公告版位

Bewise Inc. www.tool-tool.com Reference source from the internet.

Uno de los actuales microprocesadores de doble núcleo y 64 bits, un AMD Athlon 64 X2 3600.

Uno de los actuales microprocesadores de doble núcleo y 64 bits, un AMD Athlon 64 X2 3600.

El microprocesador o micro es un circuito integrado que contiene todos los elementos de una "unidad central de procesamiento" o CPU (por sus siglas en inglés; Central Process Unit). En la actualidad en el interior de este componente electrónico existen millones de transistores integrados.

Suelen tener forma de prisma chato, y se instalan sobre un elemento llamado zócalo (en inglés, socket). También, en modelos antiguos solía soldarse directamente a la placa madre. Aparecieron algunos modelos donde se adoptó el formato de cartucho, sin embargo no tuvo mucho éxito. Actualmente se dispone de un zócalo especial para alojar el microprocesador y el sistema de enfriamiento, que comúnmente es un ventilador (cooler). El microprocesador está compuesto por: registros, la Unidad de control, la Unidad aritmético-lógica, y dependiendo del procesador, una unidad en coma flotante.

Historia [editar]

Artículo principal: Historia del microprocesador

El primer procesador comercial, el Intel 4004, fue presentado el 15 de noviembre de 1971. Los diseñadores fueron Ted Hoff y Federico Faggin de Intel, y Masatoshi Shima de Busicom (más tarde ZiLOG).

Los microprocesadores modernos están integrados por millones de transistores y otros componentes empaquetados en una cápsula cuyo tamaño varía según las necesidades de las aplicaciones a las que van dirigidas, y que van desde el tamaño de un grano de lenteja hasta el de casi una galleta. Las partes lógicas que componen un microprocesador son, entre otras: unidad aritmético-lógica, registros de almacenamiento, unidad de control, Unidad de ejecución, memoria caché y buses de datos control y dirección.

Existen una serie de fabricantes de microprocesadores, como IBM, Intel, Zilog, Motorola, Cyrix y AMD. A lo largo de la historia y desde su desarrollo inicial, los microprocesadores han mejorado enormemente su capacidad, desde los viejos Intel 8080, Zilog Z80 o Motorola 6809, hasta los recientes Intel Core 2 Duo, Intel Core 2 Quad, Intel Xeon, Intel Itanium II, Transmeta Efficeon o Cell.

Ahora los nuevos microprocesadores pueden tratar instrucciones de hasta 256 bits, habiendo pasado por los de 128, 64, 32, 16, 8 y 4 bits. Desde la aparición de los primeros computadores en los años cuarenta del siglo XX, muchas fueron las evoluciones que tuvieron los procesadores antes de que el microprocesador surgiera por simple disminución del procesador.

Antecedentes [editar]

Entre estas evoluciones podemos destacar estos hitos:

  • ENIAC (Electronic Numeric Integrator And Calculator) Fue un computador con procesador multiciclo de programación cableada, esto es, la memoria contenía sólo los datos y no los programas. ENIAC fue el primer computador, que funcionaba según una técnica a la que posteriormente se dio el nombre de monociclo.
  • EDVAC (Electronic Discrete Variable Automatic Computer) fue la primera máquina de Von Neumann, esto es, la primera máquina que contiene datos y programas en la misma memoria. Fue el primer procesador multiciclo.
  • El IBM 7030 (apodado Stretch) fue el primer computador con procesador segmentado. La segmentación siempre ha sido fundamental en Arquitectura de Computadores desde entonces.
  • El IBM 360/91 supuso grandes avances en la arquitectura segmentada, introduciendo la detección dinámica de riesgos de memoria, la anticipación generalizada y las estaciones de reserva.
  • El CDC 6600 fue otro importante computador de microprocesador segmentado, al que se considera el primer supercomputador.
  • El último gran hito de la Arquitectura de Computadores fue la segmentación superescalar, propuesta por John Cocke, que consiste en ejecutar muchas instrucciones a la vez en el mismo microprocesador. Los primeros procesadores superescalares fueron los IBM Power-1.

Avances [editar]

Hay que destacar que los grandes avances en la construcción de microprocesadores se deben más a la Arquitectura de Computadores que a la miniaturización electrónica. El microprocesador se compone de muchos componentes. En los primeros procesadores gran parte de estos estaban ociosos el 90% del tiempo. Sin embargo hoy en día los componentes están repetidos una o más veces en el mismo microprocesador, y los cauces están hechos de forma que siempre están todos los componentes trabajando. Por eso los microprocesadores son tan rápidos y tan productivos. Esta productividad tan desmesurada, junto con el gran número de transistores por microprocesador (debido en parte al uso de memorias caché) es lo que hace que se necesiten los inmensos sistemas de refrigeración que se usan hoy en día. Inmensos en comparación con el microprocesador, que habitualmente consiste en una cajita de 2 centímetros de largo y de ancho por 1 milímetro de altura, cuando los refrigeradores suelen tener volúmenes de al menos 5 centímetros cúbicos.

Microprocesador Intel 80486DX2.

Microprocesador Intel 80486DX2.

Evolución del microprocesador [editar]

Funcionamiento [editar]

El microprocesador ejecuta instrucciones almacenadas como números binarios en la memoria principal. La ejecución de las instrucciones se puede realizar en varias fases:

  • PreFetch, Pre lectura de la instrucción desde la memoria principal,
  • Fetch, envío de la instrucción al decodificador,
  • Decodificación de la instrucción, es decir, determinar qué instrucción es y por tanto qué se debe hacer,
  • Lectura de operandos (si los hay),
  • Ejecución,
  • Escritura de los resultados en la memoria principal o en los registros.

Cada una de estas fases se realiza en uno o varios ciclos de CPU, dependiendo de la estructura del procesador, y concretamente de su grado de segmentación. La duración de estos ciclos viene determinada por la frecuencia de reloj, y nunca podrá ser inferior al tiempo requerido para realizar la tarea individual (realizada en un solo ciclo) de mayor coste temporal. El microprocesador se conecta a un oscilador, normalmente un cristal de cuarzo capaz de generar pulsos a un ritmo constante, de modo que genera varios ciclos (o pulsos) en un segundo.

Velocidad [editar]

Actualmente se habla de frecuencias de Gigaherzios (GHz.), o de Megaherzios (MHz.). Lo que supone miles de millones o millones, respectivamente, de ciclos por segundo. El indicador de la frecuencia de un microprocesador es un buen referente de la velocidad de proceso del mismo, pero no el único. La cantidad de instrucciones necesarias para llevar a cabo una tarea concreta, así como la cantidad de instrucciones ejecutadas por ciclo ICP, son los otros dos factores que determinan la velocidad de la CPU. La cantidad de instrucciones necesarias para realizar una tarea depende directamente del juego de instrucciones disponible, mientras que ICP depende de varios factores, como el grado de supersegmentación y la cantidad de unidades de proceso o "pipelines" disponibles, entre otros. La cantidad de instrucciones necesarias para realizar una tarea depende directamente del juego de instrucciones.

Bus de datos [editar]

El microprocesador lee y escribe datos en la memoria principal y en los dispositivos de entrada/salida. Estas transferencias se realizan a través de un conjunto de conductores que forman el bus de datos. El número de conductores suele ser potencia de 2. Hay buses de 4, 8, 16, 32, 64, ... conductores. Los modelos de la familia x86, a partir del 80386, trabajan con bus de datos de 32 bits, y a partir del Pentium con bus de 64 bits. Pero los microprocesadores de las tarjetas gráficas, que tienen un mayor volumen de procesamiento por segundo, se ven obligados a aumentar este tamaño, y así tenemos hoy en día microprocesadores gráficos que trabajan con datos de 128 ó 256 bits. Estos dos tipos de microprocesadores no son comparables, ya que ni su juego de instrucciones ni su tamaño de datos son parecidos y por tanto el rendimiento de ambos no es comparable en el mismo ámbito.

La arquitectura x86 se ha ido ampliando a lo largo del tiempo a través de conjuntos de operaciones especializadas denominadas "extensiones", las cuales han permitido mejoras en el procesamiento de tipos de información específica. Este es el caso de las extensiones MMX y SSE de Intel, y sus contrapartes, las extensiones 3DNow! de AMD. A partir de 2003, el procesamiento de 64 bits fue incorporado en los procesadores de arquitectura x86 a través de la extensión AMD64 y posteriormente con la extensión EM64T en los procesadores AMD e Intel respectivamente.

Zócalos [editar]

Artículo principal: socket de CPU

El zócalo o socket es una matriz de pequeños agujeros ubicados en una placa madre, es la base donde encajan, sin dificultad, los pines de un microprocesador. Esta matriz permite la conexión entre el microprocesador y el resto del equipo. En las primeras computadoras personales el microprocesador venía directamente soldado a la placa base, pero la aparición de una amplia gama de microprocesadores llevó a la creación de los zócalos.

En general cada familia de microprocesadores requiere un tipo distinto de zócalo, ya que existen diferencias en el número de pines, su disposición geométrica y la interconexión requerida con los componentes de la placa base. Por tanto, no es posible conectar un determinado microprocesador a una placa base diseñada para otro.

Puertos de entrada y salida [editar]

El microprocesador tiene puertos de entrada/salida en el mismo circuito integrado. El chipset es un conjunto de circuitos integrados que se encarga de realizar las funciones que el microprocesador delega en ellos. El conjunto de circuitos integrados auxiliares necesarios por un sistema para realizar una tarea suele ser conocido como chipset, cuya traducción literal del inglés significa conjunto de circuitos integrados. Se designa circuito integrado auxiliar al circuito integrado que es periférico a un sistema pero necesario para el funcionamiento del mismo. La mayoría de los sistemas necesitan más de un circuito integrado auxiliar; sin embargo, el término chipset se suele emplear en la actualidad cuando se habla sobre las placas base de los IBM PCs.

Chipset [editar]

El chipset es un conjunto de circuitos integrados diseñado para trabajar conjuntamente y generalmente vendido como un único producto. En el mundo de los computadores personales se disponían muchos circuitos integrados como apoyo al microprocesador tales como el controlador de interrupciones, controlador de acceso directo a memoria, controlador de reloj, etc. Para reducir el número de circuitos se fueron creando circuitos más complejos que incluían multiples funcionalidades en su interior. Esos circuitos son los que actualmente se denominan chipset del computador y son responsables en una medida importante del rendimiento global del mismo.

Se ha comparado al Chipset con la "médula espinal": "una persona puede tener un buen cerebro, pero si la médula falla, todo el cuerpo no sirve para nada".

Las computadoras personales actuales tienen chipset formado por 2 circuitos auxiliares al procesador principal:

  • El puente norte que se utiliza como puente de enlace entre el microprocesador y la memoria, controlando los accesos hacia y desde el microprocesador, la memoria RAM, el puerto gráfico y las comunicaciones con el puente sur.
  • El puente sur que controla los dispositivos asociados, es decir se encarga de comunicar el procesador con el resto de los periféricos. (los controladores de disco, puertos de entrada y salida, como USB, etc.)

Arquitecturas [editar]


歡迎來到Bewise Inc.的世界,首先恭喜您來到這接受新的資訊讓產業更有競爭力,我們是提供專業刀具製造商,應對客戶高品質的刀具需求,我們可以協助客戶滿足您對產業的不同要求,我們有能力達到非常卓越的客戶需求品質,這是現有相關技術無法比擬的,我們成功的滿足了各行各業的要求,包括:精密HSS DIN切削刀具協助客戶設計刀具流程DIN or JIS 鎢鋼切削刀具設計NAS986 NAS965 NAS897 NAS937orNAS907 航太切削刀具,NAS航太刀具設計超高硬度的切削刀具醫療配件刀具設計汽車業刀具設計電子產業鑽石刀具木工產業鑽石刀具等等。我們的產品涵蓋了從民生刀具到工業級的刀具設計;從微細刀具到大型刀具;從小型生產到大型量產;全自動整合;我們的技術可提供您連續生產的效能,我們整體的服務及卓越的技術,恭迎您親自體驗!!

