公告版位

Bewise Inc. www.tool-tool.com Reference source from the internet.

Transmission types
Manual

Non-synchronous
Automatic

Semi-automatic

Continuously variable
Bicycle gearing
v d e

A manual transmission (also known as a stick shift or just stick, straight drive, or standard transmission) is a type of transmission used in automotive applications. Manual transmissions often feature a driver-operated clutch and a movable gear selector. Most automobile manual transmissions allow the driver to select any gear at any time, but some, such as those commonly mounted on motorcycles and some types of racing cars, only allow the driver to select the next-highest or next-lowest gear ratio. This second type of transmission is sometimes called a sequential manual transmission.

Manual transmissions are characterized by gear ratios that are selectable by engaging pairs of gears inside the transmission. Conversely, most automatic transmissions feature epicyclic (planetary) gearing controlled by brake bands and/or clutch packs to select gear ratio. Automatic transmissions that allow the driver to manually select the current gear are called semi-automatic transmissions.

Contemporary automotive manual transmissions are generally available with four to six forward gears and one reverse gear, although manual transmissions have been built with as few as two and as many as eight gears. Semi-trucks have at least 13 gears and as many as 24. Some manuals are referred to by the number of forward gears they offer (e.g., 5-speed) as a way of distinguishing between automatic or other available manual transmissions. Similarly, a 5-speed automatic transmission is referred to as a 5-speed automatic.

Other types of transmission in mainstream automotive use are the automatic transmission, semi-automatic transmission, and the continuously variable transmission.

Manual transmissions come in two basic types: simple non-synchronous systems, where gears are spinning freely and their relative speeds must be synchronized by the operator to avoid noisy and damaging "clashing" and "grinding" when trying to mesh the rotating teeth; and synchronized systems, which eliminate this necessity while changing gears.

Unsynchronized transmission

The earliest vehicle transmissions could be shifted, with multiple gear ratios available to the operator, and even had reverse. However, the gears were engaged by sliding mechanisms or simple clutches, which required a lot of careful timing and throttle manipulation when shifting, so that the gears would be spinning at roughly the same speed when engaged; otherwise, the teeth would refuse to mesh.

When upshifting, the speed of the gear driven by the engine had to drop to match the speed of the next gear; as this happened naturally when the clutch was depressed or disengaged, it was just a matter of skill and experience to hear and feel when the gears managed to mesh. However, when downshifting, the gear driven by the engine had to be sped up to mesh with the output gear, requiring letting the clutch up (engagement) for the engine to speed up the gears. Double declutching, that is, shifting once to neutral to speed up the gears and again to the lower gear, is sometimes needed. In fact, such transmissions are often easier to shift without using the clutch at all. When using this method, the driver has to time the shift with relative precision to avoid grinding the gears. The clutch, in these cases, is only used for starting from a standstill. This procedure is common in racing vehicles and most production motorcycles.

Even though automotive transmissions are now almost universally synchronised, heavy trucks and machinery as well as dedicated racing transmissions are usually non-synchromesh transmissions, known colloquially as "crashboxes", for several reasons. The friction material, such as brass, in synchronizers is more prone to wear and breakage than gears, which are forged steel, and the simplicity of the mechanism improves reliability and reduces cost. In addition, the process of shifting a synchromesh transmission is slower than that of shifting a non-synchromesh transmission. For racing of production-based transmissions, sometimes half the teeth (or "dogs") on the synchros are removed to speed the shifting process, at the expense of greater wear.

Heavy duty trucks utilize unsynchronized transmissions in the interest of saving weight. Military edition trucks, which do not have to obey weight laws, usually have a synchronized transmission. Highway use heavy-duty trucks in the United States are limited to 80,000 pounds GVWR, and the lighter the curb weight for the truck, the more cargo can be carried, and with a synchronizer adding weight to a truck that could otherwise be used to carry cargo, most drivers are simply taught how to double clutch.

Similarly, most modern motorcycles still utilize unsynchronized transmissions as synchronizers are generally not necessary or desirable. Their low gear inertias and higher strengths mean that 'forcing' the gears to alter speed is not damaging, and the selector method on modern motorcycles (pedal operated) is not conducive to having the long shift time of a synchronized gearbox. Because of this, it is still necessary to synchronize gear speeds by "blipping" the throttle when shifting into a lower gear on a motorcycle.

Synchronized transmission

Top and side view of a typical manual transmission, in this case a Ford "Toploader", used in cars with external floor shifters.

Top and side view of a typical manual transmission, in this case a Ford "Toploader", used in cars with external floor shifters.

Modern gearboxes are constant mesh, i.e. all gears are always in mesh. Only one of these meshed pairs of gears is locked to the shaft on which it is mounted at any one time, while the others are allowed to rotate freely. Thus, it greatly reduces the skill required to shift gears.

Most modern cars are fitted with a synchronized gear box, although it is entirely possible to construct a constant mesh gearbox without a synchromesh, as found in a motorcycle, for example. In a constant mesh gearbox, the transmission gears are always in mesh and rotating, but the gears are not rigidly connected to the shafts on which they rotate. Instead, the gears can freely rotate or be locked to the shaft on which they are carried. The locking mechanism for any individual gear consists of a collar (or "dog collar") on the shaft which is able to slide sideways so that teeth (or "dogs") on its inner surface bridge two circular rings with teeth on their outer circumference: one attached to the gear, one to the shaft (one collar typically serves for two gears; sliding in one direction selects one transmission speed, in the other direction selects the other). When the rings are bridged by the collar, that particular gear is rotationally locked to the shaft and determines the output speed of the transmission. In a synchromesh gearbox, to correctly match the speed of the gear to that of the shaft as the gear is engaged, the collar initially applies a force to a cone-shaped brass clutch which is attached to the gear, which brings the speeds to match prior to the collar locking into place. The collar is prevented from bridging the locking rings when the speeds are mismatched by synchro rings (also called blocker rings or balk rings, the latter being spelled "baulk" in the UK). The gearshift lever manipulates the collars using a set of linkages, so arranged so that one collar may be permitted to lock only one gear at any one time; when "shifting gears," the locking collar from one gear is disengaged and that of another engaged. In a modern gearbox, the action of all of these components is so smooth and fast it is hardly noticed.

The modern cone system was developed by Porsche and introduced in the 1952 Porsche 356; cone synchronizers were called "Porsche-type" for many years after this. In the early 1950s only the second-third shift was synchromesh in most cars, requiring only a single synchro and a simple linkage; drivers' manuals in cars suggested that if the driver needed to shift from second to first, it was best to come to a complete stop then shift into first and start up again. With continuing sophistication of mechanical development, however, fully synchromesh transmissions with three speeds, then four speeds, five speeds, six speeds and so on became universal by the 1960s. Reverse gear, however, is usually not synchromesh, as there is only one reverse gear in the normal automotive transmission and changing gears in reverse is not required. (The obvious exception to this is in cars made by Lamborghini, almost all of whose models have synchromesh on reverse gear - presumably because the designers were thinking of drivers engaging reverse while still moving forward.)

Internals

Shafts

Like other transmissions, a manual transmission has several shafts with various gears and other components attached to them. Typically, a rear-wheel-drive transmission has three shafts: an input shaft, a countershaft and an output shaft. The countershaft is sometimes called a layshaft.

In a rear-wheel-drive transmission, the input and output shaft lie along the same line, and may in fact be combined into a single shaft within the transmission. This single shaft is called a mainshaft. The input and output ends of this combined shaft rotate independently, at different speeds, which is possible because one piece slides into a hollow bore in the other piece, where it is supported by a bearing. Sometimes the term mainshaft refers to just the input shaft or just the output shaft, rather than the entire assembly.

In some transmissions, it's possible for the input and output components of the mainshaft to be locked together to create a 1:1 gear ratio, causing the power flow to bypass the countershaft. The mainshaft then behaves like a single, solid shaft, a situation referred to as direct drive.

Even in transmissions that do not feature direct drive, it's an advantage for the input and output to lie along the same line, because this reduces the amount of torsion that the transmission case has to bear.

Under one possible design, the transmission's input shaft has just one pinion gear, which drives the countershaft. Along the countershaft are mounted gears of various sizes, which rotate when the input shaft rotates. These gears correspond to the forward speeds and reverse. Each of the forward gears on the countershaft is permanently meshed with a corresponding gear on the output shaft. However, these driven gears are not rigidly attached to the output shaft: although the shaft runs through them, they spin independently of it, which is made possible by bearings in their hubs. Reverse is typically implemented differently, see the section on Reverse.

Most front-wheel-drive transmissions for transverse engine mounting are designed differently. For one thing, they have an integral final drive and differential. For another, they usually have only two shafts; input and countershaft, sometimes called input and output. The input shaft runs the whole length of the gearbox, and there is no separate input pinion. At the end of the second (counter/output) shaft is a pinion gear that mates with the ring gear on the differential.

Front-wheel and rear-wheel-drive transmissions operate similarly. When the transmission is in neutral, and the clutch is disengaged, the input shaft, clutch disk and countershaft can continue to rotate under their own inertia. In this state, the engine, the input shaft and clutch, and the output shaft all rotate independently.

Dog clutch

The gear selector does not engage or disengage the actual gear teeth which are permanently meshed. Rather, the action of the gear selector is to lock one of the freely spinning gears to the shaft that runs through its hub. The shaft then spins together with that gear. The output shaft's speed relative to the countershaft is determined by the ratio of the two gears: the one permanently attached to the countershaft, and that gear's mate which is now locked to the output shaft.

Locking the output shaft with a gear is achieved by means of a dog clutch selector. The dog clutch is a sliding selector mechanism which is splined to the output shaft, meaning that its hub has teeth that fit into slots (splines) on the shaft, forcing it to rotate with that shaft. However, the splines allow the selector to move back and forth on the shaft, which happens when it is pushed by a selector fork that is linked to the gear lever. The fork does not rotate, so it is attached to a collar bearing on the selector. The selector is typically symmetric: it slides between two gears and has a synchromesh and teeth on each side in order to lock either gear to the shaft.

Synchromesh

If the teeth, the so-called dog teeth, make contact with the gear, but the two parts are spinning at different speeds, the teeth will fail to engage and a loud grinding sound will be heard as they clatter together. For this reason, a modern dog clutch in an automobile has a synchronizer mechanism or synchromesh, where before the teeth can engage, a cone clutch is engaged which brings the selector and gear to the same speed. Moreover, until synchronization occurs, the teeth are prevented from making contact, because further motion of the selector is prevented by a blocker (or "baulk") ring. When synchronization occurs, friction on the blocker ring is relieved and it twists slightly, bringing into alignment certain grooves and notches that allow further passage of the selector which brings the teeth together. Of course, the exact design of the synchronizer varies from manufacturer to manufacturer.

The synchronizer[1] has to change the momentum of the entire input shaft and clutch disk. Additionally, it can be abused by exposure to the momentum and power of the engine itself, which is what happens when attempts are made to select a gear without fully disengaging the clutch. This causes extra wear on the rings and sleeves, reducing their service life. When an experimenting driver tries to "match the revs" on a synchronized transmission and force it into gear without using the clutch, the synchronizer will make up for any discrepancy in RPM. The success in engaging the gear without clutching can deceive the driver into thinking that the RPM of the layshaft and transmission were actually exactly matched. Nevertheless, approximate "rev-matching" with clutching can decrease the general delta between layshaft and transmission and decrease synchro wear.

