公告版位

Bewise Inc. www.tool-tool.com Reference source from the internet.

Fra Wikipedia, den frie encyklopædi

Gå til: navigation, søg
6 BorCarbonKvælstof
Udseende

Sort (grafit)
Farveløst (diamant)
Generelt
Navn(e): Karbon, Kulstof
Kemisk symbol: C
Atomnummer: 6
Atommasse: 12,0107(8) g/mol
Grundstofserie: Ikkemetal
Gruppe: 14
Periode: 2
Blok: p
Elektronkonfiguration: 1s2 2s2 2p2
Elektroner i hver skal: 2, 4
Atomradius: 70 pm
Kovalent radius: 77 pm
Van der Waals radius: 170 pm
Kemiske egenskaber
Oxidationstrin: 4, 2
Elektronegativitet: 2,55 (Paulings skala)
Fysiske egenskaber
Tilstandsform: Fast stof
Krystalstruktur: Hexagonal
Massefylde: (grafit) 2,267 g/cm3
(diamant) 3,513 g/cm3
Kogepunkt: (subl.) 3727 °C
Varmefylde: (grafit) 8,517 Jmol-1K-1
6,115 J·mol–1K–1
Varmeledningsevne: (grafit) (119–165)Wm-1K-1
(diamant) (900–2320) W·m–1K–1
Magnetiske egenskaber: Diamagnetisk
Mekaniske egenskaber
Hårdhed (Mohs' skala): (grafit) 1–2
(diamant) 10,0
For alternative betydninger, se Kul.
For alternative betydninger, se Carbon (flertydig).
Stenkul drevet i land ved Ebeltoft.

Stenkul drevet i land ved Ebeltoft.

Carbon (også kaldet karbon eller kulstof) er et grundstof med atomnummer 6 i det periodiske system. Symbol C. Carbon er den stavemåde, der oftest bruges i dansk faglitteratur, selvom denne stavemåde ikke er godkendt iflg. retskrivningsordbogen. Carbon er den vigtigste bestanddel i de stoffer, der arbejdes med i organisk kemi og carbon bundet i organiske forbindelser kaldes organisk bundet.

[redigér] Flere former

Grundstoffet carbon findes i mindst 6 krystallinske former, hvoraf de to vigtigste er α-grafit og diamant. Brillant er en diamant med en bestemt slibning, som fremhæver dens lysspil.

[redigér] Anvendelser

Carbon anvendes mange steder:

[redigér] Se også

[redigér] Eksterne henvisninger


BW Bewise Inc. Willy Chen willy@tool-tool.com bw@tool-tool.com www.tool-tool.com skype:willy_chen_bw mobile:0937-618-190 Head &Administration Office No.13,Shiang Shang 2nd St., West Chiu Taichung,Taiwan 40356 TEL:+886 4 24710048 / FAX:+886 4 2471 4839 N.Branch 5F,No.460,Fu Shin North Rd.,Taipei,Taiwan S.Branch No.24,Sec.1,Chia Pu East Rd.,Taipao City,Chiayi Hsien,Taiwan

Welcome to BW tool world! We are an experienced tool maker specialized in cutting tools. We focus on what you need and endeavor to research the best cutter to satisfy users demand. Our customers involve wide range of industries, like mold & die, aerospace, electronic, machinery, etc. We are professional expert in cutting field. We would like to solve every problem from you. Please feel free to contact us, its our pleasure to serve for you. BW product including: cutting toolaerospace tool .HSS Cutting toolCarbide end millsCarbide cutting toolNAS Cutting toolCarbide end millAerospace cutting toolФрезерыCarbide drillHigh speed steelMilling cutterCVDD(Chemical Vapor Deposition Diamond )PCBN (Polycrystalline Cubic Boron Nitride) Core drillTapered end millsCVD Diamond Tools Inserts’PCD Edge-Beveling Cutter(Golden Finger’PCD V-Cutter’PCD Wood tools’PCD Cutting tools’PCD Circular Saw Blade’PVDD End Mills’diamond tool Single Crystal Diamond Metric end millsMiniature end millsСпециальные режущие инструменты Пустотелое сверло Pilot reamerFraisesFresas con mango PCD (Polycrystalline diamond) FreseElectronics cutterStep drillMetal cutting sawDouble margin drillGun barrelAngle milling cutterCarbide burrsCarbide tipped cutterChamfering toolIC card engraving cutterSide cutterNAS toolDIN toolSpecial toolMetal slitting sawsShell end millsSide and face milling cuttersSide chip clearance sawsLong end millsStub roughing end millsDovetail milling cuttersCarbide slot drillsCarbide torus cuttersAngel carbide end millsCarbide torus cuttersCarbide ball-nosed slot drillsMould cutterTool manufacturer.

Bewise Inc. www.tool-tool.com

beeway 發表在 痞客邦 留言(0) 人氣()

Bewise Inc. www.tool-tool.com Reference source from the internet.

Gweler arall: Carbon (meddalwedd)
Carbon
Tabl carbon
Carbon yn jar
Symbol C
Rhif 6
Dwysedd 2267 kg m-3

Elfen gemegol yn tabl cyfnodol gan symbol C ac rhif 6 yw carbon. Mae'n dangos alotropaeth, gyda sawl ffurf yn bodoli o dan TGS, graffit (solid du anhydawdd), diemwnt (solid caled tryloyw) a ffwlerernau (solidau du hydawdd). Graffit yw'r ffurf sefydlog, gyda diemwnt yn ffurf cyfarwydd sy'n newid i raffit o dan gwres uchel iawn a ffwlerenau yn alotropau anarferol.


[golygu] Gweler hefyd


BW Bewise Inc. Willy Chen willy@tool-tool.com bw@tool-tool.com www.tool-tool.com skype:willy_chen_bw mobile:0937-618-190 Head &Administration Office No.13,Shiang Shang 2nd St., West Chiu Taichung,Taiwan 40356 TEL:+886 4 24710048 / FAX:+886 4 2471 4839 N.Branch 5F,No.460,Fu Shin North Rd.,Taipei,Taiwan S.Branch No.24,Sec.1,Chia Pu East Rd.,Taipao City,Chiayi Hsien,Taiwan

Welcome to BW tool world! We are an experienced tool maker specialized in cutting tools. We focus on what you need and endeavor to research the best cutter to satisfy users demand. Our customers involve wide range of industries, like mold & die, aerospace, electronic, machinery, etc. We are professional expert in cutting field. We would like to solve every problem from you. Please feel free to contact us, its our pleasure to serve for you. BW product including: cutting toolaerospace tool .HSS Cutting toolCarbide end millsCarbide cutting toolNAS Cutting toolCarbide end millAerospace cutting toolФрезерыCarbide drillHigh speed steelMilling cutterCVDD(Chemical Vapor Deposition Diamond )PCBN (Polycrystalline Cubic Boron Nitride) Core drillTapered end millsCVD Diamond Tools Inserts’PCD Edge-Beveling Cutter(Golden Finger’PCD V-Cutter’PCD Wood tools’PCD Cutting tools’PCD Circular Saw Blade’PVDD End Mills’diamond tool Single Crystal Diamond Metric end millsMiniature end millsСпециальные режущие инструменты Пустотелое сверло Pilot reamerFraisesFresas con mango PCD (Polycrystalline diamond) FreseElectronics cutterStep drillMetal cutting sawDouble margin drillGun barrelAngle milling cutterCarbide burrsCarbide tipped cutterChamfering toolIC card engraving cutterSide cutterNAS toolDIN toolSpecial toolMetal slitting sawsShell end millsSide and face milling cuttersSide chip clearance sawsLong end millsStub roughing end millsDovetail milling cuttersCarbide slot drillsCarbide torus cuttersAngel carbide end millsCarbide torus cuttersCarbide ball-nosed slot drillsMould cutterTool manufacturer.

Bewise Inc. www.tool-tool.com

beeway 發表在 痞客邦 留言(0) 人氣()

Bewise Inc. www.tool-tool.com Reference source from the internet.

Uhlík
Atomové číslo 6
Stabilní izotopy 12,13
Relativní atomová hmotnost 12,0107(8) amu
Elektronová konfigurace 1s2 2s2 2p2
Skupenství Pevné
Teplota tání 4027-4427 °C (4300-4700 K)
Teplota varu 3727 °C (4000 K)
Elektronegativita (Pauling) 2,55
Hustota 2,267 g/cm3 (grafit)
3,513 g/cm3 (diamant)
Tvrdost 0,5 (grafit)
10 (diamant)
Registrační číslo CAS 7440-44-0
Vzhled Práškový uhlík
Tento článek pojednává o chemickém prvku. Další významy jsou uvedeny v článku Uhlík (rozcestník).

Uhlík, chemická značka C, (lat. Carboneum) je chemický prvek, tvořící základní stavební kámen všech organických sloučenin a tím i všech živých organismů na této planetě. Sloučeniny uhlíku jsou jedním ze základů světové energetiky, kde především fosilní paliva jako zemní plyn a uhlí slouží jako energetický zdroj pro výrobu elektřiny a vytápění, produkty zpracování ropy jsou nezbytné pro pohon spalovacích motorů a tak silniční dopravu. Výrobky chemického průmyslu na bázi uhlíku jsou součástí našeho každodenního života ať jde o plastické hmoty, umělá vlákna, nátěrové hmoty, léčiva a mnoho dalších.