BW Bewise Inc. Willy Chen willy@tool-tool.com bw@tool-tool.com www.tool-tool.com skype:willy_chen_bw mobile:0937-618-190 Head &Administration Office No.13,Shiang Shang 2nd St., West Chiu Taichung,Taiwan 40356 http://www.tool-tool..com / FAX:+886 4 2471 4839 N.Branch 5F,No.460,Fu Shin North Rd.,Taipei,Taiwan S.Branch No.24,Sec.1,Chia Pu East Rd.,Taipao City,Chiayi Hsien,Taiwan

Welcome to BW tool world! We are an experienced tool maker specialized in cutting tools. We focus on what you need and endeavor to research the best cutter to satisfy users demand. Our customers involve wide range of industries, like mold & die, aerospace, electronic, machinery, etc. We are professional expert in cutting field. We would like to solve every problem from you. Please feel free to contact us, its our pleasure to serve for you. BW product including: cutting toolaerospace tool .HSS DIN Cutting toolCarbide end millsCarbide cutting toolNAS Cutting toolNAS986 NAS965 NAS897 NAS937orNAS907 Cutting Tools,Carbide end milldisc milling cutter,Aerospace cutting toolhss drillФрезерыCarbide drillHigh speed steelMilling cutterCVDD(Chemical Vapor Deposition Diamond )PCBN (Polycrystalline Cubic Boron Nitride) Core drillTapered end millsCVD Diamond Tools InsertsPCD Edge-Beveling Cutter(Golden FingerPCD V-CutterPCD Wood toolsPCD Cutting toolsPCD Circular Saw BladePVDD End Millsdiamond tool Single Crystal Diamond Metric end millsMiniature end millsСпециальные режущие инструменты Пустотелое сверло Pilot reamerFraisesFresas con mango PCD (Polycrystalline diamond) FreseElectronics cutterStep drillMetal cutting sawDouble margin drillGun barrelAngle milling cutterCarbide burrsCarbide tipped cutter

beeway 發表在 痞客邦 留言(0) 人氣()

jiaodao
铰刀
reamer


具有一个或多个刀齿、用以切除已加工孔表面薄层金属的旋转刀具。经铰削加工后的孔可获得精确的尺寸和形状。铰刀按使用方法分手用和机用两种;按铰孔的形状分圆柱形、圆锥形和阶梯形3种;按装夹方法分带柄式和套装式两种;按齿槽的形状分直槽和螺旋槽两种[几种常用铰刀]几种常用铰刀为几种常用铰刀。圆柱孔铰刀由工作部分、颈部和柄部组成。工作部分又分切削部分、校准部分和倒锥部分,手用铰刀可不带倒锥部分。主偏角κ的大小主要影响铰孔的表面粗糙度、精度和轴向力,通常机用铰刀的κ=15°,手用铰刀的κ=31~1°。校准部分呈圆柱形,起修光孔壁和校准孔径的作用倒锥部分的直径向柄部方向逐渐减小(0.03~0.07毫米),以减小铰孔时工作部分与孔壁的摩擦。铰刀的齿槽通常为直槽,当加工长度方向上孔壁不连续的或有纵向槽的孔时,螺旋槽铰刀工作稳定、排屑好。铰刀的工作部分可用高速钢或硬质合金制造手用铰刀还可制成直径可调式,有两种结构:可调节铰刀是靠调节两端的螺母,使楔形刀片沿刀体上的斜底槽移动,以改变铰刀的直径尺寸;可胀式铰刀是通过钢球的移动,从而将开有纵向槽的铰刀直径胀大。直径可调式的铰刀适用于机械修配工作。

歡迎來到Bewise Inc.的世界,首先恭喜您來到這接受新的資訊讓產業更有競爭力,我們是提供專業刀具製造商,應對客戶高品質的刀具需求,我們可以協助客戶滿足您對產業的不同要求,我們有能力達到非常卓越的客戶需求品質,這是現有相關技術無法比擬的,我們成功的滿足了各行各業的要求,包括:精密HSS DIN切削刀具協助客戶設計刀具流程DIN or JIS 鎢鋼切削刀具設計NAS986 NAS965 NAS897 NAS937orNAS907 航太切削刀具,NAS航太刀具設計超高硬度的切削刀具醫療配件刀具設計汽車業刀具設計電子產業鑽石刀具木工產業鑽石刀具等等。我們的產品涵蓋了從民生刀具到工業級的刀具設計;從微細刀具到大型刀具;從小型生產到大型量產;全自動整合;我們的技術可提供您連續生產的效能,我們整體的服務及卓越的技術,恭迎您親自體驗!!

BW Bewise Inc. Willy Chen willy@tool-tool.com bw@tool-tool.com www.tool-tool.com skype:willy_chen_bw mobile:0937-618-190 Head &Administration Office No.13,Shiang Shang 2nd St., West Chiu Taichung,Taiwan 40356 http://www.tool-tool..com / FAX:+886 4 2471 4839 N.Branch 5F,No.460,Fu Shin North Rd.,Taipei,Taiwan S.Branch No.24,Sec.1,Chia Pu East Rd.,Taipao City,Chiayi Hsien,Taiwan

Welcome to BW tool world! We are an experienced tool maker specialized in cutting tools. We focus on what you need and endeavor to research the best cutter to satisfy users demand. Our customers involve wide range of industries, like mold & die, aerospace, electronic, machinery, etc. We are professional expert in cutting field. We would like to solve every problem from you. Please feel free to contact us, its our pleasure to serve for you. BW product including: cutting toolaerospace tool .HSS DIN Cutting toolCarbide end millsCarbide cutting toolNAS Cutting toolNAS986 NAS965 NAS897 NAS937orNAS907 Cutting Tools,Carbide end milldisc milling cutter,Aerospace cutting toolhss drillФрезерыCarbide drillHigh speed steelMilling cutterCVDD(Chemical Vapor Deposition Diamond )PCBN (Polycrystalline Cubic Boron Nitride) Core drillTapered end millsCVD Diamond Tools InsertsPCD Edge-Beveling Cutter(Golden FingerPCD V-CutterPCD Wood toolsPCD Cutting toolsPCD Circular Saw BladePVDD End Millsdiamond tool Single Crystal Diamond Metric end millsMiniature end millsСпециальные режущие инструменты Пустотелое сверло Pilot reamerFraisesFresas con mango PCD (Polycrystalline diamond) FreseElectronics cutterStep drillMetal cutting sawDouble margin drillGun barrelAngle milling cutterCarbide burrsCarbide tipped cutterChamfering toolIC card engraving cutterSide cutterNAS toolDIN or JIS toolSpecial toolMetal slitting sawsShell end millsSide and face milling cuttersSide chip clearance sawsLong end millsStub roughing end millsDovetail milling cuttersCarbide slot drillsCarbide torus cuttersAngel carbide end millsCarbide torus cuttersCarbide ball-nosed slot drillsMould cutterTool manufacturer.

Bewise Inc. www.tool-tool.com

ようこそBewise Inc.の世界へお越し下さいませ、先ず御目出度たいのは新たな

情報を受け取って頂き、もっと各産業に競争力プラス展開。

弊社は専門なエンド・ミルの製造メーカーで、客先に色んな分野のニーズ、

豊富なパリエーションを満足させ、特にハイテク品質要求にサポート致します。

弊社は各領域に供給できる内容は:

(1)精密HSSエンド・ミルのR&D

(2)Carbide Cutting tools設計

(3)鎢鋼エンド・ミル設計

(4)航空エンド・ミル設計

(5)超高硬度エンド・ミル

(6)ダイヤモンド・エンド・ミル

(7)医療用品エンド・ミル設計

(8)自動車部品&材料加工向けエンド・ミル設計

弊社の製品の供給調達機能は:

(1)生活産業~ハイテク工業までのエンド・ミル設計

(2)ミクロ・エンド・ミル~大型エンド・ミル供給

(3)小Lot生産~大量発注対応供給

(4)オートメーション整備調達

(5)スポット対応~流れ生産対応

弊社の全般供給体制及び技術自慢の総合専門製造メーカーに貴方のご体験を御待ちしております。

BW специализируется в научных исследованиях и разработках, и снабжаем самым высокотехнологичным карбидовым материалом для поставки режущих / фрезеровочных инструментов для почвы, воздушного пространства и электронной индустрии. В нашу основную продукцию входит твердый карбид / быстрорежущая сталь, а также двигатели, микроэлектрические дрели, IC картонорезальные машины, фрезы для гравирования, режущие пилы, фрезеры-расширители, фрезеры-расширители с резцом, дрели, резаки форм для шлицевого вала / звездочки роликовой цепи, и специальные нано инструменты. Пожалуйста, посетите сайт www.tool-tool.com для получения большей информации.

BW is specialized in R&D and sourcing the most advanced carbide material with high-tech coating to supply cutting / milling tool for mould & die, aero space and electronic industry. Our main products include solid carbide / HSS end mills, micro electronic drill, IC card cutter, engraving cutter, shell end mills, cutting saw, reamer, thread reamer, leading drill, involute gear cutter for spur wheel, rack and worm milling cutter, thread milling cutter, form cutters for spline shaft/roller chain sprocket, and special tool, with nano grade. Please visit our web www.tool-tool.com for more info.

beeway 發表在 痞客邦 留言(0) 人氣()

Bewise Inc. www.tool-tool.com Reference source from the internet.

Microprocessor

Die of an Intel 80486DX2 microprocessor (actual size: 12×6.75 mm) in its packaging
Date Invented: Late 1960s/Early 1970s (see article for explanation)
Connects to:
Architectures:
Common Manufacturers:

A microprocessor is a programmable digital electronic component that incorporates the functions of a central processing unit (CPU) on a single semiconducting integrated circuit (IC). The microprocessor was born by reducing the word size of the CPU from 32 bits to 4 bits, so that the transistors of its logic circuits would fit onto a single part. One or more microprocessors typically serve as the CPU in a computer system, embedded system, or handheld device. Microprocessors made possible the advent of the microcomputer in the mid-1970s. Before this period, electronic CPUs were typically made from bulky discrete switching devices (and later small-scale integrated circuits) containing the equivalent of only a few transistors. By integrating the processor onto one or a very few large-scale integrated circuit packages (containing the equivalent of thousands or millions of discrete transistors), the cost of processing capacity was greatly reduced. Since the advent of the IC in the mid-1970s, the microprocessor has become the most prevalent implementation of the CPU, almost completely replacing all other forms. See History of computing hardware for pre-electronic and early electronic computers.

Since the early 1970s, the increase in processing capacity of evolving microprocessors has been known to generally follow Moore's Law. It suggests that the complexity of an integrated circuit, with respect to minimum component cost, doubles every 18 months. In the early 1990s, microprocessor's heat generation (TDP) - due to current leakage - emerged as a leading developmental constraint[1]. From their humble beginnings as the drivers for calculators, the continued increase in processing capacity has led to the dominance of microprocessors over every other form of computer; every system from the largest mainframes to the smallest handheld computers now uses a microprocessor at its core.

[edit] History

[edit] First types

The 4004 with cover removed (left) and as actually used (right).

The 4004 with cover removed (left) and as actually used (right).

Three projects arguably delivered a complete microprocessor at about the same time, namely Intel's 4004, the Texas Instruments (TI) TMS 1000, and Garrett AiResearch's Central Air Data Computer (CADC).

In 1968, Garrett AiResearch, with designer Ray Holt and Steve Geller, were invited to produce a digital computer to compete with electromechanical systems then under development for the main flight control computer in the US Navy's new F-14 Tomcat fighter. The design was complete by 1970, and used a MOS-based chipset as the core CPU. The design was significantly (approximately 20 times) smaller and much more reliable than the mechanical systems it competed against, and was used in all of the early Tomcat models. This system contained a "a 20-bit, pipelined, parallel multi-microprocessor". However, the system was considered so advanced that the Navy refused to allow publication of the design until 1997. For this reason the CADC, and the MP944 chipset it used, are fairly unknown even today. (see First Microprocessor Chip Set.) TI developed the 4-bit TMS 1000, and stressed pre-programmed embedded applications, introducing a version called the TMS1802NC on September 17, 1971, which implemented a calculator on a chip. The Intel chip was the 4-bit 4004, released on November 15, 1971, developed by Federico Faggin and Marcian Hoff.

TI filed for the patent on the microprocessor. Gary Boone was awarded U.S. Patent 3,757,306 for the single-chip microprocessor architecture on September 4, 1973. It may never be known which company actually had the first working microprocessor running on the lab bench. In both 1971 and 1976, Intel and TI entered into broad patent cross-licensing agreements, with Intel paying royalties to TI for the microprocessor patent. A nice history of these events is contained in court documentation from a legal dispute between Cyrix and Intel, with TI as intervenor and owner of the microprocessor patent.

Interestingly, a third party (Gilbert Hyatt) was awarded a patent which might cover the "microprocessor". See a webpage claiming an invention pre-dating both TI and Intel, describing a "microcontroller". According to a rebuttal and a commentary, the patent was later invalidated, but not before substantial royalties were paid out.

A computer-on-a-chip is a variation of a microprocessor which combines the microprocessor core (CPU), some memory, and I/O (input/output) lines, all on one chip. The computer-on-a-chip patent, called the "microcomputer patent" at the time, U.S. Patent 4,074,351 , was awarded to Gary Boone and Michael J. Cochran of TI. Aside from this patent, the standard meaning of microcomputer is a computer using one or more microprocessors as its CPU(s), while the concept defined in the patent is perhaps more akin to a microcontroller.

According to A History of Modern Computing, (MIT Press), pp. 220–21, Intel entered into a contract with Computer Terminals Corporation, later called Datapoint, of San Antonio TX, for a chip for a terminal they were designing. Datapoint later decided not to use the chip, and Intel marketed it as the 8008 in April, 1972. This was the world's first 8-bit microprocessor. It was the basis for the famous "Mark-8" computer kit advertised in the magazine Radio-Electronics in 1974. The 8008 and its successor, the world-famous 8080, opened up the microprocessor component marketplace.

[edit] Notable 8-bit designs

The 4004 was later followed in 1972 by the 8008, the world's first 8-bit microprocessor. These processors are the precursors to the very successful Intel 8080 (1974), Zilog Z80 (1976), and derivative Intel 8-bit processors. The competing Motorola 6800 was released August 1974. Its architecture was cloned and improved in the MOS Technology 6502 in 1975, rivaling the Z80 in popularity during the 1980s.

