冷却速度比自来水慢等三个特点。可以认为,这种特殊性是由以下几方面的原因引起的:A.浆状介质的流动性差,通过对流散热速度慢。这将使蒸汽膜更稳定,并使沸腾阶段的冷却速度降低。B.在蒸汽膜冷却阶段,来自工件的热辐射在浆液层受到固体颗粒的反射和遮挡,其结果,使辐射加热层的温差加大,且被加热层变薄。这些都有稳定蒸汽膜的作用。C.形成蒸汽膜失去水份后,包围蒸汽膜的浆液表面层浓度会增高。浓度增高引起的遮挡作用增大,并使表层粘度增大而流动性更差。这都有稳定蒸汽膜的作用。D.由于固体粉末的存在,单位体积中水的量必然比单纯自来水少。由于固体粉末材料的比热远小于水,使单位体积的热容比水低。这样,在蒸汽膜阶段和沸腾阶段,受到工件接触加热和辐射加热的浆液的温度容易升高。其结果,蒸汽膜将会更稳定,沸腾阶段的冷却速度会更低。E.浆液的密度也大于水,在相同介质深度上,浆液的压强必然高于水和水溶液。压强高,水沸腾温度会有所提高,水汽化就更困难些。因压强大的原因,在蒸汽膜阶段,相同深度的蒸汽膜要薄一些,蒸汽膜内的水蒸气密度要大一些。其结果,工件获得的冷却速度就高一些。在沸腾冷却阶段,由于气泡涨大要做更多的功,随着深度的增加,水的沸点增高,沸腾的激烈程度变弱,沸腾阶段的冷却速度就低一些。

4 浆状介质的稳定性

用自来水和泥土或其他无机矿物粉末配制的浆状介质,作为淬火介质在化学上都是非常稳定的。这里所说的稳定性专指的是悬浊液中固体颗粒必然发生的沉降所引起的问题。

悬浊液不稳定,放置中悬浮的固体颗粒会发生沉降。发生沉降后,不同深度上的介质浓度不同将造成相应的冷却特性差异。

一般都用自来水配制浆状介质。组成分散介质的粉状物质,它的密度高低和粒度大小对浆状介质的稳定性也有重要影响。

如果作为自由沉降来处理,则液体的密度ρ1、粒子的密度ρ2、粒子的直径d 、液体的粘度η和粒子的沉降深度V之间有以下关系:

V ∝ d2(ρ2- ρ1)/η          (1)

因为沉降速度与粒子直径的平方成正比,粒子的大小对沉降速度影响最大。减小粒子直径则可以大大提高介质的稳定性。(ρ2- ρ1)是液体和粒子材料的密度差。密度差越小,沉降速度越低。液体的粘度越大,粒子的沉降速度就越慢。

满足各方面要求的粉体都是一些无机矿物,它们的密度一般多在2.2~3.0g/cm3范围。表1列出了几种典型固体物料的密度值。它们的密度都比水大,因此发生的总是分散相下沉。白土容易分散在水中,因此它的浆液稳定性较好。一般说,选用较细的泥或粉体作为分散相,浆状介质就有足够的稳定性,在正常生产条件下,即使几十分钟不搅动,也看不出明显的分层现象。只有因停止生产,浆状介质较长时间不搅动,才可能发生明显的分层。加入少量分散剂也能提高浆液的稳定性。

表1 典型固体物料的密度值

固体名称

碳酸钙

滑石粉

粘土

高岭土(白土)

密度/g·cm-3

2.93

2.7-2.8

2.2

2.5-2.6

5 影响浆状介质冷却特性的因素

5.1 分散相粒子大小对冷却特性的影响

分散相粉末的粒度大小对浆状介质的冷却特性有较大影响。在相同的质量分数比浓度下,固体颗粒大的和固体颗粒小的浆液,冷却特性的差别为:颗粒大的,冷却的蒸汽膜阶段短,沸腾开始温度高,且沸腾的冷却速度也高;而颗粒小的蒸汽膜阶段长,沸腾开始温度低,沸腾的冷却速度也低。图2是3种粒度的浆状介质在相同浓度和相同液温下的冷却 特性曲线。容易看出,颗粒大小 对蒸汽膜阶段长短和沸腾冷却的 快慢有很大影响。随着颗粒直径 的减小,沸腾开始温度会持续下降。

此外,固体颗粒越细,悬浊液就越不容易分层,不同部位的冷却特性差就越小。

为了排除粉体颗粒大小对浆液稳定性和冷却特性的影响,我们选定了有确定粒度(1250目)的滑石粉来配制试验用浆状介质。因此,以下选用的试验数据,都出自粒度为1250目的滑石粉配制的浆液。

5.2 分散相浓度高低的影响

图 3和图4分别是粒度为1250目的滑石粉配制的浆状介质,在液温20℃和80℃时,分散相质量百分比(即浓度)对冷却特性的影响。图中, a图是冷却速度曲线对比,b图是冷却过程曲线对比,。可以看出,浓度越高,蒸汽膜阶段越长。浓度越高,蒸汽膜阶段的冷却速度越低。同时,浓度越高,沸腾阶段的开始温度越低,沸腾的最高冷却速度值也越小。

浓度变化对浆状介质冷却特性有明显影响。这说明改变浓度可以获得不同冷却特性的浆状介质,去适应不同的需要。

5.3 介质温度对冷却特性的影响

滑石粉粒度为1250目的浆状介质,当浓度为35%和50%时,液温度变化对冷却特性的影响分别如图5和图6所示。容易看出,这种影响的大致趋势是:液温升高蒸汽膜阶段就增长。但值得注意的是,液温不相同时,蒸汽膜阶段的冷却速度值却相差不大。另外,沸腾阶段的冷却特性变化趋势是:随液温增高,冷却速度是降低的,但变化也不大。而沸腾阶段最高冷却速度出现的温度则基本不受液温高低的影响。

总的说:液温变化对浆状介质冷却特性的影响相当小。应当说,这是浆状介质的一大优点。它表明,使用中浆状介质的浓度一定时,介质的平均液温高低,以及同一槽中不同部位的液温差别对冷却的均匀性影响不大。这个特性使我们容易获得均匀的冷却效果。

5.4 相对流速对冷却特性的影响

通过搅动或使介质流动,都能使介质与工件之间发生相对运动,造成一定的相对流速。轻微搅动对浆状介质的冷却特性影响很小。但是,当搅动速度加大时,会使包围工件的蒸汽膜变薄,因而能加快蒸汽膜阶段的冷却速度。如图7中曲线3 所示。容易看出,静止和中等强力搅动获得的冷却速度差别很大。更大的相对流速会将包围工件的蒸汽膜会冲破而提早进入沸腾阶段,从而使冷却速度大大提高。如果采取先强力搅动而后再静止下来的方法在浆状介质中冷却工件,就可以获得高温冷得快而低温冷得慢的理想效果。因为浆状介质的粒度、浓度和可以采取的搅动强力程度可以调整,把搅动和静止结合,可以创造出很多种特性各异的冷却介质。

5.5 其他因素对冷却特性的影响

除了用水外,如果有特殊要求,也可以选用其他液体。所选液体的密度、饱和蒸汽压大小、粘度和沸点高低等可能影响浆状介质的冷却特性。密度和粘度的影响已在全面讨论过。在浆状介质中加入少量的起泡剂,可以使产生的蒸汽膜更稳定,从而大大延长冷却的蒸汽膜阶段。相反,加入少量的消泡剂,则有缩短冷却的蒸汽膜阶段的作用。所用液体材料的沸点高低对浆状介质的冷却特性也有影响。沸点高的,介质冷却的对流开始温度就越低。相反,就越高。液体中溶解一定量的盐,可以提高它的沸点温度,结果将缩短浆状介质的蒸汽膜阶段,并提高沸腾阶段的冷却速度。