[editovat] Formy uhlíku

[editovat] Elementární uhlík

Uhlík je typický nekovový prvek, který se v elementárním stavu jako minerál vyskytuje v přírodě ve dvou základních alotropních modifikacích a v posledních přibližně 20 letech byly laboratorně vytvořeny modifikace další:

  • Grafit (starší název tuha) je tvořena uhlíkem krystalizujícím v šesterečné soustavě a patří mezi nejměkčí známé nerosty. Této vlastnosti se využívá např. při výrobě tužek, kde mletá tuha tvoří základní složku tyčinky určené pro psaní a kreslení.
  • Diamant je tvořen uhlíkem krystalizujícím v soustavě krychlové a je nejtvrdším a velmi cenným přírodním nerostem. Váha diamantů se udává v karátech, největším doposud nalezeným diamantem byl Cullinan, který v surovém stavu při nálezu v JAR dosáhl váhy 3 106 karátů.
  • Fullereny označují nově objevené sférické molekuly, složené z pěti nebo častěji šestičlenných kruhů atomů uhlíku. Prostorově jsou tyto molekuly uspořádány do kulovitého tvaru' a jsou mimořádně odolné vůči vnějším fyzikální vlivům. Zatím nejstabilnější známý fulleren je molekula, obsahující 60 uhlíkových atomů. Fullereny se uměle připravují pyrolýzou organických sloučenin laserem. Za objev a studium vlastností fullerenů byla v roce 1996 udělena Nobelova cena Robertu F. Curlovi a Richardu E. Smalleymu a Haroldu W. Krotoovi. V současné době je výzkum vlastností a metod přípravy fullerenů velmi intenzivně studován na řadě špičkových vědeckých institucí v celém světe.
  • Uhlíková nanovlákna jsou uměle vyrobené mikroskopické trubičky složené z atomů uhlíku o tloušťce pouhých několika nanometrů. Perspektiva jejich využití se nabízí např. při výrobě velmi pevných a zároveň lehkých kompozitních materiálů a tkanin, v elektronice při výrobě mimořádně malých tranzistorů, jako ideálního materiálu pro uchovávání čistého vodíku pro palivové články a mnohé další.

[editovat] Anorganické sloučeniny

V anorganických chemických sloučeninách se uhlík vyskytuje v mocenství +2, +4 a -1.

  • Z oxidů je důležitý především oxid uhličitý CO2, který se podílí na vytváření rostlinných tkání v procesu zvaném fotosyntéza a současně se vrací do atmosféry pří dýchání živých organizmů a spalování fosilních paliv.
  • Se sírou vytváří uhlík toxickou kapalnou sloučeninu - sirouhlík CS2.
  • Oxid uhlíku s valencí +2, oxid uhelnatý CO je značně toxický plyn, který blokuje krevní barvivo hemoglobin a znemožňuje tak dýchání. Jeho nebezpečí spočívá především v tom, že je bezbarvý a bez zápachu a člověk proto jeho přítomnost v okolí nemůže poznat svými smysly. Byl příčinou mnoha smrtelných otrav v uhelných dolech nebo v domácnostech, kde se k topení používal svítiplyn.
  • S dusíkem tvoří uhlík kyanidový ion CN- a kyanovodík HCN patří také k mimořádně toxickým látkám. V tomto případě však můžeme detekovat čichem jeho silný zápach po hořkých mandlích.
  • S kovovými prvky tvoří uhlík sloučeniny zvané karbidy. Nejznámější je karbid vápenatý CaC2, který při reakci s vodou uvolňuje acetylen a byl dříve používán ke svícení v lampách, tzv. karbidkách. Poměrně známý je i karbid křemíku SiC neboli karborundum, který má krystalickou strukturu podobnou diamantu a vyznačuje se mimořádnou tvrdostí.

[editovat] Organické sloučeniny

Hlavní článek: Organická sloučenina

Organické sloučeniny jsou chemické látky, které obsahují alespoň jeden atom uhlíku a téměř vždy atom vodíku, převážná většina přitom má spolu vázané atomy uhlíku vazbou C-C. Každý atom uhlíku je schopen vytvářet celkem čtyři tyto tzv. jednoduché vazby, kromě toho i vazbu dvojnou C=C a vazbu trojnou C≡C. Mohou proto vznikat dlouhé řetězce a molekuly s rozvětvenou nebo cyklickou strukturou. Společně s uhlíkem se v těchto molekulách váží i další prvky, především biogenní prvky vodík, kyslík, dusík, síra a fosfor, ale mohou to být i halogeny, křemík a mnoho dalších. Díky tomu existuje nesmírně mnoho kombinací; v dnešní době je známo více než 10 milionů organických sloučenin.

Právě díky této obrovské rozmanitosti se organické látky staly základním stavebním kamenem živé hmoty. Každá buňka živého organismu obsahuje desetitisíce chemických sloučenin, které mají tu jedinou společnou vlastnost, že jejich základní skelet je tvořen atomy uhlíku v různých vazebných stavech.

Následující výčet typů organických sloučenin není zdaleka úplný a měl by pouze podat informaci o nejčastěji používaných a vyráběných typech organických látek.

Strukturní vzorec benzenového jádra

Strukturní vzorec benzenového jádra
  • Uhlovodíky jsou sloučeniny, které ve své molekule obsahují pouze atomy uhlíku a vodíku. Lze je v zásadě rozdělit na:
    Trojná vazba v molekule acetylenu

    Trojná vazba v molekule acetylenu
      • Obě tyto skupiny pak podle vazeb mezi atomy uhlíku dělíme na:
      • alkany s pouze jednoduchou vazbou C-C
      • alkeny, obsahující minimálně jednu dvojnou vazbu C=C a
      • alkyny, obsahující minimálně jednu trojnou vazbu
  • Sloučeniny, které ve své molekule obsahují C, H a O, lze zhruba rozdělit do následujících skupin:
  • Další typy organických sloučenin, které ve své molekule obsahuji i dusík nebo síru, jsou uvedeny v heslech těchto prvků.

[editovat] Výskyt a využití

Na Zemi i ve vesmíru je uhlík poměrně značně rozšířeným prvkem. V zemské kůře je jeho obsah uváděn s relativně vysokým rozptylem v rozmezí 200 - 800 ppm (mg/kg), obsah v mořské vodě činí 28 mg/l. Ve vesmíru připadá jeden atom uhlíku přibližně na 20 000 atomů vodíku.

[editovat] Grafit

neboli tuha je nerost neboli minerál, který se vyskytuje v mnoha lokalitách na Zemi. Jedny z největších grafitových dolů se nalézají v USA (Texas a stát New York), Mexiku, Indii a Rusku; významná byla i ložiska v jižních Čechách. Grafit je např. zároveň složkou sazí, které vznikají spalováním fosilních paliv. Je přitom přítomen v částečkách natolik nepatrných rozměrů, že saze mají spíše vlastnosti amorfního uhlíku.

Grafit se průmyslově využívá především při výrobě tužek. Přitom se nejprve velmi jemně namele společně s vápnem a vylisuje se do vhodného tvaru.

Další významné uplatnění grafitu je v metalurgickém průmyslu. Vzhledem k jeho značné tepelné odolnosti se z něho vyrábějí nádoby, tzv. kokily, do kterých se odlévají roztavené kovy a jejich slitiny. Zamezí se tak kontaminaci slitiny kovem, ze kterého by se kokila musela vyrobit. Z grafitu se vyrábějí i elektrody pro elektrolytickou výrobu hliníku z taveniny směsi bauxitu a kryolitu nebo při výrobě křemíku z taveniny oxidu křemičitého.

Z grafitu se kromě jiného vyrábějí kartáčky elektromotorů. Slouží také jako součást maziv (grafitová vazelína, kolomaz).

[editovat] Skelný grafit

Uměle vyrobenou formou grafitu je tzv. skelný uhlík (angl. glassy carbon), který se vyznačuje vysokou hustotou, nízkou pórovitostí a značnou chemickou a mechanickou odolností. V praxi se vyrábí přesně řízeným dlouhodobým vysokoteplotním (pyrrolitickým) rozkladem organických látek na povrchu normálního grafitu.

Díky mimořádným fyzikálním a chemický vlastnostem skelného grafitu se jeho praktické využití stále rozšiřuje i přes jeho poměrně vysokou cenu.

  • Pro elektrochemii je důležitý fakt, že povrchy elektrod ze skelného grafitu jsou chemicky vysoce odolné a lze na nich dosáhnout vysokého kladného potenciálu, aniž by docházelo k jejich rozpuštění jako u normálních kovových elektrod. Toho lze využít jak v analytické chemii při zkoumání elektrochemických vlastností organických molekul tak pro preparativní oxidaci při výrobě některých sloučenin.
  • Analytická metoda GFAAS (atomová absorpční spektrometrie s bezplamennou atomizací) používá pro odpaření analyzovaného vzorku kyvetu, která se během několika sekund zahřívá až na teploty kolem 3 000 °C. Pokrytí vnitřní plochy této kyvety skelným grafitem dramaticky zvyšuje její odolnost a prodlouží její použitelnost ve srovnání s klasickou grafitovou kyvetou.
  • V metalurgii se pro čištění kovů na vysoké čistoty metodou zonálního tavení mohou uplatnit trubice pokryté sklelným grafitem, v nichž se tavení provádí.
  • Laboratorní nádobí s povrchem ze skelného grafitu dosahuje stejné nebo i lepší chemické odolnosti jako nádobí z platiny nebo její slitiny s rhodiem.

