公告版位
Bewise Inc. www.tool-tool.com Reference source from the internet.

Allikas: Vikipeedia

Jump to: navigation, search
6





4
2
C
12,01115
Süsinik

Süsinik on keemiline element järjenumbriga 6.

Tal on kaks stabiilset isotoopi massiarvudega 12 ja 13.

Looduses leidub ka radioaktiivset isotoopi massiarvuga 14, mille poolestusaeg on 5700 aastat ja mis tekib kosmilise kiirguse toimel.

Süsinik on mittemetall.

Süsinikul on kalduvus moodustada 4 sidet, või vastaval arvul mitmekordseid sidemeid. Et süsinik moodustab palju vähepolaarseid kovalentseid sidemeid, on oksüdatsiooniastme määramine sageli raske.

Tal on palju allotroopseid vorme. Tavatingimustes on neist stabiilseim grafiit. Teisteks vormideks on teemant ja mitmesugused karbüünide ja fullereenide vormid.

Süsiniku stabiilseim oksiid on süsihappegaas (CO2). Oluline on ka süsinikoksiid (CO).

Süsinik on oluline element orgaanilistes ühendites ning kesksel kohal orgaanilises keemias. Seetõttu nimetatakse seda keemiavaldkonda sageli ka süsinikukeemiaks.

[redigeeri] Vaata ka


BW Bewise Inc. Willy Chen willy@tool-tool.com bw@tool-tool.com www.tool-tool.com skype:willy_chen_bw mobile:0937-618-190 Head &Administration Office No.13,Shiang Shang 2nd St., West Chiu Taichung,Taiwan 40356 TEL:+886 4 24710048 / FAX:+886 4 2471 4839 N.Branch 5F,No.460,Fu Shin North Rd.,Taipei,Taiwan S.Branch No.24,Sec.1,Chia Pu East Rd.,Taipao City,Chiayi Hsien,Taiwan

Welcome to BW tool world! We are an experienced tool maker specialized in cutting tools. We focus on what you need and endeavor to research the best cutter to satisfy users demand. Our customers involve wide range of industries, like mold & die, aerospace, electronic, machinery, etc. We are professional expert in cutting field. We would like to solve every problem from you. Please feel free to contact us, its our pleasure to serve for you. BW product including: cutting toolaerospace tool .HSS Cutting toolCarbide end millsCarbide cutting toolNAS Cutting toolCarbide end millAerospace cutting toolФрезерыCarbide drillHigh speed steelMilling cutterCVDD(Chemical Vapor Deposition Diamond )PCBN (Polycrystalline Cubic Boron Nitride) Core drillTapered end millsCVD Diamond Tools Inserts’PCD Edge-Beveling Cutter(Golden Finger’PCD V-Cutter’PCD Wood tools’PCD Cutting tools’PCD Circular Saw Blade’PVDD End Mills’diamond tool Single Crystal Diamond Metric end millsMiniature end millsСпециальные режущие инструменты Пустотелое сверло Pilot reamerFraisesFresas con mango PCD (Polycrystalline diamond) FreseElectronics cutterStep drillMetal cutting sawDouble margin drillGun barrelAngle milling cutterCarbide burrsCarbide tipped cutterChamfering toolIC card engraving cutterSide cutterNAS toolDIN toolSpecial toolMetal slitting sawsShell end millsSide and face milling cuttersSide chip clearance sawsLong end millsStub roughing end millsDovetail milling cuttersCarbide slot drillsCarbide torus cuttersAngel carbide end millsCarbide torus cuttersCarbide ball-nosed slot drillsMould cutterTool manufacturer.

Bewise Inc. www.tool-tool.com

beeway 發表在 痞客邦 留言(0) 人氣()

Bewise Inc. www.tool-tool.com Reference source from the internet.
Boro - Carbono - Nitrógeno

C
Si

General
Nombre, símbolo, número Carbono, C, 6
Serie química No metal
Grupo, periodo, bloque 14 (IVA), 2 , p
Densidad, dureza Mohs 2260 kg/m3, 0,5 (grafito)
3515 kg/m3, 10,0 (diamante)
Apariencia negro (grafito)
incoloro (diamante)
Propiedades atómicas
Masa atómica 12,0107 uma
Radio medio 70 pm
Radio atómico calculado 67 pm
Radio covalente 77 pm
Radio de Van der Waals 170 pm
Configuración electrónica [He]2s22p2
Estados de oxidación (óxido) 4, 2 (levemente ácido)
Estructura cristalina Cúbica o hexagonal (diamante); hexagonal o romboédrica (grafito)
Propiedades físicas
Estado de la materia Sólido (no magnético)
Punto de fusión 3823 K (diamante), 3800 K (grafito)
Punto de ebullición 5100 K (grafito)
Entalpía de vaporización 711 kJ/mol (grafito; sublima)
Entalpía de fusión 105 kJ/mol (grafito) (sublima)
Presión de vapor _ Pa
Velocidad del sonido 18.350 m/s (diamante)
Información diversa
Electronegatividad 2,55 (Pauling)
Calor específico 710,6 J/(kg × K) (grafito); 518,3 J/(kg × K) (diamante)
Conductividad eléctrica 3 106 Ω–1 × m–1 (grafito, dirección paralela a los planos); 5 × 102 Ω-1 × m–1 (dirección perpendicular)
Conductividad térmica 19,6 W/(cm × K) (grafito, dirección paralela a los planos); 0,06 W/(cm × K) (dirección perpendicular); 23,2 W/(cm × K) (diamante)
potencial de ionización 1086,5 kJ/mol
2° potencial de ionización 2352,6 kJ/mol
3° potencial de ionización 4620,5 kJ/mol
4° potencial de ionización 6222,7 kJ/mol
5° potencial de ionización 37.831 kJ/mol
6° potencial de ionización 47.277 kJ/mol
Isótopos más estables
iso. AN Periodo de semidesintegración MD ED MeV PD
12C 98,9% C es estable con 6 neutrones
13C 1,1% C es estable con 7 neutrones
14C traza 5730 a β 0,156 14N
Valores en el SI y en condiciones normales
(0 °C y 1 atm), salvo que se indique lo contrario.
Calculado a partir de distintas longitudes
de enlace covalente, metálico o iónico.

El carbono es un elemento químico de número atómico 6 y símbolo C. Es sólido a temperatura ambiente. Dependiendo de las condiciones de formación, puede encontrarse en la naturaleza en distintas formas alotrópicas, carbono amorfo y cristalino en forma de grafito o diamante. Es el pilar básico de la química orgánica; se conocen cerca de 10 millones de compuestos de carbono, y forma parte de todos los seres vivos conocidos.

Características secundarias [editar]

El carbono es un elemento notable por varias razones. Sus formas alotrópicas incluyen, sorprendentemente, una de las sustancias más blandas (el grafito) y la más dura (el diamante) y, desde el punto de vista económico, uno de los materiales más baratos (carbón) y uno de los más caros (diamante). Más aún, presenta una gran afinidad para enlazarse químicamente con otros átomos pequeños, incluyendo otros átomos de carbono con los que puede formar largas cadenas, y su pequeño radio atómico le permite formar enlaces múltiples. Así, con el oxígeno forma el dióxido de carbono, vital para el crecimiento de las plantas (ver ciclo del carbono); con el hidrógeno forma numerosos compuestos denominados genéricamente hidrocarburos, esenciales para la industria y el transporte en la forma de combustibles fósiles; y combinado con oxígeno e hidrógeno forma gran variedad de compuestos como, por ejemplo, los ácidos grasos, esenciales para la vida, y los ésteres que dan sabor a las frutas; además es vector, a través del ciclo carbono-nitrógeno, de parte de la energía producida por el Sol[1].

Estados alotrópicos [editar]

Se conocen cuatro formas alotrópicas del carbono, además del amorfo: grafito, diamante, fulerenos y nanotubos.

El 22 de marzo de 2004 se anunció el descubrimiento de una quinta forma alotrópica (nanoespumas) (enlace externo a nanoespumas).

La forma amorfa es esencialmente grafito, pero que no llega a adoptar una estructura cristalina macroscópica. Esta es la forma presente en la mayoría de los carbones y en el hollín.

Disposición geométrica de los orbitales sp2

Disposición geométrica de los orbitales sp2

A presión normal, el carbono adopta la forma del grafito, en la que cada átomo está unido a otros tres en un plano compuesto de celdas hexagonales; este estado se puede describir como 3 electrones de valencia en orbitales híbridos planos sp2 y el cuarto en el orbital p.

Las dos formas de grafito conocidas alfa (hexagonal) y beta (romboédrica) tienen propiedades físicas idénticas. Los grafitos naturales contienen más del 30% de la forma beta, mientras que el grafito sintético contiene únicamente la forma alfa. La forma alfa puede transformarse en beta mediante procedimientos mecánicos, y ésta recristalizar en forma alfa al calentarse por encima de 1000 °C.

Debido a la deslocalización de los electrones del orbital pi, el grafito es conductor de la electricidad, propiedad que permite su uso en procesos de electroerosión. El material es blando y las diferentes capas, a menudo separadas por átomos intercalados, se encuentran unidas por enlaces de Van de Waals, siendo relativamente fácil que unas deslicen respecto de otras, lo que le da utilidad como lubricante.

Disposición geométrica de los orbitales sp3

Disposición geométrica de los orbitales sp3

A muy altas presiones, el carbono adopta la forma del diamante, en el cual cada átomo está unido a otros cuatro átomos de carbono, encontrándose los 4 electrones en orbitales sp³, como en los hidrocarburos. El diamante presenta la misma estructura cúbica que el silicio y el germanio y, gracias a la resistencia del enlace químico carbono-carbono, es, junto con el nitruro de boro, la sustancia más dura conocida. La transición a grafito a temperatura ambiente es tan lenta que es indetectable. Bajo ciertas condiciones, el carbono cristaliza como lonsdaleíta, una forma similar al diamante pero hexagonal.

