公告版位

Samarium ( /səˈmɛəriəm/ sə-MAIR-ee-əm) is a chemical element with the symbol Sm, atomic number 62 and atomic weight 150.36. It is a moderately hard silvery metal which readily oxidizes in air. Being a typical member of the lanthanide series, samarium usually assumes the oxidation state +3; however, compounds of samarium(II) are also known, most notably monoxide SmO, monochalcogenides SmS, SmSe and SmTe, as well as samarium(II) iodide. The last compound is a common reducing agent in chemical synthesis. Samarium has no significant biological role and is only slightly toxic.

Samarium was discovered in 1879 by the French chemist Paul Émile Lecoq de Boisbaudran and named after the mineral samarskite where it was isolated from. The mineral itself was earlier named after the Russian military engineer Vasili Samarsky-Bykhovets who thereby became the first person to have a chemical element named after him, albeit indirectly. Although classified as a rare earth element, samarium is the 40th most abundant element in the Earth's crust and is more common than such metals as tin. Samarium occurs with concentration up to 2.8% in several minerals including cerite, gadolinite, samarskite, monazite and bastnäsite, the last two being the most common commercial sources of the element. These minerals are mostly found in China, the USA, Brazil, India, Sri Lanka and Australia; China is by far the world leader in samarium mining and production.

The major commercial application of samarium is in samarium-cobalt magnets which have permanent magnetization second only to neodymium magnets; however, samarium compounds can withstand significantly higher temperatures, above 700 °C, without losing their magnetic properties. Radioactive isotope samarium-153 is the major component of the drug samarium (153Sm) lexidronam (Quadramet) which kills cancer cells in the treatment of lung cancer, prostate cancer, breast cancer and osteosarcoma. Another isotope, samarium-149, is a strong neutron absorber and is therefore added to the control rods of nuclear reactors. It is also formed as a decay product during the reactor operation and is one of the important factors considered in the reactor design and operation. Other applications of samarium include catalysis of chemical reactions, radioactive dating and an X-ray laser.

 

 

Contents

[hide]

  • 1 Physical properties
  • 2 Chemical properties
  • 3 Compounds
    • 3.1 Oxides
    • 3.2 Chalcogenides
    • 3.3 Halides
    • 3.4 Borides
    • 3.5 Other inorganic compounds
    • 3.6 Organometallic compounds
  • 4 Isotopes
  • 5 History
  • 6 Occurrence and production
  • 7 Applications
    • 7.1 Non-commercial and potential applications
  • 8 Health issues
  • 9 References
  • 10 Bibliography
  • 11 External links

[edit] Physical properties

Samarium is a rare earth metal having the hardness and density similar to those of zinc. With the boiling point of 1794 °C, samarium is the third most volatile lanthanide after ytterbium and europium; this property facilitates separation of samarium from the mineral ore. At ambient conditions, samarium normally assumes a rhombohedral structure (α form). Upon heating to 731 °C, its crystal symmetry changes into hexagonal close-packed (hcp), however the transition temperature depends on the metal purity. Further heating to 922 °C transforms the metal into a body-centered cubic (bcc) phase. Heating to 300 °C combined with compression to 40 kbar results in a double-hexagonal close-packed structure (dhcp). Applying higher pressure of the order hundreds or thousands kilobars induces a series of phase transformations, in particular with a tetragonal phase appearing at about 900 kbar.[2] In one study, the dhcp phase could be produced without compression, using a nonequilibrium annealing regime with a rapid temperature change between about 400 and 700 °C, confirming the transient character of this samarium phase. Also, thin films of samarium obtained by vapor deposition may contain the hcp or dhcp phases at ambient conditions.[2]

Samarium (and its sesquioxide) are paramagnetic at room temperature. Their corresponding effective magnetic moments, below 2 µB, are the 3rd lowest among the lanthanides (and their oxides) after lanthanum and lutetium. The metal transforms to an antiferromagnetic state upon cooling to 14.8 K.[3][4] Individual samarium atoms can be isolated by encapsulating them into fullerene molecules.[5] They can also be doped between the C60 molecules in the fullerene solid, rendering it superconductive at temperatures below 8 K.[6] Samarium doping of iron-based superconductors – the most recent class of high-temperature superconductors – allows to enhance their transition temperature to 56 K, which is the highest value achieved so far in this series.[7]

[edit] Chemical properties

Freshly prepared samarium has a silvery luster. In air, it slowly oxidizes at room temperature and spontaneously ignites at 150 °C.[8][9] Even when stored under mineral oil, samarium gradually oxidizes and develops a grayish-yellow powder of the oxide-hydroxide mixture at the surface. The metallic appearance of a sample can be preserved by sealing it under an inert gas such as argon.

Samarium is quite electropositive and reacts slowly with cold water and quite quickly with hot water to form samarium hydroxide:[10]

 

2 Sm (s) + 6 H2O (l) → 2 Sm(OH)3 (aq) + 3 H2 (g)

Samarium dissolves readily in dilute sulfuric acid to form solutions containing the yellow[11] to pale green Sm(III) ions, which exist as a [Sm(OH2)9]3+ complexes:[10]

 

2 Sm (s) + 3 H2SO4 (aq) → 2 Sm3+ (aq) + 3 SO2−

4 (aq) + 3 H2 (g)

Samarium is one of the few lanthanides that exhibit the oxidation state +2. The Sm2+ ions are blood-red in solutions.[12]

[edit] Compounds

See also: Category:Samarium compounds

 

[show]Formula color symmetry space group No Pearson symbol a (pm) b (pm) c (pm) Z density,

g/cm3

Sm silvery rhombohedral[2] R3m 166 hR9 362.9 362.9 2621.3 9 7.52

Sm silvery hexagonal[2] P63/mmc 194 hP4 362 362 1168 4 7.54

Sm silvery tetragonal[13] I4/mmm 139 tI2 240.2 240.2 423.1 2 20.46

SmO golden cubic[14] Fm3m 225 cF8 494.3 494.3 494.3 4 9.15

Sm2O3 trigonal[15] P3m1 164 hP5 377.8 377.8 594 1 7.89

Sm2O3 monoclinic[15] C2/m 12 mS30 1418 362.4 885.5 6 7.76

Sm2O3 cubic[16] Ia3 206 cI80 1093 1093 1093 16 7.1

SmH2 cubic[17] Fm3m 225 cF12 537.73 537.73 537.73 4 6.51

SmH3 cubic[18] P3c1 165 hP24 377.1 377.1 667.2 6

Sm2B5 gray monoclinic[19] P21/c 14 mP28 717.9 718 720.5 4 6.49

SmB2 hexagonal[20] P6/mmm 191 hP3 331 331 401.9 1 7.49

SmB4 tetragonal[21] P4/mbm 127 tP20 717.9 717.9 406.7 4 6.14

SmB6 cubic[22] Pm3m 221 cP7 413.4 413.4 413.4 1 5.06

SmB66 cubic[23] Fm3c 226 cF1936 2348.7 2348.7 2348.7 24 2.66

Sm2C3 cubic[24] I43d 220 cI40 839.89 839.89 839.89 8 7.55

SmC2 tetragonal[24] I4/mmm 139 tI6 377 377 633.1 2 6.44

SmF2 cubic[25] Fm3m 225 cF12 587.1 587.1 587.1 4 6.18

SmF3 orthorhombic[25] Pnma 62 oP16 667.22 705.85 440.43 4 6.64

SmCl2 orthorhombic[26] Pnma 62 oP12 756.28 450.77 901.09 4 4.79

SmCl3 hexagonal[25] P63/m 176 hP8 737.33 737.33 416.84 2 4.35

SmBr2 orthorhombic[27] Pnma 62 oP12 797.7 475.4 950.6 4 5.72

SmBr3 orthorhombic[28] Cmcm 63 oS16 404 1265 908 2 5.58

SmI2 monoclinic P21/c 14 mP12

SmI3 trigonal[29] R3 63 hR24 749 749 2080 6 5.24

SmN cubic[30] Fm3m 225 cF8 357 357 357 4 8.48

SmP cubic[31] Fm3m 225 cF8 576 576 576 4 6.3

SmAs cubic[32] Fm3m 225 cF8 591.5 591.5 591.5 4 7.23

[edit] Oxides

The most stable oxide of samarium is sesquioxide Sm2O3. As most other samarium compounds, it exists in several crystalline phases. The trigonal form is obtained by slow cooling from the melt. The melting point of Sm2O3 is rather high (2345 °C) and therefore melting is usually achieved not by direct heating, but with induction heating, through a radio-frequency coil. The Sm2O3 crystals of monoclinic symmetry can be grown by the flame fusion method (Verneuil process) from the Sm2O3 powder, that yields cylindrical boules up to several centimeters long and about one centimeter in diameter. The boules are transparent when pure and defect-free and are orange otherwise. Heating the metastable trigonal Sm2O3 to 1900 °C converts it to the more stable monoclinic phase.[15] Cubic Sm2O3 has also been described.[16]