Reverse

The previous discussion applies to the forward gears. The implementation of the reverse gear is usually different, implemented in the following way to reduce the cost of the transmission. Reverse is also a pair of gears: one gear on the countershaft and one on the output shaft. However, whereas all the forward gears are always meshed together, there is a gap between the reverse gears. Moreover, they are both attached to their shafts: neither one rotates freely about the shaft. What happens when reverse is selected is that a small gear, called an idler gear or reverse idler, is slid between them. The idler has teeth which mesh with both gears, and thus it couples these gears together and reverses the direction of rotation without changing the gear ratio.

Thus, in other words, when reverse gear is selected, in fact it is actual gear teeth that are being meshed, with no aid from a synchronization mechanism. For this reason, the output shaft must not be rotating when reverse is selected: the car must be stopped. In order that reverse can be selected without grinding even if the input shaft is spinning inertially, there may be a mechanism to stop the input shaft from spinning. The driver brings the vehicle to a stop, and selects reverse. As that selection is made, some mechanism in the transmission stops the input shaft. Both gears are stopped and the idler can be inserted between them. There is a clear description of such a mechanism in the Honda Civic 1996-1998 Service Manual, which refers to it as a "noise reduction system":

Whenever the clutch pedal is depressed to shift into reverse, the mainshaft continues to rotate because of its inertia. The resulting speed difference between mainshaft and reverse idler gear produces gear noise [grinding]. The reverse gear noise reduction system employs a cam plate which was added to the reverse shift holder. When shifting into reverse, the 5th/reverse shift piece, connected to the shift lever, rotates the cam plate. This causes the 5th synchro set to stop the rotating mainshaft. (13-4)

A reverse gear implemented this way makes a loud whining sound, which is not heard in the forward gears. The teeth on the forward gears of consumer automobiles are helically cut. When helical gears rotate, their teeth slide together, which results in quiet operation. In spite of all forward gears being always meshed, they do not make a sound that can be easily heard above the engine noise. By contrast, reverse gears are spur gears, meaning that they have straight teeth, in order to allow for the sliding engagement of the idler, which would not be possible with helical gears. The teeth of spur gears clatter together when the gears spin, generating a characteristic whine.

It is clear that the spur gear design of reverse gear represents some compromises—less robust, unsynchronized engagement and loud noise—which are acceptable due to the relatively small amount of driving that takes place in reverse. However, many modern transmissions now include a reverse gear synchronizer and helical gearing.

Design variations

Gear variety

Manual transmissions are often equipped with 4, 5, or 6 forward gears. Nearly all have one reverse gear. In three or four speed transmissions, in most cases, the topmost gear is "direct", i.e. a 1:1 ratio. For five speed or higher transmissions, the highest gear is usually an overdrive gear, with a ratio of less than 1:1. Older cars were generally equipped with 3-speed transmissions, or 4-speed transmissions for high performance models and 5-speeds for the most sophisticated of automobiles; in the 1970s, 5-speed transmissions began to appear in low priced mass market automobiles and even compact pickup trucks, pioneered by Toyota (who advertised the fact by giving each model the suffix SR5 as it acquired the fifth speed). Today, mass market automotive manual transmissions are essentially all 5-speeds, with 6-speed transmissions beginning to emerge in high performance vehicles in the early 1990s, and recently beginning to be offered on some high-efficiency and conventional passenger cars. A very small number of 7-speed 'manual derived' transmissions are offered on extremely high-end performance cars (supercars), such as the Bugatti Veyron 16.4, or the BMW M5. Both of these cars feature a "Paddle Shifter".

External overdrive

On earlier models with three or four forward speeds, the lack of an overdrive ratio for relaxed and fuel-efficient highway cruising was often filled by incorporating a separate overdrive unit in the rear housing of the transmission. This unit was separately actuated by a knob or button, often incorporated into the gearshift knob.

Shaft and gear configuration

The input shaft need not turn a pinion which rotates the countershaft. Another possibility is that gears are mounted on the input shaft itself, meshed with gears on the countershaft, in which case the countershaft then turns the output shaft. In other words, it's a matter of design on which shaft the driven and driving gears reside.

The distribution of the shifters is also a matter of design; it need not be the case that all of the free-rotating gears with selectors are on one shaft, and the permanently splined gears on the other. For instance a five speed transmission might have the first-to-second selectors on the countershaft, but the third-to-fourth selector and the fifth selector on the mainshaft, which is the configuration in the 1998 Honda Civic. This means that when the car is stopped and idling in neutral with the clutch engaged input shaft spinning, the third, fourth and fifth gear pairs do not rotate.

In some transmission designs (Volvo 850 and V/S70 series, for example) there are actually two countershafts, both driving an output pinion meshing with the front-wheel-drive transaxle's ring gear. This allows the transmission designer to make the transmission narrower, since each countershaft must be only half as long as a traditional countershaft with four gears and two shifters.

Clutch

In all vehicles using a transmission (virtually all modern vehicles), a coupling device is used to separate the engine and transmission when necessary. The clutch accomplishes this in manual transmissions. Without it, the engine and tires would at all times be inextricably linked, and anytime the vehicle stopped the engine would perforce stall. Without the clutch, changing gears would be very difficult, even with the vehicle moving already: deselecting a gear while the transmission is under load requires considerable force, and selecting a gear requires the revolution speed of the engine to be held at a very precise value which depends on the vehicle speed and desired gear. In a car the clutch is usually operated by a pedal; on a motorcycle, a lever on the left handlebar serves the purpose.

Pedal setup on a 2007 Subaru Legacy. From left to right, the dead pedal, clutch pedal, brake, and accelerator.

Pedal setup on a 2007 Subaru Legacy. From left to right, the dead pedal, clutch pedal, brake, and accelerator.
  • When the clutch pedal is fully depressed, the clutch is fully disengaged, and no torque is transferred from the engine to the transmission (and by extension to the drive wheels). In this uncoupled state it is possible to select gears or to stop the car without stopping the engine.
  • When the clutch pedal is fully released, the clutch is fully engaged, and practically all of the engine's torque is transferred. In this coupled state, the clutch does not slip, but rather acts as rigid coupling, and power is transmitted to the wheels with minimal practical waste heat.
  • Between these extremes of engagement and disengagement the clutch slips to varying degrees. When the clutch slips it still transmits torque despite the difference in speeds between the engine crankshaft and the transmission input. Because this torque is transmitted by means of friction rather than direct mechanical contact, considerable power is wasted as heat (which is dissipated by the clutch). Properly applied, slip allows the vehicle to be started from a standstill, and when it is already moving, allows the engine rotation to gradually adjust to a newly selected gear ratio.
  • Learning to use the clutch efficiently requires the development of muscle memory and a level of coordination analogous to that required to learn a musical instrument or to play a sport.
  • A rider of a highly-tuned motocross or off-road motorcycle may "hit" or "fan" the clutch when exiting corners to assist the engine in revving to the point where it delivers the most power.
  • Note: Automatic transmissions also use a coupling device; however, a clutch is not present. In these kinds of vehicles, the torque converter is used to separate the engine and transmission.

Gear selection

Floor-mounted shifter

In most modern passenger cars, gears are selected through a lever attached to the floor of the automobile—this selector is often called a gearstick, gear lever, gear selector, or simply shifter. Moving this lever forward, backward, left, and right allows the driver to select any given gear. In this configuration, the gear lever must be pushed laterally before it is pushed longitudinally.

5 speed shift stick of a 1999 Mazda Protege.

5 speed shift stick of a 1999 Mazda Protege.

A sample layout of a four-speed transmission is shown below. N marks neutral, or the position where no gears are engaged. In reality, the entire horizontal line is a neutral position, although the shifter is usually equipped with springs so that it will return to the N position if not left in another gear. The R denotes reverse, which is technically a fifth gear on this transmission.

Image:Manual Layout4d.PNG

This layout is called the shift pattern. Because of the shift quadrants, the basic arrangement is often called an H-pattern. While the layout for gears one through four is nearly universal, the location of reverse is not. Reverse can be found outside of the quadrant at the upper left (late 1960s GM models and AMC models, 1960s-1980s Ford Europe models, and current VW/Audi models), lower left (Fj Cruiser, Ferrari), the lower right (Jeep CJ7, Datsun models, and Honda Civic), or upper right (Corvette), so caution is always warranted in gear selection. The shift pattern for a specific transmission is usually molded on the gear knob.

The image below shows the most common five-speed layout found in the USA and the UK.

Image:Manual Layout.PNG

This layout is reasonably intuitive because it starts at the upper left and works top to bottom, left to right, with reverse far away and toward the rear of the car. There is usually a mechanism that only allows selection of reverse from the neutral position, so reverse will be less likely to be accidentally chosen when downshifting from 5th to 4th (or by someone used to a 6-speed transmission and trying to shift from 5th to the non-existent 6th).

Image:Manual Dogleg.png

This five-speed layout, found on many race cars and some older model passenger cars, is commonly referred to as a "dog-leg first" or "racing" pattern, because of the "up and over" 1-2 shift. Its use is common in race cars and sports cars, but is diminishing as six speed and sequential gearboxes are becoming more common. Having 1st gear across the dog leg is beneficial as first gear is traditionally only used for getting the car moving and hence it allows 2nd and 3rd gear to be in the same vertical plane, which makes downshifting into 2nd gear easier. As most of the gearboxes are non-syncromesh there is no appreciable delay when upshifting from 1st through the dog leg into 2nd.

This gear pattern can also be found on some heavy vehicles where 1st gear is a crawler gear and would see little normal use.

Another five-speed shift pattern (common on many European cars) is this:

Image:Manual Layout 2.PNG

Transmissions equipped with this shift pattern usually feature a lockout mechanism that requires the driver to depress a switch or the entire gear lever when entering reverse, so that reverse is not accidentally selected when trying to find first gear. This style of pattern (including depressing the gear lever) is common on BMWs, Opels, most Volkswagens (though some have reverse towards second gear,) older Volvo 240s and some Renault models (12, 9, 19, 5, Mégane, Twingo and Clio).

A typical pattern for the more modern six-speed transmission is shown here

Image:Manual Layout6.png

A six-speed manual transmission (seven speeds with reverse) is widely considered to be the largest number of gears that can be contained within a variation of the "H" shift pattern. Note that reverse is placed outside of the "H", with a canted shift leg. This is to prevent the shift lever from intruding too far into the driver's footwell (in left-hand drive cars) when reverse is selected. This is the most common layout for a six-speed manual transmission.

Most front-engined, rear-wheel drive cars have a transmission that sits between the driver and the front passenger seat. Floor-mounted shifters are often connected directly to the transmission. Front-wheel drive and rear-engined cars often require a mechanical linkage to connect the shifter to the transmission.

Historically, 4-speed floor shifters were sometimes referred to as "Four on the Floor", when steering column mounted shifters were more common.

Column-mounted shifter

Column mounted gear shift lever in a Saab 96

Column mounted gear shift lever in a Saab 96

Some cars have a gear lever mounted on the steering column of the car. It was common in the past but is no longer common today. However, many automatic transmissions still use this placement.

Column shifters are mechanically similar to floor shifters, although shifting occurs in a vertical plane instead of a horizontal one. Column shifters also generally involve additional linkages to connect the shifter with the transmission. Also, the pattern is not "intuitive," as the shifter has to be moved backward and upward into R to make the car go backward.