El orbital híbrido sp1 que forma enlaces covalentes sólo es de interés en química, manifestándose en algunos compuestos, como por ejemplo el acetileno.

Fulereno C60

Fulereno C60

Los fulerenos tienen una estructura similar al grafito, pero el empaquetamiento hexagonal se combina con pentágonos (y en ciertos casos, heptágonos), lo que curva los planos y permite la aparición de estructuras de forma esférica, elipsoidal o cilíndrica. El constituido por 60 átomos de carbono, que presenta una estructura tridimensional y topología similar a un balón de fútbol, es especialmente estable. Los fulerenos en general, y los derivados del C60 en particular, son objeto de intensa investigación en química desde su descubrimiento a mediados de los 1980.

A esta familia pertenecen también los nanotubos de carbono, que pueden describirse como capas de grafito enrolladas en forma cilíndrica y rematadas en sus extremos por hemiesferas (fulerenos), y que constituyen uno de los primeros productos industriales de la nanotecnología.

Aplicaciones [editar]

El principal uso industrial del carbono es como componente de hidrocarburos, especialmente los combustibles fósiles (petróleo y gas natural). Del primero se obtienen, por destilación en las refinerías, gasolinas, keroseno y aceites, siendo además la materia prima empleada en la obtención de plásticos. El segundo se está imponiendo como fuente de energía por su combustión más limpia. Otros usos son:

  • El isótopo carbono-14, descubierto el 27 de febrero de 1940, se usa en la datación radiométrica.
  • El grafito se combina con arcilla para fabricar las minas de los lápices. Además se utiliza como aditivo en lubricantes. Las pinturas anti-radar utilizadas en el camuflaje de vehículos y aviones militares están basadas igualmente en el grafito, intercalando otros compuestos químicos entre sus capas.
  • El diamante se emplea para la construcción de joyas y como material de corte aprovechando su dureza.
  • Como elemento de aleación principal de los aceros.
  • En varillas de protección de reactores nucleares.
  • Las pastillas de carbón se emplean en medicina para absorber las toxinas del sistema digestivo y como remedio de la flatulencia.
  • El carbón activado se emplea en sistemas de filtrado y purificación de agua.
  • El carbón amorfo ("hollín") se añade a la goma para mejorar sus propiedades mecánicas. Además se emplea en la formación de electrodos (p. ej. de las baterías). Obtenido por sublimación del grafito, es fuente de los fulerenos que pueden ser extraídos con disolventes orgánicos.
  • Las fibras de carbón (obtenido generalmente por termólisis de fibras de poliacrilato) se añaden a resinas de poliéster, donde mejoran mucho la resistencia mecánica sin aumentar el peso, obteniéndose los materiales denominados fibras de carbono.
  • Las propiedades químicas y estructurales de los fulerenos, en la forma de nanotubos, prometen usos futuros en el incipiente campo de la nanotecnología.

Historia [editar]

El carbón (del latín carbo, carbón) fue descubierto en la prehistoria y ya era conocido en la antigüedad en la que se manufacturaba mediante la combustión incompleta de materiales orgánicos. Los últimos alótropos conocidos, los fulerenos, fueron descubiertos como subproducto en experimentos realizados con haces moleculares en la década de los 80.

Abundancia y obtención [editar]

El carbón no se creó durante el Big Bang porque hubiera necesitado la triple colisión de partículas alfa (núcleos atómicos de helio) y el Universo se expandió y enfrió demasiado rápido para que la probabilidad de que ello aconteciera fuera significativa. Donde sí ocurre este proceso es en el interior de las estrellas (en la fase RH (Rama horizontal)) donde este elemento es abundante, encontrándose además en otros cuerpos celestes como los cometas y en las atmósferas de los planetas. Algunos meteoritos contiene diamantes microscópicos que se formaron cuando el Sistema Solar era aún un disco protoplanetario.

En combinaciones con otros elementos, el carbono se encuentra en la atmósfera terrestre y disuelto en el agua, y acompañado de menores cantidades de calcio, magnesio y hierro forma enormes masas rocosas (caliza, dolomita, mármol, etc.).

El grafito se encuentra en grandes cantidades en Estados Unidos, Rusia, México, Groenlandia e India.

Los diamantes naturales se encuentran asociados a rocas volcánicas (kimberlita y lamproita). Los mayores depósitos de diamantes se encuentran en el África (Sudáfrica, Namibia, Botswana, República del Congo y Sierra Leona). Existen además depósitos importantes en Canadá, Rusia, Brasil y Australia.

Compuestos inorgánicos [editar]

(Para los compuestos orgánicos consultar el artículo: Química orgánica.)

El más importante óxido de carbono es el dióxido de carbono (CO2), un componente minoritario de la atmósfera terrestre (del orden del 0,04% en peso) producido y usado por los seres vivos (ver ciclo del carbono). En el agua forma trazas de ácido carbónico (H2CO3) —las burbujas de muchos refrescos— pero, al igual que otros compuestos similares, es inestable, aunque a través de él pueden producirse iones carbonato estables por resonancia. Algunos minerales importantes, como la calcita, son carbonatos.

Los otros óxidos son el monóxido de carbono (CO) y el más raro subóxido de carbono (C3O2). El monóxido se forma durante la combustión incompleta de materias orgánicas y es incoloro e inodoro. Dado que la molécula de CO contiene un enlace triple, es muy polar, por lo que manifiesta una acusada tendencia a unirse a la hemoglobina, formando un nuevo compuesto muy peligroso denominado Carboxihemoglobina, impidiéndoselo al oxígeno, por lo que se dice que es un asfixiante de sustitución. El ion cianuro (CN-), tiene una estructura similar y se comporta como los iones haluro.

Con metales, el carbono forma tanto carburos como acetiluros, ambos muy ácidos. A pesar de tener una electronegatividad alta, el carbono puede formar carburos covalentes como es el caso de carburo de silicio (SiC) cuyas propiedades se asemejan a las del diamante.

Isótopos [editar]

En 1961 la IUPAC adoptó el isótopo C-12 como la base para la masa atómica de los elementos químicos.

El carbono-14 es un radioisótopo con un periodo de semidesintegración de 5730 años que se emplea de forma extensiva en la datación de especimenes orgánicos.

Los isótopos naturales y estables del carbono son el C-12 (98,89%) y el C-13 (1,11%). Las proporciones de estos isótopos en un ser vivo se expresan en variación (±‰) respecto de la referencia VPDB (Vienna Pee Dee Belemnite, fósiles cretácicos de belemnites, en Carolina del Sur). El δC-13 del CO2 de la atmósfera terrestre es -7‰. El carbono fijado por fotosíntesis en los tejidos de las plantas es significativamente más pobre en C-13 que el CO2 de la atmósfera.

La mayoría de las plantas presentan valores de δC-13 entre -24 y -34‰. Otras plantas acuáticas, de desierto, de marismas saladas y hierbas tropicales, presentan valores de δC-13 entre -6 y -19‰ debido a diferencias en la reacción de fotosíntesis. Un tercer grupo intermedio constituido por las algas y líquenes presentan valores entre -12 y -23‰. El estudio comparativo de los valores de δC-13 en plantas y organismos puede proporcionar información valiosa relativa a la cadena alimenticia de los seres vivos.

Precauciones [editar]

Los compuestos de carbono tienen un amplio rango de toxicidad. El monóxido de carbono, presente en los gases de escape de los motores de combustión y el cianuro (CN) son extremadamente tóxicos para los mamíferos, entre ellos las personas. Los gases orgánicos eteno, etino y metano son explosivos e inflamables en presencia de aire. Por el contrario, muchos otros compuestos no son tóxicos sino esenciales para la vida.

Enlaces externos [editar]

Wikcionario


BW Bewise Inc. Willy Chen willy@tool-tool.com bw@tool-tool.com www.tool-tool.com skype:willy_chen_bw mobile:0937-618-190 Head &Administration Office No.13,Shiang Shang 2nd St., West Chiu Taichung,Taiwan 40356 TEL:+886 4 24710048 / FAX:+886 4 2471 4839 N.Branch 5F,No.460,Fu Shin North Rd.,Taipei,Taiwan S.Branch No.24,Sec.1,Chia Pu East Rd.,Taipao City,Chiayi Hsien,Taiwan

Welcome to BW tool world! We are an experienced tool maker specialized in cutting tools. We focus on what you need and endeavor to research the best cutter to satisfy users demand. Our customers involve wide range of industries, like mold & die, aerospace, electronic, machinery, etc. We are professional expert in cutting field. We would like to solve every problem from you. Please feel free to contact us, its our pleasure to serve for you. BW product including: cutting toolaerospace tool .HSS Cutting toolCarbide end millsCarbide cutting toolNAS Cutting toolCarbide end millAerospace cutting toolФрезерыCarbide drillHigh speed steelMilling cutterCVDD(Chemical Vapor Deposition Diamond )PCBN (Polycrystalline Cubic Boron Nitride) Core drillTapered end millsCVD Diamond Tools Inserts’PCD Edge-Beveling Cutter(Golden Finger’PCD V-Cutter’PCD Wood tools’PCD Cutting tools’PCD Circular Saw Blade’PVDD End Mills’diamond tool Single Crystal Diamond Metric end millsMiniature end millsСпециальные режущие инструменты Пустотелое сверло Pilot reamerFraisesFresas con mango PCD (Polycrystalline diamond) FreseElectronics cutterStep drillMetal cutting sawDouble margin drillGun barrelAngle milling cutterCarbide burrsCarbide tipped cutterChamfering toolIC card engraving cutterSide cutterNAS toolDIN toolSpecial toolMetal slitting sawsShell end millsSide and face milling cuttersSide chip clearance sawsLong end millsStub roughing end millsDovetail milling cuttersCarbide slot drillsCarbide torus cuttersAngel carbide end millsCarbide torus cuttersCarbide ball-nosed slot drillsMould cutterTool manufacturer.