Both the Z80 and 6502 concentrated on low overall cost, through a combination of small packaging, simple computer bus requirements, and the inclusion of circuitry that would normally have to be provided in a separate chip (for instance, the Z80 included a memory controller). It was these features that allowed the home computer "revolution" to take off in the early 1980s, eventually delivering such inexpensive machines as the Sinclair ZX-81, which sold for US$99.

The Western Design Center, Inc. (WDC) introduced the CMOS 65C02 in 1982 and licensed the design to several companies which became the core of the Apple IIc and IIe personal computers, medical implantable grade pacemakers and defibrilators, automotive, industrial and consumer devices.WDC pioneered the licensing of microprocessor technology which was later followed by ARM and other microprocessor Intellectual Property (IP) providers in the 1990’s.

Motorola trumped the entire 8-bit world by introducing the MC6809 in 1978, arguably one of the most powerful, orthogonal, and clean 8-bit microprocessor designs ever fielded – and also one of the most complex hard-wired logic designs that ever made it into production for any microprocessor. Microcoding replaced hardwired logic at about this point in time for all designs more powerful than the MC6809 – specifically because the design requirements were getting too complex for hardwired logic.

Another early 8-bit microprocessor was the Signetics 2650, which enjoyed a brief flurry of interest due to its innovative and powerful instruction set architecture.

A seminal microprocessor in the world of spaceflight was RCA's RCA 1802 (aka CDP1802, RCA COSMAC) (introduced in 1976) which was used in NASA's Voyager and Viking spaceprobes of the 1970s, and onboard the Galileo probe to Jupiter (launched 1989, arrived 1995). RCA COSMAC was the first to implement C-MOS technology. The CDP1802 was used because it could be run at very low power,* and because its production process (Silicon on Sapphire) ensured much better protection against cosmic radiation and electrostatic discharges than that of any other processor of the era. Thus, the 1802 is said to be the first radiation-hardened microprocessor.

[edit] 16-bit designs

The first multi-chip 16-bit microprocessor was the National Semiconductor IMP-16, introduced in early 1973. An 8-bit version of the chipset was introduced in 1974 as the IMP-8. During the same year, National introduced the first 16-bit single-chip microprocessor, the National Semiconductor PACE, which was later followed by an NMOS version, the INS8900.

Other early multi-chip 16-bit microprocessors include one used by Digital Equipment Corporation (DEC) in the LSI-11 OEM board set and the packaged PDP 11/03 minicomputer, and the Fairchild Semiconductor MicroFlame 9440, both of which were introduced in the 1975 to 1976 timeframe.

The first single-chip 16-bit microprocessor was TI's TMS 9900, which was also compatible with their TI-990 line of minicomputers. The 9900 was used in the TI 990/4 minicomputer, the TI-99/4A home computer, and the TM990 line of OEM microcomputer boards. The chip was packaged in a large ceramic 64-pin DIP package, while most 8-bit microprocessors such as the Intel 8080 used the more common, smaller, and less expensive plastic 40-pin DIP. A follow-on chip, the TMS 9980, was designed to compete with the Intel 8080, had the full TI 990 16-bit instruction set, used a plastic 40-pin package, moved data 8 bits at a time, but could only address 16 KiB. A third chip, the TMS 9995, was a new design. The family later expanded to include the 99105 and 99110.

The Western Design Center, Inc. (WDC) introduced the CMOS 65816 16-bit upgrade of the WDC CMOS 65C02 in 1984. The 65816 16-bit microprocessor was the core of the Apple IIgs and later the Super Nintendo Entertainment System, making it one of the most popular 16-bit designs of all time.

Intel followed a different path, having no minicomputers to emulate, and instead "upsized" their 8080 design into the 16-bit Intel 8086, the first member of the x86 family which powers most modern PC type computers. Intel introduced the 8086 as a cost effective way of porting software from the 8080 lines, and succeeded in winning much business on that premise. The 8088, a version of the 8086 that used an external 8-bit data bus, was the microprocessor in the first IBM PC, the model 5150. Following up their 8086 and 8088, Intel released the 80186, 80286 and, in 1985, the 32-bit 80386, cementing their PC market dominance with the processor family's backwards compatibility.

The integrated microprocessor memory management unit (MMU) was developed by Childs et al. of Intel, and awarded US patent number 4,442,484.

[edit] 32-bit designs

Upper interconnect layers on an Intel 80486DX2 die.

Upper interconnect layers on an Intel 80486DX2 die.

16-bit designs were in the market only briefly when full 32-bit implementations started to appear.

The most significant of the 32-bit designs is the MC68000, introduced in 1979. The 68K, as it was widely known, had 32-bit registers but used 16-bit internal data paths, and a 16-bit external data bus to reduce pin count, and supported only 24-bit addresses. Motorola generally described it as a 16-bit processor, though it clearly has 32-bit architecture. The combination of high speed, large (16 megabytes (2^24)) memory space and fairly low costs made it the most popular CPU design of its class. The Apple Lisa and Macintosh designs made use of the 68000, as did a host of other designs in the mid-1980s, including the Atari ST and Commodore Amiga.

The world's first single-chip fully-32-bit microprocessor, with 32-bit data paths, 32-bit buses, and 32-bit addresses, was the AT&T Bell Labs BELLMAC-32A, with first samples in 1980, and general production in 1982 (See this bibliographic reference and this general reference). After the divestiture of AT&T in 1984, it was renamed the WE 32000 (WE for Western Electric), and had two follow-on generations, the WE 32100 and WE 32200. These microprocessors were used in the AT&T 3B5 and 3B15 minicomputers; in the 3B2, the world's first desktop supermicrocomputer; in the "Companion", the world's first 32-bit laptop computer; and in "Alexander", the world's first book-sized supermicrocomputer, featuring ROM-pack memory cartridges similar to today's gaming consoles. All these systems ran the UNIX System V operating system.

Intel's first 32-bit microprocessor was the iAPX 432, which was introduced in 1981 but was not a commercial success. It had an advanced capability-based object-oriented architecture, but poor performance compared to other competing architectures such as the Motorola 68000.

Motorola's success with the 68000 led to the MC68010, which added virtual memory support. The MC68020, introduced in 1985 added full 32-bit data and address busses. The 68020 became hugely popular in the Unix supermicrocomputer market, and many small companies (e.g., Altos, Charles River Data Systems) produced desktop-size systems. Following this with the MC68030, which added the MMU into the chip, the 68K family became the processor for everything that wasn't running DOS. The continued success led to the MC68040, which included an FPU for better math performance. A 68050 failed to achieve its performance goals and was not released, and the follow-up MC68060 was released into a market saturated by much faster RISC designs. The 68K family faded from the desktop in the early 1990s.

Other large companies designed the 68020 and follow-ons into embedded equipment. At one point, there were more 68020s in embedded equipment than there were Intel Pentiums in PCs (See this webpage for this embedded usage information). The ColdFire processor cores are derivatives of the venerable 68020.

During this time (early to mid 1980s), National Semiconductor introduced a very similar 16-bit pinout, 32-bit internal microprocessor called the NS 16032 (later renamed 32016), the full 32-bit version named the NS 32032, and a line of 32-bit industrial OEM microcomputers. By the mid-1980s, Sequent introduced the first symmetric multiprocessor (SMP) server-class computer using the NS 32032. This was one of the design's few wins, and it disappeared in the late 1980s.

The MIPS R2000 (1984) and R3000 (1989) were highly successful 32-bit RISC microprocessors. They were used in high-end workstations and servers by SGI, among others.

Other designs included the interesting Zilog Z8000, which arrived too late to market to stand a chance and disappeared quickly.

In the late 1980s, "microprocessor wars" started killing off some of the microprocessors. Apparently, with only one major design win, Sequent, the NS 32032 just faded out of existence, and Sequent switched to Intel microprocessors.

From 1985 to 2003, the 32-bit x86 architectures became increasingly dominant in desktop, laptop, and server markets, and these microprocessors became faster and more capable. Intel had licensed early versions of the architecture to other companies, but declined to license the Pentium, so AMD and Cyrix built later versions of the architecture based on their own designs. During this span, these processors increased in complexity (transistor count) and capability (instructions/second) by at least a factor of 1000. Intel's Pentium line is probably the most famous and recognizable 32-bit processor model, at least with the public at large.

[edit] 64-bit designs in personal computers

While 64-bit microprocessor designs have been in use in several markets since the early 1990s, the early 2000s saw the introduction of 64-bit microchips targeted at the PC market.

With AMD's introduction of the first 64-bit IA-32 backwards-compatible architecture, AMD64, in September 2003, followed by Intel's own x86-64 chips, the 64-bit desktop era began. Both processors can run 32-bit legacy apps as well as the new 64-bit software. With 64-bit Windows XP, Windows Vista x64, Linux and Mac OS X (to a certain extent) that run 64-bit native, the software too is geared to utilize the full power of such processors. The move to 64 bits is more than just an increase in register size from the IA-32 as it also doubles the number of general-purpose registers for the aging CISC designs.

The move to 64 bits by PowerPC processors had been intended since the processors' design in the early 90s and was not a major cause of incompatibility. Existing integer registers are extended as are all related data pathways, but, as was the case with IA-32, both floating point and vector units had been operating at or above 64 bits for several years. Unlike what happened with IA-32 was extended to x86-64, no new general purpose registers were added in 64-bit PowerPC, so any performance gained when using the 64-bit mode for applications making no use of the larger address space is minimal.

[edit] Multicore designs

AMD Athlon 64 X2 3600 Dual core processor

AMD Athlon 64 X2 3600 Dual core processor

A different approach to improving a computer's performance is to add extra processors, as in symmetric multiprocessing designs which have been popular in servers and workstations since the early 1990s. Keeping up with Moore's Law is becoming increasingly challenging as chip-making technologies approach the physical limits of the technology.

In response, the microprocessor manufacturers look for other ways to improve performance, in order to hold on to the momentum of constant upgrades in the market.

A multi-core processor is simply a single chip containing more than one microprocessor core, effectively multiplying the potential performance with the number of cores (as long as the operating system and software is designed to take advantage of more than one processor). Some components, such as bus interface and second level cache, may be shared between cores. Because the cores are physically very close they interface at much faster clock speeds compared to discrete multiprocessor systems, improving overall system performance.

In 2005, the first mass-market dual-core processors were announced and as of 2007 dual-core processors are widely used in servers, workstations and PCs while quad-core processors are now available for high-end applications in both the home and professional environments.

Sun Microsystems has released the Niagara and Niagara 2 chips, both of which feature an eight-core design. The Niagara 2 supports more threads and operates at 1.6 GHz.

[edit] RISC

In the mid-1980s to early-1990s, a crop of new high-performance RISC (reduced instruction set computer) microprocessors appeared, which were initially used in special purpose machines and Unix workstations, but then gained wide acceptance in other roles.

The first commercial design was released by MIPS Technologies, the 32-bit R2000 (the R1000 was not released). The R3000 made the design truly practical, and the R4000 introduced the world's first 64-bit design. Competing projects would result in the IBM POWER and Sun SPARC systems, respectively. Soon every major vendor was releasing a RISC design, including the AT&T CRISP, AMD 29000, Intel i860 and Intel i960, Motorola 88000, DEC Alpha and the HP-PA.

Market forces have "weeded out" many of these designs, with almost no desktop or laptop RISC processors and with the SPARC being used in Sun designs only. MIPS is primarily used in embedded systems, notably in Cisco routers. The rest of the original crop of designs have disappeared. Other companies have attacked niches in the market, notably ARM, originally intended for home computer use but since focussed at the embedded processor market. Today RISC designs based on the MIPS, ARM or PowerPC core power the vast majority of computing devices.

As of 2007, two 64-bit RISC architectures are still produced in volume: SPARC and Power Architecture. The RISC-like Itanium is produced in smaller quantities. The vast majority of 64-bit microprocessors are now x86-64 CISC designs from AMD and Intel.

[edit] Special-purpose designs

A 4-bit, 2 register, six assembly language instruction computer made entirely of 74-series chips.

A 4-bit, 2 register, six assembly language instruction computer made entirely of 74-series chips.

Though the term "microprocessor" has traditionally referred to a single- or multi-chip CPU or system-on-a-chip (SoC), several types of specialized processing devices have followed from the technology. The most common examples are microcontrollers, digital signal processors (DSP) and graphics processing units (GPU). Many examples of these are either not programmable, or have limited programming facilities. For example, in general GPUs through the 1990s were mostly non-programmable and have only recently gained limited facilities like programmable vertex shaders. There is no universal consensus on what defines a "microprocessor", but it is usually safe to assume that the term refers to a general-purpose CPU of some sort and not a special-purpose processor unless specifically noted.

The RCA 1802 had what is called a static design, meaning that the clock frequency could be made arbitrarily low, even to 0 Hz, a total stop condition. This let the Voyager/Viking/Galileo spacecraft use minimum electric power for long uneventful stretches of a voyage. Timers and/or sensors would awaken/speed up the processor in time for important tasks, such as navigation updates, attitude control, data acquisition, and radio communication.

[edit] Market statistics

In 2003, about $44 billion (USD) worth of microprocessors were manufactured and sold. [1] Although about half of that money was spent on CPUs used in desktop or laptop personal computers, those count for only about 0.2% of all CPUs sold.