A 3-speed column shifter, nicknamed "Three on the Tree" (alternatively, "Three in the Tree"), began appearing in America in the late 1930s and became common during the 1940s and '50s. Its layout is as shown below:

Image:Manual Layout 3.PNG

First gear in a 3-speed is often called "low," while third is usually called "high." There is, of course, no overdrive. Later European and Japanese models began to have 4-speed column shifter and some of these made their way to the USA. Its layout is shown here:

Image:Column4MT.PNG

However, the column manual shifter disappeared in America by the late 1970s. But in the rest of the world, the column mounted shifter continued to be made, and was in fact common in some places. For example, all Toyota Crown and Nissan Cedric taxis in Hong Kong had the 4-speed column shift until 1999 when automatic began to be offered. Since the late 1980s or early 1990s, 5-speed column shifter has been made in some vans sold in Asia and Europe, such as Toyota Hiace and Mitsubishi L400.

Sequential manual

Some transmissions do not allow the driver to arbitrarily select any gear. Instead, the driver may only ever select the next-lowest or next-highest gear ratio. These transmissions often provide clutch control, but the clutch is only necessary when selecting first or reverse gear from neutral. Most gear changes can be performed without the clutch.

Sequential transmissions are generally controlled by a forward-backward lever, foot pedal, or set of paddles mounted behind the steering wheel. In some cases, these are connected mechanically to the transmission. In many modern examples, these controls are attached to sensors which instruct a transmission computer to perform a shift—many of these systems can be switched into an automatic mode, where the computer controls the timing of shifts, much like an automatic transmission.

Motorcycles typically employ sequential transmissions, although the shift pattern is modified slightly for safety reasons. In a motorcycle the gears are usually shifted with the left foot pedal, the layout being this:

The gear shift lever on a 2003 Suzuki SV650S motorcycle.

The gear shift lever on a 2003 Suzuki SV650S motorcycle.

6 5 ┘ 4 ┘ 3 ┘ 2 ┘ N 1

The pedal goes one step - both up and down - from the center, before it reaches its limit and has to be allowed to move back to the center position. Thus, changing multiple gears in one direction is accomplished by repeatedly pumping the pedal, either up or down. Although neutral is listed as being between first and second gears for this type of transmission, it "feels" more like first and second gear are just "further away" from each other than any other two sequential gears. Because this can lead to difficulty in finding neutral for inexperienced riders most motorcycles have a neutral indicator light on the instrument panel to help finding the neutral gear. The reason neutral does not actually have its own spot in the sequence is to make it quicker to shift from first to second when moving. You will not accidentally shift into neutral. The reason for having neutral between the first and second gears instead of at the bottom is that when stopped, the rider can just click down repeatedly and know that they will end up in first and not neutral.

On motorcycles used on race tracks, the shifting pattern is often reversed, that is, the rider clicks down to upshift. This usage pattern increases the ground clearance by placing the riders foot above the shift lever when the rider is most likely to need it, namely when leaning over and exiting a tight turn.

The shift pattern for most underbone motorcycles with automatic centrifugal clutch is also modified for 2 key reasons - to enable the less-experienced riders to shift the gears without problems of "finding" the neutral gear, and also due to more force needed to "lift" the gearshift lever (because gearshift pedal of an underbone motorcycle also operates the clutch). The gearshift lever of an underbone motorcycle has two ends, therefore the rider clicks down the front end with the left toe all the way to the top gear and clicks down the rear end with the heel all the way down to neutral. Some underbone models such as Honda Wave have "rotary" shift pattern, which means that the rider can shift directly to neutral from the top gear, but this is only possible when the motorcycle is stationary for safety reasons. Some models also have gear position indicators for all gear positions at the instrument panel.

Semi-manual

Some new transmissions (Fiat's Selespeed gearbox and BMW's Sequential Manual Gearbox (SMG) for example) are conventional manual transmissions with a computerized control mechanism. These transmissions feature independently selectable gears but do not have a clutch pedal. Instead, the transmission computer controls a servo which disengages the clutch when necessary.

These transmissions vary from sequential transmissions in that they still allow nonsequential shifts: BMWs SMG system, for example, can shift from 6th gear directly to 4th gear when decelerating from high speeds.

Comparison with automatic transmissions

Manual transmissions are typically compared to automatic transmissions, as the two represent the majority of options available to the typical consumer. These comparisons are general guidelines and may not apply in certain circumstances. Additionally, the recent popularity of semi-manual and semi-automatic transmissions renders many of these points obsolete. It should be kept in mind that some of these points are true of "conventional" automatic transmissions which shift gears and are coupled to the engine with a torque converter but are not a true comparison or do not apply to other kinds of automatic transmissions, like the continuously-variable transmission.

Advantages

  • Manual transmissions typically offer better fuel economy compared to automatics.[2] Increased fuel economy with a properly operated manual transmission vehicle versus an equivalent automatic transmission vehicle can range from 5% to about 15% depending on driving conditions and style of driving -- extra urban or urban (highway or city). There are several reasons for this:
    • Mechanical efficiency. The manual transmission couples the engine to the transmission with a rigid clutch instead of a torque converter that introduces significant power losses. The automatic transmission also suffers parasitic losses by driving the high pressure hydraulic pumps required for its operation.
    • Fuel cut-off. The torque converter of the automatic transmission is designed for transmitting power from the engine to the wheels. Its ability to transmit power in the reverse direction is limited. During deceleration, if the torque converter's rotation drops beneath its stall speed, the momentum of the car can no longer turn the engine, requiring the engine to be idled. By contrast, a manual transmission, with the clutch engaged, can use the car's momentum to keep the engine turning, in principle, all the way down to zero RPM. This means that there are better opportunities, in a manual car, for the electronic control unit (ECU) to impose deceleration fuel cut-off (DFCO), a fuel-saving mode whereby the fuel injectors are turned off if the throttle is closed (foot off the accelerator pedal) and the engine is being driven by the momentum of the vehicle.
    • Geartrain efficiency. Automatics may require power to be transmitted through multiple planetary gearsets before attaining the desired gear ratio.
  • Manual transmissions are still more efficient than belt-driven continuously-variable transmissions.[3][4]
  • Manual transmissions are generally significantly lighter than torque-converter automatics.[2]
  • Vehicles with manual transmissions are typically less expensive than those with automatic transmissions.
  • Manual transmissions normally do not require active cooling, because not much power is dissipated as heat through the transmission.[4]
    • The heat issue can be important in certain situations, like climbing long hills in hot weather, particularly if pulling a load. Unless the automatic's torque converter is locked up (which typically only happens in an overdrive gear that would not be engaged when going up a hill) the transmission can overheat.[5] A manual transmission's clutch only generates heat when it slips, which does not happen unless the driver is riding the clutch pedal.
  • A driver has more direct control over the state of the transmission with a manual than an automatic. This control is important to an experienced, knowledgeable driver who knows the correct procedure for executing a driving maneuver, and wants the machine to realize his or her intentions exactly and instantly. Manual transmissions are particularly advantageous for performance driving or driving on steep and winding roads. Note that this advantage applies equally to manual-automatic transmissions, such as tiptronic, provided they have a quick reaction time to driver input.
    • An example: the driver, anticipating a turn, can downshift to the appropriate gear while the steering is still straight, and stay in gear through the turn. This is the correct, safe way to execute a turn. An unanticipated change of gear during a sharp turn can cause skidding if the road is slippery.
    • Another example: when starting, the driver can control how much torque goes to the tires, which is useful for starting on slippery surfaces such as ice, snow or mud. This can be done with clutch finesse, or possibly by starting in second gear instead of first. The driver of an automatic can only put the car into drive, and play with the throttle. The torque converter can easily dump too much torque into the wheels, because when it slips, it acts as an extra low gear, passing through the engine power, reducing the rotations while multiplying torque. Some cars, such as the Saab NG900 Automatic transmission, have a special mode for low traction situations.
    • Yet another example: passing. When the driver is attempting to pass a slower moving vehicle by making use of a lane with opposite traffic, he or she can select a lower gear for more power at exactly the right moment when conditions are right to begin the maneuver. Automatics have a delayed reaction time, because the driver can only indicate his intent by pressing the throttle.
  • Driving a manual requires more involvement from the driver, thereby discouraging some dangerous practices. The manual selection of gears requires the driver to monitor the road and traffic situation, anticipate events and plan a few steps ahead. If the driver's mind wanders from the driving task, the machine will soon end up in an incorrect gear, which will be obvious from excessive or insufficient engine RPM. Related points:
    • It's much more difficult for the driver to fidget in a manual transmission car, for instance by eating, drinking beverages, or talking on a cellular phone without a headset. During gear shifts, two hands are required. One stays on the wheel, and the other operates the gear lever. The hand on the wheel is absolutely required during turns, and tight turns are accompanied by gear changes. If the hand leaves the wheel, the steering will begin to straighten. In general, the more demanding the driving situation, the more difficult it is for the manual driver to do anything but operate the vehicle. The driver of an automatic transmission can engage in distracting activities in any situation, such as sharp turns through intersections or stop-and-go traffic.
  • The driver of a manual transmission car can develop an accurate intuition for how fast the car is traveling, from the sound of the motor and the gear selection.
  • Cars with manual transmissions can often be started when the battery is dead by pushing the car into motion or allowing it to roll downhill, and then engaging the clutch in third or second gear. This is commonly known as a "push start", "popping the clutch" (in the USA), "crash starting" (in New Zealand), "roll starting" (in Australia) or "bump starting" (in the UK). However, this practice is strongly discouraged by most manufacturers, citing possible damage to emissions control devices such as the catalytic converter.
  • Manual transmissions work regardless of the orientation angle of the car with respect to gravity. Automatic transmissions have a fluid reservoir (pan) at the bottom; if the car is tilted too much, the fluid pump can be starved, causing a failure in the hydraulics.
  • It is sometimes possible to move a vehicle with a manual transmission just by putting it in gear and cranking the starter. This is useful in an emergency situation where the vehicle will not start, but must be immediately moved (from an intersection or railroad crossing, for example). It is also easier to put a car with a manual transmission into neutral, even when the transmission has suffered damage from an accident or malfunction. Many modern vehicles will not allow the starter to be run without the clutch fully depressed, negating this advantage, but some manufacturers have begun to add a clutch start override switch so that this advantage may still be enjoyed when necessary.

Disadvantages

Many of the disadvantages of a manual transmission involve the driver interaction with the vehicle. While most of these can be overcome with practice and experience, they should be considered:

  • Manual transmissions do not allow the driver to have both hands on the steering wheel at all times.
  • Manual transmissions often require the driver to place their full and continuous attention on operating the vehicle, preventing them from multitasking. This can also be seen as an advantage, as listed above, as it can prevent the driver from potential distractions like mobile phone or radio use.
  • Inexperienced drivers may place more of their attention on shifting the gears of the transmission, potentially distracting them from the road surroundings.
  • A driver may inadvertently shift into the wrong gear with a manual transmission, potentially causing damage to the engine or transmission. It may also result in loss of control due to a sudden change in the vehicle's speed.
  • Manual transmissions require a learning curve as one must develop a feel for properly engaging the clutch.
  • While it can easily be overcome with experience, manual transmission vehicles require good accelerator pedal application and clutch control when starting the car from a standstill. Excessive RPMs may cause the car to redline, exacerbating engine wear, whereas insufficient RPMs upon clutch release causes the engine to stall due to the lack of momentum required to sustain engine operation.
  • The smooth and timely shifts of an automatic transmission are not guaranteed when operating a manual transmission; such changes are dependent on the driver's experience and timing.
  • Manual transmissions burden the driver in heavy traffic situations since the driver is often operating the clutch pedal. In comparison, automatic transmissions merely require moving the foot from the accelerator pedal to the brake pedal, and vice versa.
  • For a person with physical impairment, an automatic transmission might be the only available shifting option. The comparable systems for hand-operated clutch and brakes for a manual-transmission-equipped car are usable only by people with just lower body handicap. Retrofit of such a system also requires extensive modifications to the car.
  • Vehicles with manual transmissions are more difficult to start from a rest when positioned upward on a hill as it requires coordination of the accelerator, the clutch pedals, and the handbrake. This c

beeway 發表在 痞客邦 留言(0) 人氣()

Bewise Inc. www.tool-tool.com Reference source from the internet.