[editovat] Diamant

Diamant

Diamant

Představuje jeden z nejvzácnějších a nejdražších minerálů. Vyskytuje se v různých barevných modifikacích od takřka průhledné až po černou. Protože ke vzniku diamantu je zapotřebí obrovských tlaků a vysokých teplot, jsou nalézány především tam, kde žhavé magma z velkých hloubek vystoupilo na povrch a ztuhlo. Naleziště s nejkvalitnějšími diamanty leží hlavně v AfriceJAR, Namibie, Sierra Leone, dále v Brazílii, Rusku, Kanadě a Austrálii.

Diamanty je v současné době možno vyrábět i průmyslově, i když produkty zdaleka nedosahují kvalit přírodních diamantů. Tzv. průmyslové diamanty se proto využívají především k osazování různých vrtných a řezných hlavic nástrojů, které pro svou činnost musí vykazovat mimořádnou tvrdost a odolnost.

Přírodní diamanty slouží již od pradávna především k výrobě těch nejdražších šperků. Aby se mohl diamant zasadit do zlatého nebo platinového šperku, musí být nejprve složitě a pečlivě broušen. K úspěšnému vybroušení drahého a vzácného diamantu je třeba nejen značné zkušenosti, ale i zručnosti a trpělivosti. Středisky broušení diamantů a obchodu s nimi jsou belgické Antverpy a nizozemský Rotterdam a Amsterodam.

Připojený obrázek ukazuje diamant Cullinan I, zvaný také Hvězda Afriky, o hmotnosti 530,20 karátů, který byl vybroušen v roce 1908 v Amsterodamu. Tento skvost je v současné době umístěn v Londýnském Toweru jako součást korunovačních klenotů britského panovnického dvora.

[editovat] Fosilní paliva

Mezi základní fosilní paliva patří uhlí, ropa a zemní plyn. Všechna tato paliva obsahují jako převažující složku pestrou škálu organických sloučenin, které podle současných teorií vznikly dlouhodobým anaerobním rozkladem organické hmoty. V případě uhlí se zdá být prekursorem dřevo druho- a třetihorních pralesů, které byly zničeny nějakou náhlou katastrofou.

Ropa a zemní plyn pocházejí pravděpodobně z živočišných tkání obyvatelů pravěkých moří, kteří byli při nějaké katastrofické události překryti vrstvou hornin a během milionů následujících let se postupně rozložili za vzniku pestré škály sloučenin na bázi uhlovodíků.

Všechny výše uvedené komodity tvoří v současné době páteř světové energetiky a převážné části chemického průmyslu. Především ropa se v posledních letech jeví jako klíčová surovina pro současnou civilizaci. Je jednak základním zdrojem energie pro stále rostoucí dopravní infrastrukturu a zároveň je zřejmé, že její celosvětové zásoby mohou být vyčerpány v následujících několika dekádách. Ovládnutí lokalit s jejich převažujícím výskytem se v dalších několika desetiletích může stát zdrojem globálního konfliktu.

Ropa i zemní plyn se vyskytují obvykle společně. V současné době se hlavním zdrojem této suroviny stala oblast v okolí Perského zálivu a Sibiře, ale nezanedbatelná množství ropy se těží i šelfových vodách Severního moře, v Mexickém zálivu a jihovýchodní Asie. Také naleziště v Texasu poskytují doposud poměrně silný zdroj, který však rozhodně nepostačuje pro potřeby ekonomiky USA.

Světové zásoby uhlí jsou výrazně větší než ropy a zemního plynu. V současné době se využívá spíše jako zdroj pro výrobu elektrické energie. Principiálně jej lze přepracovat i na kapalné zdroje energie pro spalovací motory, ale problémem jsou mnohem vyšší náklady na těžbu i nutnost daleko komplikovanější a dražší cesty k získání požadovaných produktů – tedy především benzínu a motorové nafty.

Kromě energetického využití nachází uhlí uplatnění v metalurgii, kde po přepracování na koks slouží jako redukční médium při výrobě železa a podobných kovů z oxidických rud ve vysoké peci.

[editovat] Jantar

Jantarové přívěsky se zalitými fosíliemi hmyzu

Jantarové přívěsky se zalitými fosíliemi hmyzu

Jantar je zvláštní forma uhlíkatého minerálu. Jedná se o mineralizované zbytky třetihorních pryskyřic staré až 50 milionů let. Nalézá se v Evropě jako zkamenělá pryskyřice borovic a ve Střední Americe a Mexiku, kde jde o klovatinu tropické dřeviny kopálu.

[editovat] Vápenec a další uhličitany

Čistý uhličitan vápenatý CaCO3 je znám jako nerost kalcit.

Horniny na bázi uhličitanu vápenatého neboli vápence jsou biogenního původu, protože převážně vznikly z vápenatých schránek druhohorních mořských živočichů. Velká naleziště těchto hornin se na nacházejí v Čechách, v Itálii, Anglii a např. USA. Podle přítomných příměsí mají různou barvu od čistě bílé až po téměř černou i mechanické vlastnosti. Slouží proto jak k výrobě běžných stavebních surovin jako pálené vápno nebo cement, tak jako dekorační kámen (mramor). Vápenec je také základem tzv. krasových jevů, při kterých dochází systémem složitých rovnováh mezi uhličitany a hydrouhličitany vápníku ke vzniku nádherných přírodních úkazů především v jeskyních a podzemních prostorách.

Uhličitan hořečnatý MgCO3 je nazýván magnezit a slouží především jako surovina pro výrobu žáruvzdorných materiálů pro výstavbu vysokých a cementářských pecí. Velká ložiska magnezitu se nacházejí na Slovensku, v Rakousku, Číně a Korei.

[editovat] Oxid uhličitý

Oxid uhličitý CO2 je bezbarvý plyn, bez zápachu, který se rozpouští ve vodě za vzniku velmi slabé kyseliny uhličité. Tvoří přibližně 0,038% objemu zemské atmosféry, kam se dostává jednak dýcháním živých organizmů a v současnosti stále rostoucím tempem spalováním fosilních paliv.

Z atmosféry odčerpávají oxid uhličitý rostliny procesem zvaným fotosyntéza, za pomoci organického barviva chlorofylu. Toto barvivo je schopno využít energie fotonu slunečního světla k nastartování poměrně značně komplikovaného řetězce chemických reakcí, jejich výsledek lze jednoduše popsat takto:

6 H2O + 6 CO2 + foton → C6H12O6 (glukóza) + 6 O2

Uvedená reakce je zcela klíčová pro veškerý pozemský život, protože za její pomoci se všem živým organizmům dostává energie, která nám umožňuje naší existenci a zároveň se takto vytváří kyslík, který je nezbytný pro dýchání

Zvyšující se koncentrace oxidu uhličitého je s spojena s jevem zvaným skleníkový efekt, protože molekuly CO2 pohlcují intenzivně infračervené záření a zabraňují tak jeho vyzařování do kosmického prostoru. Tím dochází k postupnému zahřívání povrchu planety Země a mohlo by to vést např. k poměrně prudkému tání ledovců a pólech a následnému stoupnutí hladiny světových oceánů až o desítky metrů.

  • V tisku se nyní objevila zpráva o zajímavém projektu na snížení skleníkového efektu umělým ukládáním pevného oxidu uhličitého do zemské kůry. Uvažovalo se o tom, že zkapalněný CO2 by byl pod vysokým tlakem vháněn do podloží, ze kterého je těžena ropa. Tím by se docílilo jednak téměř kompletního vytěžení ložiska a zároveň by se oxid uhličitý přeměnil na suchý led, který by měl v hornině zůstat po další tisíce let. Projekt je přitom zaměřen na podmořská ložiska ropy, protože tlak vody nad takto zaplněným ložiskem by zároveň zaručil udržení CO2 v pevném stavu prakticky po neomezeně dlouhou dobu.

V průmyslu má oxid uhličitý uplatnění např. jako inertní atmosféra při procesech, kde je nutno vyloučit přítomnost kyslíku. Protože oxid uhličitý nehoří, používá se i jako náplň některých typů hasicích přístrojů.

Oxid uhličitý je obsažen v řadě nápojů; buď je jejich přirozenou složkou (alkoholové kvašení piva, šumivého vína, burčáku; minerální vody) nebo jsou jím syceny uměle pro zlepšení chuti (limonády, levnější perlivá vína, některé minerálky).

Stlačením oxidu uhličitého vzniká pevná látka, tzv. suchý led, která snadno sublimuje, přičemž odebírá značné množství tepla z okolí a využívá se k chlazení např. v potravinářství.

[editovat] Oxid uhelnatý

Oxid uhelnatý CO je vysoce toxický, vznětlivý až výbušný, bezbarvý plyn, bez zápachu, který vzniká především nedokonalou oxidací organických sloučenin uhlíku.