Bewise Inc. www.tool-tool.com

beeway 發表在 痞客邦 留言(0) 人氣()

beeway 發表在 痞客邦 留言(0) 人氣()

Bewise Inc. www.tool-tool.com Reference source from the internet.
Perioda tabelo
H















He
Li Be









B C N O F Ne
Na Mg









Al Si P S Cl Ar
K Ca Sc Ti V Cr Mn Fe Co Ni Cu Zn Ga Ge As Se Br Kr
Rb Sr Y Zr Nb Mo Tc Ru Rh Pd Ag Cd In Sn Sb Te I Xe
Cs Ba * Hf Ta W Re Os Ir Pt Au Hg Tl Pb Bi Po At Rn
Fr Ra ** Rf Db Sg Bh Hs Mt Ds Rg Uub Uut Uuq Uup Uuh Uus Uuo


* La Ce Pr Nd Pm Sm Eu Gd Tb Dy Ho Er Tm Yb Lu


** Ac Th Pa U Np Pu Am Cm Bk Cf Es Fm Md No Lr


[redaktu] C - karbono

  • Simbolo: C
  • Atomnumero: 6
  • Atompezo: 12,01115
  • Kemia Serio: nemetalo
  • Bolpunkto: 4827 oC
  • Fandpunkto: 3500 oC
  • Denseco: 2267 kg/m3
  • Elektronegativeco: 2,5
  • Eltrovinto: nekona (prahistorie)

Karbono (C) estas tre grava elemento por la vivo. La nomo venas de la latina (carbo, carbonis, karbo.) Ĝi troviĝas en ĉiu vivanta estaĵo - animalo aŭ vegetaĵo. La histoj kaj ĉeloj de la homa korpo konsistas el karbonaj kombinaĵoj. Karbona kemio estas la bazo de vivo sur la Tero.

Estas proksimume dek miliono da malsamaj karbonaj kombinaĵoj en nia planedo. La organika kemio temas pri ili. Petrolo, alkoholo, sukero, ligno, karbo, lignokarbo, kaj koakso donas al ni energion kaj varmon por vivi. Ankaŭ nutraĵo donas al nia korpo energion kaj varmon. Pura karbono troviĝas en la naturo nur kiel karbo, grafito kaj diamanto.

La plej abunda izotopo de karbono, karbono-12, havas ses protonojn, ses neŭtronojn, kaj ses elektronojn. Ĉi tiu izotopo adoptiĝis en 1961 kiel la atompeza normo. Sub ordinara premo, karbono ne fandiĝas, sed je 3500 °C ŝanĝiĝas rekte en gason.

Karbono povas esti uzata por scii, kiel malnova estas aĵo. Estas du isotopoj de karbonoj: 12 kaj 13. En la naturo, estas miksaĵo de la du isotopoj, do kiam planto kreskas kaj enprenas karbonon ĝi prenas la miksaĵon de la CO2 en la atmosfero. Sed poste kiam la planto mortas, ĝi ne plu enprenas karbonon, kaj la isotopo 13 komencas malpliigi, ĉar ĝi estas radioaktiva. Kaj do post iom da tempo malpliiĝas la kompara kvanto de isotopo 13 kontraste al isotopo 12. Do, mezurante la du isotopojn, oni povas kalkuli, antaŭ kiom da tempo mortis la planto. Tio utilas ekzemple, kiam temas pri objekto farita el ligno.

Vidu ankaŭ: perioda tabelo




Ĉi tiu artikolo pri "Karbono (elemento)" ankoraŭ estas ĝermo pri kemia temo. Vi povas helpi pluredakti ĝin post klako al la butono «redaktu».
Se jam ekzistas alilingva samtema artikolo pli disvolvita, traduku kaj aldonu el ĝi.



[redaktu] Vidu ankaŭ jenon:


BW Bewise Inc. Willy Chen willy@tool-tool.com bw@tool-tool.com www.tool-tool.com skype:willy_chen_bw mobile:0937-618-190 Head &Administration Office No.13,Shiang Shang 2nd St., West Chiu Taichung,Taiwan 40356 TEL:+886 4 24710048 / FAX:+886 4 2471 4839 N.Branch 5F,No.460,Fu Shin North Rd.,Taipei,Taiwan S.Branch No.24,Sec.1,Chia Pu East Rd.,Taipao City,Chiayi Hsien,Taiwan

Welcome to BW tool world! We are an experienced tool maker specialized in cutting tools. We focus on what you need and endeavor to research the best cutter to satisfy users demand. Our customers involve wide range of industries, like mold & die, aerospace, electronic, machinery, etc. We are professional expert in cutting field. We would like to solve every problem from you. Please feel free to contact us, its our pleasure to serve for you. BW product including: cutting toolaerospace tool .HSS Cutting toolCarbide end millsCarbide cutting toolNAS Cutting toolCarbide end millAerospace cutting toolФрезерыCarbide drillHigh speed steelMilling cutterCVDD(Chemical Vapor Deposition Diamond )PCBN (Polycrystalline Cubic Boron Nitride) Core drillTapered end millsCVD Diamond Tools Inserts’PCD Edge-Beveling Cutter(Golden Finger’PCD V-Cutter’PCD Wood tools’PCD Cutting tools’PCD Circular Saw Blade’PVDD End Mills’diamond tool Single Crystal Diamond Metric end millsMiniature end millsСпециальные режущие инструменты Пустотелое сверло Pilot reamerFraisesFresas con mango PCD (Polycrystalline diamond) FreseElectronics cutterStep drillMetal cutting sawDouble margin drillGun barrelAngle milling cutterCarbide burrsCarbide tipped cutterChamfering toolIC card engraving cutterSide cutterNAS toolDIN toolSpecial toolMetal slitting sawsShell end millsSide and face milling cuttersSide chip clearance sawsLong end millsStub roughing end millsDovetail milling cuttersCarbide slot drillsCarbide torus cuttersAngel carbide end millsCarbide torus cuttersCarbide ball-nosed slot drillsMould cutterTool manufacturer.

Bewise Inc. www.tool-tool.com

beeway 發表在 痞客邦 留言(0) 人氣()

Bewise Inc. www.tool-tool.com Reference source from the internet.

From Wikipedia, the free encyclopedia

Jump to: navigation, search
6 boroncarbonnitrogen
-

C

Si

General
Name, Symbol, Number carbon, C, 6
Chemical series nonmetals
Group, Period, Block 14, 2, p
Appearance black (graphite)
colorless (diamond)
Standard atomic weight 12.0107(8) g·mol−1
Electron configuration 1s2 2s2 2p2
Electrons per shell 2, 4
Physical properties
Phase solid
Density (near r.t.) (graphite) 2.267 g·cm−3
Density (near r.t.) (diamond) 3.513 g·cm−3
Melting point ? triple point, ca. 10 MPa
and (4300–4700) K
(4027–4427
°C, 7280–8000 °F)
Boiling point ? subl. ca. 4000 K
(3727 °C, 6740 °F)
Heat of fusion (graphite) ? 100 kJ·mol−1
Heat of fusion (diamond) ? 120 kJ·mol−1
Heat of vaporization ? 355.8 kJ·mol−1
Heat capacity (25 °C) (graphite)
8.517 J·mol−1·K−1
Heat capacity (25 °C) (diamond)
6.115 J·mol−1·K−1
Vapor pressure (graphite)
P/Pa 1 10 100 1 k 10 k 100 k
at T/K 2839 3048 3289 3572 3908
Atomic properties
Crystal structure hexagonal
Oxidation states 4, 2
(mildly acidic oxide)
Electronegativity 2.55 (Pauling scale)
Ionization energies
(more)
1st: 1086.5 kJ·mol−1
2nd: 2352.6 kJ·mol−1
3rd: 4620.5 kJ·mol−1
Atomic radius 70 pm
Atomic radius (calc.) 67 pm
Covalent radius 77 pm
Van der Waals radius 170 pm
Miscellaneous
Magnetic ordering diamagnetic
Thermal conductivity (300 K) (graphite)
(119–165) W·m−1·K−1
Thermal conductivity (300 K) (diamond)
(900–2320) W·m−1·K−1
Thermal diffusivity (300 K) (diamond)
(503–1300) mm²/s
Mohs hardness (graphite) 1-2
Mohs hardness (diamond) 10.0
CAS registry number 7440-44-0
Selected isotopes
Main article: Isotopes of carbon
iso NA half-life DM DE (MeV) DP
12C 98.9% C is stable with 6 neutrons
13C 1.1% C is stable with 7 neutrons
14C trace 5730 y beta- 0.156 14N
References
This box: view talk edit

Carbon (IPA: /ˈkɑː(ɹ)bən/) is a chemical element that has the symbol C and atomic number 6. An abundant nonmetallic, tetravalent element, carbon has several allotropic forms.

The abundance of carbon in the universe, along with the unusual polymer-forming ability of carbon-based compounds at the common temperatures encountered on Earth, make this element the basis of the chemistry of all known life.

The name "carbon" comes from Latin language carbo, coal. In some Romance languages, the word can refer both to the element and to coal.

[edit] Overview of carbon importance on Earth

As the free element it forms allotropes from differing kinds of carbon-carbon bonds, such as in graphite and diamond. Coal is the main source of carbon in mineral form, containing up to 95% of carbon in anthracite. Recently discovered nanostructured forms called fullerenes include buckyballs such as C60, nanotubes, and nanofibers . Because of their high strength-to-weight ratio, it is hoped that many of these carbon compounds will soon be practical for use in advanced structural composite materials.

Not only can carbon also bond with itself, but it can also form chains with a wide variety of other elements, forming nearly ten million known compounds.

Carbon-containing polymers, often with oxygen and nitrogen atoms included at regular intervals in the main polymer chain, form the basis of nearly all industrial commercial plastics.