Samarium is one of the few lanthanides that form a monoxide, SmO. This lustrous golden-yellow compound was obtained by reducing Sm2O3 with samarium metal at elevated temperature (1000 °C) and pressure above 50 kbar; lowering the pressure resulted in an incomplete reaction. SmO has the cubic rock-salt lattice structure.[33][14]

[edit] Chalcogenides

See also: Samarium monochalcogenides

Samarium forms trivalent sulfide, selenide and telluride. Divalent chalcogenides SmS, SmSe and SmTe with cubic rock-salt crystal structure are also known. They are remarkable by converting from semiconducting to metallic state at room temperature upon application of pressure. Whereas the transition is continuous and occurs at about 20–30 kbar in SmSe and SmTe, it is abrupt in SmS and requires only 6.5 kbar. This effect results in spectacular color change in SmS from black to golden yellow when its crystals of films are scratched or polished. The transition does not change the lattice symmetry, but there is a sharp decrease (~15%) in the crystal volume.[34] It shows hysteresis, that is when the pressure is released, SmS returns to the semiconducting state at much lower pressure of about 0.4 kbar.[8][35]

[edit] Halides

Color of samarium halides[36]

 

Oxidation

state F Cl Br I

 

+3 SmF3

white SmCl3

yellow SmBr3

yellow SmI3

orange

 

+2 SmF2

purple SmCl2

brown SmBr2

brown SmI2

green

Samarium metal reacts with all the halogens X = F, Cl, Br or I, forming trihalides:[37]

 

2 Sm (s) + 3 X2 (g) → 2 SmX3 (s)

Their further reduction with samarium, lithium or sodium metals at elevated temperatures (about 700–900 °C) yields dihalides.[26] The diiodide can also be prepared by heating SmI3, or by reacting the metal with 1,2-diiodoethane in anhydrous tetrahydrofuran at room temperature:[38]

 

Sm (s) + ICH2=CH2I → SmI2 + CH2=CH2

In addition to dihalides, the reduction also produces numerous non-stoichiometric samarium halides with a well-defined crystal structure, such as Sm3F7, Sm14F33, Sm27F64,[25] Sm11Br24, Sm5Br11 and Sm6Br13[39]

As reflected in the table above, samarium halides change their crystal structures when one type of halide atoms is substituted for another, which is an uncommon behavior for most elements (e. g. actinides). Many halides have two major crystal phases for one composition, one being significantly more stable and another being metastable. The latter is formed upon compression or heating, followed by quenching to ambient conditions. For example, compressing the usual monoclinic samarium diiodide and releasing the pressure results in a PbCl2-type orthorhombic structure (Pearson symbol oP12, space group Pnma, No. 62, a = 889.3 pm, b = 457.5 pm, c = 1118.4 pm, Z = 4, 5.90 g/cm3),[40] and similar treatment results in a new phase of samarium triiodide (Pearson symbol oS16, space group Cmcm, No. 63, a = 423.6 pm, b = 1400 pm, c = 996.9 pm, Z = 4, 5.97 g/cm3).[41]

[edit] Borides

Sintering powders of samarium oxide and boron, in vacuum, yields a powder containing several samarium boride phases, and their volume ratio can be controlled through the mixing proportion.[42] The powder can be converted into larger crystals of a certain samarium boride using arc melting or zone melting techniques, relying on the different melting/crystallization temperature of SmB6 (2580 °C), SmB4 (about 2300 °C) and SmB66 (2150 °C). All these materials are hard, brittle, dark-gray solids with the hardness increasing with the boron content.[22] Samarium diboride is too volatile to be produced with these methods and requires high pressure (about 65 kbar) and low temperatures between 1140 and 1240 °C to stabilize its growth. Increasing the temperature results in the preferential formations of Sm6.[20]

Samarium hexaboride is a typical intermediate-valence compound where samarium is present both as Sm2+ and Sm3+ ions at the ratio 3:7.[42] It belongs to a class of Kondo insulators, that is at high temperatures (above 50 K), its properties are typical of a Kondo metal, with metallic electrical conductivity characterized by strong electron scattering, whereas at low temperatures, it behaves as a non-magnetic insulator with a narrow band gap of about 4–14 meV.[43] The cooling-induced metal-insulator transition in SmB6 is accompanied by a sharp increase in the thermal conductivity, peaking at about 15 K. This increase is explained as follows: electrons themselves do not contribute to the thermal conductivity at low temperatures, which is dominated by phonons. However, the decrease in electron concentration reduced the rate of electron-phonon scattering.[44]

[edit] Other inorganic compounds

Samarium carbides are prepared by melting a graphite-metal mixture in an inert atmosphere. After the synthesis, they are unstable in air and are studied also under inert atmosphere.[24] Samarium monophosphide SmP is a semiconductor with the bandgap of 1.10 eV, the same as in silicon, and high electrical conductivity of n-type. It can be prepared by annealing at 1100 °C an evacuated quartz ampoule containing mixed powders of phosphorus and samarium. Phosphorus is highly volatile at high temperatures and may explode, thus the heating rate has to be kept well below 1 °C/min.[31] Similar procedure is adopted for the monarsenide SmAs, but the synthesis temperature is higher at 1800 °C.[32]

A large number of crystalline binary compounds are known for samarium and one of the non-metallic group-4, 5 or 6 element X, where X is Si, Ge, Sn, Pb, Sb or Te, and metallic alloys of samarium form another large group. They are all prepared by annealing mixed powders of the corresponding elements. Many of the resulting compounds are non-stoichiometric and have nominal compositions SmaXb, where the b/a ratio varies between 0.5 and 3.[45][46][47]

[edit] Organometallic compounds

Samarium forms a cyclopentadienide Sm(C5H5)3 and its chloroderivatives Sm(C5H5)2Cl and Sm(C5H5)Cl2. They are prepared by reacting samarium trichloride with NaC5H5 in tetrahydrofuran. Contrary to cyclopentadienides of most other lanthanides, in Sm(C5H5)3 some C5H5 rings bridge each other by forming ring vertexes η1 or edges η2 toward another neighboring samarium atom, thereby creating polymeric chains.[12] The chloroderivative Sm(C5H5)2Cl has a dimer structure which is more accurately expressed as (η5-C5H5)2Sm(µ-Cl)2(η5-C5H5)2. There, the chlorine bridges can be replaced, for instance, by iodine, hydrogen or nitrogen atoms or by CN groups.[48]

The (C5H5)– ion in samarium cyclopentadienides can be replaced by the indenide (C9H7)– or cyclooctatetraenide (C8H8)2– ring, resulting in Sm(C9H7)3 or KSm(η8-C8H8)2. The latter compound has a similar structure to that of uranocene. There is also a cyclopentadienide of divalent samarium, Sm(C5H5)2 – a solid which sublimates at about 85 °C. Contrary to ferrocene, the C5H5 rings in Sm(C5H5)2 are not parallel but are tilted by 40°.[49][48]

Alkyls and aryls of samarium are obtained through a metathesis reaction in tetrahydrofuran or ether:[48]

 

SmCl3 + 3 LiR → SmR3 + 3 LiClSm(OR)Cl3 + 3 LiCH(SiMe3)2 → Sm{CH(SiMe3)2}3 + 3 LiOR

Here R is a hydrocarbon group and Me stands for methyl.

[edit] Isotopes

Main article: Isotopes of samarium

Naturally occurring samarium has a radioactivity of 128 Bq/g. It is composed of four stable isotopes: 144Sm, 150Sm, 152Sm and 154Sm, and three extremely long-lived radioisotopes, 147Sm (half-life t½ = 1.06×1011 years), 148Sm (7×1015 years) and 149Sm (>2×1015 years), with 152Sm being the most abundant (natural abundance 26.75%).[50]

The half-lives of 151Sm and 145Sm are 90 years and 340 days, respectively. All of the remaining radioisotopes have half-lives that are less than 2 days, and the majority of these have half-lives that are less than 48 seconds. Samarium also has five nuclear isomers with the most stable being 141mSm (half-life 22.6 minutes), 143m1Sm (t½ = 66 seconds) and 139mSm (t½ = 10.7 seconds).[50]

The long-lived isotopes,146Sm, 147Sm, and 148Sm primarily decay by emission of alpha particles to isotopes of neodymium. Lighter unstable isotopes of samarium primarily decay by electron capture to isotopes of promethium, while heavier ones convert through beta decay to isotopes of europium.[50]

[edit] History

 

 

 

 

Paul Émile Lecoq de Boisbaudran – the discoverer of samarium.