Автоматическая коробка переключения передач или автоматическая трансмиссия.

Вид коробки передач автомобилей. От МКПП отличается автоматизированным переключением передач, а также иной конструкцией механической части. Как правило имеет гидротрансформатор и планетарный редуктор. Исключение — в АКПП фирмы Honda планетарный редуктор заменен на валы с шестернями (как на ручной коробке передач). Управление АКПП бывает либо гидромеханическое, либо электронное.

Разновидностью АКПП является автоматизированная CVT.

Также существуют различные автоматизированные МКПП.

歡迎來到Bewise Inc.的世界,首先恭喜您來到這接受新的資訊讓產業更有競爭力,我們是提供專業刀具製造商,應對客戶高品質的刀具需求,我們可以協助客戶滿足您對產業的不同要求,我們有能力達到非常卓越的客戶需求品質,這是現有相關技術無法比擬的,我們成功的滿足了各行各業的要求,包括:精密HSS DIN切削刀具協助客戶設計刀具流程DIN or JIS 鎢鋼切削刀具設計NAS986 NAS965 NAS897 NAS937orNAS907 航太切削刀具,NAS航太刀具設計超高硬度的切削刀具醫療配件刀具設計汽車業刀具設計電子產業鑽石刀具木工產業鑽石刀具等等。我們的產品涵蓋了從民生刀具到工業級的刀具設計;從微細刀具到大型刀具;從小型生產到大型量產;全自動整合;我們的技術可提供您連續生產的效能,我們整體的服務及卓越的技術,恭迎您親自體驗!!

BW Bewise Inc. Willy Chen willy@tool-tool.com bw@tool-tool.com www.tool-tool.com skype:willy_chen_bw mobile:0937-618-190 Head &Administration Office No.13,Shiang Shang 2nd St., West Chiu Taichung,Taiwan 40356 http://www.tool-tool..com / FAX:+886 4 2471 4839 N.Branch 5F,No.460,Fu Shin North Rd.,Taipei,Taiwan S.Branch No.24,Sec.1,Chia Pu East Rd.,Taipao City,Chiayi Hsien,Taiwan

Welcome to BW tool world! We are an experienced tool maker specialized in cutting tools. We focus on what you need and endeavor to research the best cutter to satisfy users demand. Our customers involve wide range of industries, like mold & die, aerospace, electronic, machinery, etc. We are professional expert in cutting field. We would like to solve every problem from you. Please feel free to contact us, its our pleasure to serve for you. BW product including: cutting toolaerospace tool .HSS DIN Cutting toolCarbide end millsCarbide cutting toolNAS Cutting toolNAS986 NAS965 NAS897 NAS937orNAS907 Cutting Tools,Carbide end milldisc milling cutter,Aerospace cutting toolhss drillФрезерыCarbide drillHigh speed steelMilling cutterCVDD(Chemical Vapor Deposition Diamond )’PCBN (Polycrystalline Cubic Boron Nitride) Core drillTapered end millsCVD Diamond Tools Inserts’PCD Edge-Beveling Cutter(Golden FingerPCD V-CutterPCD Wood toolsPCD Cutting toolsPCD Circular Saw BladePVDD End Millsdiamond tool Single Crystal Diamond Metric end millsMiniature end millsСпециальные режущие инструменты Пустотелое сверло Pilot reamerFraisesFresas con mango PCD (Polycrystalline diamond) ‘FreseElectronics cutterStep drillMetal cutting sawDouble margin drillGun barrelAngle milling cutterCarbide burrsCarbide tipped cutterChamfering toolIC card engraving cutterSide cutterNAS toolDIN or JIS toolSpecial toolMetal slitting sawsShell end millsSide and face milling cuttersSide chip clearance sawsLong end millsStub roughing end millsDovetail milling cuttersCarbide slot drillsCarbide torus cuttersAngel carbide end millsCarbide torus cuttersCarbide ball-nosed slot drillsMould cutterTool manufacturer.

Bewise Inc. www.tool-tool.com

ようこそBewise Inc.の世界へお越し下さいませ、先ず御目出度たいのは新たな

情報を受け取って頂き、もっと各産業に競争力プラス展開。

弊社は専門なエンドミルの製造メーカーで、客先に色んな分野のニーズ

豊富なパリエーションを満足させ、特にハイテク品質要求にサポート致します。

弊社は各領域に供給できる内容は:

(1)精密HSSエンドミルのR&D

(2)Carbide Cutting tools設計

(3)鎢鋼エンドミル設計

(4)航空エンドミル設計

(5)超高硬度エンドミル

(6)ダイヤモンドエンドミル

(7)医療用品エンドミル設計

(8)自動車部品&材料加工向けエンドミル設計

弊社の製品の供給調達機能は:

(1)生活産業~ハイテク工業までのエンドミル設計

(2)ミクロエンドミル~大型エンドミル供給

(3)小Lot生産~大量発注対応供給

(4)オートメーション整備調達

(5)スポット対応~流れ生産対応

弊社の全般供給体制及び技術自慢の総合専門製造メーカーに貴方のご体験を御待ちしております。

BW специализируется в научных исследованиях и разработках, и снабжаем самым высокотехнологичным карбидовым материалом для поставки режущих / фрезеровочных инструментов для почвы, воздушного пространства и электронной индустрии. В нашу основную продукцию входит твердый карбид / быстрорежущая сталь, а также двигатели, микроэлектрические дрели, IC картонорезальные машины, фрезы для гравирования, режущие пилы, фрезеры-расширители, фрезеры-расширители с резцом, дрели, резаки форм для шлицевого вала / звездочки роликовой цепи, и специальные нано инструменты. Пожалуйста, посетите сайт www.tool-tool.com для получения большей информации.

BW is specialized in R&D and sourcing the most advanced carbide material with high-tech coating to supply cutting / milling tool for mould & die, aero space and electronic industry. Our main products include solid carbide / HSS end mills, micro electronic drill, IC card cutter, engraving cutter, shell end mills, cutting saw, reamer, thread reamer, leading drill, involute gear cutter for spur wheel, rack and worm milling cutter, thread milling cutter, form cutters for spline shaft/roller chain sprocket, and special tool, with nano grade. Please visit our web www.tool-tool.com for more info.

beeway 發表在 痞客邦 留言(0) 人氣()

Bewise Inc. www.tool-tool.com Reference source from the internet.

O câmbio automático é um sistema de troca de marchas automático realizado pelo sistema de transmissão do automóvel, que detecta a relação entre a velocidade (km/h) e a rotação do motor (rpm) para decidir pela troca automática da marcha, desta forma o sistema se propõe a manter a rotação do motor quase constante e o câmbio automaticamente faz a troca das marchas. Nos sistemas modernos com câmbio automático a troca das marchas está quase imperceptível ao motorista.

Nos Estados Unidos quase todos os veículos utilizam-se deste sistema. Este sistema se opôe ao sistema de câmbio mecânico ou câmbio manual mais comum no Brasil.


[editar] Vantagens e desvantagens

  • Vantagens: conforto, segurança.
  • Desvantagens: maior consumo, desempenho prejudicado e custo elevado em relação ao câmbio mecânico.

[editar] Configuração

esquema do câmbio automático

esquema do câmbio automático

Normalmente o câmbio automático apresenta as seguintes opções:

  • P - Park: para estacionar, recomendado para dar a partida e desligar o motor do automóvel. Bloqueia as rodas de tração.
  • R - Reverse: marcha-a-ré.
  • N - Neutral: ponto morto. Posição que pode ser usada ao dar a partida e desligar e dar partida. Não bloqueia as rodas de tração.
  • D - Drive: para movimentar o veículo para frente, usado na maior parte do tempo de direção.
  • 4 - 3 - 2 - 1: Posições que permitem o bloqueio das marchas 4, 3, 2 e 1. O bloqueio é usado em situações extremas quando o veículo troca várias vezes de uma marcha para outra. Por exemplo, em um aclive acentuado, ao se colocar na posição 2, impede-se o veículo de automaticamente trocar para a posição 3. Dessa forma bloqueia-se uma posição de marcha específica e não ocorre a troca automática entre elas. O mesmo procedimento é usado no freio motor.

歡迎來到Bewise Inc.的世界,首先恭喜您來到這接受新的資訊讓產業更有競爭力,我們是提供專業刀具製造商,應對客戶高品質的刀具需求,我們可以協助客戶滿足您對產業的不同要求,我們有能力達到非常卓越的客戶需求品質,這是現有相關技術無法比擬的,我們成功的滿足了各行各業的要求,包括:精密HSS DIN切削刀具協助客戶設計刀具流程DIN or JIS 鎢鋼切削刀具設計NAS986 NAS965 NAS897 NAS937orNAS907 航太切削刀具,NAS航太刀具設計超高硬度的切削刀具醫療配件刀具設計汽車業刀具設計電子產業鑽石刀具木工產業鑽石刀具等等。我們的產品涵蓋了從民生刀具到工業級的刀具設計;從微細刀具到大型刀具;從小型生產到大型量產;全自動整合;我們的技術可提供您連續生產的效能,我們整體的服務及卓越的技術,恭迎您親自體驗!!

BW Bewise Inc. Willy Chen willy@tool-tool.com bw@tool-tool.com www.tool-tool.com skype:willy_chen_bw mobile:0937-618-190 Head &Administration Office No.13,Shiang Shang 2nd St., West Chiu Taichung,Taiwan 40356 http://www.tool-tool..com / FAX:+886 4 2471 4839 N.Branch 5F,No.460,Fu Shin North Rd.,Taipei,Taiwan S.Branch No.24,Sec.1,Chia Pu East Rd.,Taipao City,Chiayi Hsien,Taiwan

Welcome to BW tool world! We are an experienced tool maker specialized in cutting tools. We focus on what you need and endeavor to research the best cutter to satisfy users demand. Our customers involve wide range of industries, like mold & die, aerospace, electronic, machinery, etc. We are professional expert in cutting field. We would like to solve every problem from you. Please feel free to contact us, its our pleasure to serve for you. BW product including: cutting toolaerospace tool .HSS DIN Cutting toolCarbide end millsCarbide cutting toolNAS Cutting toolNAS986 NAS965 NAS897 NAS937orNAS907 Cutting Tools,Carbide end milldisc milling cutter,Aerospace cutting toolhss drillФрезерыCarbide drillHigh speed steelMilling cutterCVDD(Chemical Vapor Deposition Diamond )’PCBN (Polycrystalline Cubic Boron Nitride) Core drillTapered end millsCVD Diamond Tools Inserts’PCD Edge-Beveling Cutter(Golden FingerPCD V-CutterPCD Wood toolsPCD Cutting toolsPCD Circular Saw BladePVDD End Millsdiamond tool Single Crystal Diamond Metric end millsMiniature end millsСпециальные режущие инструменты Пустотелое сверло Pilot reamerFraisesFresas con mango PCD (Polycrystalline diamond) ‘FreseElectronics cutterStep drillMetal cutting sawDouble margin drillGun barrelAngle milling cutterCarbide burrsCarbide tipped cutterChamfering toolIC card engraving cutterSide cutterNAS toolDIN or JIS toolSpecial toolMetal slitting sawsShell end millsSide and face milling cuttersSide chip clearance sawsLong end millsStub roughing end millsDovetail milling cuttersCarbide slot drillsCarbide torus cuttersAngel carbide end millsCarbide torus cuttersCarbide ball-nosed slot drillsMould cutterTool manufacturer.