Carbon occurs in all organic life and is the basis of organic chemistry. When united with oxygen, carbon forms carbon dioxide, which is the main carbon source for plant growth. When united with hydrogen, it forms various flammable compounds called hydrocarbons which are essential to industry in the form of fossil fuels, and also other important living plant components like carotenoids and terpenes. When combined with oxygen and hydrogen, carbon can form many groups of important biological compounds including sugars, celluloses, lignans, chitins, alcohols, fats, and aromatic esters. With nitrogen it forms alkaloids, and with the addition of sulfur also it forms antibiotics, amino acids and proteins. With the addition of phosphorus to these other elements, it forms DNA and RNA, the chemical codes of life.

[edit] Notable characteristics of carbon

Carbon exhibits remarkable properties, some paradoxical. Different forms include the hardest naturally occurring substance (diamond) and one of the softest substances (graphite) known. Moreover, it has a great affinity for bonding with other small atoms, including other carbon atoms, and is capable of forming multiple stable covalent bonds with such atoms. Because of these properties, carbon is known to form nearly ten million different compounds, the large majority of all chemical compounds. Carbon compounds form the basis of all life on Earth and the carbon-nitrogen cycle provides some of the energy produced by the Sun and other stars. Moreover, carbon has the highest melting/sublimation point of all elements. At atmospheric pressure it has no actual melting point as its triple point is at 10 MPa (100 bar) so it sublimates above 4000 K. Thus it remains solid at higher temperatures than the highest melting point metals like tungsten or rhenium, irrespective of its allotropic form.

Although it forms an incredible variety of compounds, most forms of carbon are comparatively unreactive under normal conditions. At standard temperature and pressure, it resists all but the strongest oxidizers (such as fluorine and nitric acid). It does not react with sulfuric acid, chlorine or any alkalis. At elevated temperatures it of course reacts with oxygen in flames.

Formation of the carbon atomic nucleus requires a nearly simultaneous triple collision of alpha particles (helium nuclei). This happens in temperature and helium concentration conditions that the rapid expansion and cooling of the early universe prohibited, and therefore no significant carbon was created during the Big Bang. Instead, the interiors of stars in the horizontal branch transform three helium nuclei into carbon by means of this triple-alpha process. In order to be available for formation of life as we know it, this carbon must then later be scattered into space as dust, in supernovae explosions, as part of the material which later forms second-generation star systems which have planets accreted from such dust. The solar system is one such second-generation star, made from carbon in the dust of dozens of supernovae in its local area of the galaxy.

[edit] Applications

Carbon is essential to all known living systems, and without it life as we know it could not exist (see alternative biochemistry). The major economic use of carbon not in living or formerly-living material (such as food and wood) is in the form of hydrocarbons, most notably the fossil fuel methane gas and crude oil (petroleum). Crude oil is used by the petrochemical industry to produce, amongst others, gasoline and kerosene, through a distillation process, in refineries. Crude oil forms the raw material for many synthetic substances, many of which are collectively called plastics.

[edit] Other uses

  • The isotope carbon-14 was discovered on February 27, 1940 and is used in radiocarbon dating.
  • Industrial diamonds are used in cutting, drilling, and polishing technologies.
  • Graphite is combined with clays to form the 'lead' used in pencils. It is also used as a lubricant and a pigment.
  • Diamond is used for decorative purposes, and also as drill bits and other applications making use of its hardness.
  • Carbon (usually as coke) is used to reduce iron ore into iron.
  • Carbon is added to iron to make steel.
  • Carbon is used as a neutron moderator in nuclear reactors.
  • Carbon fiber, which is mainly used for composite materials, as well as high-temperature gas filtration.
  • Carbon black is used as a filler in rubber and plastic compounds.
  • Graphite carbon in a powdered, caked form is used as charcoal for grilling, artwork and other uses.
  • Activated charcoal is used in medicine (as powder or compounded in tablets or capsules) to absorb toxins, poisons, or gases from the digestive system.
  • Carbon, due to its non-reactivity with many substances that corrode most materials, is often used as an electrode.
  • Carbon is the most commonly used element in nanotubes.
  • Rotational transitions of various isotopic forms of carbon monoxide (e.g. 12CO, 13CO, and 18CO) are detectable in the submillimeter regime, and are used in the study of newly forming stars in molecular clouds.

The chemical and structural properties of fullerenes, in the form of carbon nanotubes, has promising potential uses in the nascent field of nanotechnology.

[edit] History and etymology

It was discovered in prehistory and was known to the ancients, who manufactured it by burning organic material in insufficient oxygen (making charcoal). It is also found in abundance in the Sun, stars, comets, and atmospheres of most planets. Carbon in the form of microscopic diamonds is found in some meteorites.

Natural diamonds are found in kimberlite of ancient volcanic "pipes," found in South Africa, Arkansas, Northern Canada and elsewhere. Diamonds are now also being recovered from the ocean floor off the Cape of Good Hope. About 30% of all industrial diamonds used in the U.S. are now made synthetically.

The energy of the Sun and stars can be attributed at least in part to the carbon-nitrogen cycle.

The name of Carbon comes from Latin carbo, hence comes French charbon, meaning charcoal. In German and Dutch, the names for carbon are Kohlenstoff and koolstof respectively, both literally meaning coal-stuff.

[edit] Allotropes

Main article: allotropes of carbon

The allotropes of carbon are the different molecular configurations that pure carbon can take.

The three relatively well-known allotropes of carbon are amorphous carbon, graphite, and diamond. Several exotic allotropes have also been synthesized or discovered, including fullerenes, carbon nanotubes, lonsdaleite and aggregated diamond nanorods.

In its amorphous form, carbon is essentially graphite but not held in a crystalline macrostructure. It is, rather, present as a powder which is the main constituent of substances such as charcoal, lampblack (soot) and activated carbon.

Basic phase diagram of carbon, which shows the state of matter for varying temperatures and pressures. The hashed regions indicate conditions under which one phase is metastable, so that two phases can coexist.

Basic phase diagram of carbon, which shows the state of matter for varying temperatures and pressures. The hashed regions indicate conditions under which one phase is metastable, so that two phases can coexist.

At normal pressures carbon takes the form of graphite, in which each atom is bonded to three others in a plane composed of fused hexagonal rings, just like those in aromatic hydrocarbons. The two known forms of graphite, alpha (hexagonal) and beta (rhombohedral), both have identical physical properties, except for their crystal structure. Graphites that naturally occur have been found to contain up to 30% of the beta form, when synthetically-produced graphite only contains the alpha form. The alpha form can be converted to the beta form through mechanical treatment and the beta form reverts to the alpha form when it is heated above 1000 °C.

Because of the delocalization of the π-cloud, graphite conducts electricity. This accounts for the energetic stability of graphite over diamond at room temperature. Graphite is soft and the sheets, frequently separated by other atoms, are held together only by Van der Waals forces, so easily slip past one another.

At very high pressures carbon forms an allotrope called diamond, in which each atom is bonded to four others. Diamond has the same cubic structure as silicon and germanium and, thanks to the strength of the carbon-carbon bonds, is together with the isoelectronic boron nitride (BN) the hardest substance in terms of resistance to scratching. The transition to graphite at room temperature,although more stable, is so slow as to be unnoticeable, due to a high activation energy barrier. Under some conditions, carbon crystallizes as Lonsdaleite, a form similar to diamond but hexagonal.

Fullerenes have a graphite-like structure, but instead of purely hexagonal packing, also contain pentagons (or possibly heptagons) of carbon atoms, which bend the sheet into spheres, ellipses or cylinders. The properties of fullerenes (also called "buckyballs" and "buckytubes") have not yet been fully analyzed. The name "fullerene" is given after Buckminster Fuller, developer of some geodesic domes, which resemble the structure of fullerenes.

A ferromagnetic nanofoam allotrope has also been discovered.

Eight allotropes of carbon: Diamond, graphite, lonsdaleite, C60, C540, C70, amorphous carbon and a carbon nanotube.

Eight allotropes of carbon: Diamond, graphite, lonsdaleite, C60, C540, C70, amorphous carbon and a carbon nanotube.

Carbon allotropes include:

  • Diamond: Hardest known natural mineral. Structure: each atom is bonded tetrahedrally to four others, making a 3-dimensional network of puckered six-membered rings of atoms.
  • Graphite: One of the softest substances. Structure: each atom is bonded trigonally to three other atoms, making a 2-dimensional network of flat six-membered rings; the flat sheets are loosely bonded.
  • Fullerenes: Structure: comparatively large molecules formed completely of carbon bonded trigonally, forming spheroids (of which the best-known and simplest is the buckminsterfullerene or buckyball, because of its soccerball-shaped structure).
  • Chaoite: A mineral believed to be formed in meteorite impacts.
  • Lonsdaleite: A corruption of diamond. Structure: similar to diamond, but forming a hexagonal crystal lattice.
  • Amorphous carbon: A glassy substance. Structure: an assortment of carbon atoms in a non-crystalline, irregular, glassy state.
  • Carbon nanofoam (discovered in 1997): An extremely light magnetic web. Structure: a low-density web of graphite-like clusters, in which the atoms are bonded trigonally in six- and seven-membered rings.
  • Carbon nanotubes: Tiny tubes. Structure: each atom is bonded trigonally in a curved sheet that forms a hollow cylinder.
  • Aggregated diamond nanorods (synthesised in 2005): The most recently discovered allotrope and the hardest substance known to man.
  • Lampblack: Consists of small graphitic areas. These areas are randomly distributed, so the whole structure is isotropic.
  • 'Glassy carbon': An isotropic substance that contains a high proportion of closed porosity. Unlike normal graphite, the graphitic layers are not stacked like pages in a book, but have a more random arrangement.

Carbon fibers are similar to glassy carbon. Under special treatment (stretching of organic fibers and carbonization) it is possible to arrange the carbon planes in direction of the fiber. Perpendicular to the fiber axis there is no orientation of the carbon planes. The result are fibers with a higher specific strength than steel.