Detection of samarium and related elements was announced by several scientists in the second half of the 19th century; however, most sources give the priority to the French chemist Paul Émile Lecoq de Boisbaudran.[51][52] Boisbaudran isolated samarium oxide and/or hydroxide in Paris in 1879 from the mineral samarskite ((Y,Ce,U,Fe)3(Nb,Ta,Ti)5O16) and identified a new element in it via sharp optical absorption lines.[9] The Swiss chemist Marc Delafontaine announced a new element decipium (from Latin: decipiens meaning "deceptive, misleading") in 1878,[53][54] but later in 1880–1881 demonstrated that it was a mixture of several elements, one being identical to the Boisbaudran's samarium.[55][56] Although samarskite was first found in the remote Russian region of Urals, by the late 1870s its deposits had been located in other places making the mineral available to many researchers. In particular, it was found that the samarium isolated by Boisbaudran was also impure and contained europium. Reasonably pure element was produced only in 1901 by Eugène-Anatole Demarçay.[57]

Boisbaudran named his element samaria after the mineral samarskite, which in turn honored Vasili Samarsky-Bykhovets (1803–1870). Samarsky-Bykhovets was the Chief of Staff of the Russian Corps of Mining Engineers who granted access for the German mineralogists, brothers Gustav Rose and Heinrich Rose, to study the mineral samples from the Urals.[58][59][60] In this sense samarium was the first chemical element to be named after a person.[57][61] Later Boisbaudran's samaria was transformed into samarium, to conform with other element names, and samaria nowadays is sometimes used to refer to samarium oxide, by analogy with yttria, zirconia, alumina, ceria, holmia, etc. The symbol Sm was suggested for samarium; however an alternative Sa was frequently used instead until the 1920s.[62][57]

Prior to the advent of ion-exchange separation technology in the 1950s, samarium had no commercial uses in pure form. However, a by-product of the fractional crystallization purification of neodymium was a mixture of samarium and gadolinium that acquired the name of "Lindsay Mix" after the company that made it. This material is thought to have been used for nuclear control rods in some of the early nuclear reactors. Nowadays, a similar commodity product has the name "samarium-europium-gadolinium" (SEG) concentrate.[61] It is prepared by solvent extraction from the mixed lanthanides isolated from bastnäsite (or monazite). Since the heavier lanthanides have the greater affinity for the solvent used, they are easily extracted from the bulk using relatively small proportions of solvent. Not all rare earth producers who process bastnäsite do so on large enough scale to continue onward with the separation of the components of SEG, which typically makes up only one or two percent of the original ore. Such producers will therefore be making SEG with a view to marketing it to the specialized processors. In this manner, the valuable europium content of the ore is rescued for use in phosphor manufacture. Samarium purification follows the removal of the europium. Currently, being in oversupply, samarium oxide is less expensive on a commercial scale than its relative abundance in the ore might suggest.[63]

[edit] Occurrence and production

 

 

 

 

Samarskite

With the average concentration of about 8 parts per million (ppm), samarium is the 40th most abundant element in the Earth's crust. It is the fifth most abundant lanthanide and is more common than such element as tin. Samarium concentration in soils varies between 2 and 23 ppm, and oceans contain about 0.5–0.8 parts per trillion.[8] Distribution of samarium in soils strongly depends on its chemical state and is very inhomogeneous: in sandy soils, samarium concentration is about 200 times higher at the surface of soil particles than in the water trapped between them, and this ratio can exceed 1,000 in clays.[64]

Samarium is not found free in nature, but, like other rare earth elements, is contained in many minerals, including monazite, bastnäsite, cerite, gadolinite and samarskite; monazite (in which samarium occurs at concentrations of up to 2.8%)[9] and bastnäsite are mostly used as commercial sources. World resources of samarium are estimated at two million tonnes; they are mostly located in China, US, Brazil, India, Sri Lanka and Australia, and the annual production is about 700 tonnes.[8] Country production reports are usually given for all rare-earth metals combined. By far, China has the largest production with 120,000 tonnes mined per year; it is followed by the US (about 5,000 tonnes)[64] and India (2,700 tonnes).[65] Samarium is usually sold as oxide, which at the price of about 30 USD/kg is one of the cheapest lanthanide oxides.[63] Whereas mischmetal – a mixture of rare earth metals containing about 1% of samarium – has long been used, it was not until recent years that relatively pure samarium has been isolated through ion exchange processes, solvent extraction techniques, and electrochemical deposition. The metal is often prepared by electrolysis of a molten mixture of samarium(III) chloride with sodium chloride or calcium chloride. Samarium can also be obtained by reducing its oxide with lanthanum. The product is then distilled to separate samarium (boiling point 1794 °C) and lanthanum (b. p. 3464 °C).[52]

Samarium-151 is produced in nuclear fission of uranium with the yield of about 0.4% of the total number of fission events. It is also synthesized upon neutron capture by samarium-149, which is added to the control rods of nuclear reactors. Consequently, samarium-151 is present in spent nuclear fuel and radioactive waste.[64]

[edit] Applications

 

 

 

 

Barbier reaction using SmI2

One of the most important applications of samarium is in samarium-cobalt magnets, which have a nominal composition of SmCo5 or Sm2Co17. They have high permanent magnetization, which is about 10,000 times that of iron and is second only to that of neodymium magnets. However, samarium-based magnets have higher resistance to demagnetization, as they are stable to temperatures above 700 °C (cf. 300–400 °C for neodymium magnets). These magnets are found in small motors, headphones, high-end magnetic pickups for guitars and related musical instruments.[8] For example, they are used in the motors of a solar-powered electric aircraft Solar Challenger and in the Samarium Cobalt Noiseless electric guitar and bass pickups.

Another important application of samarium and its compounds is as catalyst and chemical reagent. Samarium catalysts assist decomposition of plastics, dechlorination of pollutants such as polychlorinated biphenyls (PCBs), as well as the dehydration and dehydrogenation of ethanol.[9] Samarium(III) triflate (Sm(OTf)3, that is Sm(CF3SO3)3) is one of the most efficient Lewis acid catalysts for a halogen-promoted Friedel–Crafts reaction with alkenes.[66] Samarium(II) iodide is a very common reducing and coupling agent in organic synthesis, for example in the desulfonylation reactions; annulation; Danishefsky, Kuwajima, Mukaiyama and Holton Taxol total syntheses; strychnine total synthesis; Barbier reaction and other reductions with samarium(II) iodide.[67]

In its usual oxidized form, samarium is added to ceramics and glasses where it increases absorption of infrared light. As a (minor) part of mischmetal, samarium is found in "flint" ignition device of many lighters and torches.[8][9]

 

 

 

 

Chemical structure of Sm-EDTMP

Radioactive samarium-153 is beta emitter with a half-life of 46.3 hours. It is used to kill cancer cells in the treatment of lung cancer, prostate cancer, breast cancer and osteosarcoma. For this purpose, samarium-153 is chelated with ethylene diamine tetramethylene phosphonate (EDTMP) and injected intravenously. The chelation prevents accumulation of radioactive samarium in the body that would result in excessive irradiation and generation of new cancer cells.[8] The corresponding drug has several names including samarium (153Sm) lexidronam and its trade name is Quadramet.[68][69][70]

Samarium-149 has high cross-section for neutron capture (41,000 barns) and is therefore used in the control rods of nuclear reactors. Its advantage compared to competing materials, such as boron and cadmium, is stability of absorption – most of the fusion and decay products of samarium-149 are other isotopes of samarium which are also good neutron absorbers. For example, the cross sections of samarium-151 is 15,000 barns, it is on the order of hundred barns for samarium-150, 152, 153, and is 6,800 barns for natural (mixed-isotope) samarium.[71][64][9] Among the decay products in a nuclear reactor, samarium-149 is regarded as the second most important for the reactor design and operation after xenon-135.[72]

[edit] Non-commercial and potential applications

Samarium-doped calcium fluoride crystals were used as an active medium in one of the first solid-state lasers designed and constructed by Peter Sorokin (co-inventor of the dye laser) and Mirek Stevenson at IBM research labs in early 1961. This samarium laser emitted pulses of red light at 708.5 nm. It had to be cooled by liquid helium and thus did not find practical applications.[73][74]

Another samarium-based laser became the first saturated X-ray laser operating at wavelengths shorter than 10 nanometers. It provided 50-picosecond pulses at 7.3 and 6.8 nm suitable for applications in holography, high-resolution microscopy of biological specimens, deflectometry, interferometry and radiography of dense plasmas related to confinement fusion and astrophysics. Saturated operation meant that the maximum possible power was extracted from the lasing medium, resulting in the high peak energy of 0.3 millijoule. The active medium was samarium plasma produced by irradiating samarium-coated glass with a pulsed Nd-glass laser (wavelength of 1.05 microns).[75]

The change in electrical resistivity in samarium monochalcogenides can be used in a pressure sensor or in a memory device triggered between a low-resistance and high-resistance state by external pressure,[76] and such devices are being developed commercially.[77] Samarium monosulfide also generates electric voltage upon moderate heating to about 150 °C that can be applied in thermoelectric power converters.[78]

The analysis of relative concentrations of samarium and neodymium isotopes 146Sm, 144Nd and 143Nd allows the determination of the age and origin of rocks and meteorites in samarium-neodymium dating. Both elements are lanthanides and have very similar physical and chemical properties. Therefore, Sm-Nd dating is either insensitive to partitioning of the marker elements during various geological processes, or such partitioning can well be understood and modeled from the ionic radii of the involved elements.[79]