6 浆状介质的用途简介

6.1 浆状介质的冷却特性填补了一项空白

在一般生产现场,要获得高于风冷而又低于普通机油的冷却速度是不容易的,而浆状介质则正好填补了这一空白。图8是中速风冷、N32普通机油冷却以及液温 20℃时55%的细滑石粉和液温40℃的45%的细滑石粉浆液的冷却特性对比。可以看出,不同浓度的浆状介质,可以获得风冷到普通机油之间的不同的冷却速度,能满足冷却速度在这一范围的不同需要。

用水配制的浆状介质化学稳定性高,使用中完全不会变质。除在冷却特性方面能满足上述要求外,还具备了使用中几乎没有消耗,生产成本低,根本不会燃烧,生产中只产生一些水蒸气,完全不污染环境等一系列的优点。

6.2 浆状介质的使用特点

(1) 只用它的蒸汽膜冷却阶段:和其他淬火介质的冷却特性不同,浆状介质的冷却特性以蒸汽膜阶段特别长为特点,因此,我们首先 考虑使用它的蒸汽膜阶段来冷却钢件。选用较细的粉体和较高的粉体浓度,蒸汽膜阶段可以延长到钢 件冷却到300℃以下温度,其冷却速度比油冷低比风冷高。这可能适合于某些高合金钢类工件淬火冷却之用。考虑到蒸汽膜阶段之后的沸腾冷却阶段冷速较高,在这种用途中,工件冷却到开始沸腾的温度 之前,必须从浆状介质中提取出来在空气中缓冷,以免发生淬裂。好在浆状介质中冷却较油缓慢,有足够的时间进行这种操作。在发生沸腾之前取出工件的另一个好处是,提出时工件表面非常干净,完全没有泥粉粘连。

(2)只用它的沸腾冷却阶段: 浆状介质的沸腾阶段出现在相当低的温度,且沸腾阶段的冷却速度远低于自来水相同工件温度时的冷却速度。这一特点使浆状介质可以作为淬火冷却的较低温度阶段的冷却介质来使用。

(3)全程使用 :有些场合,经过高温阶段在蒸汽膜包围下冷却后,钢的组织转变已经完成,沸腾阶段的却速度高低也无关紧要了。这种情况下,可以在浆状介质中一冷到底。

后两种用途中,因工件在沸腾冷却阶段之后才从浆状介质中取出,工件表面难免要带出一些浆液。但这些浆液用少量自来水一冲就能去除干净。用水冲洗能把带出的浆液回收进冷却槽中。

6.3 浆状介质的可能用途

在可能查阅到的书刊中,一直没有使用到浆状介质的热处理方法[1-3]的报道,最近国外才有人提到与本文相似的浆状介质,但指出仅可能用于高合金钢的淬火冷却[4]

(1) 求高中温阶段冷却缓慢的高合金钢的淬火冷却:比如,高速钢冷作模具钢等类材料制的工件,它们需要比普通机油慢的冷却介质。这类用途中,工件必须在进入沸腾冷却阶段之前从浆液中取出。这一用途国外已有介绍(4 )。

(2) 对某些种类的高合金钢,浆状介质还可以作为分级冷却的替代品,而得到简化操作并减小变形的效果。

(3) 铝合金的淬火冷却。沸腾开始温度在约500℃附近,而最高冷速出现在300℃~400℃之间的浆状介质,适于这类场合使用。

(4)用水淬-浆液冷却代替水淬-油冷水淬油冷是众所周知热处理方法。水淬油冷存在的问题有:出水时间不好掌握,早了淬不硬,迟了又怕淬裂;油的冷却速度过慢,不宜淬较大的工件;工件把水带进油中会使油的特性变坏。如果采用水淬-浆液冷却代替水淬油冷,可以根据所处理工件的情况,选择浆液的浓度,以获得适快的沸腾阶段冷却速度,使工件出水的时间就可以再早一点,也同样可以淬硬。这样,工件的出水时间范围就可以放宽些,操作上也就容易些。由于水是浆状介质的组份,不会影响浆状介质的特性。少量水的带入正好补充了浆液在使用中的部分水消耗,也是一件好事。按同样的道理,再把这种方法扩展成水溶液-浆液的双介质淬火方法,可以用不同的水性淬火液,以获得浆液冷却之前不同的冷却速度,以适应不同的热处理需要。可选用的水溶液包括低浓度的盐水或低浓度的碱水,用以获得超过自来水的高温阶段冷却速度,然后在在选定的浆液中冷却。盐的加入还可以减小液温变化对冷却特性的影响,使适合于处理形状较复杂和有较深内孔的工件。水溶液也包括不同浓度的PAG淬火液,可以使高温阶段的冷却速度不至太高。因为浆液中的水可以是盐水,这类方法也适宜盐浴炉加热后工件淬火,即采用先水后浆液淬火法。

(5) 结构钢件的快速正火 为了获得好而又均匀的预备组织,现在正推广使用的等温正火(也叫等温退火)方法。当前使用的等温退火炉中,快速冷却采用的是风冷。风冷有它的优点,但风冷的速度不够快,且均匀性也不一定很好。

浆状介质冷却可以获得比风冷快的冷却速度,冷却的均匀性也好,使用中不会有大的声响,因此可以采用浆状介质冷却,来代替当前采用的风冷。

在热处理车间,可以配备一个带搅拌装置和循环冷却装置的浆状介质冷却槽。对原来出炉后通过零散或堆放冷却作正火的工件,改在浆状介质槽中冷却,既可以提高正火的质量,又能提高生产效率。

(6)采用搅动加停止的方法使用浆状介质用一定的方法,在淬火冷却的高温和高温阶段,通过搅动浆液或工件自身运动,使浆液处于相对流动状态,而到了停止搅动,使工件得以缓慢冷却。不同浓度的浆液,通过动停结合,可以工件冷却的低温阶段,比如到了所处理钢材过冷奥氏体的Ms温度附近,获得相当于普通机油到快速淬火油的冷却效果。这种淬火方法,既能保证工件淬硬,又能防止工件淬裂并减小变形。

在某些能够满足使用条件的场合,通过选择浆液的液体成分,比如用自来水、盐水等,可能把当前广泛使用的淬火油和水溶性淬火机取代掉。

6.4 浆状介质的用途覆盖范围

如果只在静止状态使用浆状介质,常用介质冷却速度由低到高的次序排列为: 静止空气-风冷-静止的浆状介质-普通机油-快速油-水溶性介质- 自来水-低浓度碱水或盐水-喷流水 其中,浆状介质只填补了风冷到普通机油冷却之间的空白。如果把本文上面发明的处理方法加上去,浆状介质涉及到的冷却速度范围和应用范围将大大加宽,如表2所示。

表2 浆状介质的使用可能覆盖的范围

冷却速度大小

冷却介质的种类

淬火方法

浆状介质单独用

与其它介质配合用

冷却速度排序




静止空气
风冷
浆状介质(静止)
普通机油
快速油
PAG淬火液
自来水
低浓度盐水

搅动加静止

先水溶液后浆状介质

本公司郝学志、肖金山、邵一泉和范青乐参加了部分试验测试工作,在此一并表示感谢。

参考文献:

[1] 雷廷权,傅家骐编,金属热处理工艺方法500种[M],北京,机械工业出版社,1998·10
[2] 中国机械工程学会热处理专业分会热处理手册编委会编,热处理手册[M],第3版,第1卷,北京,机械工业出版社,2001,2,98~148.
[3] 中国机械工程学会热处理专业分会热处理手册编委会编,热处理手册[M],第3版,第3卷,北京,机械工业出版社,2001,4,710~733.
[4] Paul Stratton .A Water-based Quenchant for High Alloy Steels, Metallurgia[J],2001(2);9

歡迎來到Bewise Inc.的世界,首先恭喜您來到這接受新的資訊讓產業更有競爭力,我們是提供專業刀具製造商,應對客戶高品質的刀具需求,我們可以協助客戶滿足您對產業的不同要求,我們有能力達到非常卓越的客戶需求品質,這是現有相關技術無法比擬的,我們成功的滿足了各行各業的要求,包括:精密HSS DIN切削刀具協助客戶設計刀具流程DIN or JIS 鎢鋼切削刀具設計NAS986 NAS965 NAS897 NAS937orNAS907 航太切削刀具,NAS航太刀具設計超高硬度的切削刀具醫療配件刀具設計複合式再研磨機PCD地板專用企口鑽石組合刀具粉末造粒成型機主機版專用頂級電桿PCD V-Cut捨棄式圓鋸片組粉末成型機主機版專用頂級電汽車業刀具設計電子產業鑽石刀具木工產業鑽石刀具銑刀與切斷複合再研磨機銑刀與鑽頭複合再研磨機銑刀與螺絲攻複合再研磨機等等。我們的產品涵蓋了從民生刀具到工業級的刀具設計;從微細刀具到大型刀具;從小型生產到大型量產;全自動整合;我們的技術可提供您連續生產的效能,我們整體的服務及卓越的技術,恭迎您親自體驗!!

BW Bewise Inc. Willy Chen willy@tool-tool.com bw@tool-tool.com www.tool-tool.com skype:willy_chen_bw mobile:0937-618-190 Head &Administration Office No.13,Shiang Shang 2nd St., West Chiu Taichung,Taiwan 40356 http://www.tool-tool.com / FAX:+886 4 2471 4839 N.Branch 5F,No.460,Fu Shin North Rd.,Taipei,Taiwan S.Branch No.24,Sec.1,Chia Pu East Rd.,Taipao City,Chiayi Hsien,Taiwan

Welcome to BW tool world! We are an experienced tool maker specialized in cutting tools. We focus on what you need and endeavor to research the best cutter to satisfy users demand. Our customers involve wide range of industries, like mold & die, aerospace, electronic, machinery, etc. We are professional expert in cutting field. We would like to solve every problem from you. Please feel free to contact us, its our pleasure to serve for you. BW product including: cutting toolaerospace tool .HSS  DIN Cutting toolCarbide end millsCarbide cutting toolNAS Cutting toolNAS986 NAS965 NAS897 NAS937orNAS907 Cutting Tools,Carbide end milldisc milling cutter,Aerospace cutting toolhss drillФрезерыCarbide drillHigh speed steelCompound SharpenerMilling cutterINDUCTORS FOR PCDCVDD(Chemical Vapor Deposition Diamond )’PCBN (Polycrystalline Cubic Boron Nitride) Core drillTapered end millsCVD Diamond Tools Inserts’PCD Edge-Beveling Cutter(Golden FingerPCD V-CutterPCD Wood toolsPCD Cutting toolsPCD Circular Saw BladePVDD End Millsdiamond tool. INDUCTORS FOR PCD . POWDER FORMING MACHINE Single Crystal Diamond Metric end millsMiniature end millsСпециальные режущие инструменты Пустотелое сверло Pilot reamerFraisesFresas con mango PCD (Polycrystalline diamond) ‘FresePOWDER FORMING MACHINEElectronics cutterStep drillMetal cutting sawDouble margin drillGun barrelAngle milling cutterCarbide burrsCarbide tipped cutterChamfering toolIC card engraving cutterSide cutterStaple CutterPCD diamond cutter specialized in grooving floorsV-Cut PCD Circular Diamond Tipped Saw Blade with Indexable Insert PCD Diamond Tool Saw Blade with Indexable InsertNAS toolDIN or JIS toolSpecial toolMetal slitting sawsShell end millsSide and face milling cuttersSide chip clearance sawsLong end millsend mill grinderdrill grindersharpenerStub roughing end millsDovetail milling cuttersCarbide slot drillsCarbide torus cuttersAngel carbide end millsCarbide torus cuttersCarbide ball-nosed slot drillsMould cutterTool manufacturer.

Bewise Inc. www.tool-tool.com

ようこそBewise Inc.の世界へお越し下さいませ、先ず御目出度たいのは新たな

情報を受け取って頂き、もっと各産業に競争力プラス展開。

弊社は専門なエンドミルの製造メーカーで、客先に色んな分野のニーズ

豊富なパリエーションを満足させ、特にハイテク品質要求にサポート致します。

弊社は各領域に供給できる内容は:

(1)精密HSSエンドミルのR&D

(2)Carbide Cutting tools設計

(3)鎢鋼エンドミル設計

(4)航空エンドミル設計

(5)超高硬度エンドミル

(6)ダイヤモンドエンドミル

(7)医療用品エンドミル設計

(8)自動車部品&材料加工向けエンドミル設計

弊社の製品の供給調達機能は:

(1)生活産業~ハイテク工業までのエンドミル設計

(2)ミクロエンドミル~大型エンドミル供給

(3)小Lot生産~大量発注対応供給

(4)オートメーション整備調達

(5)スポット対応~流れ生産対応

弊社の全般供給体制及び技術自慢の総合専門製造メーカーに貴方のご体験を御待ちしております。

Bewise Inc. talaşlı imalat sanayinde en fazla kullanılan ve üç eksende (x,y,z) talaş kaldırabilen freze takımlarından olan Parmak Freze imalatçısıdır. Çok geniş ürün yelpazesine sahip olan firmanın başlıca ürünlerini Karbür Parmak Frezeler, Kalıpçı Frezeleri, Kaba Talaş Frezeleri, Konik Alın Frezeler, Köşe Radyüs Frezeler, İki Ağızlı Kısa ve Uzun Küresel Frezeler, İç Bükey Frezeler vb. şeklinde sıralayabiliriz.

BW специализируется в научных исследованиях и разработках, и снабжаем самым высокотехнологичным карбидовым материалом для поставки режущих / фрезеровочных инструментов для почвы, воздушного пространства и электронной индустрии. В нашу основную продукцию входит твердый карбид / быстрорежущая сталь, а также двигатели, микроэлектрические дрели, IC картонорезальные машины, фрезы для гравирования, режущие пилы, фрезеры-расширители, фрезеры-расширители с резцом, дрели, резаки форм для шлицевого вала / звездочки роликовой цепи, и специальные нано инструменты. Пожалуйста, посетите сайт  www.tool-tool.com  для получения большей информации.

BW is specialized in R&D and sourcing the most advanced carbide material with high-tech coating to supply cutting / milling tool for mould & die, aero space and electronic industry. Our main products include solid carbide / HSS end mills, micro electronic drill, IC card cutter, engraving cutter, shell end mills, cutting saw, reamer, thread reamer, leading drill, involute gear cutter for spur wheel, rack and worm milling cutter, thread milling cutter, form cutters for spline shaft/roller chain sprocket, and special tool, with nano grade. Please visit our web  www.tool-tool.com  for more info.

beeway 發表在 痞客邦 留言(0) 人氣()

 

Bewise Inc. www.tool-tool.com Reference source from the internet.