The system of carbon allotropes spans a range of extremes:

  • Diamond is the hardest mineral known to man (although aggregated diamond nanorods are now believed to be even harder), while graphite is one of the softest.
  • Diamond is the ultimate abrasive, while graphite is a very good lubricant.
  • Diamond is an excellent electrical insulator, while graphite is a conductor of electricity.
  • Diamond is an excellent thermal conductor, while some forms of graphite are used for thermal insulation (i.e. firebreaks and heatshields)
  • Diamond is usually transparent, while graphite is opaque.
  • Diamond crystallizes in the cubic system while graphite crystallizes in the hexagonal system.
  • Amorphous carbon is completely isotropic, while carbon nanotubes are among the most anisotropic materials ever produced.

[edit] Occurrence

Carbon is the fourth most abundant chemical element in the universe by mass, after hydrogen, helium, and oxygen (see Abundance of the chemical elements). Carbon is abundant in the Sun, stars, comets, and in the atmospheres of most planets. Some meteorites contain microscopic diamonds that were formed when the solar system was still a protoplanetary disk. In combination with other elements, carbon is found in the Earth's atmosphere (around 810 gigatonnes) and dissolved in all water bodies (around 36000 gigatonnes). Around 1900 gigatonnes are present in the biosphere. Hydrocarbons (such as coal, petroleum, and natural gas) contain carbon as well — coal "resources" amount to around 1000 gigatonnes, and oil reserves around 150 gigatonnes. With smaller amounts of calcium, magnesium, and iron, carbon is a major component of very large masses carbonate rock (limestone, dolomite, marble etc.).

Graphite is found in large quantities in New York and Texas, the United States; Russia; Mexico; Greenland and India.

Natural diamonds occur in the mineral kimberlite found in ancient volcanic "necks," or "pipes". Most diamond deposits are in Africa, notably in South Africa, Namibia, Botswana, the Republic of the Congo and Sierra Leone. There are also deposits in Arkansas, Canada, the Russian Arctic, Brazil and in Northern and Western Australia.

According to studies from the Massachusetts Institute of Technology, an estimate of the global carbon budget is:[citation needed]

Biosphere, oceans, atmosphere
0.44 x 1018 kilograms (3.7 x 1018 moles)
Crust
Organic carbon 13.2 x 1018 kg
Carbonates 62.4 x 1018 kg
Mantle
1200 x 1018 kg

[edit] Organic compounds

Main article: organic chemistry

The most prominent oxide of carbon is carbon dioxide, CO2. This is a minor component of the Earth's atmosphere, produced and used by living things, and a common volatile elsewhere. In water it forms trace amounts of carbonic acid, H2CO3, but as most compounds with multiple single-bonded oxygens on a single carbon it is unstable. Through this intermediate, though, resonance-stabilized carbonate ions are produced. Some important minerals are carbonates, notably calcite. Carbon disulfide, CS2, is similar.

The other oxides are carbon monoxide, CO, the uncommon carbon suboxide, C3O2, the uncommon dicarbon monoxide, C2O and even carbon trioxide, CO3. Carbon monoxide is formed by incomplete combustion, and is a colorless, odorless gas. The molecules each contain a triple bond and are fairly polar, resulting in a tendency to bind permanently to hemoglobin molecules, displacing oxygen, which has a lower binding affinity. Cyanide, CN-, has a similar structure and behaves much like a halide ion; the nitride cyanogen, (CN)2, is related.

With reactive metals, such as tungsten, carbon forms either carbides, C-, or acetylides, C22- to form alloys with high melting points. These anions are also associated with methane and acetylene, both very weak acids. All in all, with an electronegativity of 2.5, carbon prefers to form covalent bonds. A few carbides are covalent lattices, like carborundum, SiC, which resembles diamond.

Carbon has the ability to form long, indefinite chains with interconnecting C-C bonds. This property is called catenation. Carbon-carbon bonds are strong, and stable. This property allows carbon to form an infinite number of compounds; in fact, there are more known carbon-containing compounds than all the compounds of the other chemical elements combined except those of hydrogen (because almost all carbon compounds contain hydrogen).

The simplest form of an organic molecule is the hydrocarbon - a large family of organic molecules that, by definition, are composed of hydrogen atoms bonded to a chain of carbon atoms. Chain length, side chains and functional groups all affect the properties of organic molecules.

Nearly ten million carbon compounds are known, and thousands of these are vital to life processes. They are also many organic-based reactions of economic importance.

[edit] Carbon cycle

Main article: carbon cycle

Under terrestrial conditions, conversion of one element to another is very rare. Therefore, for practical purposes, the amount of carbon on Earth is constant. Thus processes that use carbon must obtain it somewhere, dispose of it somewhere. The paths that carbon follows in the environment are called the carbon cycle. For example, plants draw carbon dioxide out of the environments and use it to build biomass as in carbon respiration. Some of this biomass is eaten by animals, where some of it is exhaled as carbon dioxide. The carbon cycle is considerably more complicated than this short loop; for example, some carbon dioxide is dissolved in the oceans; dead plant or animal matter may become petroleum or coal which can burn with the release of carbon dioxide should bacteria not consume it.

[edit] Isotopes

Main article: Isotopes of carbon

Carbon has two stable, naturally-occurring isotopes: carbon-12, or 12C, (98.89%) and carbon-13, or 13C, (1.11%), and one unstable, naturally-occurring, radioisotope; carbon-14 or 14C. There are 15 known isotopes of carbon and the shortest-lived of these is 8C which decays through proton emission and alpha decay. It has a half-life of 1.98739x10-21 s.

In 1961 the International Union of Pure and Applied Chemistry adopted the isotope carbon-12 as the basis for atomic weights.

Carbon-14 has a half-life of 5730 y and has been used extensively for radiocarbon dating carbonaceous materials.

The exotic 19C exhibits a nuclear halo.

[edit] Precautions

Although carbon is relatively safe due to low toxicity and resistance to most chemical attacks (including fire) at normal temperatures, inhalation of fine soot in large quantities can be dangerous. Diamond dust can do harm as an abrasive if ingested or inhaled. Carbon may also spawn flames at very high temperatures and burn vigorously and brightly (as in the Windscale fire).

The great variety of

beeway 發表在 痞客邦 留言(0) 人氣()

Bewise Inc. www.tool-tool.com Reference source from the internet.

Από τη Βικιπαίδεια, την ελεύθερη εγκυκλοπαίδεια

Μετάβαση σε: πλοήγηση, αναζήτηση

Το χημικό στοιχείο Άνθρακας είναι ένα αμέταλλο με ατομικό αριθμό 6 και ατομικό βάρος 12,011. Έχει θερμοκρασία τήξης 3500 C° και θερμοκρασία βρασμού 4827 C°. Το χημικό του σύμβολο είναι C.

Ο άνθρακας εμφανίζεται με διάφορες μορφές όπως:

  1. Διαμάντι: Kρυσταλικό και σκληρό. Χρησιμοποιείται ως κόσμημα και όργανο κοπής ή διάνοιξης.
  2. Γραφίτης: Mαλακό μαύρο στερεό. Χρησιμοποιείται για μολύβια και σε λιπαντικά.
  3. Φούμο: Ψιλή σκόνη προς χρήση των ελαστικών.
  4. Κοκ: μια ακόμη μορφή άνθρακα που χρησιμοποιείται στη χαλυβουργία.
  5. Ανθρακικές ίνες: Ενισχύουν ανθεκτικότητα άλλων υλικών, γνωστές από την αρχαιότητα και τέλος
  6. Μπακμινστερφουλερένιο, που ανακαλύφθηκε πρόσφατα, από τον Σμόλει και την ομάδα του και του οποίου τα μόρια από 60 άτομα βρίσκονται ενωμένα σε μορφή σφαίρας. Ανήκει στην ομάδα των φουλερενίων.

[Επεξεργασία] Δείτε επίσης


BW Bewise Inc. Willy Chen willy@tool-tool.com bw@tool-tool.com www.tool-tool.com skype:willy_chen_bw mobile:0937-618-190 Head &Administration Office No.13,Shiang Shang 2nd St., West Chiu Taichung,Taiwan 40356 TEL:+886 4 24710048 / FAX:+886 4 2471 4839 N.Branch 5F,No.460,Fu Shin North Rd.,Taipei,Taiwan S.Branch No.24,Sec.1,Chia Pu East Rd.,Taipao City,Chiayi Hsien,Taiwan

Welcome to BW tool world! We are an experienced tool maker specialized in cutting tools. We focus on what you need and endeavor to research the best cutter to satisfy users demand. Our customers involve wide range of industries, like mold & die, aerospace, electronic, machinery, etc. We are professional expert in cutting field. We would like to solve every problem from you. Please feel free to contact us, its our pleasure to serve for you. BW product including: cutting toolaerospace tool .HSS Cutting toolCarbide end millsCarbide cutting toolNAS Cutting toolCarbide end millAerospace cutting toolФрезерыCarbide drillHigh speed steelMilling cutterCVDD(Chemical Vapor Deposition Diamond )PCBN (Polycrystalline Cubic Boron Nitride) Core drillTapered end millsCVD Diamond Tools Inserts’PCD Edge-Beveling Cutter(Golden Finger’PCD V-Cutter’PCD Wood tools’PCD Cutting tools’PCD Circular Saw Blade’PVDD End Mills’diamond tool Single Crystal Diamond Metric end millsMiniature end millsСпециальные режущие инструменты Пустотелое сверло Pilot reamerFraisesFresas con mango PCD (Polycrystalline diamond) FreseElectronics cutterStep drillMetal cutting sawDouble margin drillGun barrelAngle milling cutterCarbide burrsCarbide tipped cutterChamfering toolIC card engraving cutterSide cutterNAS toolDIN toolSpecial toolMetal slitting sawsShell end millsSide and face milling cuttersSide chip clearance sawsLong end millsStub roughing end millsDovetail milling cuttersCarbide slot drillsCarbide torus cuttersAngel carbide end millsCarbide torus cuttersCarbide ball-nosed slot drillsMould cutterTool manufacturer.