Silicon Valley has an old saying: "The first chip costs a million dollars; the second one costs a nickel." In other words, most of the cost is in the design and the manufacturing setup: once manufacturing is underway, it costs almost nothing.[citation needed]


歡迎來到Bewise Inc.的世界,首先恭喜您來到這接受新的資訊讓產業更有競爭力,我們是提供專業刀具製造商,應對客戶高品質的刀具需求,我們可以協助客戶滿足您對產業的不同要求,我們有能力達到非常卓越的客戶需求品質,這是現有相關技術無法比擬的,我們成功的滿足了各行各業的要求,包括:精密HSS DIN切削刀具協助客戶設計刀具流程DIN or JIS 鎢鋼切削刀具設計NAS986 NAS965 NAS897 NAS937orNAS907 航太切削刀具,NAS航太刀具設計超高硬度的切削刀具醫療配件刀具設計汽車業刀具設計電子產業鑽石刀具木工產業鑽石刀具等等。我們的產品涵蓋了從民生刀具到工業級的刀具設計;從微細刀具到大型刀具;從小型生產到大型量產;全自動整合;我們的技術可提供您連續生產的效能,我們整體的服務及卓越的技術,恭迎您親自體驗!!

BW Bewise Inc. Willy Chen willy@tool-tool.com bw@tool-tool.com www.tool-tool.com skype:willy_chen_bw mobile:0937-618-190 Head &Administration Office No.13,Shiang Shang 2nd St., West Chiu Taichung,Taiwan 40356 http://www.tool-tool..com / FAX:+886 4 2471 4839 N.Branch 5F,No.460,Fu Shin North Rd.,Taipei,Taiwan S.Branch No.24,Sec.1,Chia Pu East Rd.,Taipao City,Chiayi Hsien,Taiwan

Welcome to BW tool world! We are an experienced tool maker specialized in cutting tools. We focus on what you need and endeavor to research the best cutter to satisfy users demand. Our customers involve wide range of industries, like mold & die, aerospace, electronic, machinery, etc. We are professional expert in cutting field. We would like to solve every problem from you. Please feel free to contact us, its our pleasure to serve for you. BW product including: cutting toolaerospace tool .HSS DIN Cutting toolCarbide end millsCarbide cutting toolNAS Cutting toolNAS986 NAS965 NAS897 NAS937orNAS907 Cutting Tools,Carbide end milldisc milling cutter,Aerospace cutting toolhss drillФрезерыCarbide drillHigh speed steelMilling cutterCVDD(Chemical Vapor Deposition Diamond )PCBN (Polycrystalline Cubic Boron Nitride) Core drillTapered end millsCVD Diamond Tools InsertsPCD Edge-Beveling Cutter(Golden FingerPCD V-CutterPCD Wood toolsPCD Cutting tools

beeway 發表在 痞客邦 留言(0) 人氣()

Bewise Inc. www.tool-tool.com Reference source from the internet.

Intel-D4040-Mikroprozessor

Intel-D4040-Mikroprozessor
IBM-PowerPC-601-Mikroprozessor

IBM-PowerPC-601-Mikroprozessor
Intel-i860-Mikroprozessor

Intel-i860-Mikroprozessor

Ein Mikroprozessor (griech. mikros für „klein“) ist ein Prozessor in sehr kleinem Maßstab, bei dem alle Bausteine des Prozessors auf einem Mikrochip vereinigt sind. Der erste Mikroprozessor wurde Anfang der 1970er Jahre von der Firma Texas Instruments auf der Basis der IC-Technik (Integrierte Schaltkreise) entwickelt.


Geschichte [Bearbeiten]

Entwicklung der Transistoranzahl bei Mikroprozessoren
Prozessortyp ↓ Anzahl Transistoren ↓ Jahr ↓ Hersteller ↓
Intel 4004 2300 1971 Intel
Intel 8008 2500 1972 Intel
Intel 8080 4500 1974 Intel
6502 5000 1975 MOS Technology
Intel 8088 29.000 1979 Intel
Motorola 68000 68.000 1979 Motorola
Intel 80286 134.000 1982 Intel
Intel 80386 275.000 1985 Intel
Intel 80486 1.200.000 1989 Intel
Pentium 3.100.000 1993 Intel
AMD K5 4.300.000 1996 AMD
Pentium II 7.500.000 1997 Intel
AMD K6 8.800.000 1997 AMD
Pentium III 9.500.000 1999 Intel
AMD K6-III 21.300.000 1999 AMD
AMD K7 22.000.000 1999 AMD
Pentium 4 42.000.000 2000 Intel
Itanium 25.000.000 2001 Intel
Barton 54.300.000 2003 AMD
AMD K8 105.900.000 2003 AMD
Itanium 2 220.000.000 2003 Intel
Itanium 2 (9 MB Cache) 592.000.000 2004 Intel
Cell 241.000.000 2006 Sony/IBM/Toshiba
Core 2 Duo 291.000.000 2006 Intel
Core 2 Quad 582.000.000 2006 Intel
G80 (GPU) 681.000.000 2006 NVIDIA
Power6 789.000.000 2007 IBM
Dual-Core Itanium 2 1.700.000.000 2006 Intel

In den frühen 1960ern wurden die aus Röhren bestehenden Prozessoren durch transistorierte Typen verdrängt. Anfangs wurden die Prozessoren diskret aus einzelnen Röhren aufgebaut. Ein Prozessor hatte das Volumen eines Wandschrankes, die Leistungsaufnahme lag bei einigen 1000 Watt. Von "Mikro" konnte dabei nicht gesprochen werden. Die Taktfrequenz lag bei 100 kHz.

Der technologische Sprung von der Röhrentechnik zur Transistortechnik hatte einen geringeren Platzbedarf, eine geringere Temperaturentwicklung, eine höhere Verarbeitungsgeschwindigkeit, eine niedrigere Ausfallquote sowie einen geringeren Stromverbrauch von nur einigen 100 Watt zur Folge. Die Taktfrequenz stieg auf etwa 1 MHz. Durch die spätere Verkleinerung der Transistoren auf nur einige Mikrometer war es möglich, immer mehr Transistorfunktionen auf Integrierten Schaltkreisen (ICs) unterzubringen. Waren es zunächst nur einzelne Gatter, integrierte man immer häufiger auch ganze Register und Funktionseinheiten wie Addierer und Zähler, schließlich dann sogar Registerbänke und Rechenwerke auf einem Chip. Diese zunehmende Integration von immer mehr Transistor- und Gatterfunktionen auf einem Chip führte dann fast zwangsläufig zu dem, was heute als Mikroprozessor bekannt ist.

Erfunden und patentiert wurde der Mikroprozessor von Mitarbeitern der Firma Texas Instruments. Im Jahr 1971 stellte Intel mit dem 4004 die erste CPU auf einem Chip vor. Der Mikroprozessor war geboren. Mit nur 4 Bit breiten Registern und einer Taktfrequenz von bis zu 740 kHz war der 4004 aber nicht gerade besonders leistungsfähig. Seine im Vergleich mit den klassischen CPUs äußerst kompakte Bauform verhalf dem Mikroprozessor aber schließlich trotzdem zum Durchbruch. Ursprünglich war der 4004 eine Auftragsentwicklung für den japanischen Tischrechnerhersteller Busicom. Intels Projektleiter Ted Hoff hatte die Idee, das Herz dieses Tischrechners in Form eines programmierbaren Bausteins zu realisieren. Dass daraus die erste universell einsetzbare Einchip-CPU der Welt resultierte, war eigentlich nicht beabsichtigt. Da Busicom damals in finanziellen Schwierigkeiten steckte, bot man Intel den Rückkauf des 4004-Designs an, woraufhin Intel mit der Vermarktung des 4004 begann. Der 4004 wurde zum ersten kommerziellen Mikroprozessor der Welt.

Bereits zum Ende der 1960er Jahre gab es mit dem Parallel Processing System 4bit (PPS4) einen Mikroprozessor von Rockwell International, der allerdings nur für US-Rüstungsprojekte bei Raketensteuerungen Verwendung fand. Zunächst waren dies noch recht einfache Schaltungen. Die Mikroelektronik brachte neben der Miniaturisierung und der Kostenersparnis noch weitere Vorteile wie Geschwindigkeit, geringer Stromverbrauch, Zuverlässigkeit und später auch höhere Komplexität. Dies führte dazu, dass vergleichsweise billige Mikroprozessoren mit der Zeit die teuren Prozessoren der Minicomputer und teilweise sogar der Großrechner verdrängten. Gegen Ende des zwanzigsten Jahrhunderts hielt der Mikroprozessor Einzug in viele elektronische Geräte, vor allem als CPU von Personal-Computern (PCs). Auch als die Strukturgröße der Mikroprozessor-Chips auf einige hundert Nanometer (Nanoelektronik) weiter verkleinert wurde, blieb der Begriff Mikroprozessor bestehen.

Zur Realisierung eines kompletten Computers muss der Mikroprozessor noch um Speicher und Ein-/Ausgabe-Funktionen erweitert werden. Diese stehen in Form weiterer Chips zur Verfügung. Nur wenige Jahre nach der Einführung von Mikroprozessoren erschienen jedoch auch so genannte Mikrocontroller, die diese Funktionen auf einem Chip vereinigten.


Beachtenswerte 8-Bit-Prozessoren [Bearbeiten]

Der 4004 wurde 1972 durch den 8008 abgelöst, den ersten 8-Bit-Mikroprozessor der Welt. Dieser Prozessor war der Vorläufer für den äußerst erfolgreichen Intel 8080 (1974), den Zilog Z80 (1976) und weitere 8-Bit-Prozessoren von Intel. Der konkurrierende Motorola 6800 war ab August 1974, im selben Jahr wie der 8080, erhältlich. Die Architektur des 6800 wurde 1975 für den MOS Technology 6502 kopiert und verbessert, der in den 80er-Jahren in der Popularität mit dem Z80 wetteiferte.

Sowohl der Z80 als auch der 6502 wurden im Hinblick auf niedrige Gesamtkosten entwickelt. Das Gehäuse war klein, die Ansprüche an den Bus gering und es wurden Schaltungen eingebunden, die bisher in einem separaten Chip zur Verfügung gestellt werden mussten (der Z80 verfügte z. B. über einen eigenen Memory Controller). Diese Eigenschaften waren es schließlich, die dem Heimcomputer-Markt zu Beginn der 1980er Jahre zum Durchbruch verhalfen und in Maschinen resultierten, die für 99 Dollar erhältlich waren.

Der SC/MP wurde von der Firma National Semiconductor Corporation aus Santa Clara Mitte der 1970er Jahre vertrieben. Verschiedene Einplatinencomputer wurden als Selbstbau- und Lehrcomputer auf Basis des SC/MP bis etwa 1980 realisiert.

Western Design Center (WDC) stellte den CMOS 65C02 1982 vor und lizenzierte das Design an verschiedene Firmen. Dieser Prozessor wurde das Herz der Apple IIc und IIe und wurde in Herzschrittmachern und Defibrillatoren, Autos sowie in industriellen Geräten und auf dem Verbrauchermarkt eingesetzt. WDC bereitete so den Weg vor für das Lizenzieren von Mikroprozessor-Technologie; dieses Geschäftsmodell wurde später durch ARM und anderen Herstellern in den 1990er Jahren übernommen.

Motorola übertrumpfte 1978 die gesamte 8-Bit-Welt mit der Vorstellung des Motorola 6809, eine der leistungsstärksten und saubersten 8-Bit-Architekturen und auch eine der komplexesten Mikroprozessor-Logiken, die je produziert wurden. Mikroprogrammierung ersetzte zu dieser Zeit die bisher festverdrahteten Logiken – gerade weil die Anforderungen der Designs für eine feste Verdrahtung zu komplex wurden.

Ein weiterer 8-Bit-Mikroprozessor war der Signetics 2650, der aufgrund seiner innovativen und leistungsfähigen Befehlssatz-Architektur kurzzeitig im Zentrum des allgemeinen Interesses stand.

Ein für die Raumfahrt wegweisender Mikroprozessor war der RCA 1802 (alias CDP1802, RCA COSMAC; Vorgestellt 1976), der in den Voyager,Viking und Galileo-Raumsonden eingesetzt wurde. Der CDP1802 wurde verwendet, weil er mit sehr wenig Energie betrieben werden konnte und seine Bauart (Silicon on Saphire) einen wesentlich höheren Schutz gegenüber kosmischer Strahlung und elektrostatischen Entladungen bot als jeder andere Prozessor zu dieser Zeit. Der CP1802 wurde als erster Strahlungs-gehärteter („radiation-hardened“) Prozessor bezeichnet.

16-Bit-Prozessoren [Bearbeiten]

Der erste Mehrfach-Chip 16-Bit-Mikroprozessor war der IMP-16 von National Semiconductor, vorgestellt 1973. Eine 8-Bit-Version wurde ein Jahr später als der IMP-8 vorgestellt. 1975 stellte National Semiconductor den ersten Ein-Chip-Mikroprozessor vor, PACE, der später gefolgt wurde durch eine NMOS-Version, dem INS8900.