发表于《金属热处理》2005年第1期第66-71页

摘要:从自来水淬火时工件容易淬裂、硬度不均且畸变大等现象,列出了自来水作为淬火介质的两大缺点:一是低温冷却速度太快,二是冷却特性对水温变化太敏感。分析了自来水第二大缺点引起淬火硬度不均和畸变的原因。通过与气态介质的对比,指出了液态淬火介质共同的两类缺点:一是任何确定的液态介质,其冷却速度的可调节范围都很有限,以致同一个车间必须配备普通淬火油、中速淬火油和高速淬火油,才能满足不同工件的需要;二是工件从蒸汽膜阶段到沸腾阶段期间,冷却速度突然增大,可能引起较大的淬火变形。提供了克服液态淬火介质第二类缺点的七类技术方法。

关键词:水;淬火介质;淬火冷却;淬火冷却畸变

Investigation on Two Main Shortcomings from Tap Water as Quenching Medium

Zhang Ke-jian (Beijing HuaLi Fine Chemical Co. Beijing 102200,China)

Abstract: According to the phenomenon of cracks, heterogeneous hardness and distortion under quenching by tap water, two shortcomings of the hest treatment were analyzed: one is too fast cooling rate in low temperature range and the other is too sensitivity of cooking characteristics on the variation of water temperature. The reason of heterogeneous quenching hardness and distortion was analyzed from second shortcoming of tap water. Through a comparison with gaseous media, the two common shortcomings of all liquid quenchant were summarized: one is that with any liquid quenchant the cooling rate has very limited adjustment range, and a workshop should prepare quenchants: ordinary quenching oil accelerative quenching oil and rapid quenching oil, the other is that when a workpiece transfers from a vapor blanket stage to the nucleation boiling stage the cooling rate increase suddenly which causes quenching distortion. At the same time, effective control measures are provided to prevent disadvantages of the liquid quenchants.

Keywords: water; quenching medium; quench cooling; quenching distortion

1 自来水的两大缺点

多数工件用自来水淬火会开裂,淬裂的原因是众所周知的:自来水的低温冷却速度太快。这是自来水的一大缺点。

用水作冷却介质,还遇到另外的问题。例如,多个工件采取比较密集的方式同时入水时,淬火后会有显著的硬度差异。为此,现在的多用炉基本不用水性淬火介质。又如,工件上有较深的内孔、工件为大薄片状、以及形状复杂时,水淬后往往出现严重的硬度不均和较大的淬火畸变。同样的情况,在油中淬火时,则不会发生这样严重的问题。引起这些问题的原因是,水的冷却特性对水温变化太敏感。图1a是温度对自来水冷却特性的影响曲线[1]。容易推知,当单个工件在自来水中淬火时,由于形状或所处位置的原因,工件不同部位的表面接触的水温是不同的:工件上的凹进部分接触的水温高,而突出部分接触的水温则相对要低些。位于下面部分接触的水温较低,上面部位接触的水温较高。当多个工件以比较密集装挂的方式同时入水时,位于外面的工件接触的水温较低,而内部的工件接触的水温则较高。再加上同一工件朝外的面接触的水温较低,朝里的面接触水温则较高。不同的水温对应不同的冷却特性,其结果就引起了上述种种问题。图1b 为温度对油的冷却特性的影响曲线。由图1的对比,可以看出水温对冷却特性的影响是很大的。我们把冷却特性对液温变化太敏感列为自来水的第二大缺点。

有机聚合物水溶液,比如PAG淬火液、聚乙烯醇水溶液等也都有相同的缺点。图1c为不同液温的10%硫酸钠水溶液的冷却特性曲线。由图1c可见,10%的无机盐(或碱)溶入水中,可以大大减小冷却特性对水温的敏感性程度。与单纯自来水相比,直到水温达到70℃,其冷却特性对液温的敏感程度还是比较小的。表1 为自来水、PAG淬火液和淬火油等液体介质的上述两项特性。上述对液温的敏感性,主要是通过液温对冷却过程中蒸汽膜阶段长短的影响,而最终反映在同一工件的不同部位之间、不同工件之间、以及不同批次淬火工件之间出现大的硬度差异和严重的淬火中畸变上。

表1  不同种类液体介质的两大特点对比
Table 1 Comparison of two main features of different liquid quenching medium

介质名称

自来水

PAG淬火液

10%无机盐(或碱)的水溶液

熔融盐浴(如硝盐浴)

防止钢件淬裂的能力

浓度适当时相当好

冷却特性对液温的稳定性

较差

较好

2 冷却速度曲线上出现3个区段的条件

在研究无机盐水溶液时,曾经有过一种错误的说法:“在任何液体介质中淬火冷却,都会出现蒸汽膜(膜沸腾)阶段、(泡)沸腾阶段和对流冷却阶段”。即便在采用1000张/s的快速摄影也没有发现蒸汽膜阶段时,也仍然坚持这一看法。

为了说明上述说法的错误所在,我们简单分析一下上述3个阶段的成因。在冷却的蒸汽膜阶段,红热工件被水蒸气包裹着,如图2所示。此时,工件表面向外部散热是通过热辐射和水蒸气的对流来实现的。其中,热辐射的作用最大。靠辐射热以及对流传递的热使包裹蒸汽膜的汽-液界面发生沸腾。沸腾产生的水蒸气充实进蒸汽膜中,使膜内的蒸汽压足以抵挡外部液体的压力,则蒸汽膜得以维持。我们知道,物体表面向外辐射的热量与该表面的绝对温度的4次方成正比。因此,工件表面温度越高,汽-液界面上的沸腾就越激烈。其结果蒸汽膜就越厚,也越稳定。由于稳定的蒸汽膜阶段几乎没有气泡进入液相中,我们可以把气液界面包裹着的部分看成一个体系。这个体系的外部是气体,里面包裹着的是固体。这个体系对外的热散失主要是靠对流来进行。接触上述体系的液体被加热,再通过对流把热量带到更远处。其情形就像始终保持在100℃的工件在水中的散热情况一样。随着冷却的进行,工件表面温度降低,汽-液界面上沸腾的激烈程度会迅速降低。蒸汽膜阶段的冷却速度随之减小。由于沸腾区域的汽-液界面上发生着的是水蒸汽?水的双向变化,当水沸腾产生的水蒸气的量少于膜内的水蒸气变成水所损失的量时,包裹工件的蒸汽膜就会变薄。当蒸汽膜内保有的水蒸气少到不能抵挡外部液体的压力时,蒸汽膜就会破裂。蒸汽膜阶段也就终止了。工件上该部位也就进入了沸腾冷却阶段。综上所述,工件(或探棒)冷却过程中是否出现蒸汽膜阶段,完全决定于工件表面的温度高低。只有工件表面温度超过一定程度后,冷却过程中才会出现蒸汽膜阶段。这个特定的温度值是随工件的特点、所用介质的特性和其它有关条件而变的。只有工件的表面温度高于上述特定的温度值时,才可能出现和维持冷却的蒸汽膜阶段。低于这个值,就形不成完整而稳定的蒸汽膜,也就见不到冷却的蒸汽膜阶段。我们把这个特定温度叫做该介质在当时的使用条件下的特性温度。和在统一约定的条件下,评价不同介质品种的冷却特性的标准相比,上述特定温度应当是广义的特性温度;而标准中的则是狭义的特性温度。狭义的特性温度的测定条件大多是:在介质不搅动的条件下,水性样品用30℃的液温,快速油用50℃的油温,热油用100℃的油温。同时要说明的是,采用热电偶热端位于探头中心的测定标准侧出的特性温度值,总是低于工件表面实际的特性温度值。此外,我们从道理上讨论特性温度问题时,用的是工件表面的实际的特性温度,也就是广义的特性温度。实际工件淬火时,表面的不同部位在不同的时间接触的介质的特性温度是不相同的,并且是在变化的。