Vyskytuje se především jako součást svítiplynu, kde vzniká tlakovým a tepelným rozkladem uhlí. Oxid uhelnatý vzniká vždy v jistém malém množství při spalování benzínu a ropy ve spalovacích motorech. Tím se stává významnou součástí tzv. suchého smogu losangelského typu. V posledních letech je tvorba CO při provozu spalovacích motorů potlačována použitím autokatalyzátorů, obvykle založených na kombinaci působení různých platinových kovů na spaliny o vysoké teplotě. Působením těchto katalyzátorů dochází k téměř 100% konverzi oxidu uhelnatého na oxid uhličitý. Jisté množství oxidu uhelnatého je přítomno i v cigaretovém kouři jako důsledek nedokonalého spalování tabáku.

Mezi přírodní zdroje oxidu uhelnatého patří např. zemní plyn, kde je však přítomen pouze v nízkých koncentracích. Je složkou důlních plynů, kde spolu s metanem způsobuje jejich mimořádnou výbušnost, sám o sobě je příčinou jejich toxicity.

Vysoká toxicita oxidu uhelnatého je dána jeho schopností blokovat dýchací řetězec. Molekula CO se přitom téměř irreversibilně naváže na atom železa přítomný v molekule hemoglobinu, která slouží jako přenašeč kyslíku. Tak dojde k zablokování přenosu kyslíku z plic do organizmu a udušení postiženého organizmu.

[editovat] Izotopy uhlíku a radiokarbonová metoda datování

V přírodě se uhlík vyskytuje běžně ve formě dvou stabilních izotopů: 12C, který tvoří 98,9% a 13C s průměrným výskytem 1,1%.

Reakcí atomů dusíku 14N, přítomných v atmosféře s kosmickým zářením vzniká nestabilní izotop 14C, který se rozpadá (beta rozpad) s poločasem 5 715 let. Poměr všech 3 izotopů uhlíku v atmosférickém oxidu uhličitém se tak dlouhodobě udržuje na konstantní hodnotě.

Živé organizmy neustále korespondují s atmosférickým CO2 ať již formou fotosyntézy (rostliny) nebo příjmem jejich produktů – býložravci a následně predátoři. Lze proto tvrdit, že poměr 14C/12C zůstává v průběhu života daného organizmu konstantní.

Po odumření jakékoliv biologické tkáně se výměna uhlíku mezi organizmem a prostředím zastaví. Zároveň nedochází ani ke vzniku 14C reakcí s kosmickými paprsky, protože ty jsou pohlceny atmosférou. Obsah 14C klesá podle zákonitostí rozpadu nestabilních atomových jader.

Radiokarbonová metoda datování využívá zmíněného jevu tím způsobem, že v archeologickém či jiném nálezu pozůstatku živé hmoty (zbytky tkání, kosti, popel…) je analyzován poměr 14C/12C. Zjištěný poměr pak poměrně přesně ukazuje na dobu zániku dané živé hmoty. Vzhledem k uvedenému poločasu rozpadu uhlíku 14C je metoda optimálně použitelná pro objekty o stáří 2 – 100 tisíc let. Při hodnocení naměřených výsledků je třeba vzít v úvahu i možnost působení radioaktivních zářičů na zkoumaný materiál v průběhu jeho depozice na místě nálezu, protože tak může dojít k významnému zkreslení dat.


BW Bewise Inc. Willy Chen willy@tool-tool.com bw@tool-tool.com www.tool-tool.com skype:willy_chen_bw mobile:0937-618-190 Head &Administration Office No.13,Shiang Shang 2nd St., West Chiu Taichung,Taiwan 40356 TEL:+886 4 24710048 / FAX:+886 4 2471 4839 N.Branch 5F,No.460,Fu Shin North Rd.,Taipei,Taiwan S.Branch No.24,Sec.1,Chia Pu East Rd.,Taipao City,Chiayi Hsien,Taiwan

Welcome to BW tool world! We are an experienced tool maker specialized in cutting tools. We focus on what you need and endeavor to research the best cutter to satisfy users demand. Our customers involve wide range of industries, like mold & die, aerospace, electronic, machinery, etc. We are professional expert in cutting field. We would like to solve every problem from you. Please feel free to contact us, its our pleasure to serve for you. BW product including: cutting toolaerospace tool .HSS Cutting toolCarbide end millsCarbide cutting toolNAS Cutting toolCarbide end millAerospace cutting toolФрезерыCarbide drillHigh speed steelMilling cutterCVDD(Chemical Vapor Deposition Diamond )PCBN (Polycrystalline Cubic Boron Nitride) Core drillTapered end millsCVD Diamond Tools Inserts’PCD Edge-Beveling Cutter(Golden Finger’PCD V-Cutter’PCD Wood tools’PCD Cutting tools’PCD Circular Saw Blade’PVDD End Mills’diamond tool Single Crystal Diamond Metric end millsMiniature end millsСпециальные режущие инструменты Пустотелое сверло Pilot reamerFraisesFresas con mango

beeway 發表在 痞客邦 留言(0) 人氣()

Bewise Inc. www.tool-tool.com Reference source from the internet.

Bor - Carboni - Nitrogen

C
Si

General
Nom, símbol, nombre Carboni, C, 6
Sèrie química No metall
Grup, període, bloc 14 (IVA), 2 , p
Densitat, duresa Mohs 2260 kg/m3, 0,5 (grafit)
3515 kg/m3, 10,0 (diamant)
Aparença negre (grafit)
incolor (diamant)
Aparença del carboni
Propietats atòmiques
Pes atòmic 12,0107 uma
Radi mig 70 pm
Radi atòmic calculat 67 pm
Radi covalent 77 pm
Radi de Van der Waals 170 pm
Configuració electrònica [He]2s22p2
Estats d'oxidació (òxid) 4, 2 (lleument àcid)
Estructura cristal·lina Cúbica o hexagonal (diamant); hexagonal o romboèdrica (grafit)
Propietats físiques
Estat de la matèria Sòlid (no magnètic)
Punt de fusió 3823 K (diamant), 3800 K (grafit) K
Punt d'ebullició 5100 K (grafit)
Entalpia de vaporització 711 kJ/mol (grafit; sublima)
Entalpia de fusió 105 kJ/mol (grafit) (sublima)
Pressió de vapor _ Pa
Velocitat del so 18350 m/s (diamant)
Informació diversa
Electronegativitat 2,55 (Pauling)
Calor específica 710,6 J/(kg·K) (grafit); 518,3 J/(kg·K) (diamant)
Conductivitat elèctrica 3 x 106 Ω-1·m-1 (grafit, direcció paral·lela als plans); 5 x 102 Ω-1·m-1 (direcció perpendicular)
Conductivitat tèrmica 19,6 W/(cm·K) (grafit, direcció paral·lela als plans); 0,06 W/(cm·K) (direcció perpendicular); 23,2 W/(cm·K) (diamant)
1er Potencial d'ionització 1086,5 kJ/mol
2on potencial d'ionització 2352,6 kJ/mol
3er potencial d'ionització 4620,5 kJ/mol
4t potencial d'ionització 6222,7 kJ/mol
5è potencial d'ionització 37831 kJ/mol
6è potencial d'ionització 47277,0 kJ/mol
Isòtops més estables
iso. AN Període de semidesintegració CD ED MeV PD
12C 98,9% C és estable amb 6 neutrons
13C 1,1% C és estable amb 7 neutrons
14C traça 5730 a β- 0,156 14N
Valors en el SI d'unitats i en CNPT (0º C i 1 atm),
excepte quan s'indica el contrari.

El carboni és un element químic de nombre atòmic 6. És un element generalment tetravalent, no metàl·lic i sòlid a temperatura ambient.

És l'element químic base en la vida orgànica tal i com es coneix, i és la base de la química orgànica. Totes les formes de vida que es coneixen estan formades de molècules compostes principalment per carboni, hidrogen, nitrogen i oxigen (a més de multitud d'altres elements en menys proporció). Aquest element no metàl·lic té la interessant propietat de ser capaç d'enllaçar-se amb ell mateix i amb una àmplia varietat d'altres elements. Es coneixen prop de 10 milions de compostos orgànics formats per estructures de carboni.

[edita] Característiques notables

El carboni és un element notable per diverses raons. Les seves diferents formes inclouen una de les substàncies més toves conegudes (el grafit) i una de les més dures (el diamant).

A més, té una gran afinitat per enllaçar-se químicament amb altres àtoms petits, i la seva petita mida li permet la formació d'enllaços múltiples. Aquestes propietats permeten al carboni formar prop de 10 milions de compostos orgànics diferents. Aquests compostos de carboni són la base de tota la vida a la Terra. Amb l'oxigen, forma el diòxid de carboni, vital per al creixement de les plantes (vegi's cicle del carboni). Amb l'hidrogen forma nombrosos compostos, anomenats genèricament hidrocarburs, essencials per la indústria i el transports actuals, en forma de combustibles fòssils. Amb hidrogen i oxigen, forma una gran varietat de compostos, com per exemple els àcids grassos, essencials per la vida, i els èsters que donen el seu gust característic a les fruites.