Andere Mehrfach-Chip-16-Bit-Mikroprozessoren waren der TMS 9900 von TI, der auch mit der hauseigenen TI 990-Minicomputer-Modellreihe kompatibel war. Der Chip besaß ein großes 64-Pin-DIP-Gehäuse, während die meisten 8-Bit-Prozessoren in das weiter verbreitete, kleinere und billigere 40-Pin-DIP-Gehäuse aus Kunststoff eingesetzt wurden. Ein Nachfolger wurde aus dem 9900 entwickelt, der TMS 9980, der ebenfalls ein billigeres Gehäuse besaß. Er sollte ein Konkurrent zum Intel 8080 darstellen. Der TMS9980 konnte 8 Datenbits zur gleichen Zeit kopieren, aber nur 16 KB adressieren. Ein dritter Chip, der TMS 9995, wurde neu entwickelt. Diese Prozessorfamilie wurde später mit dem 99105 und 99110 erweitert.

WDC machte seinen 65C02 16-Bit-tauglich und stellte diesen Prozessor als CMOS 65816 im Jahre 1984 vor. Der 65816 stellte den Kern der Apple IIgs und später des Super Nintendos dar, was ihn zu einem der beliebtesten 16-Bit-Designs machte.

Intel folgte einem anderen Pfad, keine Minicomputer zu emulieren, und „vergrößerte“ stattdessen ihr 8080-Design auf 16-Bit. Daraus entstand der Intel 8086, das erste Mitglied der x86-Familie, die heute in den meisten PCs zu finden ist. Intel stellte den 8086 als kostengünstigen Weg vor, Software von der 8080-Linie zu portieren, und machte damit gute Geschäfte. Nachfolger des 8080 und Intel 8088 wurde der 80186, der 80286 und 1985 der 32-Bit 80386, die alle rückwärtskompatibel waren und so die Marktvorherrschaft von Intel entscheidend stärkten.

32-Bit-Prozessoren [Bearbeiten]

Der erste 32-Bit-Mikroprozessor in einem eigenen Gehäuse war der BELLMAC-32A von AT&T Bell Labs, von dem erste Stücke 1980 erhältlich waren, und der 1982 in Masse produziert wurde. Nach der Zerschlagung von AT&T 1984 wurde er in WE 32000 umbenannt (WE für Western Electric) und hatte zwei Nachfolger: Den WE 32100 und WE 32200. Diese Mikroprozessoren wurden in den folgenden Minicomputern von AT&T eingesetzt: 3B2, 3B5, 3B15, „Companion“ und „Alexander“.

Einer der bemerkenswertesten 32-Bit-Mikroprozessor ist der MC68000 von Motorola, der 1979 vorgestellt wurde. Er wurde häufig auch als 68K bezeichnet und verfügte über 32-bittige Register, verwendete aber 16-Bit breite interne Busleitungen und einen ebenso breiten externen Datenbus, um die Anzahl benötigter Pins zu verringern. Motorola bezeichnete diesen Prozessor im allgemeinen als 16-Bit-Prozessor, obwohl er intern über eine 32-Bit-Architektur verfügte. Die Kombination aus einem schnellen und großen Speicher-Adressraum (16 Megabyte) und geringen Kosten machten ihn zum beliebtesten Prozessor seiner Klasse. Der Apple Lisa und die Macintosh-Reihe verwendeten den 68K; Mitte der 1980er Jahre wurde dieser Prozessor auch im Atari ST und Commodore Amiga eingesetzt.

Intels erster 32-Bit-Mikroprozessor war der iAPX 432, welcher 1981 vorgestellt wurde. Obwohl er über eine fortgeschrittene, objektorientierte Architektur verfügte, war ihm kein kommerzieller Erfolg beschieden – nicht zuletzt weil er in der Leistung gegenüber konkurrierenden Architekturen schlechter abschnitt.

Motorolas Erfolg mit dem 68K führte zur Vorstellung des MC68010, der die Technik der virtuellen Speicheradressierung unterstützte. Der MC68020 schließlich verfügte über 32 Bit breite interne und externe Busse. Dieser Prozessor wurde im Unix-Supermicrocomputer äußerst beliebt, und viele kleinere Firmen stellten Desktop-Systeme mit diesem Prozessor her. Der MC68030 integrierte die MMU in den Chip. Die meisten Computer, die nicht auf DOS liefen, setzten nun einen Chip der 68K-Familie ein. Dieser anhaltende Erfolg führte zum MC68040, der auch die FPU in den Chip integrierte und so die Geschwindigkeit arithmetischer Operationen erhöhte. Ein geplanter MC68050 erreichte nicht die erwünschten Verbesserungen und wurde nicht produziert, der MC68060 wurde auf ein Marktsegment geworfen, das bereits mit viel schnelleren RISC-Designs gesättigt war.

Der 68020 und seine Nachfolger wurden häufig in eingebetteten Systemen eingesetzt.

Während dieser Zeit (Anfang bis Mitte 1980) stellte National Semiconductor ähnlich wie Motorola einen 32-Bit-Prozessor mit einem 16-bittigen Pinout her, den NS 16032 (später umbenannt zu NS 32016). Die Version mit einem ebenfalls 32-Bit breiten Bus war der NS 32032. Sequent stellte basierend auf diesem Mikroprozessor Mitte der 1980er Jahre den ersten SMP-Computer vor.

Andere Systeme setzten den Zilog Z8000 ein, der aber zu spät im Markt ankam und bald wieder verschwand.

64-Bit-Prozessoren auf dem Desktop [Bearbeiten]

Während 64-Bit-Prozessoren in verschiedenen Märkten schon seit den frühen 1990er Jahren im Einsatz waren, wurden sie erst nach 2000 auch auf dem PC-Markt eingesetzt. Im Juli 2003 stellte Apple auf der Entwicklerkonferenz (WWDC) den Power Mac G5 vor, Apples ersten 64-Bit-Desktop-Computer. Vorher hatte es bereits von Sun und anderen Herstellern 64-Bit-Rechner gegeben, die allerdings üblicherweise als Workstations und nicht als Desktop-Rechner bezeichnet werden, auch wenn kein technisches Merkmal diese Unterscheidung rechtfertigt.

Etwa gleichzeitig, mit AMDs Einführung der ersten 64-Bit Architektur AMD64 (zu IA-32 rückwärtskompatibel) im September 2003, begann die Ära der 64-Bit-Architekturen auch bei x86-Rechnern. AMD wurde bald gefolgt von Intel, das eigene x86-64-Prozessoren vorstellte. Beide x86-Prozessoren können die bisherige 32-Bit-Software wie auch die neue 64-Bit-Software ausführen. Mit dem 64-Bit-Windows XP und -Linux bewegt sich die Software nun auf die neue Architektur hin und nutzt das volle Potenzial dieser Prozessoren.

Speziell bei IA-32 ist der Wechsel zu 64-Bit mehr als nur die Erhöhung der Registerbreite, da auch die Anzahl der Register erhöht wurde.

Bei den PowerPC-Architekturen wurde der Wechsel auf 64-Bit schon in den frühen 1990er Jahren vorgesehen (tatsächlich ist der PPC-Prozessor von vornherein als 64-Bit konzipiert, mit einer 32-Bit-Teilmenge der Befehle). Die Registergrößen und interne Busse werden vergrößert, die arithmetischen und vektoriellen Recheneinheiten arbeiteten bereits vor dem Wechsel seit mehreren Jahren mit 64 oder mehr Bits (dies ist auch bei IA-32 der Fall). Es werden aber keine neuen Register eingefügt, dadurch ist die gewonnene Geschwindigkeit von 64 gegenüber 32-Bit geringer als bei IA-32.

RISC-Prozessoren [Bearbeiten]

Mitte der 1980er bis in die frühen 1990er Jahre erschienen viele RISC-Mikroprozessoren (Reduced Instruction Set Computing), die anfänglich in spezialisierten Computern und UNIX-Workstations eingesetzt wurden, seither aber universell in den verschiedensten Aufgabengebieten genutzt werden, ausgenommen den Intel-Standard-Desktop-Computern.

Die erste kommerzielle Architektur stammte von MIPS Technologies, der 32-bittige R2000 (der R1000 wurde nicht verkauft). Der R3000 machte die Architektur erst richtig praktisch, der R4000 schließlich stellte die erste 64-Bit-Architektur der Welt dar. Konkurrierende Projekte brachten die IBM-POWER- und Sun-SPARC-Systeme hervor. Bald hatte jeder größere Hersteller ein RISC-Design im Angebot, z. B. den AT&T CRISP, AMD Am29000, Intel i860 und Intel i960, Motorola 88000, DEC Alpha und den HP PA-RISC.

Der Wettbewerb ließ bald die meisten dieser Architekturen verschwinden, wobei IBMs POWER und der davon abgeleitete PowerPC (als die Desktop-RISC-Architektur) und Sun SPARC (nur in Suns eigenen Systemen) blieben. MIPS bietet weiterhin SGI-Systeme an, die Architektur wird aber meist als eingebettetes Design verwendet, z. B. in den Routern von Cisco. Andere Firmen konzentrieren sich auf Nischenmärkte, allen voran ARM, die zuerst auf den Heimbenutzer-Markt abzielten, sich jetzt aber auf Prozessoren für eingebettete Systeme konzentrieren.

Aufbau [Bearbeiten]

Ein Mikroprozessor ist ein Prozessor, bei dem alle Bausteine des Prozessors auf einem Mikrochip vereinigt sind.

Alle komplexeren Mikroprozessoren sind interruptfähig, d. h. eine Unterbrechung des Programmablaufes wird durch ein externes Signal bewirkt. Einige (sehr einfach aufgebaute und damit sehr billige) Prozessoren haben keine Interruptfähigkeit, sondern müssen über Software abfragen, ob ein äußeres Ereignis vorliegt. Diese Mikroprozessoren kommen bei extrem preissensitiven Bereichen wie Spielzeug und Ähnlichem zum Einsatz.

Befehlsbearbeitung [Bearbeiten]

Die Befehlsbearbeitung moderner Mikroprozessoren folgt dem Von-Neumann-Zyklus. Die wichtigsten Phasen sind dabei das Laden des Befehls (FETCH), seine Dekodierung (DECODE) und seine Ausführung (EXECUTE). Gelegentlich unterscheidet man auch noch eine Rückschreibphase, in welcher die Rechenergebnisse in bestimmte Register geschrieben werden. Da moderne Mikroprozessoren parallele Techniken wie etwa Pipelining und Superskalarität einsetzen, werden unter Umständen mehrere Befehle gleichzeitig in dieser Weise bearbeitet.

Ungeordnete Befehlsausführung (Out-of-order execution) [Bearbeiten]

Die meisten modernen Hochleistungsprozessoren sind in der Lage, Befehle in ungeordneter, d. h. nicht strikt in der vom Programm vorgegebenen Reihenfolge auszuführen (Out-of-order execution). Die Motivation für eine Abweichung von der vorgegebenen Befehlsfolge besteht darin, dass aufgrund von Verzweigungsbefehlen der Programmlauf nicht immer sicher vorhergesehen werden kann. Möchte man Befehle bis zu einem gewissen Grad parallel ausführen, so ist es in diesen Fällen notwendig, sich für eine Verzweigung zu entscheiden und die jeweilige Befehlsfolge spekulativ auszuführen. Es ist dann möglich, dass der weitere Programmlauf dazu führt, dass eine andere Befehlsfolge ausgeführt werden muss, so dass die spekulativ ausgeführten Befehle wieder rückgängig gemacht werden müssen. In diesem Sinne spricht man von einer ungeordneten Befehlsausführung.

Grundprinzip der ungeordneten Befehlsausführung

Grundprinzip der ungeordneten Befehlsausführung

Die Grafik zeigt die wesentlichen Komponenten und das Grundprinzip einer ungeordneten Befehlsausführung. Zunächst erkennt man eine Harvard-Architektur, d. h. eine Trennung von Daten- und Befehlsspeicher, die ein paralleles Laden von Befehlen und ihren Operanden ermöglicht. Es existieren mehrere Rechenwerke, die parallel arbeiten können. Befehle und Operanden werden nun aber nicht direkt in die Rechenwerke eingespeist, sondern zunächst in sogenannte Reservierungs-Stationen. Dabei kann es sich um Befehle handeln, die aufgrund einer Programmverzweigung möglicherweise gar nicht ausgeführt werden müssen. Sobald ein Rechenwerk frei ist, werden Befehl und Operanden aus der zugehörigen Reservierungs-Station geladen, der Befehl ausgeführt und das Ergebnis in einem sogenannten Umbenennungs-Register aufgefangen. Das Zurückhalten des Ergebnisses ist notwendig, da noch nicht klar ist, ob der ausgeführte Befehl überhaupt auszuführen war. Sobald klar ist, dass die Verzweigung korrekt vorhergesagt wurde, sorgt die Komplettierungseinheit dafür, dass die Umbenennungs-Register mit den Architektur-Registern synchronisiert werden. Die Architektur-Register sind die klassischen Prozessor-Register, von denen aus das Ergebnis (ggf. über einen Cache-Speicher) in den Hauptspeicher transportiert wird. Sollte sich herausstellen, dass die Befehle aufgrund einer falsch vorhergesagten Verzweigung nicht auszuführen waren, so werden die Umbenennungs-Register zurückgesetzt. Man spricht dann auch von Branch Recovery.

Adressierungsarten [Bearbeiten]

Übersicht der wichtigsten Adressierungsarten

Übersicht der wichtigsten Adressierungsarten

In modernen Mikroprozessoren werden verschiedene Adressierungsarten für die verwendeten Operanden verwendet. Dabei handelt es sich um verschiedene Methoden zur Berechnung der effektiven logischen Speicheradressen. Die Berechnung der physikalischen Adressen anhand der logischen Adressen ist davon unabhängig und wird in der Regel von einer Memory Management Unit durchgeführt. Das folgende Bild gibt einen Überblick über die wichtigsten Adressierungsarten.