Bewise Inc. www.tool-tool.com

ようこそBewise Inc.の世界へお越し下さいませ、先ず御目出度たいのは新たな

情報を受け取って頂き、もっと各産業に競争力プラス展開。

弊社は専門なエンドミルの製造メーカーで、客先に色んな分野のニーズ

豊富なパリエーションを満足させ、特にハイテク品質要求にサポート致します。

弊社は各領域に供給できる内容は:

(1)精密HSSエンドミルのR&D

(2)Carbide Cutting tools設計

(3)鎢鋼エンドミル設計

(4)航空エンドミル設計

(5)超高硬度エンドミル

(6)ダイヤモンドエンドミル

(7)医療用品エンドミル設計

(8)自動車部品&材料加工向けエンドミル設計

弊社の製品の供給調達機能は:

(1)生活産業~ハイテク工業までのエンドミル設計

(2)ミクロエンドミル~大型エンドミル供給

(3)小Lot生産~大量発注対応供給

(4)オートメーション整備調達

(5)スポット対応~流れ生産対応

弊社の全般供給体制及び技術自慢の総合専門製造メーカーに貴方のご体験を御待ちしております。

BW специализируется в научных исследованиях и разработках, и снабжаем самым высокотехнологичным карбидовым материалом для поставки режущих / фрезеровочных инструментов для почвы, воздушного пространства и электронной индустрии. В нашу основную продукцию входит твердый карбид / быстрорежущая сталь, а также двигатели, микроэлектрические дрели, IC картонорезальные машины, фрезы для гравирования, режущие пилы, фрезеры-расширители, фрезеры-расширители с резцом, дрели, резаки форм для шлицевого вала / звездочки роликовой цепи, и специальные нано инструменты. Пожалуйста, посетите сайт www.tool-tool.com для получения большей информации.

BW is specialized in R&D and sourcing the most advanced carbide material with high-tech coating to supply cutting / milling tool for mould & die, aero space and electronic industry. Our main products include solid carbide / HSS end mills, micro electronic drill, IC card cutter, engraving cutter, shell end mills, cutting saw, reamer, thread reamer, leading drill, involute gear cutter for spur wheel, rack and worm milling cutter, thread milling cutter, form cutters for spline shaft/roller chain sprocket, and special tool, with nano grade. Please visit our web www.tool-tool.com for more info.

beeway 發表在 痞客邦 留言(0) 人氣()

Bewise Inc. www.tool-tool.com Reference source from the internet.

Dźwignia skrzyni biegów w Vw Phaeton

Dźwignia skrzyni biegów w Vw Phaeton

Automatyczna skrzynia biegów jest samochodową skrzynią zmieniającą biegi wraz ze zmianą prędkości pojazdu, zwalniając użytkownika z konieczności manualnej zmiany.

Skrzynie automatyczne można podzielić na dwie grupy:

  • skrzynie hydrauliczne
  • skrzynie hydrauliczne ze sterowaniem elektronicznym

W pierwszej grupie znajdują się skrzynie które na podstawie zmiany prędkości obrotowej silnika, aktualnej prędkości pojazdu i kąta uchylenia przepustnicy dobierają optymalne przełożenie całkowicie mechanicznie.

Dźwignia skrzyni biegów w Fordzie Escorcie 1.9

Dźwignia skrzyni biegów w Fordzie Escorcie 1.9

Grupa druga skrzyń ma nieco większe możliwości - elektronika pozwala na wprowadzenie dodatkowych programów jazdy - np. specjalny tryb pracy dostosowany do warunków zimowych, lub jazda sportowa - kiedy silnik jest "wykręcany" do znacznie wyższych prędkości obrotowych niż podczas normalnej jazdy.

Skrzynia automatyczna pozwala na bardzo płynną jazdę, optymalizując przełożenie do obrotów silnika. Dzięki temu auta z taka skrzynią osiągają większe przebiegi - silnik jest mniej "zmęczony".

Najpopularniejsza w Stanach Zjednoczonych, zyskuje popularność także w Europie.

Ostatnią nowinką są skrzynie autoadaptywne - dostosowujące charakterystykę pracy do stylu jazdy użytkownika, choć oczywiście pomysł jest stary. Adaptatywne, sterowane elektronicznie skrzynie biegów nieprzerwanie od 1989 roku wykorzystywane są w samochodach marki Chrysler - patrz Ultradrive.

Skrzynią automatyczna nie jest zwykłą skrzynią biegów z automatycznym sterowaniem. Różni się ona konstrukcją i sposobem przeniesienia napędu - posiada bowiem klasyczne sprzęgło, podczas gdy w skrzyniach automatycznych stosowana jest przekładnia hydrokinetyczna.

歡迎來到Bewise Inc.的世界,首先恭喜您來到這接受新的資訊讓產業更有競爭力,我們是提供專業刀具製造商,應對客戶高品質的刀具需求,我們可以協助客戶滿足您對產業的不同要求,我們有能力達到非常卓越的客戶需求品質,這是現有相關技術無法比擬的,我們成功的滿足了各行各業的要求,包括:精密HSS DIN切削刀具協助客戶設計刀具流程DIN or JIS 鎢鋼切削刀具設計NAS986 NAS965 NAS897 NAS937orNAS907 航太切削刀具,NAS航太刀具設計超高硬度的切削刀具醫療配件刀具設計汽車業刀具設計電子產業鑽石刀具木工產業鑽石刀具等等。我們的產品涵蓋了從民生刀具到工業級的刀具設計;從微細刀具到大型刀具;從小型生產到大型量產;全自動整合;我們的技術可提供您連續生產的效能,我們整體的服務及卓越的技術,恭迎您親自體驗!!

BW Bewise Inc. Willy Chen willy@tool-tool.com bw@tool-tool.com www.tool-tool.com skype:willy_chen_bw mobile:0937-618-190 Head &Administration Office No.13,Shiang Shang 2nd St., West Chiu Taichung,Taiwan 40356 http://www.tool-tool..com / FAX:+886 4 2471 4839 N.Branch 5F,No.460,Fu Shin North Rd.,Taipei,Taiwan S.Branch No.24,Sec.1,Chia Pu East Rd.,Taipao City,Chiayi Hsien,Taiwan

Welcome to BW tool world! We are an experienced tool maker specialized in cutting tools. We focus on what you need and endeavor to research the best cutter to satisfy users demand. Our customers involve wide range of industries, like mold & die, aerospace, electronic, machinery, etc. We are professional expert in cutting field. We would like to solve every problem from you. Please feel free to contact us, its our pleasure to serve for you. BW product including: cutting toolaerospace tool .HSS DIN Cutting toolCarbide end millsCarbide cutting toolNAS Cutting toolNAS986 NAS965 NAS897 NAS937orNAS907 Cutting Tools,Carbide end milldisc milling cutter,Aerospace cutting toolhss drillФрезерыCarbide drillHigh speed steelMilling cutterCVDD(Chemical Vapor Deposition Diamond )’PCBN (Polycrystalline Cubic Boron Nitride) Core drillTapered end millsCVD Diamond Tools Inserts’PCD Edge-Beveling Cutter(Golden FingerPCD V-CutterPCD Wood toolsPCD Cutting toolsPCD Circular Saw BladePVDD End Millsdiamond tool Single Crystal Diamond Metric end millsMiniature end millsСпециальные режущие инструменты Пустотелое сверло Pilot reamerFraisesFresas con mango PCD (Polycrystalline diamond) ‘FreseElectronics cutterStep drillMetal cutting sawDouble margin drillGun barrelAngle milling cutterCarbide burrsCarbide tipped cutterChamfering toolIC card engraving cutterSide cutterNAS toolDIN or JIS toolSpecial toolMetal slitting sawsShell end millsSide and face milling cuttersSide chip clearance sawsLong end millsStub roughing end millsDovetail milling cuttersCarbide slot drillsCarbide torus cuttersAngel carbide end millsCarbide torus cuttersCarbide ball-nosed slot drillsMould cutterTool manufacturer.

Bewise Inc. www.tool-tool.com

ようこそBewise Inc.の世界へお越し下さいませ、先ず御目出度たいのは新たな

情報を受け取って頂き、もっと各産業に競争力プラス展開。

弊社は専門なエンドミルの製造メーカーで、客先に色んな分野のニーズ

豊富なパリエーションを満足させ、特にハイテク品質要求にサポート致します。

弊社は各領域に供給できる内容は:

(1)精密HSSエンドミルのR&D

(2)Carbide Cutting tools設計

(3)鎢鋼エンドミル設計

(4)航空エンドミル設計

(5)超高硬度エンドミル

(6)ダイヤモンドエンドミル

(7)医療用品エンドミル設計

(8)自動車部品&材料加工向けエンドミル設計

弊社の製品の供給調達機能は:

(1)生活産業~ハイテク工業までのエンドミル設計

(2)ミクロエンドミル~大型エンドミル供給

(3)小Lot生産~大量発注対応供給

(4)オートメーション整備調達

(5)スポット対応~流れ生産対応

弊社の全般供給体制及び技術自慢の総合専門製造メーカーに貴方のご体験を御待ちしております。

BW специализируется в научных исследованиях и разработках, и снабжаем самым высокотехнологичным карбидовым материалом для поставки режущих / фрезеровочных инструментов для почвы, воздушного пространства и электронной индустрии. В нашу основную продукцию входит твердый карбид / быстрорежущая сталь, а также двигатели, микроэлектрические дрели, IC картонорезальные машины, фрезы для гравирования, режущие пилы, фрезеры-расширители, фрезеры-расширители с резцом, дрели, резаки форм для шлицевого вала / звездочки роликовой цепи, и специальные нано инструменты. Пожалуйста, посетите сайт www.tool-tool.com для получения большей информации.

BW is specialized in R&D and sourcing the most advanced carbide material with high-tech coating to supply cutting / milling tool for mould & die, aero space and electronic industry. Our main products include solid carbide / HSS end mills, micro electronic drill, IC card cutter, engraving cutter, shell end mills, cutting saw, reamer, thread reamer, leading drill, involute gear cutter for spur wheel, rack and worm milling cutter, thread milling cutter, form cutters for spline shaft/roller chain sprocket, and special tool, with nano grade. Please visit our web www.tool-tool.com for more info.

beeway 發表在 痞客邦 留言(0) 人氣()

Bewise Inc. www.tool-tool.com Reference source from the internet.