工件表面温度低于介质的上述特性温度,就进入沸腾冷却阶段。在沸腾冷却阶段,工件的散热途径更为多样,既包含介质与工件表面直接接触的热转递散热、介质变成蒸汽的吸热,也包括所有情况下的表面热辐射散热和对流传热散热。当表面温度降低到稍高于介质的沸点温度时,沸腾冷却阶段就结束了。继续冷却就主要靠介质接触工件的热转递和介质的对流散热来完成,直至工件表面温度与介质温度相同为止。

综上所述,在液体介质中做淬火冷却,当介质的平均温度低于介质的沸点温度时,可能出现的冷却阶段为:①如果淬入工件的表面温度高于所用介质的特性温度,冷却过程将出现蒸汽膜阶段、沸腾阶段和对流阶段。② 当淬入工件的表面温度处于介质的特性温度和介质的沸点温度之间时,出现沸腾阶段和对流阶段。③当淬入工件的表面温度等于低于介质的沸点温度时,就只有对流冷却阶段了。图3概括了上述3种情况的冷却速度曲线的形状特点。

3 发生超差畸变的3要素

在热处理生产现场,说工件发生了变形指的是工件的畸变量超过了技术指标规定的程度,也就是发生了超差畸变。产生热处理超差畸变的3要素为:足够大的应力,足够好的塑性以及足够长的作用时间。任何热处理超差变形都需要这三个要素,只是3者的大小关系是可以互补的。如果应力很大,材料的塑性好,作用时间虽短,也会引起大的畸变。比如红热工件在转移中受到冲撞引起的畸变。塑性好,作用时间很长,即便应力不大,也可能引起大的畸变。比如淬火加热时,工件堆放不当,叠压或者自重引起的应力虽然不大,但因加热时间长,也容易造成超差畸变。又如,在淬火冷却初期,因工件的塑性好,介质搅动过于强烈,液流冲击到细长工件,也会引起超差的弯曲变形。这些都是外力引起的变形。一般说,因外力引起的畸变问题,其解决办法相对比较简单。高温时,过冷奥氏体的塑性较好,而冷到能发生马氏体转变时,奥氏体的塑性就相当差了。同时,马氏体转变经历的时间也相当的短。虽然如此,马氏体转变前后的比容差引起的应力非常之大,仍有可能造成超差的畸变。这是内应力引起的畸变。

因内应力引起的畸变,情况要复杂得多。内应力的来源比较多,但通常可以归为热应力和组织转变应力两类。冷却过程中,组织转变应力又常常和热应力共同存在,相互叠加或对消。内应力都是在变化着大小和分布中起作用。加上工件的形状因素,它们的作用情况就更加复杂。其中,值得注意的有3点:①在液体介质中淬火冷却时,形状较复杂的工件不同部位表面温度差别会很大。冷得快的部分一旦冷到所用液体介质的特性温度以下,表面附近就立即从蒸汽膜阶段进入沸腾冷却阶段。这部分表面获得的冷却速度会突然大增,与附近仍然处于蒸汽膜阶段部分的温度差异就会急剧增大。温差大,热应力也就大。如果该介质的特性温度偏低,冷得慢的部分将长期处于蒸汽膜阶段,使上述热应力长期起作用。在介质特性温度附近,过冷奥氏体的塑性一般较好。应力大,材料塑性好,加上作用时间长,就容易引起超差畸变。②冷却速度过快时,工件不同部位的温差较大,过冷奥氏体转变成马氏体时的体积膨胀,可能引起很大的内应力,使还未发生马氏体转变的过冷奥氏体产生一定量的塑性变形。③淬火冷却的速度不足时,在相当于端淬曲线上马氏体组织的百分比急剧变化的区域,不大的冷却速度差异,常常也引起较大的内应力,最终引起大的畸变,且淬火硬度不足。

材料的塑性与材料的温度密切相关。高温下,材料的塑性好,容易发生变形。此外,在材料发生相变过程中,因出现相变超塑性,使塑性变形更容易。因为装放不当,在淬火加热过程中由外力引起的热处理畸变,就有一部分是珠光体转变成奥氏体过程中增加的超塑性引起的。工件加热中由珠光体转变成奥氏体时有超塑性。过冷奥氏体发生马氏体转变时有超塑性。就连马氏体发生回火转变时也有超塑性。大薄片工件的淬火冷却畸变,用加压回火来加以校正,靠的主要是回火转变时的相变超塑性。这种办法只在第一次回火时有效,原因就在这里。

在热处理中,为了减小畸变量,凡需要比较长的时间才能完成的过程,比如,工件加热过程,应当设法把可能出现的内外应力减至最小。为了缩短热应力引起的畸变,使用液体冷却介质时,要设法缩短介质的蒸汽膜阶段,以便缩短工件冷却过程中不同部位的表面温度跨在介质特性温度上下的时间。

在制定工艺时,应同时从上述3要素上采取措施来减小热处理变形。其原则是:减小内外因素引起的应力,缩短应力的作用时间,尤其是在工件处于塑性好的时期。在分析已发生的热处理畸变时,注意应力大、塑性好和作用时间长等诸因素,会比较容易找到引起畸变的主要原因。

4 水的第二大缺点引起畸变的原因

在测量的冷却曲线上,从蒸汽膜阶段到沸腾阶段的过渡期,是冷却速度由慢到快的突变期。通常把这种突变对应的探棒温度,称为所测冷却介质的特性温度。如图1a所示。需要说明的是,我们见的冷却特性曲线,是用热电偶热端位于探棒的中心的仪器测量出来的。事实上,工件表面的温度一降低到介质的特性温度,表面附近的介质就立刻进入沸腾阶段。在液体介质的沸腾冷却阶段,工件的表面温度越高,沸腾就越激烈,表面获得的冷却速度就越快。图 4a中进入沸腾阶段后的冷却速度是逐渐加大的,最高冷却速度出现在特性温度以下,这是热电偶热端位于探棒中心,加上探棒形状为圆柱形的缘故。如果均匀圆球在完全均匀条件下冷却,热电偶又位于其表面,则有另一种图形形式,如图4b所示。由蒸汽膜阶段进入沸腾冷却阶段,表面冷却速度总是沸腾阶段的最高值,而不是通过一段时间才增加至最高值。在实际工件冷却中,不同部位按降温的快慢,先后进入沸腾阶段。同一工件的不同部位,有的在特性温度之上,有的已经冷到了特性温度之下,它们之间的冷却速度差异,往往会引起大的内应力。当从介质的特性温度以上冷却下来时,所有液体介质都存在这一缺点。我们把这个缺点简单称为液体介质的特性温度麻烦,或者特性温度问题。