A l'interior de les estrelles, el cicle del carboni i nitrogen proporciona part de l'energia produïda pel Sol i altres estrelles.

El carboni no va ser creat durant el Big Bang, atès que requereix per a la seva generació una col·lisió triple de partícules alfa (nuclis d'heli). L'univers inicialment es va expandir i refredar massa ràpid per a fer això possible. Però a l'interior de les estrelles es troba una concentració suficient d'heli per a transformar alguns nuclis d'aquest element en carboni a través de l'anomenat procés triple alfa

[edita] Aplicacions

El carboni és un component vital de tots els éssers vius, i sense el qual la vida, tal com la coneixem, no podria existir. L'activitat econòmica més gran relativa al carboni (en l'actualitat) és en forma d'hidrocarburs, els anomenats combustibles fòssils, gas metà i cru. El cru és usat per la indústria petroquímica per a produir principalment petroli, gasolina, gas-oil i querosè a través d'un procés de destil·lació en les anomenades refineries. El cru és la matèria primera per a moltes substàncies sintètiques, entre elles els omnipresents plàstics.

Altres usos:

Les propietats químiques i estructurals dels fullerens, en la forma de nanotubs de carboni, tenen un futur prometedor en el naixent camp de la nanotecnologia.

[edita] Història

El carboni (l'origen llatí del mot prové del carbó), fou descobert a la prehistòria, i es creava a partir de la crema de material orgànic (llenya) en manca d'oxigen. L'objectiu de l'ofici de carboner era l'obtenció de carbó.

Els diamants, també coneguts des de fa molt temps, són considerats la pedra preciosa per excel·lència, atesa la seva gran duresa i lluentor.

Els fullerens, descoberts a la dècada dels 80, tenen un futur prometedor en el camp de la nanotecnologia.

[edita] Abundància i obtenció

El carboni no es va crear durant el Big Bang perquè hagués necessitat la triple col·lisió de partícules alfa (nuclis atòmics d'heli) i l'univers es va expandir i refredar massa ràpid perquè la probabilitat que això esdevingués fora significativa. On si ocorre aquest procés és en l'interior de les estrelles (en la fase «RH (Branca horitzontal)») on aquest element és abundant, trobant-se a més en altres cossos celestes com els estels i en les atmosferes dels planetes. Alguns meteorits contenen diamants microscòpics que es van formar quan el sistema solar era encara un disc protoplanetari.

En combinació amb altres elements, el carboni es troba en l'atmosfera terrestre i dissolt en l'aigua, i acompanyat de menors quantitats de calci, magnesi i ferro forma enormes masses rocoses (calcària, dolomia, marbre, etc.).

El grafit es troba en grans quantitats en Estats Units, Rússia, Mèxic, Groenlàndia i Índia.

Els diamants naturals es troben associats a roques volcàniques (kimberlita i lamproita). Els majors dipòsits de diamants es troben al continent africà (Sud-àfrica, Namíbia, Botswana, República del Congo i Sierra Leone. Existeixen a més dipòsits importants a Canadà, Rússia, Brasil i Austràlia.

[edita] Al·lòtrops

Depenent de les condicions de formació pot trobar-se en diverses al·lotropies, actualment es coneixen quatre al·lòtrops del carboni:

En la seva forma amorfa, el carbó és essencialment grafit, però sense formar cap macroestructura cristal·lina. Està formant un polsim, que és el component principal de substàncies com és el carbó i el sutge.

Disposició geomètrica dels orbitals hibrids sp² en el grafit. Els enllaços se situen en el mateix pla, formant angles de 120º

Disposició geomètrica dels orbitals hibrids sp² en el grafit. Els enllaços se situen en el mateix pla, formant angles de 120º

A pressions normals, el carbó pren la forma de grafit (sistema hexagonal), un mineral molt tou, en el qual cada àtom està enllaçat a tres més formant un pla de cel·les hexagonals (com en un rusc d'abelles). Conté 3 electrons en orbitals bidimensionals anomenats sp2, i un electró en l'orbital s. En el grafit, capes planes d'àtoms de carboni, s'apilen les unes sobre les altres, com en un llibre. Els enllaços que formen els àtoms de carboni també els trobem en els hidrocarburs aromàtics.

Les dues formes conegudes del grafit l´alfa (hexagonal) i la beta (romboïdal) tenen les mateixes propietats físiques, però la seva estructura cristal·lina difereix. Els grafits que es formen a la natura contenen fins un 30% de la forma beta, mentre que els grafits formats sintèticament només contenen grafit en la forma alfa. És possible convertir el grafit de la forma alfa a la forma beta, a través de processos mecànics, però tot el grafit en forma beta es transforma una altra vegada en grafit alfa quan és escalfat per sobre dels 1000°C

Atesa la deslocalització dels electrons en el núvol pi, en els cristalls de grafit, aquests condueixen l'electricitat. El material és tou i les capes, sovint separades per altres àtoms, es mantenen unides gràcies a la força de Van der Waals, de manera que rellisquen amb certa facilitat les unes sobre les altres.

Disposició geomètrica dels orbitals hibrids sp³ en el diamant. Els àtoms se situen en els vèrtexs d'un tetraedre regular.

Disposició geomètrica dels orbitals hibrids sp³ en el diamant. Els àtoms se situen en els vèrtexs d'un tetraedre regular.

A pressions molt altes, el carboni forma un altre al·lòtrop anomenat diamant, en el qual cada àtom està enllaçat a quatre més. Forma cristalls de Diamant (sistema cúbic), el mineral més dur conegut. El diamant té la mateixa estructura cristal·lina que el silici i el germani, i gràcies a la força de l'enllaç carboni-carboni, és la substància més resistent a les ratllades, juntament amb el nitrur de bor (BN) un compost isoelectrònic del diamant, i que comparteix la mateixa estructura cristal·lina que aquest. Conté 4 electrons en els orbitals tridimensionals anomenats sp3. Amb el temps, el diamant tendeix a convertir-se en grafit, però a temperatura ambient la conversió és tan lenta que és indetectable. En les condicions adequades, el carboni pot cristal·litzar com a Lonsdaleita, una forma similar al diamant però hexagonal.

Àtoms de carboni en el fullerè (C60) adoptant la forma d'una pilota de futbol.

Àtoms de carboni en el fullerè (C60) adoptant la forma d'una pilota de futbol.

Formant compostos de la família dels fullerens (en el fullerè més simple, 60 àtoms de carboni formen una capa grafítica, organitzada tridimensionalment, de manera similar a una pilota de futbol), i nanotubs de carboni (on s'organitza també tridimensionalment en forma de tub).

El fullerens tenen una estructura semblant a la del grafit, però en lloc d'usar únicament l'empaquetament hexagonal, també contenen pentàgons (o possiblement heptàgons) d'àtoms de carboni. Aquests empaquetaments dobleguen les capes planes d'àtoms en esferes, el·lipses o cilindres. Les propietats dels fullerens no han estat encara completament analitzades. El nom dels fullerens prové que aquestes agrupacions d'àtoms de carboni s'assemblen a les cúpules geodèsiques construïdes per Buckminster Fuller. Pel mateix motiu, els fullerens també són anomenats "buckyboles" i "buckytubs".

En el carbó vitri és isotròpic, i és més fort que el vidre. A diferència del grafit normal, les capes grafítiques no s'apilen les unes sobre les altres, sinó que estan organitzades en totes direccions.

Un altra substància és la fibra de carboni, semblant al 'carbó vitri' i obtinguda estirant fibres orgàniques i carbonitzant-les. D'aquesta manera s'alineen els plans de carboni en la direcció de la fibra. El resultat són fibres amb una resistència específica més gran que l'acer.

També es troba formant enllaços covalents en la química orgànica, de la qual n'és el pilar bàsic, i forma part de tots els éssers vius.

[edita] Compostos

Quan s'uneix amb oxigen, forma el diòxid de carboni (CO2), és el compost que expel·lim els animals en respirar, i és absolutament vital per al creixement de les plantes. També pot formar en condicions de manca d'oxigen el monòxid de carboni (CO), on a diferència del que és normal, el carboni actua amb estat d'oxidació 2.

Trobem grans quantitats de carboni en la litosfera, sobretot en el carbonat de calci (CaCO3), integrant de les roques calcàries. La dissolució d'aquests carbonats o de diòxid de carboni en aigua genera l'ió carbonat (CO3=), i l'ió bicarbonat (HCO3-).

A la natura, sovint es troba sense combinar en els diferents tipus de carbó (amb graus variables d'impureses). El carbó va ser usat com a combustible fòssil, permetent la revolució industrial. En els països més rics, la utilització del carbó ja ha estat reemplaçada per la utilització dels hidrocarburs.

Quan s'uneix amb hidrogen, forma diversos compostos anomenats hidrocarburs, essencials per a la indústria en forma de combustibles fòssils. Els hidrocarburs més simples són;

  • Metà; CH4, l'hidrocarbur més simple, un carboni i quatre hidrògens
  • Età; CH3-CH3
  • Propà; CH3-CH2-CH3, usat com a combustible industrial
  • Butà; CH3-CH2-CH2-CH3, Usat com a combustible domèstic
  • Pentà; CH3-CH2-CH2-CH2-CH3
  • . ..