Registeradressierung [Bearbeiten]

Bei einer Registeradressierung steht der Operand bereits in einem Prozessorregister bereit und muss folglich nicht mehr aus dem Speicher geladen werden. Erfolgt die Registeradressierung implizit, so wird das Register über die Angabe des Opcodes mitadressiert (Beispiel: der Opcode bezieht sich implizit auf den Akkumulator). Bei expliziter Registeradressierung wird die Nummer des Registers im Registerfeld des Opcodes mitgegeben.

Einstufige Adressierung [Bearbeiten]

Bei einstufigen Adressierungsarten kann die effektive Adresse durch eine einzige Adressberechnung ermittelt werden. Es muss also im Laufe der Adressberechnung nicht erneut auf den Speicher zugegriffen werden. Bei unmittelbarer Adressierung enthält der Befehl keine Adresse, sondern den Operanden selbst. Bei direkter Adressierung enthält der Befehl die logische Adresse selbst, es muss also keine Adressberechnung mehr ausgeführt werden. Bei Register-indirekter Adressierung ist die gesuchte logische Adresse bereits in einem Adressregister des Prozessors enthalten. Die Nummer dieses Adressregisters wird über den Opcode übergeben. Bei der indizierten Adressierung erfolgt die Adressberechnung mittels Addition: Der Inhalt eines Registers wird zu einer Basisadresse hinzugerechnet. Bei Programmzähler-relativer Adressierung wird die neue Adresse aus dem aktuellen Wert des Programmzählers und einem Offset ermittelt.

Zweistufige Adressierung [Bearbeiten]

Bei zweistufigen Adressierungsarten sind mehrere Rechenschritte notwendig, um die effektive Adresse zu erhalten. Insbesondere ist im Laufe der Berechnung meist ein zusätzlicher Speicherzugriff notwendig. Als Beispiel sei hier die indirekte absolute Adressierung genannt. Dabei enthält der Befehl eine absolute Speicheradresse. Das Speicherwort, das unter dieser Adresse zu finden ist, enthält die gesuchte effektive Adresse. Es muss also zunächst mittels der absoluten Speicheradresse auf den Speicher zurückgegriffen werden, um die effektive Adresse zu ermitteln. Dies kennzeichnet alle zweistufigen Verfahren.

Microcontroller [Bearbeiten]

Im Zuge fortschreitender Miniaturisierung war es möglich, neben dem Mikroprozessor auch zusätzliche Peripherie auf dem Chip zu implementieren. Damit war der Microcontroller geboren.


歡迎來到Bewise Inc.的世界,首先恭喜您來到這接受新的資訊讓產業更有競爭力,我們是提供專業刀具製造商,應對客戶高品質的刀具需求,我們可以協助客戶滿足您對產業的不同要求,我們有能力達到非常卓越的客戶需求品質,這是現有相關技術無法比擬的,我們成功的滿足了各行各業的要求,包括:精密HSS DIN切削刀具協助客戶設計刀具流程DIN or JIS 鎢鋼切削刀具設計NAS986 NAS965 NAS897 NAS937orNAS907 航太切削刀具,NAS航太刀具設計超高硬度的切削刀具醫療配件刀具設計汽車業刀具設計電子產業鑽石刀具木工產業鑽石刀具等等。我們的產品涵蓋了從民生刀具到工業級的刀具設計;從微細刀具到大型刀具;從小型生產到大型量產;全自動整合;我們的技術可提供您連續生產的效能,我們整體的服務及卓越的技術,恭迎您親自體驗!!

BW Bewise Inc. Willy Chen willy@tool-tool.com bw@tool-tool.com www.tool-tool.com skype:willy_chen_bw mobile:0937-618-190 Head &Administration Office No.13,Shiang Shang 2nd St., West Chiu Taichung,Taiwan 40356 http://www.tool-tool..com / FAX:+886 4 2471 4839 N.Branch 5F,No.460,Fu Shin North Rd.,Taipei,Taiwan S.Branch No.24,Sec.1,Chia Pu East Rd.,Taipao City,Chiayi Hsien,Taiwan

Welcome to BW tool world! We are an experienced tool maker specialized in cutting tools. We focus on what you need and endeavor to research the best cutter to satisfy users demand. Our customers involve wide range of industries, like mold & die, aerospace, electronic, machinery, etc. We are professional expert in cutting field. We would like to solve every problem from you. Please feel free to contact us, its our pleasure to serve for you. BW product including: cutting toolaerospace tool .HSS DIN Cutting toolCarbide end millsCarbide cutting toolNAS Cutting toolNAS986 NAS965 NAS897 NAS937orNAS907 Cutting Tools,Carbide end mill

beeway 發表在 痞客邦 留言(0) 人氣()

Bewise Inc. www.tool-tool.com Reference source from the internet.
En udgave af 6502-mikroprocessoren i den energieffektive CMOS-teknologi med navnet 65C02 lavet af WDC i 1990’erne. Den oprindelige MOS Technology 6502 blev lavet i NMOS fra 1975 og ihvertfald frem til 1983.

En udgave af 6502-mikroprocessoren i den energieffektive CMOS-teknologi med navnet 65C02 lavet af WDC i 1990’erne. Den oprindelige MOS Technology 6502 blev lavet i NMOS fra 1975 og ihvertfald frem til 1983.

En mikroprocessor er den elektroniske komponent, der styrer processerne i et logisk elektronisk kredsløb ved afviklingen af maskinkode-instruktioner.

Begrebet mikroprocessor dækker over at alle cpu-funktioner er sammenbyggede i samme halvlederchip.

De første datamater var opbygget af diskrete komponenter og de enkelte elementer af datamaten var opbygget særskilt. Disse elementer omfatter f.eks. cpu, microprogramlager, registre m.v.

I 1971 kom verdens første "single chip CPU" der var Intel′s 4004. En 4-bit processor 740kHz. Set med nutidens øjne ikke imponerende, men det var starten på en æra uden sidestykke.


歡迎來到Bewise Inc.的世界,首先恭喜您來到這接受新的資訊讓產業更有競爭力,我們是提供專業刀具製造商,應對客戶高品質的刀具需求,我們可以協助客戶滿足您對產業的 不同要求,我們有能力達到非常卓越的客戶需求品質,這是現有相關技術無法比擬的,我們成功的滿足了各行各業的要求,包括:精密HSS DIN切削刀具、協助客戶設計刀具流程、DIN or JIS 鎢鋼切削刀具設計、NAS986 NAS965 NAS897 NAS937orNAS907 航太切削刀具,NAS航太刀具設計、超高硬度的切削刀具、醫療配件刀具設計、汽車業刀具設計、電子產業鑽石刀具、木工產業鑽石刀具等等。我們的產品涵蓋了 從民生刀具到工業級的刀具設計;從微細刀具到大型刀具;從小型生產到大型量產;全自動整合;我們的技術可提供您連續生產的效能,我們整體的服務及卓越的技 術,恭迎您親自體驗!!

BW Bewise Inc. Willy Chen willy@tool-tool.com bw@tool-tool.com www.tool-tool.com skype:willy_chen_bw mobile:0937-618-190 Head &Administration Office No.13,Shiang Shang 2nd St., West Chiu Taichung,Taiwan 40356 http://www.tool-tool..com / FAX:+886 4 2471 4839 N.Branch 5F,No.460,Fu Shin North Rd.,Taipei,Taiwan S.Branch No.24,Sec.1,Chia Pu East Rd.,Taipao City,Chiayi Hsien,Taiwan

Welcome to BW tool world! We are an experienced tool maker specialized in cutting tools. We focus on what you need and endeavor to research the best cutter to satisfy users’ demand. Our customers involve wide range of industries, like mold & die, aerospace, electronic, machinery, etc. We are professional expert in cutting field. We would like to solve every problem from you. Please feel free to contact us, its our pleasure to serve for you. BW product including: cutting tool、aerospace tool .HSS DIN Cutting tool、Carbide end mills、Carbide cutting tool、NAS Cutting tool、NAS986 NAS965 NAS897 NAS937orNAS907 Cutting Tools,Carbide end mill、disc milling cutter,Aerospace cutting tool、hss drill’Фрезеры’Carbide drill、High speed steel、Milling cutter、CVDD(Chemical Vapor Deposition Diamond )’PCBN (Polycrystalline Cubic Boron Nitride) ’Core drill、Tapered end mills、CVD Diamond Tools Inserts’PCD Edge-Beveling Cutter(Golden Finger’PCD V-Cutter’PCD Wood tools’PCD Cutting tools’PCD Circular Saw Blade’PVDD End Mills’diamond tool ‘Single Crystal Diamond ‘Metric end mills、Miniature end mills、Специальные режущие инструменты ‘Пустотелое сверло ‘Pilot reamer、Fraises’Fresas con mango’ PCD (Polycrystalline diamond) ‘Frese’Electronics cutter、Step drill、Metal cutting saw、Double margin drill、Gun barrel、Angle milling cutter、Carbide burrs、Carbide tipped cutter、Chamfering tool、IC card engraving cutter、Side cutter、NAS tool、DIN or JIS tool、Special tool、Metal slitting saws、Shell end mills、Side and face milling cutters、Side chip clearance saws、Long end mills、Stub roughing end mills、Dovetail milling cutters、Carbide slot drills、Carbide torus cutters、Angel carbide end mills、Carbide torus cutters、Carbide ball-nosed slot drills、Mould cutter、Tool manufacturer.

Bewise Inc. www.tool-tool.com

ようこそBewise Inc.の世界へお越し下さいませ、先ず御目出度たいのは新たな

情報を受け取って頂き、もっと各産業に競争力プラス展開。

弊社は専門なエンド・ミルの製造メーカーで、客先に色んな分野のニーズ、

豊富なパリエーションを満足させ、特にハイテク品質要求にサポート致します。

弊社は各領域に供給できる内容は:

(1)精密HSSエンド・ミルのR&D

(2)Carbide Cutting tools設計

(3)鎢鋼エンド・ミル設計

(4)航空エンド・ミル設計

(5)超高硬度エンド・ミル

(6)ダイヤモンド・エンド・ミル

(7)医療用品エンド・ミル設計

(8)自動車部品&材料加工向けエンド・ミル設計

弊社の製品の供給調達機能は:

(1)生活産業~ハイテク工業までのエンド・ミル設計

(2)ミクロ・エンド・ミル~大型エンド・ミル供給

(3)小Lot生産~大量発注対応供給

(4)オートメーション整備調達

(5)スポット対応~流れ生産対応

弊社の全般供給体制及び技術自慢の総合専門製造メーカーに貴方のご体験を御待ちしております。

BW специализируется в научных исследованиях и разработках, и снабжаем самым высокотехнологичным карбидовым материалом для поставки режущих / фрезеровочных инструментов для почвы, воздушного пространства и электронной индустрии. В нашу основную продукцию входит твердый карбид / быстрорежущая сталь, а также двигатели, микроэлектрические дрели, IC картонорезальные машины, фрезы для гравирования, режущие пилы, фрезеры-расширители, фрезеры-расширители с резцом, дрели, резаки форм для шлицевого вала / звездочки роликовой цепи, и специальные нано инструменты. Пожалуйста, посетите сайт www.tool-tool.com для получения большей информации.

BW is specialized in R&D and sourcing the most advanced carbide material with high-tech coating to supply cutting / milling tool for mould & die, aero space and electronic industry. Our main products include solid carbide / HSS end mills, micro electronic drill, IC card cutter, engraving cutter, shell end mills, cutting saw, reamer, thread reamer, leading drill, involute gear cutter for spur wheel, rack and worm milling cutter, thread milling cutter, form cutters for spline shaft/roller chain sprocket, and special tool, with nano grade. Please visit our web www.tool-tool.com for more info.

beeway 發表在 痞客邦 留言(0) 人氣()

Bewise Inc. www.tool-tool.com Reference source from the internet.