与气体冷却介质相比,液体冷却介质的冷却速度的可调节范围不太宽,这使确定的任何一种液体介质都只能适用一定范围的工件。用于要求更高冷却速度的工件,将淬不硬,用于要求更低冷却速度的工件,又要淬裂。我们把这一特点称为液体冷却介质的第一缺点。在此又把上面讨论的,“ 可能在工件局部区域发生冷却速度突变,从而引起大的内应力”,也就是特性温度问题称为液体冷却介质的第二个缺点。相比之下,单纯的气体冷却介质,既可以改变流速来调节冷却速度,又可以利用气体的可压缩性实现不同气压的高压气淬,从而能在很宽的范围改变冷却速度。表2为不同介质的有关特性。由表2可见,改变流速可以在一定范围调节冷却速度,改变介质的压力,也能在一定程度内调节介质的冷却速度。液体介质具有流动性,因此可以在一定范围内调节其冷却速度。气体介质同时具有好的流动性和可压缩性,能在更宽的范围调节其冷却速度。加上没有特性温度麻烦,使气体没有上述液体介质的两个缺点。固体介质由于没有流动性,也没有可压缩性,作为淬火冷却介质的用途就很少。

表2  固、液、气介质的基本特性
Table 2 The basic properties of solid, liquid and gas quenchant

介质类型
固体
液体
气体

流动性


很好

可压缩性


很好

冷却速度的可调节范围
极小
不宽

特性温度麻烦


本文开头提到的自来水的第二大缺点,实际上包含了液体介质的第二个缺点,以及自来水的特性温度对水温特别敏感两个特性。因为都是有关其特性温度的缺点,为简单起见,我们把它们统称为自来水的第二大缺点。自来水不仅有液体介质的第二缺点,而且因为水温升高,冷却的蒸汽膜阶段会迅速延长,使这种因素引起的内应力长期存在,为产生变形提供了塑性好,应力大和作用时间长的条件,因此不仅引起严重的硬度不均,更会加大工件的淬火畸变。说它是大缺点,“大”就大在自来水的冷却特性对水温特别敏感上。

5 克服第二类缺点的技术方法

综合上述讨论,推广开来,我们建议用以下七类办法,来克服液体介质的上述第二类缺点。

⑴ 在单一的冷却阶段内冷却。选用那些特性温度高于工件的淬火加热温度的介质,使整个冷却过程都在沸腾阶段进行。比如,通常使用硝盐浴冷却属于这类。或者完全在介质的特性温度以上冷却,使整个冷却过程都在蒸汽膜阶段进行。比如,在慢速的浆状介质中冷却高合金钢工件,属于此类。我们认为,这是上等的解决办法。

图5为160℃硝盐浴与40℃的快速淬火油今禹Y15-II的冷却速度曲线对比。由图5可见,今禹Y15-II是冷却速度很快的淬火油。而在整个冷却过程中,硝盐浴的冷却速度都比今禹15-II要快。按现在还流行的一种观点“在冷却速度快的介质中淬火,工件的淬火畸变会更大”,油中的淬火畸变应当更小。但生产证明,硝盐浴中淬火变形更小。有人用200℃的硝盐浴与100℃热油作了畸变大小试验对比,结果见图6[2]油中淬火的工件,变形更大而且更分散。究其原因,是硝盐浴的特性温度高于工件的入液温度,从而实现了在单一的冷却阶段(沸腾冷却阶段)冷却的缘故。图7是高合金钢的剔齿刀的分级盐浴冷却工艺。图8为高合金钢的3次分级冷却工艺曲线与只有蒸汽膜阶段的慢速浆状介质的冷却过程曲线[3]的对比。与浆状介质相比,在分级冷却过程中,每次放入盐浴时,都会因冷却速度快而引起较大的内应力。可以推知,代之以慢速浆状介质冷却,将会进一步减小工件的淬火畸变。

⑵ 选用蒸汽膜阶段长短对液温变化不敏感的介质,比如各种淬火油。采用油淬火时,工件堆放得稍微密集一点,使不同部位的工件接触的油有一定的温度差异时,各部位接触的油的特性温度基本上没有差别,如图1b所示。这就可以减小不同部位的冷却差异,从而减小工件的淬火畸变。

⑶ 加入能减小介质液温敏感性的添加剂,如自来水中溶入一定量的无机盐或碱。

⑷ 选用蒸汽膜阶段短的介质。形状复杂的工件,尤其是带较深内孔的工件,为减小淬火畸变,选用淬火油时,必须考虑到这一点。

⑸ 降低水性介质的使用温度,来提高水的特性温度,并降低水的最高温升程度。如果能将水的特性温度提高到工件的加热温度以上,还可以免除特性温度麻烦。

⑹ 降低工件的加热(或入液)温度,以缩短工件处于蒸汽膜阶段的时间。

⑺ 通过增大工件之间的距离和加大介质的搅拌烈度等措施,减小工件周围的液温升高程度,以减小上述内应力。

一般说,选取几种以上办法,同时用上去,可以取得更好的效果。工厂现场要根据实际情况,避免某些有利于变形的因素相互叠加。比如,在油中做淬火冷却时,入油之初,工件温度高,塑性好,如果在油的特性温度问题引起的内应力的基础之上,加上强烈搅动引起的外来应力,就有可能在工件某些部位叠加成很大的应力,引起超差的塑性变形。东北某工厂遇到这样的麻烦时,有人出了一个好主意:在工件入油之初不搅拌,经过1min-2min再开始搅拌,畸变问题马上就解决了。究其道理,一是前期的冷却使过冷奥氏体抵抗塑性能力提高,二是可能避开特性温度麻烦引起的内应力与搅拌引起的同方向应力的叠加。按照这种思路,在某些场合,当不能完全避开特性温度麻烦时,单纯追求缩短油的蒸汽膜阶段,就不如保留适当长度的蒸汽膜阶段,等钢材抵抗塑性变形的能力有所提高后,再遭遇特性温度麻烦,更能减小工件的淬火畸变。又比如,降低水溶液的使用温度,可以提高水的特性温度,直至特性温度高于工件的入水温度。在水中溶解一定量的无机盐,可以降低水的凝固点,从而把水的使用温度降低到零下一、二十度,甚至更低的程度。此时,需要注意防止水溶液的低温冷却速度过高,以免引起工件淬裂。

参考文献:

[1] Bates C E, Totten G.E. ASTM Metals Handbook(4)[M]. ASM International,1991:91.

[2] 渡邊陽一.浸炭および浸炭窒化焼入れによる變形とその低减策[J].热处理,2003,43(4):250.

[3] 张克俭.浆状冷却介质的特性和用途[J].金属热处理,2002,27(10):44-48.

歡迎來到Bewise Inc.的世界,首先恭喜您來到這接受新的資訊讓產業更有競爭力,我們是提供專業刀具製造商,應對客戶高品質的刀具需求,我們可以協助客戶滿足您對產業的不同要求,我們有能力達到非常卓越的客戶需求品質,這是現有相關技術無法比擬的,我們成功的滿足了各行各業的要求,包括:精密HSS DIN切削刀具協助客戶設計刀具流程DIN or JIS 鎢鋼切削刀具設計NAS986 NAS965 NAS897 NAS937orNAS907 航太切削刀具,NAS航太刀具設計超高硬度的切削刀具醫療配件刀具設計複合式再研磨機PCD地板專用企口鑽石組合刀具粉末造粒成型機主機版專用頂級電桿PCD V-Cut捨棄式圓鋸片組粉末成型機主機版專用頂級電汽車業刀具設計電子產業鑽石刀具木工產業鑽石刀具銑刀與切斷複合再研磨機銑刀與鑽頭複合再研磨機銑刀與螺絲攻複合再研磨機等等。我們的產品涵蓋了從民生刀具到工業級的刀具設計;從微細刀具到大型刀具;從小型生產到大型量產;全自動整合;我們的技術可提供您連續生產的效能,我們整體的服務及卓越的技術,恭迎您親自體驗!!