El gas natural, el petroli, la gasolina i el quitrà són barreges d'hidrocarburs de diferents longituds, i amb diferents propietats, que poden a més incloure altres substàncies.

Quan es combina amb oxigen i hidrogen, forma molts grups de compostos, inclosos els àcids grassos, essencials per a la vida, i els èsters, que donen gust a moltes fruites.


BW Bewise Inc. Willy Chen willy@tool-tool.com bw@tool-tool.com www.tool-tool.com skype:willy_chen_bw mobile:0937-618-190 Head &Administration Office No.13,Shiang Shang 2nd St., West Chiu Taichung,Taiwan 40356 TEL:+886 4 24710048 / FAX:+886 4 2471 4839 N.Branch 5F,No.460,Fu Shin North Rd.,Taipei,Taiwan S.Branch No.24,Sec.1,Chia Pu East Rd.,Taipao City,Chiayi Hsien,Taiwan

Welcome to BW tool world! We are an experienced tool maker specialized in cutting tools. We focus on what you need and endeavor to research the best cutter to satisfy users demand. Our customers involve wide range of industries, like mold & die, aerospace, electronic, machinery, etc. We are professional expert in cutting field. We would like to solve every problem from you. Please feel free to contact us, its our pleasure to serve for you. BW product including: cutting toolaerospace tool .HSS Cutting toolCarbide end millsCarbide cutting toolNAS Cutting toolCarbide end millAerospace cutting toolФрезерыCarbide drillHigh speed steelMilling cutterCVDD(Chemical Vapor Deposition Diamond )PCBN (Polycrystalline Cubic Boron Nitride) Core drillTapered end millsCVD Diamond Tools Inserts’PCD Edge-Beveling Cutter(Golden Finger’PCD V-Cutter’PCD Wood tools’PCD Cutting tools’PCD Circular Saw Blade’PVDD End Mills’diamond tool Single Crystal Diamond Metric end millsMiniature end millsСпециальные режущие инструменты Пустотелое сверло Pilot reamerFraisesFresas con mango PCD (Polycrystalline diamond) FreseElectronics cutterStep drillMetal cutting sawDouble margin drillGun barrelAngle milling cutterCarbide burrsCarbide tipped cutterChamfering toolIC card engraving cutterSide cutterNAS toolDIN toolSpecial toolMetal slitting sawsShell end millsSide and face milling cuttersSide chip clearance sawsLong end millsStub roughing end millsDovetail milling cuttersCarbide slot drillsCarbide torus cuttersAngel carbide end millsCarbide torus cuttersCarbide ball-nosed slot drillsMould cutterTool manufacturer.

Bewise Inc. www.tool-tool.com

beeway 發表在 痞客邦 留言(0) 人氣()

Bewise Inc. www.tool-tool.com Reference source from the internet.

উইকিপিডিয়া, মুক্ত বিশ্বকোষ থেকে

Jump to: navigation, search
6 বোরনকার্বননাইট্রোজেন
-

C

Si

সাধারণ
নাম, প্রতীক, সংখ্যা কার্বন, C, 6
রাসায়নিক শ্রেণী অধাতু
শ্রেণী, পর্যায়, ব্লক ১৪, , পি
স্বভাবজাত প্রকৃতি black (graphite)
colorless (diamond)
প্রমিত পারমানবিক ভর 12.0107(8) g·mol−1
ইলেকট্রন বিন্যাস 1s2 2s2 2p2
শক্তিস্তর প্রতি ইলেকট্রন সংখ্যা 2, 4
ভৌত বৈশিষ্ট্যসমূহ
দশা solid
ঘনত্ব (কক্ষ তাপমাত্রা কাছাকাছি) (graphite) 2.267 গ্রাম·সেমি−৩
ঘনত্ব (কক্ষ তাপমাত্রা কাছাকাছি) (diamond) 3.513 গ্রাম·সেমি−3
গলনাংক ? triple point, ca. 10 MPa
and (4300–4700) K
(4027–4427
°C, 7280–8000 °F)
স্ফুটনাংক ? subl. ca. 4000 K
(3727 °C, 6740 °F)
ফিউশনের এনথালপি (graphite) ? 100 Kj.mol−1
ফিউশন তাপ (diamond) ? 120 Kj.mol−1
বাষ্পায়ন তাপ ? 355.8 Kj.mol−1
তাপধারণ ক্ষমতা (২৫ °C) (graphite)
8.517 J·mol−1·K−1
তাপধারণ ক্ষমতা (২৫ °C) (diamond)
6.115 J·mol−1·K−1
বাষ্প চাপ (graphite)
P(প্যাসকেল) ১০ ১০০ ১ k ১০ k ১০০ k
T(K) 2839 3048 3289 3572 3908
পারমানবিক বৈশিষ্ট্য
কেলাস গঠন hexagonal
জারণ অবস্থা 4, 2
(mildly acidic oxide)
তড়িৎঋণাত্বকতা 2.55 (পাউলিং স্কেল)
আয়নীকরণ শক্তি
(আরও)
প্রথম: 1086.5 kJ·mol−1
দ্বিতীয়: 2352.6 kJ·mol−1
তৃতীয়: 4620.5 kJ·mol−1
পারমানবিক ব্যাসার্ধ্য 70 pm
পারমানবিক ব্যাসার্ধ্য (calc.) 67 pm
সমযোজী ব্যাসার্ধ্য 77 pm
ভ্যান ডার ওয়াল্‌স ব্যাসার্ধ্য 170 pm
বিশেষ দ্রষ্টব্য
চৌম্বক ক্রম diamagnetic
তাপীয় পরিবাহকত্ব (৩০০ K) (graphite)
(119–165) W·m−1·K−1
তাপীয় পরিবাহকত্ব (৩০০ K) (diamond)
(900–2320) W·m−1·K−1
তাপীয় পরিবাহকত্ব (৩০০ K) (diamond)
(503–1300) মিমি²/s
মোহ্‌স কাঠিন্য (graphite) 1-2
মোহ্‌স কাঠিন্য (diamond) 10.0
সিএএস নিবন্ধন সংখ্যা 7440-44-0
নির্বাচিত সমাণুকসমূহ
মূল নিবন্ধ: কার্বন-এর সমাণুকসমূহ
সমাণু এনএ অর্ধায়ু ডিএম ডিই (MeV) ডিপি
12C 98.9% C 6টি নিউট্রন নিয়ে স্থিত হয়
13C 1.1% C 7টি নিউট্রন নিয়ে স্থিত হয়
14C trace 5730 y beta- 0.156 14N
তথ্যসূত্র

কার্বন (রাসায়নিক সংকেত C, পারমাণবিক সংখ্যা ৬) একটি মৌলিক পদার্থ। এটি পৃথিবীর জীবজগতের প্রধান গাঠনিক উপাদান।

[সম্পাদনা] আবিষ্কারের ইতিহাস

কার্বন কবে আবিষ্কৃত হয়েছিল তা সঠিকভাবে বলা সম্ভব নয়। কারণ আগুন আবিষ্কারের আগে থেকেই মানুষ কার্বনের সাথে পরিচিত ছিল। বজ্রাঘাতের ফলে পুড়ে যাওয়া কাঠের মাধ্যমেই মানুষ প্রথম কার্বনের সাথে পরিচিত হয়। আগুন আবিষ্কারের পর কার্বন হয় মানুষের নিত্যসঙ্গী। কারণ এটি অতিমাত্রায় দাহ্য একটি বস্তু। কার্বন পদার্থটির সাথে পরিচিত থাকলেও এটি যে একটি মৌলিক পদার্থ তা মানুষ বেশিদিন আগে জানতে পারেনি। এমনকি কার্বন নামটির ইতিহাস বেশি প্রাচীন নয়। ১৭৮৯ সালে এন্টনি ল্যাভয়সিয়ে কর্তৃক সংকলিত মৌলিক পদার্থের তালিকায় কার্বন উপস্থিত ছিল। মূলত ল্যাভয়সিয়েই প্রথম ব্যক্তি যিনি প্রমাণ করেছিলেন কার্বন একটি মৌলিক পদার্থ। কয়লা ও অন্যান্য যৌগের দহন পরীক্ষা করে তিনি এই প্রমাণ পেয়েছিলেন।

প্রকৃতিতে কার্বনের দুইটি বহুরুপ রয়েছে। একটি হীরক এবং অন্যটি গ্রাফাইট। অনেক আগে থেকেই মানুষ এ পদার্থ দুটিকে চিনতো। এমনকি উচ্চ তাপমাত্রায় হীরাকে দহন করালে যে অবশেষ হিসেবে কিছু পাওয়া যায়না তাও মানুষের জানা ছিল। কিন্তু এই পদার্থ দুটিকে সম্পূর্ণ ভিন্ন পদার্থ হিসেবে মনে করা হতো। কার্বন ডাই অক্সাইড আবিষ্কারের পর এই সমস্যার সমাধান হয়। ল্যাভয়সিয়ে দেখেন যে, হীরক এবং কাঠকয়লা দুটির দহনেই কার্বন ডাই অক্সাইড উৎপন্ন হয়। এ থেকে সিদ্ধান্ত নেয়া গিয়েছিল যে এরা অভিন্ন পদার্থ। ১৭৮৭ খ্রিস্টাব্দে Methods of Chemical Nomenclature নামক গ্রন্থে (ল্যাভয়সিয়ে, এল. গুইটন ডি. মারভিউ, সি. বারথোলেট এবং এ. ফোউরক্রই কর্তৃক লিখিত) প্রথম কার্বনেয়াম (কার্বন) নামটির উল্লেখ পাওয়া যায়। ল্যাটিন নাম তথা কার্বনেয়াম আবার সংস্কৃত ভাষা থেকে এসেছে। সংস্কৃত ভাষায় ক্রা শব্দের অর্থ ফোটা১৮২৪ খ্রিস্টাব্দে মৌলটির নাম কার্বন দেয়া হয়েছিল।