微處理器(micro processor,縮寫為μP或uP)是可程式化特殊積體電路。用作處理通用資料時,叫作中央處理器(Central Processing Unit, CPU)這也是最為人所知的應用(如:Intel Pentium CPU);專於作圖像資料處理的,叫作Graphics Processing Unit圖像處理單元(如Nvidia GeForce 6150 GPU);用於音訊資料處理的,叫作Audio Processing Unit音訊處理單元(如Creative emu10k1 APU)等等。物理性來說,它就是一塊集成了數量龐大的微型電晶體與其他電路元件的半導體集成電路(Integrated Circuit, IC)晶片。

之所以會稱為微處理器,並不只是因為它比迷你電腦(mini computer)所用的處理器還要小而已。最主要的原因,還是因為當初各大晶片廠之製程,已經進入了 1 微米的階段,用 1 微米的製程,所產製出來的處理器晶片,廠商就會在產品名稱上用「微」字,強調他們很高科技。就如同現在的許多商業廣告一樣,很喜歡用「奈米」字眼。

早在微處理器問世之前,電子計算機的中央處理單元就經歷了從真空管到電晶體以及再後來的離散式TTL集成電路等幾個重要階段。甚至在電子計算機以前,還出 現過以齒輪、輪軸和槓桿為基礎的機械結構電腦。文藝復興時期的著名畫家兼科學家李奧納多·達·文西就曾做過類似的設計,但那個時代落後的製造技術根本沒有 能力將這個設計付諸實現。微處理器的發明使得複雜的電路群得以製成單一的電子元件。

從1970年代早期開始,微處理器性能的提升就基本上遵循著IT界著名的摩爾定律。這意味著在過去的30多年裡每18個月,CPU的計算能力就會翻番。大 到巨型機,小到個人便攜電腦,持續高速發展的微處理器取代了諸多其他計算形式而成為各個類別各個領域所有電腦系統的計算動力之源。

[編輯] 歷史

[編輯] 最早的晶片

正如近現代其他科技的發展一樣,微處理器時代彷彿一夜之間就到來了。三個公司,三個計劃,幾乎不約而同地成為微處理器產業的先鋒。它們就是英特爾的 Intel 4004,德州儀器公司的TMS 1000和蓋瑞特艾雷賽奇(Garrett AiResearch)工業部的CADC(Central Air Data Computer)。

1968年蓋瑞特被邀請參加研製一種數字電腦,以同正在開發中的用於美國海軍F-14雄貓戰鬥機的主飛行控制電腦的電機系統競爭。這個以基於MOS技術的 晶片組為核心的CPU於1970年設計完成,並以更小的體積和更高的可靠性打敗了基於電機系統的設計,被運用於早期的所有雄貓戰鬥機。但今天看來,知道 CADC和MP944晶片組的人並不多,主要原因在於美國海軍認為這種技術太過先進而不允許將其設計細節公開,這種情況一直持續到1997年。

德州儀器公司開發出以預編程嵌入式應用(pre-programmed embedded applications)為主打技術的4位微處理器TMS 1000,並於1971年9月17日推出代號為TMS1802NC的市場版本,用於生產單晶片計算器。英特爾的4004計劃則由弗得里克·法金 (Federico Faggin)主持開發,並於1971年11月15日發佈。

德州儀器為微處理器申請了專利。1973年9月4日Gary Boone獲得了單片微處理器的美國專利,專利號是3757306。但是我們可能無法確定究竟哪家公司第一個在實驗室做出了微處理器。1971年和 1976年英特爾和德州儀器兩次達成專利互許可協議,根據協議,英特爾向德州儀器付微處理器專利的使用費。Cyrix曾經同英特爾為微處理器專利對簿公 堂,關於此事的法律文件可以參見。[1]

有趣的是,有第三方人士聲稱擁有可以涵蓋「微處理器」的專利。具體請參見這個網站,根據這裡的描述,有人早於德州儀器和英特爾就發明了「微控制器」,這算不算「微處理器」尚有爭議。

所謂的單片機是微處理機的一種變體,它包括了CPU,一些內存以及I/O介面,所有都集成在一塊集成電路上。單片機的專利號為4074351,授予了德州儀器的Gary Boone和Michael J. Cochran。當時他們是以微電腦的名稱申請專利的。

根據麻省理工出版的《現代計算史》第200頁到221頁,英特爾同聖安東尼奧的一家叫做電腦終端的公司(後改名為數點公司)簽署了一份合同,合作設計一塊 用於終端的晶片。數點後來決定不用這塊晶片了,英特爾就將其命名為8008,並於1972年4月上市銷售。這是世界上第一塊8位微處理器,也是後來《無線 電電子》雜誌賣的著名的馬克-8電腦的主要部件。8008及其後繼產品8080開創了微處理器的市場。

[編輯] 8位

緊隨4位的4004之後,英特爾設計出世界上第一片8位微處理器,Intel 8008。此後,在市場運作中非常成功的Intel 8080和Zilog公司的Z80以及一系列其他8位微處理器又相繼推出。原先在摩托羅拉公司設計Motorola 6800的一群人離開公司,另組建了MOS Technology公司並在6800的技術基礎上推出改良產品6502,藉此與Z80在20世紀80年代的微處理器市場上相庭抗禮。

Z80和6502晶片的設計目標都是要減少整個系統的成本,為此開發者使用了縮小規模,簡化匯流排,合併專用晶片(比如Z80就包含了一個內存控制器等方法。這些措施導致了1980年代早期家用電腦的「革命」:消費者用99美元的價格就能買到一臺半可用的電腦了。

摩托羅拉推出了MC6809,成為8位處理器市場的領頭羊。有人認為這是有史以來功能最強大的純8位處理器-也是所有投產的硬佈線處理器中最複雜的。比MC6809更先進的處理器後來都用了微代碼技術。這是因為硬佈線邏輯無法滿足越來越複雜的設計,逐步被淘汰了。

另一種早期的8位處理器是Signetics 2650。由於其指令集架構新穎而功能強大,這種晶片風靡一時。

RCA公司生產的CDP1802,即RCA COSMAC,是應用於太空的處理器的先鋒。1970年代,NASA的旅行者號和海盜號太空探測器都使用了這種晶片。1989年發射的木星探測器伽利略號 也裝配了這種處理器。選用CDP1802,一是因為它可以在很低的功耗下運行*;二是因為它採的工藝可以更好地抗宇宙射線和電脈衝。因此1802也被認為 是第一塊抗輻射微處理器。

[編輯] 16位

第一款多片16位微處理器是美國國家半導體公司(National Semiconductor)於1973年初期推出的IMP-16,8位的IMP-8晶片組又於1974年推出。1975年該公司推出了第一款單片16位 微處理器,PACE,其基於NMOS技術的新版本,INS8900不久就替代了它。

其他早期的多片16位微處理器包括DEC用於PDP11小型機系列中LSI-11和PDP-11/30上的主板,還有仙童公司的MicroFlame 9440,這兩款都是在1975年到1976年推出的。

另外德州儀器出的TMS 9900也是早期的單片16位處理器,同TI 990兼容。9900用在了TI 990/4 小型機,TI-99/4A家用電腦和TM990系列OEM品牌微機上。這塊晶片封裝成在一塊陶瓷64腳雙內線(DIP)晶片,而當時大多數8位微處理器都 用更便宜的40腳DIP。 後續產品TMS 9980針對英特爾的8080推出,全兼容TI 990的16位指令集,一次傳輸8位數據,設計成塑料40腳DIP,但是只能定址16KB。TMS 9995是這個系列的第三塊晶片,使用了全新的設計。此系列產品後來擴展到了99105和99110。

英特爾走了一條不同的路,由於沒有小型機可以模擬,他們採取擴充8080的辦法設計出了16位的8086,這是後來幾乎統治PC晶片的x86家族的第一個 成員。英特爾推出的8086使得8080上的軟體可以很經濟的移植重用,商業上獲得的成功超出預期。接著英特爾又發佈80186, 80286, 還有1985年推出的32位80386,這些處理器都是向前兼容的,造就了英特爾PC市場的霸主地位。

集成內存管理器的微處理器是英特爾公司的柴爾茨等開發的,獲得美國專利號4442484。

[編輯] 32位

16位的設計剛剛進入市場,32位的微處理器就出現了。

世界上第一塊單片32位微處理器是AT&T貝爾實驗室的BELLMAC-32A,樣本於1980年,1982年正式投產。1984年 AT&T解體後更名為WE32000(WE代表西部電子),後來又推出了後續產品WE32100和WE32200。這些晶片用在了AT& T的3B5及3B14小型電腦、世界上第一臺超級台式微機3B2,還有世界上第一臺筆記本式超級微機「亞歷山大」上(這種系統使用類似於現在遊戲機上用的 ROM外掛程式)。所有這些系統都運行貝爾實驗室的UNIX作業系統,包括叫做xt-layers的第一個窗口系統。

最著名的32位微處理器是摩托羅拉於1979年推出的MC68000。這片被稱為 68K的晶片具有32位的暫存器,但是內部和外部數據匯流排都是 16位的,這樣可以減少晶片的腳數。摩托羅拉將其描述為16位處理器,但是顯然這是塊有32位結構的晶片。由於速度快、內存定址空間大(16兆)價格低 廉,MC68000很快成為此類CPU中最流行的型號。1980年代中期,很多公司都用它來裝配機器,其中包括Atari ST 和 Commodore Amiga,最為知名的大概算蘋果公司的Apple Lisa和Macintosh了。

英特爾的第一款32位微處理器是iAPX 432,於1981年推出,但市場上並未獲得成功。此產品有先進的物件導向架構,但同其它同類產品,特別是68000比,性能較差。

68000 的成功讓摩托羅拉繼續推出MC68010,這塊晶片加入了對虛擬內存的支持。1985年又推出了MC68020,增加了完全的32位數據和地址匯流排。 68020在Unix超級微機市場上獲得巨大成功,許多小公司也用它生產桌面系統。MC68030晶片內集成了內存管理器,幾乎成為除 DOS外所有機器的標準處理器。MC68040合成了浮點運算器,數學運算性能得到提高。68050未能達到設計要求,沒有發行。後繼的68060採用了 更快的RISC設計。1990年代早期,68K開始淡出桌面系統的市場。

其他大公司用68020設計嵌入式系統。曾幾何時,運行在嵌入式系統上的68020晶片比運行在PC機上的英特爾奔騰晶片都多。(見此網頁。摩托羅拉的"冷火"處理器也是68020的一種變種。

在此期間(1980年早期到中期),國家半導體推出了一種非常類似的16位外部數據線,32位內部匯流排的微處理器,稱為NS 16032(後改名為32016)。全32位版本稱作32032,以及一系列工業用OEM微機。待到1980年代中期,Sequent使用NS 32032推出了第一款對稱多處理器伺服器。這款伺服器少有對手,但1980年代晚期就消失了。

其他較值得注意的晶片包括Zilog的Z 8000,但是推出太遲,未能在市場上立足即消聲匿跡了。

一些晶片在20世紀80年代晚期上演的微處理器大戰中開始淡出,甚至逐漸退出市場。結果僅有一種出色產品的Sequent NS 32032系統逐步消失,Sequent也改用英特爾的微處理器。

[編輯] RISC技術

1980年代中期到1990年代早期,一類新型高性能RISC(精簡指令集電腦)嶄露頭角,這些晶片最初用於專用機器和unix工作站,但很快就在各領域流行起來了。當然,不包括英特爾的個人電腦。

最早的商業產品是MIPS發佈的32位R2000微處理器(R1000沒有正式發佈)。後續產品R3000是真正實用的型號,R4000則是世界上第一個 64位RISC晶片。同類產品還有IBM的Power系列和Sun的SPARC系列。很快所有的廠商都開始生產RISC,包括AT&T的 CRISP,AMD 29000,英特爾的i860及i960,摩托羅拉88000,DEC Alpha和HP的PA。

激烈的市場競爭淘汰了很多系列,現在POWER和派生的PowerPC系列成了個人電腦RISC晶片的主流。只有Sun還在使用SPARC架構。MIPS 繼續為SGI系統提供支持,但主要用於嵌入式系統,特別是思科的路由器。其他的系統要麼已經絕跡,要麼也奄奄一息。其他公司也曾經試圖分一杯羹,如ARM 公司原打算進軍家用電腦市場,但後來還是專注於嵌入式處理器了。現今基於RISC的計算設備由MIPS,ARM和PowerPC佔據了市場的主流。

當然在IBM兼容機領域內,英特爾,AMD以及臺灣的VIA都生產x86兼容的微處理器。到2004年底,DEC和AMD合作的ALPHA,AMD 64,以及HP和英特爾合作的安騰是最流行的型號。

[編輯] 市場統計信息

2003年,整個微處理器產業的產值大約為440億美元。[2]雖然桌面應用和便攜應用占到整個產業產值的一半,但從售出數量上來說,這兩個領域其實只消費了所有CPU的0.2%。

1997年,有20億塊8位微處理器售出。8位微處理器占到全球所有微處理器的55%。[3]

在全球所有的CPU中,32位及以上的只占不到10%的份額。而在所有售出的32位CPU里,大約只有2%進入個人電腦(PC)領域。

「總地來講,微處理器、微控制器或數字信號處理機的平均單價只是剛剛超過6美元而已。」 [4]

[編輯] 常見微處理器架構

* NSC 320xx
* AMD K5, K6, K6-2, K6-III, Duron, Athlon, Athlon XP, Athlon MP, Athlon XP-M (Intel x86 架構)
* AMD Athlon 64, Athlon 64 FX, Athlon 64 X2, Opteron, Sempron, Turion 64 (AMD64架構)
* ARM 系列, StrongARM, Intel PXA2xx
* Atmel AVR 架構 (僅微控制器)
* CDP1802 (屬於 RCA COSMAC)
* Cyrix M1, M2, 6x86 (Intel x86 架構)
* DEC Alpha
* IBM POWER (與88000同為PowerPC系列以前的產品線)
* Intel 4004, 4040
* Intel 8080, 8085, Zilog Z80
* Intel 8086, 8088, 80186, 80188, 80286, 80386, 80486 (Intel x86 架構)
* Pentium, Pentium Pro, Celeron, Pentium II, Pentium III, Xeon, Pentium 4, Pentium M, Pentium D, Celeron M, Celeron D (Intel x86, 與HP PA-RISC均為IA64架構之前的產品線)
* Itanium (IA-64 架構)
* Intel i860, i960
* MIPS 架構
* 摩托羅拉 6800, MOS Technology 6502, 摩托羅拉 6809
* 摩托羅拉 68000 系列, 摩托羅拉 ColdFire
* 摩托羅拉 88000 (與POWER同為PowerPC系列之前的產品線)
* NexGen Nx586 (Intel x86 架構)
* OpenCores OpenRISC 架構
* PA-RISC 系列 (HP公司, 與x86同為IA-64架構以前的產品線)
* PowerPC 系列, G3, G4, G5
* Signetics 2650
* SPARC, UltraSPARC, UltraSPARC II–IV
* 日立/瑞薩科技的SuperH 系列
* Transmeta的Crusoe和Efficeon (VLIW架構,可模擬Intel x86)
* INMOS Transputer
* WDC 65816
* 美國國家半導體公司的SC/MP ("scamp")