[edit] Health issues

Samarium metal has no biological role in human body. Its salts stimulate metabolism, but it is unclear whether this is the effect of samarium or other lanthanides present with it. The total amount of samarium in adults is about 50 micrograms, mostly in liver and kidneys and with about 8 micrograms per liter being dissolved in the blood. Samarium is not absorbed by plants to a measurable concentration and therefore is normally not a part of human diet. However, a few plants and vegetables may contain up to 1 part per million of samarium. Insoluble salts of samarium are non-toxic and the soluble ones are only slightly toxic.[8]

When ingested, only about 0.05% of samarium salts is absorbed into the bloodstream and the remainder is excreted. From the blood, about 45% goes to the liver and 45% is deposited on the surface of the bones where it remains for about 10 years; the balance 10% is excreted.[64]

 

引用出處: 

 http://en.wikipedia.org/wiki/Samarium

歡迎來到Bewise Inc.的世界,首先恭喜您來到這接受新的資訊讓產業更有競爭力,我們是提供專業刀具製造商,應對客戶高品質的刀具需求,我們可以協助客戶滿足您對產業的不同要求,我們有能力達到非常卓越的客戶需求品質,這是現有相關技術無法比擬的,我們成功的滿足了各行各業的要求,包括:精密HSS DIN切削刀具協助客戶設計刀具流程DIN or JIS 鎢鋼切削刀具設計NAS986 NAS965 NAS897 NAS937orNAS907 航太切削刀具,NAS航太刀具設計超高硬度的切削刀具醫療配件刀具設計複合式再研磨機PCD地板專用企口鑽石組合刀具粉末造粒成型機主機版專用頂級電桿PCBN刀具PCD刀具單晶刀具PCD V-Cut捨棄式圓鋸片組粉末成型機航空機械鉸刀主機版專用頂級電汽車業刀具設計電子產業鑽石刀具木工產業鑽石刀具銑刀與切斷複合再研磨機銑刀與鑽頭複合再研磨機銑刀與螺絲攻複合再研磨機等等。我們的產品涵蓋了從民生刀具到工業級的刀具設計;從微細刀具到大型刀具;從小型生產到大型量產;全自動整合;我們的技術可提供您連續生產的效能,我們整體的服務及卓越的技術,恭迎您親自體驗!!  

BW Bewise Inc. Willy Chen willy@tool-tool.com  bw@tool-tool.com  www.tool-tool.com skype:willy_chen_bw mobile:0937-618-190 Head &Administration Office No.13,Shiang Shang 2nd St., West Chiu Taichung,Taiwan 40356 http://www.tool-tool.com/ / FAX:+886 4 2471 4839 N.Branch 5F,No.460,Fu Shin North Rd.,Taipei,Taiwan S.Branch No.24,Sec.1,Chia Pu East Rd.,Taipao City,Chiayi Hsien,Taiwan

Welcome to BW tool world! We are an experienced tool maker specialized in cutting tools. We focus on what you need and endeavor to research the best cutter to satisfy users demand. Our customers involve wide range of industries, like mold & die, aerospace, electronic, machinery, etc. We are professional expert in cutting field. We would like to solve every problem from you. Please feel free to contact us, its our pleasure to serve for you. BW product including: cutting toolaerospace tool .HSS  DIN Cutting toolCarbide end millsCarbide cutting toolNAS Cutting toolNAS986 NAS965 NAS897 NAS937orNAS907 Cutting Tools,Carbide end milldisc milling cutter,Aerospace cutting toolhss drillФрезерыCarbide drillHigh speed steelCompound SharpenerMilling cutterINDUCTORS FOR PCD’CVDD(Chemical Vapor Deposition Diamond )’PCBN (Polycrystalline Cubic Boron Nitride) Core drillTapered end millsCVD Diamond Tools Inserts’PCD Edge-Beveling Cutter(Golden FingerPCD V-CutterPCD Wood toolsPCD Cutting toolsPCD Circular Saw BladePVDD End Millsdiamond tool. INDUCTORS FOR PCD . POWDER FORMING MACHINE Single Crystal Diamond Metric end millsMiniature end millsСпециальные режущие инструменты Пустотелое сверло Pilot reamerFraisesFresas con mango PCD (Polycrystalline diamond) ‘FresePOWDER FORMING MACHINEElectronics cutterStep drillMetal cutting sawDouble margin drillGun barrelAngle milling cutterCarbide burrsCarbide tipped cutterChamfering toolIC card engraving cutterSide cutterStaple CutterPCD diamond cutter specialized in grooving floorsV-Cut PCD Circular Diamond Tipped Saw Blade with Indexable Insert PCD Diamond Tool Saw Blade with Indexable InsertNAS toolDIN or JIS toolSpecial toolMetal slitting sawsShell end millsSide and face milling cuttersSide chip clearance sawsLong end millsend mill grinderdrill grindersharpenerStub roughing end millsDovetail milling cuttersCarbide slot drillsCarbide torus cuttersAngel carbide end millsCarbide torus cuttersCarbide ball-nosed slot drillsMould cutterTool manufacturer. 

Bewise Inc.  www.tool-tool.com

ようこそBewise Inc.の世界へお越し下さいませ、先ず御目出度たいのは新たな

情報を受け取って頂き、もっと各産業に競争力プラス展開。

弊社は専門なエンドミルの製造メーカーで、客先に色んな分野のニーズ

豊富なパリエーションを満足させ、特にハイテク品質要求にサポート致します。

弊社は各領域に供給できる内容は:

(1)精密HSSエンドミルのR&D

(2)Carbide Cutting tools設計

(3)鎢鋼エンドミル設計

(4)航空エンドミル設計

(5)超高硬度エンドミル

(6)ダイヤモンドエンドミル

(7)医療用品エンドミル設計

(8)自動車部品&材料加工向けエンドミル設計

弊社の製品の供給調達機能は:

(1)生活産業~ハイテク工業までのエンドミル設計

(2)ミクロエンドミル~大型エンドミル供給

(3)小Lot生産~大量発注対応供給

(4)オートメーション整備調達

(5)スポット対応~流れ生産対応

弊社の全般供給体制及び技術自慢の総合専門製造メーカーに貴方のご体験を御待ちしております。     

Bewise Inc. talaşlı imalat sanayinde en fazla kullanılan ve üç eksende (x,y,z) talaş kaldırabilen freze takımlarından olan Parmak Freze imalatçısıdır. Çok geniş ürün yelpazesine sahip olan firmanın başlıca ürünlerini Karbür Parmak Frezeler, Kalıpçı Frezeleri, Kaba Talaş Frezeleri, Konik Alın Frezeler, Köşe Radyüs Frezeler, İki Ağızlı Kısa ve Uzun Küresel Frezeler, İç Bükey Frezeler vb. şeklinde sıralayabiliriz. 

BW специализируется в научных исследованиях и разработках, и снабжаем самым высокотехнологичным карбидовым материалом для поставки режущих / фрезеровочных инструментов для почвы, воздушного пространства и электронной индустрии. В нашу основную продукцию входит твердый карбид / быстрорежущая сталь, а также двигатели, микроэлектрические дрели, IC картонорезальные машины, фрезы для гравирования, режущие пилы, фрезеры-расширители, фрезеры-расширители с резцом, дрели, резаки форм для шлицевого вала / звездочки роликовой цепи, и специальные нано инструменты. Пожалуйста, посетите сайт  www.tool-tool.com  для получения большей информации.

BW is specialized in R&D and sourcing the most advanced carbide material with high-tech coating to supply cutting / milling tool for mould & die, aero space and electronic industry. Our main products include solid carbide / HSS end mills, micro electronic drill, IC card cutter, engraving cutter, shell end mills, cutting saw, reamer, thread reamer, leading drill, involute gear cutter for spur wheel, rack and worm milling cutter, thread milling cutter, form cutters for spline shaft/roller chain sprocket, and special tool, with nano grade. Please visit our web  www.tool-tool.com  for more info.

 

beeway 發表在 痞客邦 留言(0) 人氣()

釹磁鐵

A 釹磁鐵鳥嘴磁鐵 (各種各樣 稀土元素磁鐵)是強有力 磁鐵 做組合 釹, 鐵和 硼 - Nd2Fe14B.

 

 

內容

  • 1 描述
  • 2 力量的範圍
  • 3 用途
    • 3.1 玩具
  • 4 更加進一步的發展
  • 5 健康危害
  • 6 其他危險
  • 7 物理和機械性能
  • 8 參見
  • 9 參考

 

描述

釹 磁鐵是非常強的相對他們的大量,但也是機械上易碎的。 像其他 鐵磁 材料,釹磁鐵丟失他們的磁性在溫度之上以著名 居里點. 但最強有力的成績丟失他們的磁性在相對地低溫: 80度 攝氏 (176度 華氏)和上述。 高溫成績將經營在甚而200和230°C,但他們的力量只少量地大於那a 釤鈷磁鐵.