BW Bewise Inc. Willy Chen willy@tool-tool.com bw@tool-tool.com www.tool-tool.com skype:willy_chen_bw mobile:0937-618-190 Head &Administration Office No.13,Shiang Shang 2nd St., West Chiu Taichung,Taiwan 40356 http://www.tool-tool.com / FAX:+886 4 2471 4839 N.Branch 5F,No.460,Fu Shin North Rd.,Taipei,Taiwan S.Branch No.24,Sec.1,Chia Pu East Rd.,Taipao City,Chiayi Hsien,Taiwan

Welcome to BW tool world! We are an experienced tool maker specialized in cutting tools. We focus on what you need and endeavor to research the best cutter to satisfy users demand. Our customers involve wide range of industries, like mold & die, aerospace, electronic, machinery, etc. We are professional expert in cutting field. We would like to solve every problem from you. Please feel free to contact us, its our pleasure to serve for you. BW product including: cutting toolaerospace tool .HSS  DIN Cutting toolCarbide end millsCarbide cutting toolNAS Cutting toolNAS986 NAS965 NAS897 NAS937orNAS907 Cutting Tools,Carbide end milldisc milling cutter,Aerospace cutting toolhss drillФрезерыCarbide drillHigh speed steelCompound SharpenerMilling cutterINDUCTORS FOR PCDCVDD(Chemical Vapor Deposition Diamond )’PCBN (Polycrystalline Cubic Boron Nitride) Core drillTapered end millsCVD Diamond Tools Inserts’PCD Edge-Beveling Cutter(Golden FingerPCD V-CutterPCD Wood toolsPCD Cutting toolsPCD Circular Saw BladePVDD End Millsdiamond tool. INDUCTORS FOR PCD . POWDER FORMING MACHINE Single Crystal Diamond Metric end millsMiniature end millsСпециальные режущие инструменты Пустотелое сверло Pilot reamerFraisesFresas con mango PCD (Polycrystalline diamond) ‘FresePOWDER FORMING MACHINEElectronics cutterStep drillMetal cutting sawDouble margin drillGun barrelAngle milling cutterCarbide burrsCarbide tipped cutterChamfering toolIC card engraving cutterSide cutterStaple CutterPCD diamond cutter specialized in grooving floorsV-Cut PCD Circular Diamond Tipped Saw Blade with Indexable Insert PCD Diamond Tool Saw Blade with Indexable InsertNAS toolDIN or JIS toolSpecial toolMetal slitting sawsShell end millsSide and face milling cuttersSide chip clearance sawsLong end millsend mill grinderdrill grindersharpenerStub roughing end millsDovetail milling cuttersCarbide slot drillsCarbide torus cuttersAngel carbide end millsCarbide torus cuttersCarbide ball-nosed slot drillsMould cutterTool manufacturer.

Bewise Inc. www.tool-tool.com

ようこそBewise Inc.の世界へお越し下さいませ、先ず御目出度たいのは新たな

情報を受け取って頂き、もっと各産業に競争力プラス展開。

弊社は専門なエンドミルの製造メーカーで、客先に色んな分野のニーズ

豊富なパリエーションを満足させ、特にハイテク品質要求にサポート致します。

弊社は各領域に供給できる内容は:

(1)精密HSSエンドミルのR&D

(2)Carbide Cutting tools設計

(3)鎢鋼エンドミル設計

(4)航空エンドミル設計

(5)超高硬度エンドミル

(6)ダイヤモンドエンドミル

(7)医療用品エンドミル設計

(8)自動車部品&材料加工向けエンドミル設計

弊社の製品の供給調達機能は:

(1)生活産業~ハイテク工業までのエンドミル設計

(2)ミクロエンドミル~大型エンドミル供給

(3)小Lot生産~大量発注対応供給

(4)オートメーション整備調達

(5)スポット対応~流れ生産対応

弊社の全般供給体制及び技術自慢の総合専門製造メーカーに貴方のご体験を御待ちしております。

Bewise Inc. talaşlı imalat sanayinde en fazla kullanılan ve üç eksende (x,y,z) talaş kaldırabilen freze takımlarından olan Parmak Freze imalatçısıdır. Çok geniş ürün yelpazesine sahip olan firmanın başlıca ürünlerini Karbür Parmak Frezeler, Kalıpçı Frezeleri, Kaba Talaş Frezeleri, Konik Alın Frezeler, Köşe Radyüs Frezeler, İki Ağızlı Kısa ve Uzun Küresel Frezeler, İç Bükey Frezeler vb. şeklinde sıralayabiliriz.

BW специализируется в научных исследованиях и разработках, и снабжаем самым высокотехнологичным карбидовым материалом для поставки режущих / фрезеровочных инструментов для почвы, воздушного пространства и электронной индустрии. В нашу основную продукцию входит твердый карбид / быстрорежущая сталь, а также двигатели, микроэлектрические дрели, IC картонорезальные машины, фрезы для гравирования, режущие пилы, фрезеры-расширители, фрезеры-расширители с резцом, дрели, резаки форм для шлицевого вала / звездочки роликовой цепи, и специальные нано инструменты. Пожалуйста, посетите сайт  www.tool-tool.com  для получения большей информации.

BW is specialized in R&D and sourcing the most advanced carbide material with high-tech coating to supply cutting / milling tool for mould & die, aero space and electronic industry. Our main products include solid carbide / HSS end mills, micro electronic drill, IC card cutter, engraving cutter, shell end mills, cutting saw, reamer, thread reamer, leading drill, involute gear cutter for spur wheel, rack and worm milling cutter, thread milling cutter, form cutters for spline shaft/roller chain sprocket, and special tool, with nano grade. Please visit our web  www.tool-tool.com  for more info.

beeway 發表在 痞客邦 留言(0) 人氣()

 

 

 

Bewise Inc. www.tool-tool.com
Reference source from the internet.

 

九 工件群体淬火变形问题的分类和解决办法

 

 

图21 全部(b1)和大部分(b2)以及少部分(c)工件发生了超差变形的位置关系图

 

工件群体与单个工件的差别是:单个工件的冷却速度带和第II区的边界是具有确定位置的边界;而群体的这些边界却形成了一定的分布。因此,工件群体的淬火变形问题中,既包含了单个工件具有的特点,也包含了与群体分布相关的特性。

 

根据其严重程度,本文把工件群体出现的淬火变形问题分成两大类来加以讨论。一类是淬火后,近半数或者大部分、甚至全部工件都发生了超差的淬火变形。另一类是大部分工件的变形不超差,而只有少部分工件发生了超差的淬火变形。按工件群体的冷却速度带和第II区的相对位置关系,可以把这两类情况表示在图21中。图21以冷却速度带从慢端超出了第II区的右边界的情形为代表,来说明它们的相对关系。其中a为工件群体的第II区的右边界,b1为全部工件发生了超差淬火变形时的相对位置关系,b2是大部分工件发生了超出淬火变形时的相对位置关系,c是少部分工件发生了超出淬火变形时的相对位置关系。

 

9.1 大多数工件发生了淬火变形时的解决办法

 

大部分甚至全部工件发生了超差淬火变形时,由于工件群体的冷却速度带的慢端伸出第II区较远,只用调整群体分布特性的办法,已不大能把群体的慢端移入其第II区内。因此,解决此类问题的办法首先不牵涉上述群体的分布特性。

 