Bewise Inc. www.tool-tool.com

beeway 發表在 痞客邦 留言(0) 人氣()

Bewise Inc. www.tool-tool.com Reference source from the internet.

Eigenschaften

[He]2s22p2
6
C
Allgemein
Name, Symbol, Ordnungszahl Kohlenstoff, C, 6
Serie Nichtmetall
Gruppe, Periode, Block 14, 2, p
Aussehen schwarz (Graphit)
farblos (Diamant)
Massenanteil an der Erdhülle 0,09 %
Atomar
Atommasse 12,0107 u
Atomradius (berechnet) 70 (67) pm
Kovalenter Radius 77 pm
Van-der-Waals-Radius 170 pm
Elektronenkonfiguration [He]2s22p2
Elektronen pro Energieniveau 2,4
Austrittsarbeit 4,81 eV
1. Ionisierungsenergie 1086,5 kJ/mol
2. Ionisierungsenergie 2352,6 kJ/mol
3. Ionisierungsenergie 4620,5 kJ/mol
4. Ionisierungsenergie 6222,2 kJ/mol
Physikalisch
Aggregatzustand fest
Modifikationen 3
Kristallstruktur G: hexagonal
D: kubisch flächenzentriert
Dichte G: 2250 kg/m3
D: 3510 kg/m3
Mohshärte G: 0,5
D: 10
Magnetismus unmagnetisch
Schmelzpunkt D: 3820 K (D: 3547 °C)
Siedepunkt G: (Subl.)
D: 5100 K (4827 °C)
Molares Volumen 5,29 · 10-6 m3/mol
Verdampfungswärme Sublimation: 715 kJ/mol
Schmelzwärme - kJ/mol
Dampfdruck

1 Pa bei 2710 K

Schallgeschwindigkeit D: 18350 m/s
Spezifische Wärmekapazität G: 709 J/(kg K)[1]
D: 427 J/(kg · K)
Elektrische Leitfähigkeit G: 3 · 106 S/m
D: 1 · 10-4 S/m
Wärmeleitfähigkeit G: 119–165 W/(m · K)
D: 900–1300 W/(m · K)
Chemisch
Oxidationszustände 2, 4
Oxide (Basizität) CO2; CO ((leicht sauer))
Normalpotential
Elektronegativität 2,55 (Pauling-Skala)
Isotope
Isotop NH t1/2 ZM ZE MeV ZP
10C

{syn.}

19,255 s ε 3,648 10B
11C

{syn.}

20,39 min ε 1,982 11B
12C

98,9 %

Stabil
13C

1,1 %

Stabil
14C

<>-9 %

5730 a β- 0,156 14N
15C

{syn.}

2,449 s β- 9,772 15N
16C

{syn.}

0,747 s β- 8,012 16N
NMR-Eigenschaften
Spin γ in
rad·T−1·s−1
E fL bei
B = 4,7 T
in MHz
12C 0 0 - -
13C 1/2 6,73 · 107 - 125,72 MHz
Sicherheitshinweise
Gefahrstoffkennzeichnung
Gefahrensymbole
keine Gefahrensymbole
R- und S-Sätze R: keine R-Sätze
S: keine S-Sätze
Soweit möglich und gebräuchlich, werden SI-Einheiten verwendet.
Wenn nicht anders vermerkt, gelten die angegebenen Daten bei Standardbedingungen.

Kohlenstoff (von altgerm. kolo = „Kohle“), Symbol C (von lat. carbo „Holzkohle“, latinisiert carbonium) ist ein chemisches Element der 4. Hauptgruppe. Es kommt in der Natur sowohl in reiner (gediegener) Form als auch chemisch gebunden vor. Aufgrund seiner besonderen Elektronenkonfiguration (halbgefüllte L-Schale) besitzt es die Fähigkeit zur Bildung von komplexen Molekülen und weist von allen chemischen Elementen die größte Vielfalt an chemischen Verbindungen auf. Kohlenstoffverbindungen bilden die molekulare Grundlage allen irdischen Lebens.

Vorkommen [Bearbeiten]

Kohlenstoff ist das wichtigste Element der Biosphäre, es ist in Lebewesen nach Sauerstoff (Wasser) nach Gewicht das häufigste Element. Geologisch dagegen zählt es nicht zu den häufigsten Elementen.

Kohlenstoff ist in allen Lebewesen enthalten, alles lebende Gewebe ist aus (organischen) Kohlenstoffverbindungen aufgebaut. Dies gilt sowohl für Pflanzen, als auch für Tiere.

Geologisch findet man Kohlenstoff sowohl elementar, als auch in Verbindungen. Man findet sowohl Diamant, als auch Graphit in der Natur. Die Hauptfundorte von Diamant sind Afrika (v. a. Südafrika und die demokratische Republik Kongo) und Russland. Diamanten findet man häufig in vulkanischen Gesteinen wie Kimberlit. Graphit kommt relativ selten in kohlenstoffreichem metamorphem Gestein vor. Die wichtigsten Vorkommen liegen in Indien und China.

Am häufigsten findet man Kohlenstoff in Form von anorganischem Carbonatgestein (ca. 2,8 · 1016 t). Carbonatgesteine sind weit verbreitet und bilden zum Teil Gebirge. Ein bekanntes Beispiel für Carbonat-Gebirge sind die Dolomiten in Italien. Die wichtigsten Carbonat- Mineralien sind Calciumcarbonat (Modifikationen: Kalkstein, Kreide, Marmor) CaCO3, Calcium-Magnesium-Carbonat (Dolomit) CaCO3 · MgCO3, Eisencarbonat (Eisenspat) FeCO3 und Zinkcarbonat (Zinkspat) ZnCO3.

Bekannte Kohlenstoffvorkommen sind die fossilen Brennstoffe Kohle, Erdöl und Erdgas. Diese sind keine reinen Kohlenstoffverbindungen, sondern eine Mischung aus vielen verschiedenen organischen Verbindungen. Sie entstanden durch Umwandlung pflanzlicher (Kohle) und tierischer (Erdöl, Erdgas) Überreste unter hohem Druck. Wichtige Vorkommen für Kohle liegen in den USA, China und Russland. Ein bekanntes deutsches Kohlevorkommen liegt im Ruhrgebiet. Die wichtigsten Erdölvorräte liegen auf der arabischen Halbinsel (Irak, Saudi-Arabien). Weitere wichtige Ölvorkommen sind im Golf von Mexiko und in der Nordsee.

Kohlenstoff kommt weiterhin in der Luft als Kohlenstoffdioxid vor. Es ist an der Zusammensetzung der Luft zu etwa 0,04 % beteiligt. Kohlenstoffdioxid entsteht beim Verbrennen kohlenstoffhaltiger Verbindungen. Auch in Meerwasser ist CO2 gelöst (ca. 0,0005 Gew.%).

Mengenmäßig ist der überwiegende Teil des Kohlenstoffs in der Gesteinshülle (Lithosphäre) gespeichert. Alle anderen Vorkommen machen mengenmäßig nur etwa 1/1000 des Gesamt-Kohlenstoffs aus.

Modifikationen des Kohlenstoffs [Bearbeiten]

Elementarer Kohlenstoff ist nichtmetallisch und kommt in mehreren allotropen Modifikationen vor: Diamant, Graphit und Fullerene. Makroskopisch sind die Eigenschaften sehr unterschiedlich und nahezu gegensätzlich.

Graphit ist ein guter elektrischer Leiter von tiefschwarzer Farbe. Dabei ist seine Leitfähigkeit anisotrop: sehr gut entlang der Kristallebenen und schlecht senkrecht zu den Ebenen. Er ist leicht spaltbar und dient als Schmiermittel. Diamant hingegen ist ein sehr guter Isolator und transparent. Außerdem ist Diamant das härteste bekannte natürliche Material und wird als Schleifmittel eingesetzt. Alle Werkstoffe auf Kohlenstoff-Basis lassen sich auf diese beiden Grundtypen zurückführen (siehe unten).

Atommodell des Kohlenstoffs [Bearbeiten]

Das Modell der Atom- und Molekülorbitale veranschaulicht, wie es zu der unterschiedlichen Ausprägung der Erscheinungsformen des Kohlenstoffs kommt.

Kohlenstoff besitzt sechs Elektronen. Nach dem Schalenmodell besetzen zwei Elektronen die innere 1s-Schale. Das 2s-Niveau der zweiten Schale nimmt ebenfalls zwei Elektronen auf, zwei weitere das 2px- und 2py- Niveau. Nur die vier äußeren Elektronen der zweiten Schale treten chemisch in Erscheinung. Die Aufenthaltswahrscheinlichkeit der Elektronen in einem s-Niveau ist kugelförmig. In einem p-Niveau ist sie anisotrop. Die Elektronen bevölkern einen tropfenförmigen Raum, jeweils einen Tropfen links und rechts vom Zentrum entlang der x-Achse, wenn man sich das Atom im Zentrum eines kartesischen Koordinatensystem platziert vorstellt. Senkrecht dazu stehen das py- und pz-Orbital.

Diamant (sp3) Struktur [Bearbeiten]

Vier sp3-Orbitale richten sich tetraedrisch in gleichem Winkel zueinander aus.

Vier sp3-Orbitale richten sich tetraedrisch in gleichem Winkel zueinander aus.