自2008年釹磁鐵花費了$50.00/lb, $1.40每BHmax。

 

力量的範圍

釹 磁鐵(或「新」,當他們在產業被知道)在力量被分級從N24到最強, N54。 理論極限為釹磁鐵是等級N64。 數字,在N代表磁性能量產品之後,在megagauss奧斯特(MGOe) (1毫克·Oe = 7,958·10 ³ T·A/m = 7,958 kJ/m ³)。 N48有殘餘靜態磁場1.38 teslas 并且 H (磁場強度) 13,000 奧斯特 (1.0 MA/m)。 由容量你一樣需要大約18次 陶瓷 磁鐵材料為等效磁鐵舉的力量和大約3到5次一樣為等效偶極矩。

 

用途

他們在多數應用替換了少量地更加微弱和更抗熱釤鈷磁鐵,由於主要他們更加便宜。

為 安定和有角頭使用 馬達 在計算機 硬盤釹磁鐵也是普遍的有奇癖者,并且一塊小磁鐵可能有驚人的物產-它陳列磁性刹車,當在一種無磁性的金屬附近移動由於導致時 渦流. 一次優秀示範為了學生能看作用 楞次的法律 在非鐵質金屬可以通過投下一塊強的釹磁鐵執行通過一個銅管子。 磁鐵將卓越地慢慢地遊遍管子,它落。 作用也許通過浸沒管子很大地提高 液氮 (因而增加它的傳導性更加進一步)在通過投下磁鐵之前。

一塊有些更大的磁鐵與磁場互動足够強烈 地球 允許它的傾向與將直接地被察覺的那個領域排列,當拿著它,根本上形成a時 指南針. 圓筒和圓盤形的釹磁鐵對地球的磁場是特別敏感的。 釹磁鐵為使用 變換裝置 在許多 耳機. 釹磁鐵變得越來越共同 擴音器 為大容積 酣然的增強 應用。 以前使用了Neodynium磁鐵多次在 Discovery台 電視節目 Mythbusters 在神話測試使用磁性,常規磁鐵不是足够強有力的。 這個類型一系列的13塊非常大磁鐵被證明是能猛烈地修改彈道 子彈 MythBusters (季節6) #Episode 95 -詹姆士・邦德特別1.

 

玩具

作為鳥嘴磁鐵生產了 中國 變得較不昂貴在過去幾年內,玩具產業在磁性大廈集合和其他產品使用了成千上萬他們包括磁性首飾。 Marky Sparky玩具 在他們的磁性箭板使用他們,羅斯藝術產業 新澤西現在擁有 mega Brands, Inc. 蒙特利爾, 加拿大製造一條普遍的線 Magnetix 并且 優秀大學畢業生人 包含釹磁鐵的玩具阿斯匹靈片劑大小和形狀。 小圓柱形磁鐵使用在塑料片斷的末端或角落為了允許多個片斷的連接。 Magnetix 品牌是2006年3月的主題 回呼通知 由 消費品安全委員會 並且許多消費者訴訟由於產品安全關心。 在瑕疵成套工具鳥嘴磁鐵變得從他們的塑料住房撞出,并且變化的年齡的許多孩子消耗了小磁鐵; 看健康危害如下。

 

更加進一步的發展

釹磁鐵產業連續地運作推擠最大能量產品(力量)離理論最多64較近MGOe。[1] 科學家艱苦也工作改進最高運行溫度為所有特定力量。[2]

 

健康危害

應 該仔細地總處理釹磁鐵。 大於a的大小輕微地的一些 便士 是足够強有力的舉10公斤。 強的磁場可能打亂某內部醫療設備的操作例如心臟起搏器。 當多數固體電子設備沒有影響的是受磁場的時,一些醫療設備沒有被製造緩和強的磁場的作用。 這些設計缺陷可以是危害的對使用這些設備的患者。[3] 如果吞下,釹磁鐵可能通過加入導致致死的情況在肚腑裡面。[4]

鳥嘴的磁力增加以片斷的大小 鐵磁 金屬,更大的釹磁鐵可能嚴厲地捏皮膚或手指,甚至斷裂骨頭,當突然吸引對一個磁性對象。 操作一塊大釹磁鐵緊挨更小的磁性對象(鑰匙、筆等等)和更大的磁性表面(例如幅射器或汽車)可以是危險的,如果人被捉住在磁鐵和磁性對象或者表面之間。

釹 磁鐵用特別粉末和塗層做,因此他們是非常易碎的。 他們經常鍍與一種金屬例如 鎳. 磁鐵能 破裂 在 溫度 150 °C,或者在衝擊之下由於他們自己的加速度。 當這發生時,磁鐵也許分開那麼突然在某些情況下打破飛行的片斷可能造成傷害。 一些磁鐵供應商開始提供在塑料或橡膠任意地裝箱的鳥嘴磁鐵減少傷害和破損的可能性由於衝擊。

 

其他危險

小 心,當使用釹磁鐵時,必須採取。 釹磁鐵是足够強有力的毀壞a內容 軟盤 在某種程度上信息是不可能恢復的,保證不當前以技術例如 格式化 盤。 另外,釹磁鐵是能成功地刪掉在磁條包含的信息的其中一唯一材料 信用卡.[5] 釹磁鐵經常是足够強的不僅磁化顏色 CRT 金屬 影孔板,而且完全扭屈面具。 這樣損傷不典型地是可修理的 消磁.[需要的引證]

 

物理和機械性能

導熱性 7.7 kcal/m-h-°C

年輕人的模數 1.7 x 104 kg/mm2

彎曲強度 24 kg/mm2

耐壓強度 80 kg/mm2

電 抵抗力 160 µ歐姆cm或cm2

密度 7.4-7.5 g/cm3

Vickers堅硬 500 - 600

 

參見

  • 鑭系元素 稀土元素磁鐵LnFeB系列
  • 釤鈷磁鐵
  • 過渡金屬 代替喜歡NdCoB

 

參考

 

  1. ^ [1993-12-20] 迅速固體化技術: 工程學指南. CRC按,頁。 277-278. 國際標準書號0-8776-2926-9. 檢索 2008-02-11. 
  2. ^ NdFeB釹磁鐵
  3. ^ 冰箱磁鐵『可以是兇手』
  4. ^ 忍受對孩子的多磁鐵姿勢危險
  5. ^ http://en.wikipedia.org/wiki/MythBusters_%28season_1%29#Eelskin_Wallet>

 

 

引用出處: 

 http://www.worldlingo.com/ma/enwiki/zh_tw/Neodymium_magnet

歡迎來到Bewise Inc.的世界,首先恭喜您來到這接受新的資訊讓產業更有競爭力,我們是提供專業刀具製造商,應對客戶高品質的刀具需求,我們可以協助客戶滿足您對產業的不同要求,我們有能力達到非常卓越的客戶需求品質,這是現有相關技術無法比擬的,我們成功的滿足了各行各業的要求,包括:精密HSS DIN切削刀具協助客戶設計刀具流程DIN or JIS 鎢鋼切削刀具設計NAS986 NAS965 NAS897 NAS937orNAS907 航太切削刀具,NAS航太刀具設計超高硬度的切削刀具醫療配件刀具設計複合式再研磨機PCD地板專用企口鑽石組合刀具粉末造粒成型機主機版專用頂級電桿PCBN刀具PCD刀具單晶刀具PCD V-Cut捨棄式圓鋸片組粉末成型機航空機械鉸刀主機版專用頂級電汽車業刀具設計電子產業鑽石刀具木工產業鑽石刀具銑刀與切斷複合再研磨機銑刀與鑽頭複合再研磨機銑刀與螺絲攻複合再研磨機等等。我們的產品涵蓋了從民生刀具到工業級的刀具設計;從微細刀具到大型刀具;從小型生產到大型量產;全自動整合;我們的技術可提供您連續生產的效能,我們整體的服務及卓越的技術,恭迎您親自體驗!!  