鉄は、主に”鋼”、”鋳物”、”特殊鋼”に大別されます。

(1) 鋼  鉄(Fe)に炭素(C)が混ざる割合で、鋼・鋳物の区別ができ、その分量は、

       炭素C:  0~0.04%    0.04~2.1%    2.1~6.7%

       分 類:  鉄(工業上)      鋼         鋳物

     のようになり、鉄はC%が少なすぎて柔らかく、鋳鉄はC%が多すぎて脆く、鋼がちょうど中間で手ごろなC%ということになります。 

     

  鋼の5元素

 鋼は鉄(Fe)と炭素(C)の合金であるが、正確にいうとその他に、けい素(Siマンガン(Mn)・燐(P)・硫黄(S)が混ざっていて、これを鋼の5元素といいます。  普通の鋼には下記の表-2に示す程度入っています。

鋼の5元素

炭素(C)%

けい素(Si)%

マンガン(Mn)%

燐(P)%

硫黄(S)%

0.11.5 0.10.4 0.50.8 0.03以下 0.03以下

     それぞれ、5元素の作用は、  

 炭素(C):

 鋼にとってなくてはならない大切な元素で、硬さや強さを増すもので、これがないと鋼になりません。 C1%につき、引張強度が約100kgf/mm増加します。

 けい素(Si):

 強さや硬さを増す元素で、Si1%につき引張強度10kgf/mm増加する。

 マンガン(Mn):

 焼きがよく入るようになる元素で、値段が安い割にキキメがあるものです。また、鋼に強靭性を与える元素で、ハイテン(高張力鋼)には1.2 ~ 1.5%入っている。

 燐(P):

 鋼には有害な元素で、冷間脆性つまり寒い時に鋼を脆くさせる性質がある。集団結合(偏析)する性質が強いので、含有量は少ないことが必要です。

 硫黄(S):

 これも燐(P)と同じく好ましくない有害元素で、熱間脆性つまり赤熱状態の時脆くさせる性質があるので、含有量を極力抑えることが必要です。

         

     ⅰ)一般構造用圧延鋼材(SS材)

 これは、JIS鋼材のうちで、もっとも多く使われている鋼種で、その代表的な物はSS41です。これは、引張強さの最低が41kgf/mmということで、化学成分、特にC%は規定されていません。
 
SS材は主要強度部材を除くほかほとんどの機械及び構造物の補助部材として、鋼板・平鋼・棒鋼・形鋼などに使用されます。

     

     ⅱ)機械構造用炭素鋼材(S―C材)

 これは、起重機・生産機械・自動車・エンジン部品などに非常に多く使われています。熱処理としては焼きならし・焼入れ・焼戻し(調質)あるいは表面焼入れ(高周波焼入・火炎焼入)・浸炭肌焼きなどが施されます。S-C材のうちで一番多く使われるのがS45C(炭素C:0.45%含有)です。S-C材は焼入れ性があまりよくないので、太物の調質には向いていません。太物には合金鋼(SCr・SCM)を使う必要があります。

(2) 鋳物  鋳物の性質は、かたくてもろい・摩耗しにくいなどがあります、特に鋼材とはまったく違った性質がありそれは、「減衰能」及び「吸振性」で振動を吸収する性質があり、主に工作機械・測定器・水道管・マンホールの蓋などによく使われます。

     

(3) 特殊鋼   鋼にニッケル(Ni)・クロム(Cr)・モリブデン(Mo)・バナジウム(V)・タングステン(W)・コバルト(Co)・銅(Cu)・ボロン(B)・チタニウム(Ti)の特殊元素が入り特殊な性質を発揮する鋼を特殊鋼と言います。これら特殊元素の効用を以下に説明します。

     

マンガン(Mn):   これはごくありふれた安い合金元素ですが、きわめて重要ななくてはならないものです。これは、1.2%以上含まれるとマンガン鋼といって、合金鋼の仲間入りをするわけです。MnCほどではありませんが、強さと硬さを増し、そのわりに粘さを損わないもので、また、焼きが入り易くなるので、調質用鋼には欠かせない元素です。

     

クロム(Cr):    これは多才な元素です。なかでも代表的な効能は、摩耗に強く、さびにくくなることです。ボールベアリング鋼(SUJ)にはCr1%・ダイス鋼(SKD11)にはCr13%・ステンレス鋼(SUS)にはCr13%以上入っています。また焼きが入り易くなり浸炭を促進する有用な元素でもあります。さらに、値段も手頃なので重宝な元素です。

 

モリブデン(Mo): これはいろいろな合金鋼に使われ、非常に信頼性のある働きをします。その効能も優秀なので、数ある合金元素のなかで最も尊重されている元素の一つです。鋼の焼入性、つまり焼きの入る深さを増す第一線級の元素で、高温に加熱された時結晶粒の粗大化を防ぎ、高温張力強さを増大します。さらにステンレス鋼の耐食性を向上させる能力を持っています。ただ国産でないので、値段が高いのが欠点です。

  

ニッケル(Ni):  これは鋼の粘さ、つまり耐ショック性を増す有力な元素で、熱処理し易くさせるし耐食性も向上させます。昔は合金元素のトップクラスでしたが近年は資源的にも少なく、値段も高いので首位の座をCrMoに譲っています。

 

バナジウム(V): これは結晶粒を細かくし、強靭性を発揮させる効果をもち、非常に硬い炭化物をつくるので、耐摩耗性を向上させます。したがって、強力な切削工具鋼には欠かせない元素です。

     

タングステン(W): これは温度が上がってもなかなか軟らかくならない性質、つまり耐熱性を発揮し、硬くて減らない特性を付与します。Moと同じ作用で、Mo1%とW2%が同じ効能です。 工具鋼、特に高速度鋼には絶対必要な元素で、タングステン系高速度鋼とモリブデン系高速度鋼の二つのタイプがあります。

  

コバルト(Co):  鋼が赤熱された時でも軟らかくならない性質、つまり、赤熱硬性を増す有力な元素で、高級工具鋼や磁石鋼には欠かせない元素です。ただ、価格が高価なのが欠点です。

 

(Cu)  これは、あまり多く添加されると割れ易くなりますが、0.4%くらいまでは空気中でさびにくい性質、つまり耐食性を発揮するようになります。

 

ボロン(B)  これはごく微量(0.003%以下)添加しただけで、鋼の焼入れ性を増大し、焼きが入り易くなる。現在、合金鋼の焼入れ性を増すために必ず添加されこれをB鋼といって 鋼種記号にBを付記します。

 

チタニウム(Ti): これは鋼の焼きを入り易くすると同時に、ステンレス鋼に添加すると耐食性を増す効能をもっています。

  

     ⅰ)機械構造用合金鋼材(SA材)

 これは、前に出てきたSC材にCrMoNiなどの特殊元素の入ったもので、その代表的なものがSCM(クロムモリブデン鋼:パイプレンチのあご,シュレッダーライナなど)・SCr(クロム鋼:プライヤーなど)・SNCM(ニッケルクロムモリブデン鋼:ピッケルなど)などです。これらは皆焼入れ・焼戻し(調質)・あるいは表面硬化して使用します。焼入れ性がよいので、熱処理による機械的性質の向上は非常に大きいものがあります。

 

     ⅱ)工具用鋼材(SK材)

 これは、工具に使われる工具鋼で、一般にC0.6%の高炭素鋼です。摩耗に強く、切削性能が大きい。工具鋼は、炭素工具鋼(SK:ボルトクリッパの刃,ニッパの刃など)・合金工具鋼(SKS:ネジのタップ,ポンチ,ヤスリなどSKD:熱間押出し用ダイスなど)・高速度鋼(SKH:フライス,バイト,ドリルなど)の3種類あります。
 炭素工具鋼は硬いけれども熱に弱いので、低速切削工具・手動工具・木工具などに使います。合金工具鋼は硬くて、衝撃に強く、摩耗や熱にも強いので、特殊 な用途の工具に使用され、用途により切削工具用・耐衝撃工具用・冷間金型用・熱間金型用の四つに分類されます。

 

     ⅲ)特殊用途鋼材(SU材)

 この代表的なものは、ステンレス鋼材(SUS)です。その他に、耐熱鋼材(SUH)、高炭素―高クロム軸受鋼材(SUJ)・ばね鋼材(SUP)があります。
 SUSには18クロムステンレス鋼(SUS430)・13クロムステンレス鋼(SUS410、420J2)・18-8ステンレス鋼(SUS304)の3種類があります。
 18Cr系は軟らかいだけが取りえなので食器類などにつかわれます。13Cr系は、焼きが入って硬くなるので、刃物や耐食機械部品に賞用されます。18-8系は軟らかいけれども粘く、さびには非常につよいので、いたるところで使用されている。また、マグネットに吸着しない性質があるので、用途によっては、便利なことがあります。しかし、18-8系にも弱点があります。600700℃に加熱されると、さび易く(粒界腐食)なって破損することがあります。また、ハンマで叩いたり、折り曲げたりすると、その部分はマグネットにつくようになるので注意が必要です。
 耐熱鋼材(SUH)は、600℃以上の熱に強くフェライト系(SUH446),マルテンサイト系SUH4),オーステナイト系(SUH310)の3種類があります。耐熱を必要とする部品、自動車エンジン用排気弁・舶用蒸気タービン・ジェットエンジンなどに使用しています。

 高炭素―高クロム軸受鋼材(SUJ)は、耐摩耗性の大きい鋼種で、ボールベアリングやローラーベアリングに賞用されます。

 ばね鋼材(SUP)は、炭素鋼のSUP3(貨車の板バネなど)とシリコンマンガン鋼のSUP6(トーションバーなど)が代表的なもので、焼入れ・焼戻しすると弾性限や疲労限が高く、耐衝撃値も大きいのが特徴です。

     

歡迎來到Bewise Inc.的世界,首先恭喜您來到這接受新的資訊讓產業更有競爭力,我們是提供專業刀具製造商,應對客戶高品質的刀具需求,我們可以協助客戶滿足您對產業的不同要求,我們有能力達到非常卓越的客戶需求品質,這是現有相關技術無法比擬的,我們成功的滿足了各行各業的要求,包括:精密HSS DIN切削刀具協助客戶設計刀具流程DIN or JIS 鎢鋼切削刀具設計NAS986 NAS965 NAS897 NAS937orNAS907 航太切削刀具,NAS航太刀具設計超高硬度的切削刀具醫療配件刀具設計汽車業刀具設計電子產業鑽石刀具木工產業鑽石刀具等等。我們的產品涵蓋了從民生刀具到工業級的刀具設計;從微細刀具到大型刀具;從小型生產到大型量產;全自動整合;我們的技術可提供您連續生產的效能,我們整體的服務及卓越的技術,恭迎您親自體驗!!

BW Bewise Inc. Willy Chen willy@tool-tool.com bw@tool-tool.com www.tool-tool.com skype:willy_chen_bw mobile:0937-618-190 Head &Administration Office No.13,Shiang Shang 2nd St., West Chiu Taichung,Taiwan 40356 http://www.tool-tool..com / FAX:+886 4 2471 4839 N.Branch 5F,No.460,Fu Shin North Rd.,Taipei,Taiwan S.Branch No.24,Sec.1,Chia Pu East Rd.,Taipao City,Chiayi Hsien,Taiwan

Welcome to BW tool world! We are an experienced tool maker specialized in cutting tools. We focus on what you need and endeavor to research the best cutter to satisfy users demand. Our customers involve wide range of industries, like mold & die, aerospace, electronic, machinery, etc. We are professional expert in cutting field. We would like to solve every problem from you. Please feel free to contact us, its our pleasure to serve for you. BW product including: cutting toolaerospace tool .HSS DIN Cutting toolCarbide end millsCarbide cutting toolNAS Cutting toolNAS986 NAS965 NAS897 NAS937orNAS907 Cutting Tools,Carbide end milldisc milling cutter,Aerospace cutting toolhss drillФрезерыCarbide drillHigh speed steelMilling cutterCVDD(Chemical Vapor Deposition Diamond )’PCBN (Polycrystalline Cubic Boron Nitride) Core drillTapered end millsCVD Diamond Tools Inserts’PCD Edge-Beveling Cutter(Golden FingerPCD V-CutterPCD Wood toolsPCD Cutting toolsPCD Circular Saw BladePVDD End Millsdiamond tool Single Crystal Diamond Metric end millsMiniature end millsСпециальные режущие инструменты Пустотелое сверло Pilot reamerFraisesFresas con mango PCD (Polycrystalline diamond) ‘FreseElectronics cutterStep drillMetal cutting sawDouble margin drillGun barrelAngle milling cutterCarbide burrsCarbide tipped cutterChamfering toolIC card engraving cutterSide cutterNAS toolDIN or JIS toolSpecial toolMetal slitting sawsShell end millsSide and face milling cuttersSide chip clearance sawsLong end millsStub roughing end millsDovetail milling cuttersCarbide slot drillsCarbide torus cuttersAngel carbide end millsCarbide torus cuttersCarbide ball-nosed slot drillsMould cutterTool manufacturer.