Das 2s-Niveau kann mit den 3 2p-Niveaus hybridisieren und 4 energetisch gleichwertige sp3-Orbitale bilden. Diese Orbitale besitzen eine langgestreckte, asymmetrische Tropfenform. Waren die Formen der p-Orbitale spiegelsymmetrisch zum Mittelpunkt angeordnet, erscheinen sie jetzt keulenartig in eine Richtung verlängert. Das Bild veranschaulicht die Hauptkeulen, die Nebenkeulen wurden der Übersichtlichkeit wegen fortgelassen. Die vier sp3-Orbitale sind, mit größtmöglichem Abstand zueinander symmetrisch im Raum orientiert, sie zeigen in die Ecken eines gedachten Tetraeders.

Überlappen sich die sp3-Orbitale von Atomen, können sie feste kovalente Bindungen bilden, die dann die tetraedrische Struktur widerspiegeln. Sie bilden das Grundgerüst des Diamantgitters (siehe Kristallstruktur dort.)

Graphit (sp2) Struktur [Bearbeiten]

Drei sp2-Orbitale richten sich in einer Ebene symmetrisch (hexagonal) zueinander aus.

Drei sp2-Orbitale richten sich in einer Ebene symmetrisch (hexagonal) zueinander aus.

Sind nur 2 der 3 p-Orbitale an der Hybridisierung beteiligt, entstehen die so genannte sp2-Orbitale. Die sp2- Orbitale richten sich senkrecht zum übriggebliebenen p-Orbital aus. Steht beispielsweise das p-Orbital senkrecht auf der x-y-Ebene, liegen die sp2- Orbitale symmetrisch in der x-y-Ebene. Sie haben den gleichen Winkel von 120° zueinander. Das Bild links veranschaulicht die Situation. Das unhybridisierte p-Orbital ist der Übersichtlichkeit wegen weggelassen.

sp2-Kohlenstoff-Atome können miteinander kovalente Bindungen bilden, die dann in einer Ebene liegen. Ihre Struktur ist hexagonal, d.i. die Grundstruktur der Planarebenen des Graphits (siehe Kristallgitterstruktur dort). Die übriggebliebenen p-Orbitale wechselwirken ebenfalls untereinander. Sie formen die pi-Bindungen mit deutlich geringeren Bindungsenergien als die sigma-Bindungen der sp2 beziehungsweise sp3-Orbitale.
Chemisch sprechen wir von einer Doppelbindung. Die Schreibweise C=C vernachlässigt den unterschiedlichen Charakter beider Bindungen.
Die Bindungsenergie der diamantartigen tetraedrischen sp3-Einfachbindung 'C-C' liegt bei 350 kJ/mol, die der graphitartigen hexagonalen sp2-Doppelbindung C=C nur um 260 kJ/mol höher.
In einem Kohlenstoff-Ring mit sechs Kohlenstoff-Atomen stabilisiert sich die pi-Bindung durch Delokalisierung der Elektronen innerhalb des Rings (mehr dazu siehe Benzol).

Dreifach (sp1) Bindung [Bearbeiten]

Wenn nur ein p-Orbital mit dem s-Orbital hybridisiert, ergeben sich zwei linear angeordnete Bindungskeulen. Orientieren wir sie entlang der x-Achse, zeigen die verbliebenen p-Orbitale in y- und z-Richtung. Zwei sp-hybridisierte Atome können eine Kohlenstoff-Dreifachbindung formen. Ein Beispiel ist das Gas Ethin (Acetylen) HC ≡ CH. Während sp3-Bindungen dreidimendionale Strukturen formen und sp2 zweidimensionale, bilden sp1-Bindungen höchstens eindimensionale Ketten, wie zum Beispiel H-C≡C-C≡C-H.

Erscheinungsformen des Kohlenstoffs [Bearbeiten]

a) Diamant, b) Graphit c) Lonsdaleit d) Buckminsterfullerene (C60) e) C540 f) C70 g) Amorpher Kohlenstoff h) Nanoröhrchen

a) Diamant, b) Graphit c) Lonsdaleit d) Buckminsterfullerene (C60) e) C540 f) C70 g) Amorpher Kohlenstoff h) Nanoröhrchen

Elementarer Kohlenstoff existiert in drei Modifikationen, basierend auf den Bindungsstrukturen sp3 und sp2: Diamant, Graphit und Fulleren. Neben diesen drei Modifikationen gibt es weitere unterschiedliche Formen elementaren Kohlenstoffs.

Modifikationen [Bearbeiten]

Diamant [Bearbeiten]

Siehe auch: Diamant
Die sp3-kovalent tetragonal gebundenen Kohlenstoff-Atome besitzen keine freien Elektronen. Das Material ist ein Isolator mit einer Bandlücke von 5,45 eV, der sichtbares Licht nicht absorbiert. Zugabe von Fremdatomen erzeugt Zustände in der Bandlücke und verändert somit die elektrischen und optischen Eigenschaften. So ist der gelbliche Ton vieler natürlicher Diamanten auf Stickstoff zurückzuführen, während mit Bor dotierte Diamanten bläulich aussehen und halbleitend sind. Der Diamant wandelt sich unter Luftabschluss bei Temperaturen um 1500 °C in Graphit um. Er verbrennt bereits bei ungefähr 700–800 °C zu Kohlendioxid.

Diamant gilt unter Normalbedingungen (1 bar, 25 °C) gemeinhin als die metastabile Form des Kohlenstoffes. Aufgrund neuerer Forschung ist dies aber nicht mehr sicher, weil

  1. die thermodynamische Stabilität zu niedrigen P-T-Bedingungen lediglich extrapoliert ist,
  2. bei Gleichgewichtsuntersuchungen der Einfluss der Umgebung -geringe Spuren von Verunreinigungen, die unterhalb der heutigen Detektionsgrenze liegen, können bereits drastische Auswirkungen auf die Gleichgewichtslage einer Reaktion haben- nicht berücksichtigt wurde/wird (s. h. M. A. Carpenter: Thermodynamics of phase transitions in minerals: a macroscopic approach. In: Stability of Minerals. Chapman & Hall, London 1992 oder E. Salje: Phase transitions in ferroelastic and coelastic Crystals. Cambridge University Press, Cambridge 1990) und schließlich
  3. Experimente chinesischer Wissenschaftler zeigen, dass in einer Reaktion zwischen metallischem Natrium und Magnesiumcarbonat Kohlenstoff und Diamant stabil nebeneinander koexistieren.

Lonsdaleit, auch hexagonaler Diamant bezeichnet, ist eine sehr seltene Modifikation des Diamanten.

Graphit [Bearbeiten]

Siehe auch: Graphit
Die sp2-kovalent hexagonal gebundenen Kohlenstoff-Atome formen hochfeste Ebenen. Die Ebenen untereinander sind nur locker über Van-der-Waals-Kräfte gebunden. Makroskopisch dominiert die Spaltbarkeit entlang der Planarebenen. Da die Ebenen so dünn sind, tritt ihre außerordentliche Festigkeit bei Graphit nicht in Erscheinung.

Wegen dieser Struktur verhält sich Graphit sehr anisotrop: Entlang der Kristallebenen ist Graphit thermisch und elektrisch sehr leitfähig, die Leitung von Wärme oder Ladungen von Kristallebene zu Kristallebene ist dagegen relativ schlecht.

Fullerene [Bearbeiten]

Siehe auch: Fulleren
Ein reguläres hexagonales Wabenmuster, wie es die C-Atome in den Basalebenen des Graphits ausbilden, ist planar. Ersetzt man einige Sechsecke durch Fünfecke, entstehen gekrümmte Flächen, die sich bei bestimmten relativen Anordnungen der Fünf- und Sechsringe zu geschlossenen Körpern "aufrollen". In den Fullerenen sind derartige Strukturen realisiert. Die sp2-Bindungen liegen dabei nicht mehr in einer Ebene, sondern bilden ein räumlich geschlossenes Gebilde. Die kleinste mögliche Struktur besteht nur noch aus Fünfecken und erfordert 20 Kohlenstoff-Atome, der dazugehörige Körper ist ein Pentagon-Dodekaeder. Dieses einfachste Fulleren ist bislang aber nur massenspektrometrisch nachgewiesen worden. Einer der stabilsten Fullerene besteht aus 60 Kohlenstoff-Atomen und enthält neben Sechsecken nur Fünfecke, die mit keinem anderen Fünfeck eine gemeinsame Kante besitzen. Das so entstehende Muster (abgestumpftes Ikosaeder, ein archimedischer Körper) gleicht dem Muster auf einem (altmodischen) Fußball. Es wird zu Ehren von Richard Buckminster Fuller als Buckminster-Fulleren bezeichnet. Die Molekül"kugeln" der Fullerene sind untereinander über relativ schwache Van-der-Waals-Wechselwirkungen gebunden, ähnlich wie die Basalebenen im Graphit. Mittlerweile sind etliche Fullerene unterschiedlicher Größe isoliert und teilweise auch kristallisiert worden; sie können daher als echte Modifikation(en) gelten. Fullerene kommen vermutlich in allen Rußen vor, so zum Beispiel auch in dem Ruß über Kerzenflammen.

Weitere Formen des Kohlenstoffs [Bearbeiten]

Graphen [Bearbeiten]

Siehe auch: Graphen

Als Graphen bezeichnet man eine Graphit-Basalebene von sp2-hybridisiertem Kohlenstoff. Man erhält die dünnen Schichten durch chemisches Spalten von Graphit. Eingebettet in Kunststoffen eignet es sich als Ausgangsmaterial für neue Verbundwerkstoffe oder für Untersuchungen von zweidimensionalen Kristallen.

Kohlenstoffnanoröhren [Bearbeiten]

Siehe auch: Kohlenstoffnanoröhre
Eine weitere Form von Kohlenstoff sind zylindrisch angeordnete, sp2-gebundene Kohlenstoffatome. Ihre Geometrie entsteht aus einer planaren Schicht Graphit, die zu einem Zylinder aufgerollt wird. Die entstandene Röhre kann zusätzlich noch verdreht sein, wodurch sich die elektrischen Eigenschaften ändern. Es können mehrere einwandige Röhren konzentrisch ineinander liegen, so dass man von multiwalled carbon nanotubes (MWCNT) spricht, im Gegensatz zu single-walled carbon nanotubes (SWCNT).