BW Bewise Inc. Willy Chen willy@tool-tool.com  bw@tool-tool.com  www.tool-tool.com skype:willy_chen_bw mobile:0937-618-190 Head &Administration Office No.13,Shiang Shang 2nd St., West Chiu Taichung,Taiwan 40356 http://www.tool-tool.com/ / FAX:+886 4 2471 4839 N.Branch 5F,No.460,Fu Shin North Rd.,Taipei,Taiwan S.Branch No.24,Sec.1,Chia Pu East Rd.,Taipao City,Chiayi Hsien,Taiwan

Welcome to BW tool world! We are an experienced tool maker specialized in cutting tools. We focus on what you need and endeavor to research the best cutter to satisfy users demand. Our customers involve wide range of industries, like mold & die, aerospace, electronic, machinery, etc. We are professional expert in cutting field. We would like to solve every problem from you. Please feel free to contact us, its our pleasure to serve for you. BW product including: cutting toolaerospace tool .HSS  DIN Cutting toolCarbide end millsCarbide cutting toolNAS Cutting toolNAS986 NAS965 NAS897 NAS937orNAS907 Cutting Tools,Carbide end milldisc milling cutter,Aerospace cutting toolhss drillФрезерыCarbide drillHigh speed steelCompound SharpenerMilling cutterINDUCTORS FOR PCD’CVDD(Chemical Vapor Deposition Diamond )’PCBN (Polycrystalline Cubic Boron Nitride) Core drillTapered end millsCVD Diamond Tools Inserts’PCD Edge-Beveling Cutter(Golden FingerPCD V-CutterPCD Wood toolsPCD Cutting toolsPCD Circular Saw BladePVDD End Millsdiamond tool. INDUCTORS FOR PCD . POWDER FORMING MACHINE Single Crystal Diamond Metric end millsMiniature end millsСпециальные режущие инструменты Пустотелое сверло Pilot reamerFraisesFresas con mango PCD (Polycrystalline diamond) ‘FresePOWDER FORMING MACHINEElectronics cutterStep drillMetal cutting sawDouble margin drillGun barrelAngle milling cutterCarbide burrsCarbide tipped cutterChamfering toolIC card engraving cutterSide cutterStaple CutterPCD diamond cutter specialized in grooving floorsV-Cut PCD Circular Diamond Tipped Saw Blade with Indexable Insert PCD Diamond Tool Saw Blade with Indexable InsertNAS toolDIN or JIS toolSpecial toolMetal slitting sawsShell end millsSide and face milling cuttersSide chip clearance sawsLong end millsend mill grinderdrill grindersharpenerStub roughing end millsDovetail milling cuttersCarbide slot drillsCarbide torus cuttersAngel carbide end millsCarbide torus cuttersCarbide ball-nosed slot drillsMould cutterTool manufacturer.

Bewise Inc.  www.tool-tool.com

ようこそBewise Inc.の世界へお越し下さいませ、先ず御目出度たいのは新たな

情報を受け取って頂き、もっと各産業に競争力プラス展開。

弊社は専門なエンドミルの製造メーカーで、客先に色んな分野のニーズ

豊富なパリエーションを満足させ、特にハイテク品質要求にサポート致します。

弊社は各領域に供給できる内容は:

(1)精密HSSエンドミルのR&D

(2)Carbide Cutting tools設計

(3)鎢鋼エンドミル設計

(4)航空エンドミル設計

(5)超高硬度エンドミル

(6)ダイヤモンドエンドミル

(7)医療用品エンドミル設計

(8)自動車部品&材料加工向けエンドミル設計

弊社の製品の供給調達機能は:

(1)生活産業~ハイテク工業までのエンドミル設計

(2)ミクロエンドミル~大型エンドミル供給

(3)小Lot生産~大量発注対応供給

(4)オートメーション整備調達

(5)スポット対応~流れ生産対応

弊社の全般供給体制及び技術自慢の総合専門製造メーカーに貴方のご体験を御待ちしております。   

Bewise Inc. talaşlı imalat sanayinde en fazla kullanılan ve üç eksende (x,y,z) talaş kaldırabilen freze takımlarından olan Parmak Freze imalatçısıdır. Çok geniş ürün yelpazesine sahip olan firmanın başlıca ürünlerini Karbür Parmak Frezeler, Kalıpçı Frezeleri, Kaba Talaş Frezeleri, Konik Alın Frezeler, Köşe Radyüs Frezeler, İki Ağızlı Kısa ve Uzun Küresel Frezeler, İç Bükey Frezeler vb. şeklinde sıralayabiliriz.

BW специализируется в научных исследованиях и разработках, и снабжаем самым высокотехнологичным карбидовым материалом для поставки режущих / фрезеровочных инструментов для почвы, воздушного пространства и электронной индустрии. В нашу основную продукцию входит твердый карбид / быстрорежущая сталь, а также двигатели, микроэлектрические дрели, IC картонорезальные машины, фрезы для гравирования, режущие пилы, фрезеры-расширители, фрезеры-расширители с резцом, дрели, резаки форм для шлицевого вала / звездочки роликовой цепи, и специальные нано инструменты. Пожалуйста, посетите сайт  www.tool-tool.com  для получения большей информации.

BW is specialized in R&D and sourcing the most advanced carbide material with high-tech coating to supply cutting / milling tool for mould & die, aero space and electronic industry. Our main products include solid carbide / HSS end mills, micro electronic drill, IC card cutter, engraving cutter, shell end mills, cutting saw, reamer, thread reamer, leading drill, involute gear cutter for spur wheel, rack and worm milling cutter, thread milling cutter, form cutters for spline shaft/roller chain sprocket, and special tool, with nano grade. Please visit our web  www.tool-tool.com  for more info.

 

beeway 發表在 痞客邦 留言(0) 人氣()

用釹鐵硼磁鐵玩喇叭調音!

 

很久、很久以前,我就一直想弄點不是太硬的東西。

 

「不 太硬?」別誤會了,我們的意思 是,DZ雖然是一個討論音響的網站,不過每天大家看到的,都是晶體機怎麼裝、真空管怎麼挑?DAC又得怎樣才能好聲?這些內容,固然是很夠DIY的,不過 也讓一些網友裹足不前,彷彿沒有兩下子的人,就不能替音響開開刀,動點改機的腦筋,也無緣動手提升音響的素質!說真的,有時候DIY玩音響不見得非動烙鐵 不可,譬如貼貼吸音棉,動動喇叭擺\位,這都算是音響DIY,也可以從中覓得不少樂趣。

 

 

釹鐵硼磁鐵體積不必很大,磁場卻非常強大,同時透過多只小磁鐵的堆疊,將可有效的提高磁場強度,達到強化喇叭單體磁場、改善效率與控制音色的目的。

 

話說一個月前,我收到在中央研究院工作的蔡兄寄來一封信,這封信的收件者不是太多,約莫十來個人吧,內容大致如下:(蔡兄,舉凡不堪入目文字,小弟一概刪去,哈哈!開個玩笑)

 

「我 找到國內的大同公司(作耐用電鍋的那一家)願意提供釹鐵硼磁鐵,尺寸適合 改裝/提升大家的喇叭,13mm直徑 4mm厚度,可以多片堆疊已增加磁力,單顆磁力3000高斯,堆疊三片會達到5600高斯,但往後再增加堆疊磁石的片數,磁場強度增加就很有限,每片價格 約30 NT。相信這是可以找的到的最低價格,不過要親自去他們在三峽的工廠拿,我打算買一些。」

 

「如果以 Lowther 為例子,繞著原本的磁鐵外圍貼一圈,約需八顆,堆疊參層,所以需要24個,一對喇叭需要48個,所以約需1500圓NT,我想這樣的成本來增加喇叭的效能 還算合理,要一起買的回信給我,告知數量,我下週幫大家去買數量多我想一定可以殺價,也許\25圓一個就有了!」

 

「我之 前有向國外網站買 過一些,但那時缺乏經驗,買直徑太大的(50mm),只能貼在原磁鐵中間,對喇叭的效率提升有限,但控制力及透明度,速度感/暫態滿頗有精進,中低頻厚度 以提升不少。請教過一些高手,貼在外圍效果才更明顯。所以這次找直徑小的圓柱,但圓柱型的磁鐵國內管道弄不到,國外一個012mm直徑12mm厚的圓柱要 價約5元美金,加上運費就......磁力約6000高斯。」

 

「大同公司的13mm直徑4mm厚的圓片,單片磁力 3000高斯(N35 grade),他們公司經理跟我說堆疊三片可以達到5600高斯,可以用高斯計測給我看,所以我想可以用種規格磁鐵還滿好用的,堆疊後磁力夠強,微調空間 也比較大,不用Lowther喇叭的user可以針對不同音域單體貼不同數量厚度。」

 

上面就是蔡兄的來信,如果這篇文章 要給稿費的話,我 想應該要考慮給蔡兄一堆磁鐵抵充一下,因為我們不僅引用了他的來信,同時這個「釹鐵硼磁鐵」也給我一個很大的提示:有什麼比動手貼貼磁鐵更容易的改機方 式?釹鐵硼磁鐵小圓片提供一個極為合理的改機途徑,在整個過程中,DIY改機者只要動動螺絲起子,把單體拿出來貼上幾個磁鐵,然後透過磁鐵數量與位置的變 化,去掌握音色、音質與喇叭效率,這真是太有趣了!