如果钢材和其它生产环节没有明显的差错,首先关注的问题应当是:是否选错了淬火介质?。检查工件的淬火态硬度和淬裂情况。如果硬度普遍偏高,包括伴有淬火开裂。那就是错选了冷却速度过快的淬火介质。如果硬度偏低和淬硬层深度不够,那就是错选了冷却速度过慢的淬火介质。这些都属于冷却速度带的位置上的问题。改选一种更合适的淬火介质,使工件的冷却速度带向左移或者向右移动,并基本达到落到其第II区内的程度。变形问题就可能得到相当程度的解决。

 

如果采用改换淬火介质的办法行不通,或者更换淬火介质后仍然达不到使大部分工件淬火变形不超差的程度,那就得考虑采用更换钢种的办法了。如果冷却速度带是从快端超出了第II区的左边界,那就得改用碳含量更低,或者(和)淬透性更差的钢种。使其第II区的左边界向左扩展,以便把冷却速度带的快端框进第II区内。如果冷却速度带从慢端超出了第II区的右边界,那就得改用淬透性更好的钢种,使其第二区的右边界向右移并把工件群体的慢端框进其中。

 

如果改换钢种的办法仍然行不通,那就只有从设计上修改零件的形状尺寸了。

 

通过采取以上措施,问题可能得到全部解决;也可能变成只有少部分工件发生超差淬火变形的第2类变形问题。

 

9.2 少部分工件发生了超差淬火变形时的解决办法

 

在这类淬火变形问题中,虽然工件群体的冷却速度带超出第II区并不远,但问题却更复杂和更难解决。判明解决问题的方向性之后,可以采用两类办法来解决问题。第一类办法是有方向地对热处理工艺参数做一定程度的调整,目标是从发生问题的一端去移动或者收缩冷却速度带和扩大第II区,直至把群体的冷却速度带更大部分地框进其第II区内。第2类办法是减小有问题的端部的分散程度等,目标是使发生超差淬火变形的工件比例,降低到满足要求的程度。

 

如果最初确定的热处理工艺是合理的。在发现淬火变形后,又根据情况调整过工艺参数,问题仍然得不到解决。那么。继续改进热处理工艺参数,以求完全解决淬火变形问题的希望也就不大了。此时,应当把工作重点转到减小工件群体的特性波动上去。

 

9.3 减小群体特性分散性的效果预测

 

减小工件群体特性波动的目的,是减小工件群体的冷却速度带和第II区边界位置分布的分散程度。边界位置的分散特性对工件群体淬火变形的影响能有多大?我们将通过以下的讨论,来回答这个问题。一般说,减小产品特性的分散程度,其结果,产品品质总是提高的。性能分散程度减小,是这种提高的一个效果。同时,产品的其它性能也都会有一定程度的提高。在下面的分析讨论中,为了简化问题,我们忽略了后一类提高部分,而假定性能的平均值始终保持不变。

 

 

图22 减小第II区右边界的分散程度对减少超差变形工件数量的作用

 

 

图23 减小冷却速度带慢端的分散程度对减少超差变形工件数量的作用

 

某厂曾经有一种汽车齿轮,渗碳淬火后总有约30%的工件因超差变形而返工或者报废。发生超差变形的工件,它们的淬火态硬度虽然合格,但比其它工件的硬度还是稍稍偏低一些。直到该厂齿轮锻坯的等温正火线投入使用,改善了渗碳淬火之前的预备组织,发生超差淬火变形的工件才减少到2%左右。根据这一情况可以判定,原来的淬火变形是工件群体的冷却速度带从慢端伸出了它的第II区。因为问题的解决靠的是齿轮锻坯的等温正火。在本文的第八部分已经分析指出,等温正火的作用,是扩大工件群体的第II区。因此,可以把工件群体的冷却速度带,以及群体第II区右边界的关系,表示成图22所示的图形。因为采取的办法没有改动工件淬火冷却条件和方式,我们就不考虑群体冷却速度带慢端的分布情况,只把冷却速度带画成简单的方框图形。这样可以突出群体第II区右边界分布特性的影响。为了简化问题,我们假定:锻坯做等温正火并不改变第II区右边界位置的目标值。也就是等温正火前后两种分布的平均值相等。从正态分布数据表中容易查出,离开平均值1个标准差(S)以远的单边面积为34%,而离开2S以远的单边面积则为2
.3%。由此可以设想,对于发生超差淬火变形达34%的一个工件群体,如果设法把它们的第II区的右边界位置的分散程度降低,并达到标准差减小到原来的一半的程度,则工件群体的第II区就向右扩了一定的距离。后来的标准差(S2)降低到原来的标准差(S1)的一半时,冷却速度带的慢端正好落在距平均值2个S2的位置上。于是,发生超差淬火变形的比例也就降低到2.3%了!图22中画出了两个平均值相等,而标准差正好相差一倍的正态分布曲线。其中,分布1的标准差S1与分布2的标准差S2的关系为:S1

2S2。这与上述齿轮做等温正火前后,淬火变形超差的工件比例变化基本相同。因为分布的分散程度降低,相应地,等温正火后,工件群体的第II区的右边界就向右扩大了S2的距离。这可以用来说明上述齿轮厂采用等温正火后,淬火变形问题能得到解决的原因。如果把问题的解决归功于使慢端位置分布的分散性减小一半,如图23所示。同样也能使变形工件从34%减少到2.3%。

 

第II区端部位置的分散程度降低一半,就可以使发生超差淬火变形的工件的比例从34%降低到2.3%!这是一个非常可观的效果。这说明,减小有关影响因素的波动程度,是控制工件群体淬火变形的一类有效途径。

 

 

图24 正态分布中,距平均值Z个标准差以远部分的单边面积示意图

 

按正态分布特性,以分布的标准差(S)为计量单位,距平均值一定距离Z(即Z个S)以远部分的单边面积(如图24所示),和该距离之间的对应关系,可作成表4。表中,设正态分布曲线以下的总面积为1,其部分面积则以百分比表示。用表列数据,可以进行这样的预测:要把工件群体的超差淬火变形比例从一定值降低到某个限度时,需要使分布的分散特性(S)减小到什么程度。具体的计算方法如下:

 

有一个超差淬火变形工件达20%的淬火变形问题,想通过减小问题端部的冷却速度带,或者第II区的端部的分散程度,来使变形比例降低到2%和5%。问需要使该端部分布的标准差各减小到什么程度?

 

设20%发生变形时的标准差为S1,而能使变形比例降低到2%的标准差为S2,则由0.84S1=2.06S2,可以求出S2=(0.86/2.06)S1=0.41S1。即需要把问题端部的分散程度降低到原来的41%。

 

表4 正态分布中,距离平均值Z个标准差以远的单边面积(P)

 

面积 P

 

20%

 

10%

 

5%

 

2%

 

1%

 

0.5%

 

距离Z(单位S)

 

0.84

 

1.28

 

1.96

 

2.06

 

2.33

 

2.57

 

而需要降低到5%时,由0.84S1=1.29S2,可以算出,S2=0.65S1。即需要把问题端部的分散程度降低到原来的65%。

 

再如,假定原来的变形比例是5%,希望降低到0.5%。则由1.96S1=2.57S2,可以求出S2=0.762S1。即需要把问题端部的分散程度降低到原来的76%。

 

人们不禁要问:如何去减小上述标准差,以及能减小到什么程度。

 

减小有关影响因素的波动程度。其通俗的说法就是提高工件群体的性能均匀一致性。这是当前大工业生产中很受关注的问题。2004年出台的国内“汽车齿轮用钢的市场准入条件”中,把钢材末端淬透性带(3mm处)的宽度从过去的12个HRC,减小到7个HRC。长春一汽的�%8

beeway 發表在 痞客邦 留言(0) 人氣()