Kohlenstoffnanoschaum [Bearbeiten]

Kohlenstoffnanoschaum ist eine zufällig orientierte, netzartige Anordnung von Kohlenstoff-Clustern, ähnlich der von Glaskohlenstoff, nur mit deutlich größeren Hohlräumen. Ihr durchschnittlicher Durchmesser liegt bei sechs bis neun Nanometern. Technisch gesprochen ist Kohlenstoffnanoschaum ein Aerogel mit einer Dichte von 0,2–1,0 GrammKubikzentimeter. Teilweise werden noch niedrigere Dichten mit ungewöhnlichen magnetischen Eigenschaften beschrieben (siehe Diskussion:Kohlenstoff).

Kohlenstoff-Fasern [Bearbeiten]

Siehe auch: Kohlenstofffaser

Kohlenstoff-Fasern bestehen aus graphitartig sp2-gebundenem Kohlenstoff. Isotrope Fasern verhalten sich ähnlich wie polykristalliner Graphit und besitzen nur geringe Festigkeiten. Fasermatten und -bündel werden für Wärmedichtungen eingesetzt.

Durch Strecken bei der Herstellung ist es möglich, die Basalebenen entlang der Faserachse auszurichten. Man erhält hochfeste Fasern mit Eigenschaften, die den theoretischen Werten von Graphit entlang der Basalebenen nahekommen.

Anisotrope Kohlenstofffasern sind leicht, außerordentlich steif und fest und werden in Verbundwerkstoffen genutzt.

Ruß [Bearbeiten]

Siehe auch: Ruß
Ruß besteht ebenfalls aus Kohlenstoff auf Graphitbasis. Je reiner der Ruß, desto deutlicher treten die Eigenschaften von Graphit hervor. Lampen- oder Kerzenruß ist stark mit organischen Verbindungen verunreinigt, die die Bildung größerer Graphit-Verbände verhindern.

Aktivkohle [Bearbeiten]

Siehe auch Aktivkohle
Behutsames Graphitieren von organischen Materialien, wie zum Beispiel Kokosnuss-Schalen, führt zu einem porösen Kohlenstoff. Die Hohlräume stehen wie bei einem Schwamm miteinander in Verbindung und bilden eine sehr große innere Oberfläche. Aktivkohle filtert gelöste Stoffe in geringer Konzentration aus Flüssigkeiten und kann Gase adsorbieren.

Glaskohlenstoff [Bearbeiten]

Siehe auch Glaskohlenstoff.

Glaskohlenstoff ("Glassy Carbon") ist ein hochtechnologischer Werkstoff aus reinem Kohlenstoff, der glasartige und keramische Eigenschaften mit denen des Graphits vereint. Im Gegensatz zu Graphit besitzt Glaskohlenstoff eine fullerenartige Mikrostruktur. Dadurch ergibt sich eine große Vielfalt positiver Materialeigenschaften. Die Leitfähigkeit ist zum Beispiel geringer als bei Graphit.

Röhrenförmige aggregierte Diamant-Nano-Röhrchen [Bearbeiten]

Eine Sonderform des Diamanten sind Aggregierte Diamant-Nanoröhren, vernetzte diamatartige Nanokristalle.

Amorpher Kohlenstoff [Bearbeiten]

In amorphem Kohlenstoff (a-C) sind die Atome ohne langreichweitige Ordnung vernetzt. Das Material lässt sich mit nahezu beliebigen sp2:sp3 Hybridisierungsverhältnissen synthetisieren, wobei die Materialeigenschaften fließend von denen des Graphits zu denen des Diamants übergehen. Bei einem sp3 Hybridisierungsanteil von über 70 % spricht man von tetraedrisch amorphen Kohlenstoff (ta-C). Dieses Material zeichnet sich durch hohen elektrischen Widerstand, extreme Härte und optische Transparenz aus. Die Synthese kann mittels PVD-Methoden erfolgen.

Verbindungen [Bearbeiten]

Kohlenstoff ist das Element, das nach Wasserstoff die meisten Verbindungen aller Elemente bilden kann (Wasserstoff steht an erster Stelle, weil die meisten Kohlenstoffverbindungen auch Wasserstoff enthalten). Besonderheiten des Kohlenstoffs sind es, Ketten und Ringe mit sich selbst und anderen Elementen sowie Doppel- und Dreifachbindungen unter Beteiligung von π-Orbitalen zu bilden. Aufgrund seiner mittelstarken Elektronegativität hat er ein gutes Bindungsvermögen sowohl zu elektropositiveren als auch zu elektronegativeren Elementen. Alle Oxidationsstufen von -IV bis +IV kommen in der Natur in anorganischen oder organischen Verbindungen vor.

Kohlenstoffverbindungen werden traditionell bis auf wenige Ausnahmen zur organischen Chemie gezählt, diese wird auch manchmal als Chemie des Kohlenstoffs bezeichnet. Die organische Chemie umfasst, aufgrund der Fähigkeit des Kohlenstoffs, lange Ketten und kovalente Bindungen mit anderen Atomen zu bilden, mehr Verbindungen als die gesamte anorganische Chemie. Auch die Biochemie ist ein Teil der organischen Kohlenstoffchemie. Zu den einfachsten organischen Verbindungen zählen die Alkane Methan und Ethan.

Nur relativ wenige Kohlenstoffverbindungen werden traditionell zu den anorganischen gestellt, darunter mengenmäßig am Bedeutendsten die Sauerstoff-Verbindungen:

  • Carbide, Kohlenstoff-Element-Verbindungen des Typs CxEy, bei denen der Kohlenstoff der elektronegativere Reaktionspartner ist. Carbide können mit vielen Metallen gebildet werden. Carbide sind teilweise sehr hart und werden für Schneidwerkzeuge (z. B. Wolframcarbid) gebraucht.
  • Kohlenstoffmonoxid CO, ein sehr giftiges Gas, das stark reduzierend wirkt und bei der Metallverhüttung (z. B. Eisen) eine wichtige Rolle spielt.
  • Kohlenstoffdioxid CO2, ein durch die Freisetzung bei der Verbrennung fossiler Kohlenstoffvorräte (Kohle, Öl, Erdgas) in großen Mengen entstehendes Treibhausgas. Es wird von allen Lebewesen ausgeatmet und von Pflanzen verbraucht (Photosynthese). Kohlenstoffdioxid ist inzwischen zu etwa 0,038 % Bestandteil der Atmosphäre, in der vorindustriellen Aera betrug der Anteil 0,028 %.
  • Kohlensäure H2CO3 ein instabiles Produkt aus Wasser und gelöstem CO2 und eine mittelstarke Säure, die aber bezüglich der Säurewirkung meist mit dem CO2 zusammengefasst wird. Bei völliger Abwesenheit von Wasser wurde Kohlensäure mittlerweile synthetisiert.
  • Suboxide wie Trikohlenstoffdioxid (C3O2), Tetrakohlenstoffdioxid (C4O2) und Pentakohlenstoffdioxid (C5O2)
  • Carbonate E2+ CO32-, die zweiwertigen Salze der Kohlensäure. Das bekannteste Carbonat ist Natriumcarbonat, Trivialname Soda, ein wichtiger Grundstoff für die Glasherstellung.
  • Kohlenstoff-Schwefel-Verbindungen, von denen die bekannteste Verbindung Kohlenstoffdisulfid(Schwefelkohlenstoff, CS2), eine sehr giftige Flüssigkeit, ist.
  • Kohlenstoff-Stickstoff-Verbindungen, wie die Cyanide, deren bekanntester Vertreter Kaliumcyanid ein bekanntes Gift ist. Die anderen Cyanide sind allerdings ähnlich giftig.

Isotope [Bearbeiten]

Kohlenstoff hat insgesamt 2 stabile Isotope, 12C und 13C. 12C kommt zu 98,9 % in der Natur vor, 13C zu 1,1%. 12C ist laut Definition der Bezugspunkt zur Messung von Atommassen: 1/12 der Masse dieses Kohlenstoffisotops ist 1u (atomare Masseneinheit). 1 mol 12C wiegt genau 12 g. 13C kann man zu NMR-spektroskopischen Untersuchungen verwenden.

Neben diesen beiden stabilen Isotopen gibt es noch mehrere instabile, meist künstliche Isotope. Das bekannteste instabile Isotop ist dabei 14C mit einer Halbwertszeit von 5736 Jahren. Es entsteht durch natürliche Kernreaktionen in der Atmosphäre aus 14N, siehe Radiocarbon-Methode. Wenn eine organische Verbindung von der Luft abgeschlossen ist, hat sie ein typisches Verhältnis von14C zu den stabilen Isotopen. Durch den Zerfall ändert sich dieses Verhältnis mit der Zeit. Durch die Bestimmung des Verhältnisses von 14C zu den stabilen Isotopen ist nun eine Altersbestimmung möglich (Radiocarbon-Methode), die vor allem in der Archäologie Verwendung findet.

Rohstoffe für die Kohlenstoff-Gewinnung [Bearbeiten]

Die Inkohlung erhöht den Kohlenstoffgehalt organischer Substanzen innerhalb geologischer Zeiträume. Dieser Prozess führte zur Entstehung von Braun- und Steinkohle aus Pflanzenmaterial des Karbons. Ein schnelleres Verfahren ist das Aufheizen unter Inertgas. Die Karbonisierung (bis ca. 1900 °C) und Graphitierung beziehungsweise Graphitisierung (oberhalb 2000 °C) führen zu hohen Kohlenstoffanreicherungen, je nach Materialmenge in Minuten oder wenigen Tagen.

Kohlenstoffgehalt in Massenprozenten einiger Rohstoffe für die Kohlenstoff-Gewinnung:

beeway 發表在 痞客邦 留言(0) 人氣()