Bewise Inc. www.tool-tool.com

ようこそBewise Inc.の世界へお越し下さいませ、先ず御目出度たいのは新たな

情報を受け取って頂き、もっと各産業に競争力プラス展開。

弊社は専門なエンドミルの製造メーカーで、客先に色んな分野のニーズ

豊富なパリエーションを満足させ、特にハイテク品質要求にサポート致します。

弊社は各領域に供給できる内容は:

(1)精密HSSエンドミルのR&D

(2)Carbide Cutting tools設計

(3)鎢鋼エンドミル設計

(4)航空エン�

beeway 發表在 痞客邦 留言(0) 人氣()

Bewise Inc. www.tool-tool.com Reference source from the internet.

非鉄品目

( 1) ( 2)アルミニウム ( 3)鉛 ( 4)亜鉛
( 5)すず ( 6)クロム ( 7)ニッケル ( 8)マンガン
( 9)タングステン (10)モリブデン (11)バナジウム (12)コバルト
(13)タンタル (14)金 (15)銀 (16)白金
(17)水銀 (18)黄銅 (19)青銅 (20)丹銅
(21)白銅 (22)洋白 (23)チタン  
(1) 銅  元素記号Cu、電気抵抗が小さい・熱の伝導もよい・耐食性がよい・塑性加工しやすいなどの性質をもち、電気関係の用途に広く使われている。 (被覆電線の導体・湯沸器の熱交換器・キュービクルのブスバーなど)

 

(2)アルミニウム  元素記号Al、金属の中では軽く、耐食性がよい(さびにくい)、電気をよく通す熱を伝えやすい、また、やわらかく加工性のよいこと、融点が低く鋳造に有利である。
 ただし、機械的性質は低いので強度を必要とするところには使われませんが、ジュラルミンのようにSS材なみの引張り強度をもつアルミニウム合金もあります。
 アルミニウムは、展伸材と鋳造材の2種類に分けられます。 展伸材とは、圧延・押出し・引抜きなどによって広げ(展)たり、伸ばしたりしたものです。 展伸材の規格は、4ケタの数字であらわされます。(1000番台~7000番台)

       1000番:  純アルミニウム系―強度は低い、耐食性がよく、溶接しやすい、熱・電気の良導体である。

              (用途例:ブスバー,電線,ネームプレート,キャップ,印刷板など)

       2000番:  銅系―耐食性が悪く、溶接しにくい。強度は鋼材と同等のものもある。削りやすい。

              (用途例:ねじ,航空機,ギャー,シリンダーヘッド,ピストン,リベット用材など)

       3000番:  マンガン系―耐食性を悪くしないで、1000番台より強度を増したもの。

              (用途例:飲料缶,屋根板,電球口金,化粧板など)

       4000番:  シリコン系―融点が低く、熱膨張率が小さい。

              (用途例:ピストン,シリンダーヘッド,溶接線,など)

       5000番:  マグネシウム系―耐食性がよく、溶接しやすい、比較的強く最も種類が多い。

              (用途例:車輌,船舶,缶エンド,ファスナー,圧力容器など)

       6000番:  マグネシウム・シリコン系―耐食性がよく、押出し加工によい。

              (用途例:サッシ,自動車部品,ガス器具など)

       7000番:  亜鉛・マグネシウム系―アルミニウム合金の中でもっとも強いが、耐食性は落ちる。
              (用途例:航空機,スキーストック,熱交換フィン)

 

     鋳造材は1~9種に分けられます。それぞれつぎのようになっています。

1種AAC1A1種BAC1B 2種AAC2A2種BAC2B 3種AAC3A4種AAC4A 4種BAC4B4種CAC4C4種CHAC4CH4種DAC4D 5種AAC5A 7種AAC7A7種BAC7B8種AAC8A 8種BAC8B8種CAC8C 9種AAC9A9種BAC9B

合金系

特色

用途例

Al-Cu系

機械的性質が優れ、切削性もよいが、鋳造性がよくない。

架線用部品,自転車部品,航空機用油圧部品,電装品

Al-Cu系

同上

架線用部品,自転車部品,航空機部品,重量機部品

Al-Cu-Si系

鋳造性がよく、引張り強さはよいが、伸びが少ない。

マニホールド,デフキャリヤ,ポンプボデー,シリンダーヘッド

Al-Cu-Si系

鋳造性がよく、一般用として広く用いられる。

バルブボデー,クランクケース,クラッチハウジング

Al-Si系

流動性が優れ、耐食性もよよいが、耐力が低い。

ケース,カーテンウォール,複雑な形状なもの

Al-Si-Mg系

鋳造性がよく、じん性がすぐれ、強度を要する大型鋳物に用いられる。

ブレーキドラム,ミッションケース,クランクケース,ギヤボックス,エンジン部品

Al-Si-Cu系

鋳造性がよく、引張り強さがよいが、伸びは少ない。

クランクケース,シリンダーヘッド,マニホールド,航空機用電装品

Al-Si-Mg系

鋳造性が優れ、耐圧性、耐食性もよい。

油圧部品、ミッションケース,フライホイルハウジング,航空機用機体部品,

Al-Si-Mg系

鋳造性がAC4Cと同様に優れ、機械的性質も優れている。高級鋳物に用いられる。

アルミホイル,架線金具,航空機用エンジン部品及び油圧部品

Al-Si-Cu-Mg系

鋳造性がよく、機械的性質もよい。耐圧性を要するものに用いられる。

水冷シリンダーヘッド,クランクケース,シリンダーブロック,航空機用油圧部品及び電装品

Al-Cu-Ni-Mg系

高温で引張強さがよい。鋳造性はよくない。

空冷シリンダーヘッド,ディーゼル機関用ピストン,航空機用エンジン部品

Al-Mg系

耐食性が優れ、じん性がよく、陽極酸化性がよい。鋳造性がよくない。

架線金具,舶用部品,とって,彫刻素材、事務機器、いす、

Al-Mg系

耐食性が優れ、機械的性質もよいが、鋳造性がよくない。経年変化により引張強さは増すが伸びが特に減少する。

光学機械フレーム,ケース,航空機部品,航空機用機体部品

Al-Si-Cu-Ni-Mg系

耐熱性が優れ、耐摩耗性もよく熱膨張係数が小さい。引張強さも高い。

自動車・ディーゼル機関用ピストン,舶用ピストン,プーリー,軸受

Al-Si-Cu-Mg系

同上

自動車用ピストン,プーリー,軸受

Al-Si-Cu-Mg系

同上

同上

Al-Si-Cu-Mg系

耐熱性が優れ、熱膨張係数が小さい。耐摩耗性はよいが、鋳造性や切削性はよくない。

ピストン(空冷2サイクル用)

Al-Si-Cu-Mg系

同上

ピストン(ディーゼル機関用)空冷シリンダー

(3) 鉛  元素記号Pb。 比重が大きく、やわらかく低融点であり、展性が大きく潤滑性があり耐食性が優れています。機械関係ではそのまま使われることはあまりなく、快削鋼や快削黄銅被削性をよくするために添加する。軸受合金に使われるのは潤滑性をよくするためです。  用途例:はんだ・活字合金・ヒューズ・スプリンクラー・絵の具のチューブなど

 

(4)亜鉛  元素記号はZnです。腐食しやすく、弱いので亜鉛そのものとしてはほとんど使われません。鉄板の錆どめのメッキ材料、印刷の製版用、電池のマイナス電極、黄銅などの合金材料として広く使われています。亜鉛合金の特徴は、時間の経過と共に収縮する(5週間くらいで止まる)。

 

(5)すず  元素記号はSnです。低融点でわらかく、弱い金属です。ブリキ版のメッキに使用されくらいで、ほかに合金材料としていろいろなものに利用されています。

 

(6)クロム  元素記号はCrです。ステンレス鋼をはじめ各種合金に使用されます。ふつうよく見られるのが錆止めのメッキです。鉄にクロムを加えたものは電熱線として使われたり、鉄にクロム14~15%を加え電車の抵抗器に使用したりもします。

 

(7)ニッケル  元素記号はNiです。耐食性の優れた金属で、メッキ・合金材料として使用されます。単体としては、真空管の電極などに使用される。合金材料としては、Ni(40~50%)と銅の合金は、電気抵抗体材料として使用されます。
 また、Ni(63~70%)と銅の合金としては「モネルメタル」で耐食性・耐酸性がよく、機械的性質もよく、耐熱性もよい。
 モリブデン・クロム・鉄・けい素などを加えたものとして「ハステロイA~D」「インコネル」と呼ばれるものもあります。そのほか、ニクロム線(NCHW)、点火栓の中心電極に使用されています。

 

(8)マンガン  元素記号はMnです。各種合金に少しずつ加えられて、焼入れ性をよくするのに有用な金属です。乾電池のプラス電極に二酸化マンガンMnO2として使用されています。

 

(9)タングステン  元素記号はWです。高融点金属でほかの金属のように溶かして製錬できないので粉末を精製しています。白熱電球のフィラメント、電気の接触機、自動車エンジンの高圧回路などに使用されています。

 

(10)モリブデン  元素記号Moです。特殊鋼に添加され焼入性がよくなり、ねばりがでる。高融点ということで電球、真空管内のタングステン線支持体、電極に使われる。また硬質ガラスの熱膨張係数とほとんど同じで、その酸化物がガラスによくとけるので気密封着に都合がよく、ガラス封入導線として使用される。また、ガラス溶融電極にも使用されている。

 

(11)バナジウム  元素記号Vです。これは合金用材料です。耐摩耗性をよくし、ねばり強さも大きくする。

 

(12)コバルト  元素記号Coです。これも単体では使われず、合金元素として耐熱合金・永久磁石・ハイス・超硬合金などに添加される。
 耐熱合金には、耐熱鋼・耐食耐熱超合金(スーパーアロイ,インコネル,インコロイ)があるが、加工が難しいので、ロストワックス鋳造法などで成形される。
 ジェットエンジン,ターボ過給機,タービンなどに使われる。また、ステライトと呼ばれるものも耐摩耗,耐熱を目的として肉盛して使われるコバルト合金です。このなかでCo(60%前後),Cr(30%前後),Mo(5~6%)の合金は歯科用合金として使われます。

 

(13)タンタル  元素記号はTaです。高融点金属で、電子ビームで溶かす方法で作られる。炭素と化合させた炭化タンタルとして超硬合金に加えて、高温での摩耗性を高めるのに使われています。
 タンタルそのものとしては、耐酸性がいちばんよいので薄板として化学装置に使われますが、よく知られているのは、電子部品としてのタンタルコンデンサです。

 

(14)金  元素記号はAuです。金はむかしから装飾品として使われてきました。これは、金がやわらかく展延性の最もよい金属であり、耐食性にも最も優れているからです。また、現在は電子部品のリード線,接点,歯,金貨などに多く使われています。
 金にはカラット(K)という成分比を表わす単位が習慣的に使われます。これは24カラット(K)を100%としたものです。

 

(15)銀  元素記号はAgです。銀も金と同じようにむかしから貨幣や装飾用に使われてきました。使用量でいちばん多いのはフィルムなどの感光材料です。あと電気器具の接点などです。

 