 

動手要快 尋覓磁鐵

在跟蔡兄取得默契與資訊之後,我們 即著手聯絡國內外幾家生 產磁鐵的廠商,說真的,賣磁鐵的廠商雖多,但提供釹鐵硼這種比較高階、高單價磁鐵的終究屬於少數,幸虧DZ頂著數量頗大的優勢,很快的就把價格與數量談下 來,相較於蔡兄在大同那邊的詢價更具優勢,不過便宜歸便宜,我們還是決定在出貨前實際以高斯表驗收磁性係數是否合乎蔡兄當初的規範(每只的磁力在3000 高斯以上),免得價格低了,卻失去應有的品質,那才真是得不償失呢。

 

關於玩音響的密技很多,不過能說得出來道理的卻不多。要理解釹鐵硼磁鐵對喇叭系統帶來的改變,其實並不困難,最基礎的,只要掌握一個高中物理公式:

 

F=iLB,其中F為導線在磁場中的受力,i為導線上的電流,L為導線長度,B為磁場強度。(i、L、B互為垂直,請參考右手定則,這邊就不多討論了)

 

別被這個公式嚇倒了。其實所謂的導線長度與電流,就是音圈的漆包線長度與通過喇叭音圈的電流,換言之,如果我們能夠提升喇叭單體的磁場強度,就可以在相同的音圈電流時,推出更大的力量,當音圈受力增加時,也就意味紙盆振幅的提升,換言之,音量變大,效率增加了。

 

讓我們看看下面幾個數據圖與剖面圖:

 

 

 

 

最 上面一張圖表,是我們這次介紹的釹鐵硼磁鐵在我們出廠前實地抽檢的數據,都在額定標準上,僅供參考。至於後面兩張圖,比較有趣,出自中國大陸的 「AV世界雜誌」,其中標有簡體字的那張圖,是Morel單體的剖面圖,另一張,則是大陸廠商開發出來的單體磁鐵結構,兩者有一點非常類似的,就是在磁鐵 系統上,並非「實心磁鐵」,而是採用均勻分佈的五個磁鐵塊吸附在導磁金屬上而成。這種設計方式,可以提供比較好的散熱能力,也可以讓釹鐵硼磁鐵「不要太浪 費」,這種磁鐵對單體製造廠商來說,終究還是昂貴的玩意兒,不宜濫用。不過,這同時也反應一個事實,就是釹鐵硼磁鐵本身的磁場強度非常強大,因此才能使用 這種迥異於常態的架構。

 

在上次辦公室失火時,當年K得要死的「電動機械」早已燒毀在東帝士大樓中,所以,實在對於手算幾個磁鐵堆疊的效果沒啥把握,不過,趁著去檢驗產品品質之便,我們也順便針對不同的磁鐵數量堆疊時的磁場進行一些整理,請參考下面幾張照片:

 

 

 

經 過實際測試,每片釹鐵硼磁鐵的磁場強度高於3000高斯的額定標準值。在磁場強度的標示規格上,1 Tesla=10K 高斯,因此上述測試結果322.0mT,相當於3220高斯,可說是非常強悍的磁鐵!使用釹鐵硼磁鐵之後,除了對於音場深度有明確的定位之外,最大的改 變,是系統整體效率的提升,使得中低頻的控制能力更為明快、準確,提供一個截然不同的改機體驗。

 

 

 

當兩個釹鐵硼磁鐵堆疊時,可以獲得4340高斯的磁場強度。

 

 

 

當以三個釹鐵硼磁鐵堆疊時,可以獲得4760高斯的磁場強度。

 

 

 

當以四個釹鐵硼磁鐵堆疊時,可以獲得5130高斯的磁場強度

 

 

 

當以五個釹鐵硼磁鐵堆疊時,可以獲得5230高斯的磁場強度,此時提升幅度已經明顯降低,但或許\是測試距離與方式上的誤差,獲得的數據與蔡兄原本估計的5600高斯顯然不同。

 

 

 

當以十個釹鐵硼磁鐵堆疊時,可以獲得5190高斯的磁場強度,這個增加的幅度,顯然並不是很高。

 

不 知道讀者看出為什麼我們要進行上 述測試的理由?一方面,我們想測試一下單一釹鐵硼磁鐵是否合乎數據規範,關於這點,我們頗有信心;另一方面,我們更想掌握不同堆疊數量時的磁場增加幅度, 找出一個最有效益的作法。譬如說,當我們發現堆疊十個與堆疊五個的差異並不是很大時,我們可以選擇堆疊五個釹鐵硼磁鐵,避免不必要的浪費。事實上,根據實 際使用的心得來看,與其堆上一大串磁鐵,還不如以堆疊3~5個釹鐵硼磁鐵為準,然後盡可能的增加環繞單體磁鐵的密度。

 

因 為我使用的 Apogee Caliper Signature屬於鋁帶平面喇叭(但並非靜電喇叭),如果要用上釹鐵硼磁鐵,拆卸大費周章,所以只好把藏了好幾個月的DZ喇叭套件拿出來測 試:FOSTEX FE-103E全音域喇叭。這下可好,喇叭套件都還沒推出,我們卻先找到改機良方:

 

 

 

 

 

照 片上看到的,是DZ已經規劃好的小喇叭套件,以FOSTEX FE-103E全音域單體為核心的設計。果然,這個釹鐵硼磁鐵一出手,就是大幅度的提升,除了效率明顯、極為明顯的攀升之外,低頻的Q度更是出乎意料的頗 具風味,跟原始的設計大大不同呢!我最後的實驗結論,是平均在磁鐵周邊貼上八組對稱的釹鐵硼磁鐵,每組堆疊三個磁鐵,平均每個單體使用24個磁鐵。

 

 

釹鐵硼磁鐵還可以這樣玩

除 了拿釹鐵硼磁鐵來貼喇叭、調音之外,部分網友在私底下還提到可以拿來搞「磁化水」,或者貼在車車輸油管外圍,據說可以省油減少污染。關於這個嘛,因為我自 己並沒有這方面的實際研究經驗,倒不敢亂講(不過在水壺旁邊塞幾個磁鐵,或者在油管附近貼磁鐵,大概也無礙吧?),不過蔡兄傳來的幾張照片,倒是令人非常 的心動,我不太清楚這幾張照片的主人是誰,但實在忍不住貼出來:

 

 

看出這是什麼了嗎?這是利用釹鐵硼磁鐵的強大磁性,配合透明壓克力製作成磁浮墊,足可承載CD唱盤,如果這幾張照片的作者看到這篇文章,還希望您能出來說說作法,相信很多人都會對這個磁浮墊有濃厚興趣的。

 

釹鐵硼磁鐵雖然好玩,又容易讓任何人改機、調音,從廉價的PC喇叭到高昂的揚聲系統,都可以利用這個方式把玩,不過,在使用之前,仍有一些注意事項:

 

1.因為釹鐵硼磁鐵的磁性非常的強大,所以拆卸、黏著時必須非常謹慎,盡量避免磁鐵夾到手指,否則恐怕有夾到瘀血的可能,也因此,千萬別把這個磁鐵拿給小朋友當玩具。

 

2.因為磁性非常強大,請勿用暴力將磁鐵分開,應該慢慢的將磁鐵橫移滑開,可別拿老虎鉗夾弄,免得把磁鐵給弄碎了。此外,為了避免釹鐵硼磁鐵氧化,我們特別施以鍍鎳處理,除可抗氧化之外,還提供鏡面般的外觀,實在不錯。

 

3. 剛吸上單體時,聲音有可能比較暗,但建議您多RUN-RUN,多半隔天就好了,呈現截然不同的表現。原本低效率的單體,效率提升很明顯。而根據網友私下的 說法,在面對Lowther全音域單體時,解犀力跟速度感會更好,足可重新評價幾張以前我覺得不怎樣的錄音。依據蔡兄郵件上的說法:「幾張小提琴錄音,以 前我覺得他們錄的太假,泛音太多,音色柔美滑順,吸上磁鐵後,多出了不少提琴音箱共鳴的顆粒感松香味,蕭瑟的擦弦聲更明顯,這是我喜歡玩這種磁鐵的原因。 這個樂器的分離度也更明顯,比起以前我嘗試過的各種高價線材對聲音的提升明顯太多了!」而當我以Fostex FE103E單體測試時,固然此單體在等級上不比Lowther,但確實有類似的傾向,而且非常的明顯,看來這個DZ規劃中的喇叭套件,也可以透過這個方 式來提升、提升。

 

4.釹鐵硼脾氣暴躁,務必將郵局提款卡、信用卡 "遠離" ,甚至公司大門進出管制的磁卡也會消磁。

 

5. 使用釹鐵硼磁鐵,可以改變單體的特性,但單體的設計是複雜的,當我們以釹鐵硼磁鐵提昇工作效率之後,也同時會降低Q值(一種喇叭參數)。我們的立場是,盡 可能用釹鐵硼磁鐵來玩玩吧,但別以為磁鐵貼得越多,效果就會越好,因為喇叭設計參雜許\多複雜的概念與數據,並不是單純磁場強度一項而已。

 

文 章看到這邊,或許\有人說了,既然釹鐵硼磁鐵如此凶悍,性能如此驚人的優異,為什麼不是滿街都是釹鐵硼磁鐵的單體?說穿了,還是價格、成本因素,釹鐵硼磁 鐵跟一般鐵氧Ferrite磁鐵相比,至少昂貴近十倍,同時因為「個性頑強」,如果不是特別強力的充磁機,根本無法將磁性注入。一般小型的單體工廠,幾乎 都擁有的簡單充磁機,根本無法進行釹鐵硼磁鐵的加工作業,而諸如JBL、KEF的高階商品,也是將釹鐵硼磁鐵單體的價格拉得極高,身價甚是不凡。

 

所以,動手DIY,花不了多少時間與代價,卻可以大幅提升您喇叭系統的性能喔!