[編輯] 注

* 1802晶片具有所謂靜態設計,就是說它的時鐘頻率可以設為任意低;這種設計可以讓太空飛行器上的處理器以很低的速度運行(最低可以到0赫茲,也就是停機 狀態)。這樣的話,如果飛船在航行過程中正處於長時間沒有事件的旅程的時候,可以把電能消耗降到最低。在有任務到達的情況下,例如要進行航線修正,高度控 制,數據採集或者無線電通訊的時候,又可以用定時器或者感測器來喚醒處理器,或者加速其運行。

[編輯] 其他參考

* 電腦架構
* 定址模式
* 數字信號處理機
* 微控制器
* AMD微處理器列表
* Intel微處理器列表


歡迎來到Bewise Inc.的世界,首先恭喜您來到這接受新的資訊讓產業更有競爭力,我們是提供專業刀具製造商,應對客戶高品質的刀具需求,我們可以協助客戶滿足您對產業的 不同要求,我們有能力達到非常卓越的客戶需求品質,這是現有相關技術無法比擬的,我們成功的滿足了各行各業的要求,包括:精密HSS DIN切削刀具、協助客戶設計刀具流程、DIN or JIS 鎢鋼切削刀具設計、NAS986 NAS965 NAS897 NAS937orNAS907 航太切削刀具,NAS航太刀具設計、超高硬度的切削刀具、醫療配件刀具設計、汽車業刀具設計、電子產業鑽石刀具、木工產業鑽石刀具等等。我們的產品涵蓋了 從民生刀具到工業級的刀具設計;從微細刀具到大型刀具;從小型生產到大型量產;全自動整合;我們的技術可提供您連續生產的效能,我們整體的服務及卓越的技 術,恭迎您親自體驗!!

BW Bewise Inc. Willy Chen willy@tool-tool.com bw@tool-tool.com www.tool-tool.com skype:willy_chen_bw mobile:0937-618-190 Head &Administration Office No.13,Shiang Shang 2nd St., West Chiu Taichung,Taiwan 40356 http://www.tool-tool..com / FAX:+886 4 2471 4839 N.Branch 5F,No.460,Fu Shin North Rd.,Taipei,Taiwan S.Branch No.24,Sec.1,Chia Pu East Rd.,Taipao City,Chiayi Hsien,Taiwan

Welcome to BW tool world! We are an experienced tool maker specialized in cutting tools. We focus on what you need and endeavor to research the best cutter to satisfy users’ demand. Our customers involve wide range of industries, like mold & die, aerospace, electronic, machinery, etc. We are professional expert in cutting field. We would like to solve every problem from you. Please feel free to contact us, its our pleasure to serve for you. BW product including: cutting tool、aerospace tool .HSS DIN Cutting tool、Carbide end mills、Carbide cutting tool、NAS Cutting tool、NAS986 NAS965 NAS897 NAS937orNAS907 Cutting Tools,Carbide end mill、disc milling cutter,Aerospace cutting tool、hss drill’Фрезеры’Carbide drill、High speed steel、Milling cutter、CVDD(Chemical Vapor Deposition Diamond )’PCBN (Polycrystalline Cubic Boron Nitride) ’Core drill、Tapered end mills、CVD Diamond Tools Inserts’PCD Edge-Beveling Cutter(Golden Finger’PCD V-Cutter’PCD Wood tools’PCD Cutting tools’PCD Circular Saw Blade’PVDD End Mills’diamond tool ‘Single Crystal Diamond ‘Metric end mills、Miniature end mills、Специальные режущие инструменты ‘Пустотелое сверло ‘Pilot reamer、Fraises’Fresas con mango’ PCD (Polycrystalline diamond) ‘Frese’Electronics cutter、Step drill、Metal cutting saw、Double margin drill、Gun barrel、Angle milling cutter、Carbide burrs、Carbide tipped cutter、Chamfering tool、IC card engraving cutter、Side cutter、NAS tool、DIN or JIS tool、Special tool、Metal slitting saws、Shell end mills、Side and face milling cutters、Side chip clearance saws、Long end mills、Stub roughing end mills、Dovetail milling cutters、Carbide slot drills、Carbide torus cutters、Angel carbide end mills、Carbide torus cutters、Carbide ball-nosed slot drills、Mould cutter、Tool manufacturer.

Bewise Inc. www.tool-tool.com

ようこそBewise Inc.の世界へお越し下さいませ、先ず御目出度たいのは新たな

情報を受け取って頂き、もっと各産業に競争力プラス展開。

弊社は専門なエンド・ミルの製造メーカーで、客先に色んな分野のニーズ、

豊富なパリエーションを満足させ、特にハイテク品質要求にサポート致します。

弊社は各領域に供給できる内容は:

(1)精密HSSエンド・ミルのR&D

(2)Carbide Cutting tools設計

(3)鎢鋼エンド・ミル設計

(4)航空エンド・ミル設計

(5)超高硬度エンド・ミル

(6)ダイヤモンド・エンド・ミル

(7)医療用品エンド・ミル設計

(8)自動車部品&材料加工向けエンド・ミル設計

弊社の製品の供給調達機能は:

(1)生活産業~ハイテク工業までのエンド・ミル設計

(2)ミクロ・エンド・ミル~大型エンド・ミル供給

(3)小Lot生産~大量発注対応供給

(4)オートメーション整備調達

(5)スポット対応~流れ生産対応

弊社の全般供給体制及び技術自慢の総合専門製造メーカーに貴方のご体験を御待ちしております。

BW специализируется в научных исследованиях и разработках, и снабжаем самым высокотехнологичным карбидовым материалом для поставки режущих / фрезеровочных инструментов для почвы, воздушного пространства и электронной индустрии. В нашу основную продукцию входит твердый карбид / быстрорежущая сталь, а также двигатели, микроэлектрические дрели, IC картонорезальные машины, фрезы для гравирования, режущие пилы, фрезеры-расширители, фрезеры-расширители с резцом, дрели, резаки форм для шлицевого вала / звездочки роликовой цепи, и специальные нано инструменты. Пожалуйста, посетите сайт www.tool-tool.com для получения большей информации.

BW is specialized in R&D and sourcing the most advanced carbide material with high-tech coating to supply cutting / milling tool for mould & die, aero space and electronic industry. Our main products include solid carbide / HSS end mills, micro electronic drill, IC card cutter, engraving cutter, shell end mills, cutting saw, reamer, thread reamer, leading drill, involute gear cutter for spur wheel, rack and worm milling cutter, thread milling cutter, form cutters for spline shaft/roller chain sprocket, and special tool, with nano grade. Please visit our web www.tool-tool.com for more info.

beeway 發表在 痞客邦 留言(0) 人氣()

Bewise Inc. www.tool-tool.com Reference source from the internet.

Числове́ керува́ння (англ. Numerіcal control) — автоматичне керування процесом, що здійснюється пристроєм, який використовує числові дані, що, як правило, уводяться під час виконання операції (посилання: ІSO 2382).

歡迎來到Bewise Inc.的世界,首先恭喜您來到這接受新的資訊讓產業更有競爭力,我們是提供專業刀具製造商,應對客戶高品質的刀具需求,我們可以協助客戶滿足您對產業的不同要求,我們有能力達到非常卓越的客戶需求品質,這是現有相關技術無法比擬的,我們成功的滿足了各行各業的要求,包括:精密HSS DIN切削刀具協助客戶設計刀具流程DIN or JIS 鎢鋼切削刀具設計NAS986 NAS965 NAS897 NAS937orNAS907 航太切削刀具,NAS航太刀具設計超高硬度的切削刀具醫療配件刀具設計汽車業刀具設計電子產業鑽石刀具木工產業鑽石刀具等等。我們的產品涵蓋了從民生刀具到工業級的刀具設計;從微細刀具到大型刀具;從小型生產到大型量產;全自動整合;我們的技術可提供您連續生產的效能,我們整體的服務及卓越的技術,恭迎您親自體驗!!

BW Bewise Inc. Willy Chen willy@tool-tool.com bw@tool-tool.com www.tool-tool.com skype:willy_chen_bw mobile:0937-618-190 Head &Administration Office No.13,Shiang Shang 2nd St., West Chiu Taichung,Taiwan 40356 http://www.tool-tool..com / FAX:+886 4 2471 4839 N.Branch 5F,No.460,Fu Shin North Rd.,Taipei,Taiwan S.Branch No.24,Sec.1,Chia Pu East Rd.,Taipao City,Chiayi Hsien,Taiwan

Welcome to BW tool world! We are an experienced tool maker specialized in cutting tools. We focus on what you need and endeavor to research the best cutter to satisfy users demand. Our customers involve wide range of industries, like mold & die, aerospace, electronic, machinery, etc. We are professional expert in cutting field. We would like to solve every problem from you. Please feel free to contact us, its our pleasure to serve for you. BW product including: cutting toolaerospace tool .HSS DIN Cutting toolCarbide end millsCarbide cutting toolNAS Cutting toolNAS986 NAS965 NAS897 NAS937orNAS907 Cutting Tools,Carbide end milldisc milling cutter,Aerospace cutting toolhss drillФрезерыCarbide drillHigh speed steelMilling cutterCVDD(Chemical Vapor Deposition Diamond )PCBN (Polycrystalline Cubic Boron Nitride) Core drillTapered end millsCVD Diamond Tools InsertsPCD Edge-Beveling Cutter(Golden FingerPCD V-CutterPCD Wood toolsPCD Cutting toolsPCD Circular Saw BladePVDD End Millsdiamond tool Single Crystal Diamond Metric end millsMiniature end millsСпециальные режущие инструменты Пустотелое сверло Pilot reamerFraisesFresas con mango PCD (Polycrystalline diamond) FreseElectronics cutterStep drillMetal cutting sawDouble margin drillGun barrelAngle milling cutterCarbide burrsCarbide tipped cutterChamfering toolIC card engraving cutterSide cutterNAS toolDIN or JIS toolSpecial toolMetal slitting sawsShell end millsSide and face milling cuttersSide chip clearance sawsLong end millsStub roughing end millsDovetail milling cuttersCarbide slot drillsCarbide torus cuttersAngel carbide end millsCarbide torus cuttersCarbide ball-nosed slot drillsMould cutterTool manufacturer.

Bewise Inc. www.tool-tool.com

ようこそBewise Inc.の世界へお越し下さいませ、先ず御目出度たいのは新たな

情報を受け取って頂き、もっと各産業に競争力プラス展開。

弊社は専門なエンド・ミルの製造メーカーで、客先に色んな分野のニーズ、

豊富なパリエーションを満足させ、特にハイテク品質要求にサポート致します。

弊社は各領域に供給できる内容は:

(1)精密HSSエンド・ミルのR&D

(2)Carbide Cutting tools設計

(3)鎢鋼エンド・ミル設計

(4)航空エンド・ミル設計

(5)超高硬度エンド・ミル

(6)ダイヤモンド・エンド・ミル

(7)医療用品エンド・ミル設計

(8)自動車部品&材料加工向けエンド・ミル設計

弊社の製品の供給調達機能は:

(1)生活産業~ハイテク工業までのエンド・ミル設計

(2)ミクロ・エンド・ミル~大型エンド・ミル供給

(3)小Lot生産~大量発注対応供給

(4)オートメーション整備調達

(5)スポット対応~流れ生産対応

弊社の全般供給体制及び技術自慢の総合専門製造メーカーに貴方のご体験を御待ちしております。

BW специализируется в научных исследованиях и разработках, и снабжаем самым высокотехнологичным карбидовым материалом для поставки режущих / фрезеровочных инструментов для почвы, воздушного пространства и электронной индустрии. В нашу основную продукцию входит твердый карбид / быстрорежущая сталь, а также двигатели, микроэлектрические дрели, IC картонорезальные машины, фрезы для гравирования, режущие пилы, фрезеры-расширители, фрезеры-расширители с резцом, дрели, резаки форм для шлицевого вала / звездочки роликовой цепи, и специальные нано инструменты. Пожалуйста, посетите сайт www.tool-tool.com для получения большей информации.

BW is specialized in R&D and sourcing the most advanced carbide material with high-tech coating to supply cutting / milling tool for mould & die, aero space and electronic industry. Our main products include solid carbide / HSS end mills, micro electronic drill, IC card cutter, engraving cutter, shell end mills, cutting saw, reamer, thread reamer, leading drill, involute gear cutter for spur wheel, rack and worm milling cutter, thread milling cutter, form cutters for spline shaft/roller chain sprocket, and special tool, with nano grade. Please visit our web www.tool-tool.com for more info.

beeway 發表在 痞客邦 留言(0) 人氣()