(16)白金  元素記号はPtです。耐食(酸)性がよいので化学工業のるつぼなどにつかわれます。工場で知られているのは、熱電対としての高温温度計がある。電気抵抗が広い範囲で温度に比例することと、融点が高いからです。特殊なところで、メートル原器は白金に10%のイリジウムを加えたものです。

 

(17)水銀  元素記号はHgです。これは常温で液体の金属です。温度計,水銀スイッチ,水銀灯,水銀電池などに使用されています。

 

(18)黄銅  これは銅と亜鉛の合金で、通称「しんちゅう」「真鍮」,英語では「ブラス=Brass」といいます。
 黄銅はやわらかい銅と亜鉛との合金ですが、この合金になるとどちらよりも硬くなり、伸びは小さくなり、引張り強さも強くなります。六四黄銅(Cu:60%,Zn:40%)は機械部品としてよいものになり、切削性もよいが、熱膨張率も大きいので切削熱による寸法誤作がよく起るのが欠点です。用途例は、船のスクリュー,管楽器,時計用歯車,自動車のラジエター,水道の蛇口,仏具などがあります。
 また、銅よりも安く、融点も低いため鋳物としても便利で、展延性もよく、錆にくく、見た目も良いため、機械部品以外にも広く使われています。

     黄銅はふつう黄銅のほかに、他の元素を加え特殊な性質をもたせたものがいくつもあります。

快削黄銅     鉛を0.6~3.0%加えて削りやすくしたもので、精密な加工を必要とする歯車などに使われます。JISの棒材記号はC3600番台で、板材はC3500番台、とくに打抜性のよい時計歯車用はC3710番台がある。

ネーバル黄銅   六四黄銅にすずを0.5~1.5%加えたもので、腐食に強いので船舶用部品に使われます。JIS記号はC4600番台です。

高力黄銅     六四黄銅にアルミ,鉄,マンガン,鉛などを加えたもので、引張強さ・かたさを向上させたものです。JIS記号はC6700番台と高力黄銅鋳物HBsCです。

鍛造用黄銅    六四黄銅に鉛,鉄,すずをいれたもので、熱間鍛造性がよく、被削性もよい。JIS記号はC3700番台です。

 

(19)青銅  これは銅とすずの合金です。むかし大砲の砲身がこの青銅の鋳物でつくられていたことから通称「砲金」と呼ばれます。用途例は、給排水用栓,彫像,軸受ポンプ胴体,ブッシュ,ギヤ,シールリング,水道メーターなど

すず青銅     実際上鋳造にしかつかわれないので「青銅鋳物」として規格があるだけで、亜鉛・鉛もはいっている。JIS記号はBCです。

りん青銅     すずを3~9%,りんを0.03~0.35%加えたもので、かたく、引張強さも大きいので、機械部品としてこれが多く使われます。ウォームギヤや電導性がよいのでスイッチ関係に広く使われている。

快削りん青銅  鉛をいれて削りやすくしたもの。

アルミニウム青銅  銅を80~90%にし、アルミニウムのほか鉄、ニッケル、マンガンをくわえたもので、引張り強さ、かたさが、ともにりん青銅より大きく機械部品としてよく使用される。

鉛青銅      すず青銅に、すずと等量以上の鉛を加えたもので、ニッケルもはいっている。潤滑性がよくほとんどが軸受類の鋳物として使用されている。

シルジン青銅  けい素と亜鉛の入った鋳物用合金です。亜鉛を少なくしているので海水に強く、引張り強さもネーバル黄銅より大きいので、船舶部品の材料となります。けい素黄銅ともよばれます。

 

(20)丹銅  銅(80~95%)と亜鉛(20~5%)の合金です。展延性が大きいので板材からの絞り加工,装飾金具に使われます。用途例:口紅のケースなど

 

(21)白銅  ニッケル(9~33%)と銅の合金で、耐食性特に耐海水性がよく、高温での使用に強い。貨幣(100円玉)にも使用され銀貨の記念硬貨はほとんどこれです。

 

(22)洋白  黄銅にニッケルを10~20%いれたもので、装飾品、食器、楽器などに使われています。耐疲労性・耐食性もよいことから小さい機械部品にもつかわれたり、また、ばね性もよいので、ばね材にも使われます。

 

(23)チタン   元素記号はTiです。これは新しい実用金具です。特徴は、なんといっても耐食性が非常によく、比重も小さい割にかたく、高温にも耐える金属です。ただ加工性が非常に悪く、熱伝導も悪く、ねばりがあり、加工硬化起こすなどの欠点もある。用途は、ジェットエンジン部品、航空機の構造体、ロケット関係に使用される。

歡迎來到Bewise Inc.的世界,首先恭喜您來到這接受新的資訊讓產業更有競爭力,我們是提供專業刀具製造商,應對客戶高品質的刀具需求,我們可以協助客戶滿足您對產業的不同要求,我們有能力達到非常卓越的客戶需求品質,這是現有相關技術無法比擬的,我們成功的滿足了各行各業的要求,包括:精密HSS DIN切削刀具協助客戶設計刀具流程DIN or JIS 鎢鋼切削刀具設計

beeway 發表在 痞客邦 留言(0) 人氣()

Bewise Inc. www.tool-tool.com Reference source from the internet.

金属名

融点

比電気抵抗

µΩ/cm

線膨張係数

µm/℃

比重

1,539

8.71

11.7

7.9

1,083

1.55

16.5

9.0

アルミニウム

660

2.50

23.9

2.7

亜鉛

420

5.45

39.7

7.1

カドミウム

321

6.73

29.8

8.7

1,063

2.04

14.2

19.3

961

1.50

19.7

10.5

すず

232

10.10

23.0

7.3

チタン

1,820

4.20

8.5

4.5

327

19.30

29.3

11.3

ニッケル

1,455

6.58

13.3

8.9

白金

1,774

9.81

8.9

21.5

マグネシウム

650

26.00

4.2

1.7

マンガン

1.245

185.00

22.0

7.4

クロム

1.890

13.00

6.2

7.2

モリブデン

2,625

5.03

4.9

10.2

歡迎來到Bewise Inc.的世界,首先恭喜您來到這接受新的資訊讓產業更有競爭力,我們是提供專業刀具製造商,應對客戶高品質的刀具需求,我們可以協助客戶滿足您對產業的不同要求,我們有能力達到非常卓越的客戶需求品質,這是現有相關技術無法比擬的,我們成功的滿足了各行各業的要求,包括:精密HSS DIN切削刀具協助客戶設計刀具流程DIN or JIS 鎢鋼切削刀具設計NAS986 NAS965 NAS897 NAS937orNAS907 航太切削刀具,NAS航太刀具設計超高硬度的切削刀具醫療配件刀具設計汽車業刀具設計電子產業鑽石刀具木工產業鑽石刀具等等。我們的產品涵蓋了從民生刀具到工業級的刀具設計;從微細刀具到大型刀具;從小型生產到大型量產;全自動整合;我們的技術可提供您連續生產的效能,我們整體的服務及卓越的技術,恭迎您親自體驗!!

BW Bewise Inc. Willy Chen willy@tool-tool.com bw@tool-tool.com www.tool-tool.com skype:willy_chen_bw mobile:0937-618-190 Head &Administration Office No.13,Shiang Shang 2nd St., West Chiu Taichung,Taiwan 40356 http://www.tool-tool..com / FAX:+886 4 2471 4839 N.Branch 5F,No.460,Fu Shin North Rd.,Taipei,Taiwan S.Branch No.24,Sec.1,Chia Pu East Rd.,Taipao City,Chiayi Hsien,Taiwan

Welcome to BW tool world! We are an experienced tool maker specialized in cutting tools. We focus on what you need and endeavor to research the best cutter to satisfy users demand. Our customers involve wide range of industries, like mold & die, aerospace, electronic, machinery, etc. We are professional expert in cutting field. We would like to solve every problem from you. Please feel free to contact us, its our pleasure to serve for you. BW product including: cutting toolaerospace tool .HSS DIN Cutting toolCarbide end millsCarbide cutting toolNAS Cutting toolNAS986 NAS965 NAS897 NAS937orNAS907 Cutting Tools,Carbide end milldisc milling cutter,Aerospace cutting toolhss drillФрезерыCarbide drillHigh speed steelMilling cutterCVDD(Chemical Vapor Deposition Diamond )’PCBN (Polycrystalline Cubic Boron Nitride) Core drillTapered end millsCVD Diamond Tools Inserts’PCD Edge-Beveling Cutter(Golden FingerPCD V-CutterPCD Wood toolsPCD Cutting toolsPCD Circular Saw BladePVDD End Millsdiamond tool Single Crystal Diamond Metric end millsMiniature end millsСпециальные режущие инструменты Пустотелое сверло Pilot reamerFraisesFresas con mango PCD (Polycrystalline diamond) ‘FreseElectronics cutterStep drillMetal cutting sawDouble margin drillGun barrelAngle milling cutterCarbide burrsCarbide tipped cutterChamfering toolIC card engraving cutterSide cutterNAS toolDIN or JIS toolSpecial toolMetal slitting sawsShell end millsSide and face milling cuttersSide chip clearance sawsLong end millsStub roughing end millsDovetail milling cuttersCarbide slot drillsCarbide torus cuttersAngel carbide end millsCarbide torus cuttersCarbide ball-nosed slot drillsMould cutterTool manufacturer.

Bewise Inc. www.tool-tool.com

ようこそBewise Inc.の世界へお越し下さいませ、先ず御目出度たいのは新たな

情報を受け取って頂き、もっと各産業に競争力プラス展開。

弊社は専門なエンドミルの製造メーカーで、客先に色んな分野のニーズ

豊富なパリエーションを満足させ、特にハイテク品質要求にサポート致します。

弊社は各領域に供給できる内容は:

(1)精密HSSエンドミルのR&D

(2)Carbide Cutting tools設計

(3)鎢鋼エンドミル設計

(4)航空エンドミル設計

(5)超高硬度エンドミル

(6)ダイヤモンドエンドミル

(7)医療用品エンドミル設計

(8)自動車部品&材料加工向けエンドミル設計

弊社の製品の供給調達機能は:

(1)生活産業~ハイテク工業までのエンドミル設計

(2)ミクロエンドミル~大型エンドミル供給

(3)小Lot生産~大量発注対応供給

(4)オートメーション整備調達

(5)スポット対応~流れ生産対応

弊社の全般供給体制及び技術自慢の総合専門製造メーカーに貴方のご体験を御待ちしております。

BW специализируется в научных исследованиях и разработках, и снабжаем самым высокотехнологичным карбидовым материалом для поставки режущих / фрезеровочных инструментов для почвы, воздушного пространства и электронной индустрии. В нашу основную продукцию входит твердый карбид / быстрорежущая сталь, а также двигатели, микроэлектрические дрели, IC картонорезальные машины, фрезы для гравирования, режущие пилы, фрезеры-расширители, фрезеры-расширители с резцом, дрели, резаки форм для шлицевого вала / звездочки роликовой цепи, и специальные нано инструменты. Пожалуйста, посетите сайт www.tool-tool.com для получения большей информации.

BW is specialized in R&D and sourcing the most advanced carbide material with high-tech coating to supply cutting / milling tool for mould & die, aero space and electronic industry. Our main products include solid carbide / HSS end mills, micro electronic drill, IC card cutter, engraving cutter, shell end mills, cutting saw, reamer, thread reamer, leading drill, involute gear cutter for spur wheel, rack and worm milling cutter, thread milling cutter, form cutters for spline shaft/roller chain sprocket, and special tool, with nano grade. Please visit our web www.tool-tool.com for more info.

beeway 發表在 痞客邦 留言(0) 人氣()