১৭৯৭ খ্রিস্টাব্দে বিজ্ঞানী এস. টেন্যান্ট আবিষ্কার করেন, সম পরিমাণ হীরক ও গ্রাফাইটের দহনে সমআয়তন কার্বন ডাই অক্সাইড উৎপন্ন হয়। অবশেষে ১৭৯৯ খ্রিস্টাব্দে এল. গুইটন ডি. মারভিউ নিশ্চিতভাবে প্রমাণ করেন যে হীরক, গ্রাফাইট এবং কোকের একমাত্র উপাদান হচ্ছে কার্বন। এর বিশ বছর পর তিনি সতর্কতার সাথে উত্তপ্ত করে হীরককে গ্রাফাইট এবং গ্রাফাইটকে কার্বন ডাই অক্সাইডে পরিণত করতে সমর্থ হন। কিন্তু গ্রাফাইট থেকে হীরক তৈরীর মত প্রযুক্তি তখনও ছিলনা। অবশেষে ১৯৫৫ সালে ব্রিটিশ বিজ্ঞানীদের একটি দল ৩০০০° সেন্টিগ্রেড তাপমাত্রা এবং ১০ প্যাসকেল চাপে গ্রাফাইট থেকে হীরক সংশ্লেষণ করতে সক্ষম হন। এর কিছুদিন পর সোভিয়েত ইউনিয়নে কির্বন নামে আরেকটি পদার্থ তৈরী করা হয় যাকে কার্বনের তৃতীয় বহুরুপ হিসেবে চিহ্নিত করা হয়েছে। এই পদার্থের ক্ষেত্রে কার্বনের পরমাণুগুলো একটির সাথে আরেকটি সংযুক্ত হয়ে লম্বা শিকল তৈরী করে। এটি দেখতে অনেকটা ভূসিকালির মত।

[সম্পাদনা] আরও দেখুন

[সম্পাদনা] ব্যক্তি

[সম্পাদনা] অন্যান্য


BW Bewise Inc. Willy Chen willy@tool-tool.com bw@tool-tool.com www.tool-tool.com skype:willy_chen_bw mobile:0937-618-190 Head &Administration Office No.13,Shiang Shang 2nd St., West Chiu Taichung,Taiwan 40356 TEL:+886 4 24710048 / FAX:+886 4 2471 4839 N.Branch 5F,No.460,Fu Shin North Rd.,Taipei,Taiwan S.Branch No.24,Sec.1,Chia Pu East Rd.,Taipao City,Chiayi Hsien,Taiwan

Welcome to BW tool world! We are an experienced tool maker specialized in cutting tools. We focus on what you need and endeavor to research the best cutter to satisfy users demand. Our customers involve wide range of industries, like mold & die, aerospace, electronic, machinery, etc. We are professional expert in cutting field. We would like to solve every problem from you. Please feel free to contact us, its our pleasure to serve for you. BW product including: cutting toolaerospace tool .HSS Cutting toolCarbide end millsCarbide cutting toolNAS Cutting toolCarbide end millAerospace cutting toolФрезерыCarbide drillHigh speed steelMilling cutterCVDD(Chemical Vapor Deposition Diamond )PCBN (Polycrystalline Cubic Boron Nitride) Core drillTapered end millsCVD Diamond Tools Inserts’PCD Edge-Beveling Cutter(Golden Finger’PCD V-Cutter’PCD Wood tools’PCD Cutting tools’PCD Circular Saw Blade’PVDD End Mills’diamond tool Single Crystal Diamond Metric end millsMiniature end millsСпециальные режущие инструменты Пустотелое сверло Pilot reamerFraisesFresas con mango PCD (Polycrystalline diamond) FreseElectronics cutterStep drillMetal cutting sawDouble margin drillGun barrelAngle milling cutterCarbide burrsCarbide tipped cutterChamfering toolIC card engraving cutterSide cutterNAS toolDIN toolSpecial toolMetal slitting sawsShell end millsSide and face milling cuttersSide chip clearance sawsLong end millsStub roughing end millsDovetail milling cuttersCarbide slot drillsCarbide torus cuttersAngel carbide end millsCarbide torus cuttersCarbide ball-nosed slot drillsMould cutterTool manufacturer.

Bewise Inc. www.tool-tool.com

beeway 發表在 痞客邦 留言(0) 人氣()

Bewise Inc. www.tool-tool.com Reference source from the internet.
6 БорВъглеродАзот
-

C

Силиций


Химическа серия неметал
Група, Период, Блок 4А, 2, p
Външен вид мек, сиво-черен (графит)
твърд, прозрачен (диамант)
Свойства на атома
Атомна маса 12,0107 u
Атомен радиус (calc) 70 (67) pm
Ковалентен радиус 77 pm
Радиус на ван дер Ваалс 170 pm
Електронна конфигурация 2s22p2
e- на енергийно ниво 2, 4
Оксидационни състояния
(Оксид)
4, 2 (слаб киселинен)
Кристална структура хексагонална
Физични свойства
Агрегатно състояние твърд
Плътност 2267 kg/m³
Температура на топене 3773 K (3500 °C)
Температура на кипене 5100 K (4827 °C)
Моларен обем 5,29×10-6 m³/mol
Специфична топлина на топене n.a. kJ/mol
Специфична топлина на изпарение 355,8 kJ/mol
Налягане на парата n.a. Pa при n.a. K
Скорост на звука 18350 m/s при n.a. K
Други
Електроотрицателност 2,55 (скала на Паулинг)
Специфичен топлинен капацитет 710 J/(kg·K)
Специфична електропроводимост 61×103 S/m
Топлопроводимост 129 W/(m·K)
Йонизационен потенциал 1086,5 kJ/mol


Периодична система на елементите

Въглеродът (на латински: Carboneum, химичен символ С) е химичен елемент от 4А група, 2 период. Има пореден номер 6 и атомна маса 12,0107u (средно).

[редактиране] История

Въглеродът е открит още в праисторията и е бил познат на древните хора, които са го произвеждали като са изгаряли органични материали в оскъдна на кислород среда.

[редактиране] Характеристика

Въглеродът съществува основно под две алотропни форми — графит и диамант, но са известни още няколко.

  • Графит — има атомна кристална решетка. Въглеродните му атоми са разположени на слоеве със слаби междумолекулни сили между тях и делокализирана ковалентна химична връзка в рамките на слоевете. Графитът е сиво-червено непрозрачно вещество със слаб метален блясък. Много мек, мазен на пипане, високотопим и електропроводим.

[редактиране] Химични свойства

C + O → CO – в -2 валентност на въглерода

C + 2O → CO2 – в +4 валентност на въглерода

C + 2H2 → CH4 – получава се метан, както и други въглеводороди в зависимост от условията

  • с други неметали – със силиций се образува силициев карбид.
  • с метали при висока температура.
  • с концентрирана сярна киселина, при което се отделя се въглероден диоксид.

[редактиране] Карбиди

В общия случай карбид е съединение на въглерод с друг елемент. В тесен смисъл терминът карбид се отнася до съединенията на въглерода с металите. От всички елементи само кислородът, сярата, азотът, флуорът, хлорът и бромът са по-електроотрицателни от въглерода и техните съединения са извън групата на карбидите. Карбидите могат да бъдат разделени на три групи: йонни, метални и ковалентни.

Йонни карбиди образуват главно елементите от I, II и III група на периодичната система. Това са безцветни вещества с кристална решетка. Под действието на водата и разредени киселини лесно хидролизират. В зависимост от въглеводорода, който се отделя при тяхната хидролиза, те също могат да се разделят на три групи.

Към първата група се отнасят карбиди, които могат да се разглеждат като производни на метана, напр. Al4C3 и Ве2С:

Al4C3 + 12Н2О → 4Al(OH)3 + 3СН4

Получават се при директно взаимодействие на елементите при температура около 1500°С.

Към втората група йонни карбиди се отнасят тези, които могат да се разглеждаткато производни на ацетилена (етена), поради което се наричат ацетилениди:

СаС2 + 2Н2О → Сa(OH)2 + С2Н2

Обикновено се получават от метален оксид и въглерод при висока температура

Единственият представител на третата група йонни карбиди е магнезиевият карбид Mg2C3. При хидролиза дава метилацетилен (1-пропин)

Mg2C3 + 4Н2О → 2Mg(OH)2 + СН3С≡СН

При втората група карбиди (металните), образуването е свързано с внедряването на въглеродни атоми в октаедричните празнини на решетката на метала. За да се осъществи това внедряване, трябва атомният радиус на метала да бъде достатъчно голям (над 130 pm). При такива условия решетката на метала съществено не се нарушава, в резултат на което характерните метални свойства (напр. електропроводимост) не се изменят. Нещо повече, внедряването на С-атом стабилизира кристалната решетка, което води до известно повишаване на температурата на топене и твърдостта на карбида в сравнение с чистия метал.

Типични ковалентни карбиди са SiC (силициев карбид) и В4С (борен карбид). Силициевият карбид е наричан още карборунд . Характеризира се с голяма твърдост (около 9 по скалата на Моос), висока температура на топене и химична инертност. В практиката се употребява да направа на абразивни инструменти.

Борният карбид се получава чрез редукция на В2О3 с С. Аналогично на силициевия карбид има висока твърдост и също се употребява като абразивен материал.

[редактиране] Съединения на С (II)

При обикновени условия стабилни съединения на С(II) са СО, СS2 и HCN. При нормални условия въглеродният оксид е безцветен отровен газ и в химическо отношение е инертен. При нагряване се проявяват неговите редукционни свойства, поради което той играе важна роля в металургията. От кислорода на въздуха се окислява при висока температура (около 700°С).

СО + ½О2 → СО2

При облъчване или в присъствие на катализатор въглеродният оксид реагира с хлора, като се получава оксодихлорид (фосген).

СО + Cl2 → COCl2

Въглеродният оксид е малко разтворим във вода. Токсичното му действие се дължи на способността му да свързва желязото от хемоглобина в кръвта и да блокира транспорта на кислород. Въглеродният оксид се образува при непълно горене на въглерод. За всяка температура съществува следното равновесие:

2СО ↔ С + СО2


BW Bewise Inc. Willy Chen willy@tool-tool.com bw@tool-tool.com www.tool-tool.com skype:willy_chen_bw mobile:0937-618-190 Head &Administration Office No.13,Shiang Shang 2nd St., West Chiu Taichung,Taiwan 40356 TEL:+886 4 24710048 / FAX:+886 4 2471 4839 N.Branch 5F,No.460,Fu Shin North Rd.,Taipei,Taiwan S.Branch No.24,Sec.1,Chia Pu East Rd.,Taipao City,Chiayi Hsien,Taiwan

Welcome to BW tool world! We are an experienced tool maker specialized in cutting tools. We focus on what you need and endeavor to research the best cutter to satisfy users demand. Our customers involve wide range of industries, like mold & die, aerospace, electronic, machinery, etc. We are professional expert in cutting field. We would like to solve every problem from you. Please feel free to contact us, its our pleasure to serve for you. BW product including: cutting toolaerospace tool .HSS Cutting toolCarbide end millsCarbide cutting toolNAS Cutting toolCarbide end millAerospace cutting toolФрезерыCarbide drillHigh speed steelMilling cutterCVDD(Chemical Vapor Deposition Diamond )PCBN (Polycrystalline Cubic Boron Nitride) Core drillTapered end millsCVD Diamond Tools Inserts’PCD Edge-Beveling Cutter(Golden Finger’PCD V-Cutter’PCD Wood tools’PCD Cutting tools’PCD Circular Saw Blade’PVDD End Mills’diamond tool Single Crystal Diamond Metric end millsMiniature end millsСпециальные режущие инструменты Пустотелое сверло Pilot reamerFraisesFresas con mango PCD (Polycrystalline diamond) FreseElectronics cutterStep drillMetal cutting sawDouble margin drillGun barrelAngle milling cutterCarbide burrsCarbide tipped cutterChamfering toolIC card engraving cutterSide cutterNAS toolDIN toolSpecial toolMetal slitting sawsShell end millsSide and face milling cuttersSide chip clearance sawsLong end millsStub roughing end millsDovetail milling cuttersCarbide slot drillsCarbide torus cuttersAngel carbide end millsCarbide torus cuttersCarbide ball-nosed slot drillsMould cutterTool manufacturer.

Bewise Inc. www.tool-tool.com

beeway 發表在 痞客邦 留言(0) 人氣()

Bewise Inc. www.tool-tool.com Reference source from the internet.
6 borucarbonunitróxenu
-

C

Si

Xeneral
Nome, Símbolu, Númberu carbonu, C, 6
Serie química non metales
Grupu, Periodu, Bloque 14, 2, p
Aspeutu

negru (grafitu)
incoloru (diamante)
Masa atómica 12,0107 uma
Configuración electrónica 1s2 2s2 2p2
Electrones per capa 2, 4
Propiedaes físiques
Estáu de la materia sólidu
Densidá (grafitu) 2.267 kg/m³
(diamante) 3.513 kg/m³
Puntu de fusión 4.027-4.427 K
Puntu d'ebullición 4.000 K
Entalpía de fusión (grafitu) 100 kJ/mol
(diamante) 120 kJ/mol
Entalpía de vaporización 355,8 kJ/mol
Capacidá calorífica (25°C) (grafitu)
8,517 J/mol·K
(25ºC) (diamante)
6,115 J/mol·K
Presión de vapor
P (Pa) 1 10 100 1 k 10 k 100 k
a T (K) 2.839 3.048 3.289 3.572 3.908
Propiedaes atómiques
Estructura cristalina hexagonal
Estaos d'oxidación 4, 2
(llevemente ácidu)
Electronegatividá 2,55 (Pauling)
Potenciales d'ionización
(más)
1u: 1.086,5 kJ/mol
2u: 2.352,6 kJ/mol
3u: 4.620,5 kJ/mol
Radiu atómicu 70 pm
Radiu atómicu calculáu 67 pm
Radiu covalente 77 pm
Radiu de van der Waals 170 pm
Otros datos
Magnetismu diamagnéticu
Conductividá térmica (300 K) (grafitu)
119-165 W/m·K
(300 K) (diamante)
900-2.320 W/m·K
Difusividá térmica (300 K) (diamante)
503-1.300 mm²/s
Dureza Mohs (grafitu) 1-2
(diamante) 10
Códigu CAS 7440-44-0
Isótopos más estables
Artículu principal: Isótopos del carbonu
isó
AN
semivida
D
ED (MeV)
PD
12C
98,9%
C ye estable con 6 neutrones
13C
1,1%
C ye estable con 7 neutrones
14C
traces
5.730 años
β-
0,156
14N
Unidades nel SI y en condiciones normales (0ºC y 1 atm)

El carbonu ye un elementu químicu de númberu atómicu 6 y símbolu C. Ye sólidu a temperatura ambiente. Dependiendo de les condiciones de formación, pue atopase na natura en distintes formes alotrópiques, carbonu amorfu y cristalinu en forma de grafitu o diamante. Ye'l pegollu básicu de la química orgánica; conócense al rodiu de 10 millones de compuestos de carbonu, y forma parte de tolos seres vivos conocíos.

[editar] Enllaces esternos


BW Bewise Inc. Willy Chen willy@tool-tool.com bw@tool-tool.com www.tool-tool.com skype:willy_chen_bw mobile:0937-618-190 Head &Administration Office No.13,Shiang Shang 2nd St., West Chiu Taichung,Taiwan 40356 TEL:+886 4 24710048 / FAX:+886 4 2471 4839 N.Branch 5F,No.460,Fu Shin North Rd.,Taipei,Taiwan S.Branch No.24,Sec.1,Chia Pu East Rd.,Taipao City,Chiayi Hsien,Taiwan

Welcome to BW tool world! We are an experienced tool maker specialized in cutting tools. We focus on what you need and endeavor to research the best cutter to satisfy users demand. Our customers involve wide range of industries, like mold & die, aerospace, electronic, machinery, etc. We are professional expert in cutting field. We would like to solve every problem from you. Please feel free to contact us, its our pleasure to serve for you. BW product including: cutting toolaerospace tool .HSS Cutting toolCarbide end millsCarbide cutting toolNAS Cutting toolCarbide end millAerospace cutting toolФрезерыCarbide drillHigh speed steelMilling cutterCVDD(Chemical Vapor Deposition Diamond )PCBN (Polycrystalline Cubic Boron Nitride) Core drillTapered end millsCVD Diamond Tools Inserts’PCD Edge-Beveling Cutter(Golden Finger’PCD V-Cutter’PCD Wood tools’PCD Cutting tools’PCD Circular Saw Blade’PVDD End Mills’diamond tool Single Crystal Diamond Metric end millsMiniature end millsСпециальные режущие инструменты Пустотелое сверло Pilot reamerFraisesFresas con mango PCD (Polycrystalline diamond) FreseElectronics cutterStep drillMetal cutting sawDouble margin drillGun barrelAngle milling cutterCarbide burrsCarbide tipped cutterChamfering toolIC card engraving cutterSide cutterNAS toolDIN toolSpecial toolMetal slitting sawsShell end millsSide and face milling cuttersSide chip clearance sawsLong end millsStub roughing end millsDovetail milling cuttersCarbide slot drillsCarbide torus cuttersAngel carbide end millsCarbide torus cuttersCarbide ball-nosed slot drillsMould cutterTool manufacturer.

Bewise Inc. www.tool-tool.com

beeway 發表在 痞客邦 留言(0) 人氣()