 

引用出處: 

 http://tw.myblog.yahoo.com/jw!lBbSVAGQSUZttW0Wk7kyvw--/article?mid=68&prev=84&next=67

歡迎來到Bewise Inc.的世界,首先恭喜您來到這接受新的資訊讓產業更有競爭力,我們是提供專業刀具製造商,應對客戶高品質的刀具需求,我們可以協助客戶滿足您對產業的不同要求,我們有能力達到非常卓越的客戶需求品質,這是現有相關技術無法比擬的,我們成功的滿足了各行各業的要求,包括:精密HSS DIN切削刀具協助客戶設計刀具流程DIN or JIS 鎢鋼切削刀具設計NAS986 NAS965 NAS897 NAS937orNAS907 航太切削刀具,NAS航太刀具設計超高硬度的切削刀具醫療配件刀具設計複合式再研磨機PCD地板專用企口鑽石組合刀具粉末造粒成型機主機版專用頂級電桿PCBN刀具PCD刀具單晶刀具PCD V-Cut捨棄式圓鋸片組粉末成型機航空機械鉸刀主機版專用頂級電汽車業刀具設計電子產業鑽石刀具木工產業鑽石刀具銑刀與切斷複合再研磨機銑刀與鑽頭複合再研磨機銑刀與螺絲攻複合再研磨機等等。我們的產品涵蓋了從民生刀具到工業級的刀具設計;從微細刀具到大型刀具;從小型生產到大型量產;全自動整合;我們的技術可提供您連續生產的效能,我們整體的服務及卓越的技術,恭迎您親自體驗!!  

BW Bewise Inc. Willy Chen willy@tool-tool.com  bw@tool-tool.com  www.tool-tool.com skype:willy_chen_bw mobile:0937-618-190 Head &Administration Office No.13,Shiang Shang 2nd St., West Chiu Taichung,Taiwan 40356 http://www.tool-tool.com/ / FAX:+886 4 2471 4839 N.Branch 5F,No.460,Fu Shin North Rd.,Taipei,Taiwan S.Branch No.24,Sec.1,Chia Pu East Rd.,Taipao City,Chiayi Hsien,Taiwan

Welcome to BW tool world! We are an experienced tool maker specialized in cutting tools. We focus on what you need and endeavor to research the best cutter to satisfy users demand. Our customers involve wide range of industries, like mold & die, aerospace, electronic, machinery, etc. We are professional expert in cutting field. We would like to solve every problem from you. Please feel free to contact us, its our pleasure to serve for you. BW product including: cutting toolaerospace tool .HSS  DIN Cutting toolCarbide end millsCarbide cutting toolNAS Cutting toolNAS986 NAS965 NAS897 NAS937orNAS907 Cutting Tools,Carbide end milldisc milling cutter,Aerospace cutting toolhss drillФрезерыCarbide drillHigh speed steelCompound SharpenerMilling cutterINDUCTORS FOR PCD’CVDD(Chemical Vapor Deposition Diamond )’PCBN (Polycrystalline Cubic Boron Nitride) Core drillTapered end millsCVD Diamond Tools Inserts’PCD Edge-Beveling Cutter(Golden FingerPCD V-CutterPCD Wood toolsPCD Cutting toolsPCD Circular Saw BladePVDD End Millsdiamond tool. INDUCTORS FOR PCD . POWDER FORMING MACHINE Single Crystal Diamond Metric end millsMiniature end millsСпециальные режущие инструменты Пустотелое сверло Pilot reamerFraisesFresas con mango PCD (Polycrystalline diamond) ‘FresePOWDER FORMING MACHINEElectronics cutterStep drillMetal cutting sawDouble margin drillGun barrelAngle milling cutterCarbide burrsCarbide tipped cutterChamfering toolIC card engraving cutterSide cutterStaple CutterPCD diamond cutter specialized in grooving floorsV-Cut PCD Circular Diamond Tipped Saw Blade with Indexable Insert PCD Diamond Tool Saw Blade with Indexable InsertNAS toolDIN or JIS toolSpecial toolMetal slitting sawsShell end millsSide and face milling cuttersSide chip clearance sawsLong end millsend mill grinderdrill grindersharpenerStub roughing end millsDovetail milling cuttersCarbide slot drillsCarbide torus cuttersAngel carbide end millsCarbide torus cuttersCarbide ball-nosed slot drillsMould cutterTool manufacturer.

Bewise Inc.  www.tool-tool.com

ようこそBewise Inc.の世界へお越し下さいませ、先ず御目出度たいのは新たな

情報を受け取って頂き、もっと各産業に競争力プラス展開。

弊社は専門なエンドミルの製造メーカーで、客先に色んな分野のニーズ

豊富なパリエーションを満足させ、特にハイテク品質要求にサポート致します。

弊社は各領域に供給できる内容は:

(1)精密HSSエンドミルのR&D

(2)Carbide Cutting tools設計

(3)鎢鋼エンドミル設計

(4)航空エンドミル設計

(5)超高硬度エンドミル

(6)ダイヤモンドエンドミル

(7)医療用品エンドミル設計

(8)自動車部品&材料加工向けエンドミル設計

弊社の製品の供給調達機能は:

(1)生活産業~ハイテク工業までのエンドミル設計

(2)ミクロエンドミル~大型エンドミル供給

(3)小Lot生産~大量発注対応供給

(4)オートメーション整備調達

(5)スポット対応~流れ生産対応

弊社の全般供給体制及び技術自慢の総合専門製造メーカーに貴方のご体験を御待ちしております。   

Bewise Inc. talaşlı imalat sanayinde en fazla kullanılan ve üç eksende (x,y,z) talaş kaldırabilen freze takımlarından olan Parmak Freze imalatçısıdır. Çok geniş ürün yelpazesine sahip olan firmanın başlıca ürünlerini Karbür Parmak Frezeler, Kalıpçı Frezeleri, Kaba Talaş Frezeleri, Konik Alın Frezeler, Köşe Radyüs Frezeler, İki Ağızlı Kısa ve Uzun Küresel Frezeler, İç Bükey Frezeler vb. şeklinde sıralayabiliriz.

BW специализируется в научных исследованиях и разработках, и снабжаем самым высокотехнологичным карбидовым материалом для поставки режущих / фрезеровочных инструментов для почвы, воздушного пространства и электронной индустрии. В нашу основную продукцию входит твердый карбид / быстрорежущая сталь, а также двигатели, микроэлектрические дрели, IC картонорезальные машины, фрезы для гравирования, режущие пилы, фрезеры-расширители, фрезеры-расширители с резцом, дрели, резаки форм для шлицевого вала / звездочки роликовой цепи, и специальные нано инструменты. Пожалуйста, посетите сайт  www.tool-tool.com  для получения большей информации.

BW is specialized in R&D and sourcing the most advanced carbide material with high-tech coating to supply cutting / milling tool for mould & die, aero space and electronic industry. Our main products include solid carbide / HSS end mills, micro electronic drill, IC card cutter, engraving cutter, shell end mills, cutting saw, reamer, thread reamer, leading drill, involute gear cutter for spur wheel, rack and worm milling cutter, thread milling cutter, form cutters for spline shaft/roller chain sprocket, and special tool, with nano grade. Please visit our web  www.tool-tool.com  for more info.

 

beeway 發表在 痞客邦 留言(0) 人氣()

Neodymium ( /ˌniː.ɵˈdɪmiəm/ NEE-o-DIM-ee-əm) is a chemical element with the symbol Nd and atomic number 60. It is a soft silvery metal which tarnishes in air. Neodymium was discovered in 1885. It is present in significant quantities in the ore minerals monazite and bastnäsite. Neodymium is not found naturally in metallic form or unaccompanied by other lanthanides, and it is usually refined for general use. Although classed as a "rare earth" it is no more rare than cobalt, nickel or copper [2], and is widely distributed in the Earth's crust. The bulk of the world's neodymium is presently mined in China.

Neodymium compounds were first commercially used as a glass dye in 1927 and they remain a popular additive in glass. The color, due to the Nd(III) ion, is often a reddish-purple but changes with the type of lighting, due to fluorescent effects. Such neodymium-doped glass is also used in lasers emitting infrared light with the wavelength of 1.054–1.062 micrometers. Neodymium is also used with various other supporting crystals, such as in Nd:YAG lasers, which typically generate 1.064 micrometer light. This is one of the most significant solid-state lasers.

Neodymium's other chief application is as a free element, used as an alloy constituent of high strength neodymium magnets, the strongest permanent magnets known. These are widely used in such products as microphones, professional loudspeakers, in-ear headphones, and computer hard disks, where low mass, small volume, or strong magnetic fields are required. Larger neodymium magnets are used in high power/weight electric motors (for example in hybrid cars) and generators (for example aircraft and wind turbine generators).[3]

 

 

Contents

[hide]

  • 1 Characteristics
    • 1.1 Physical properties
    • 1.2 Chemical properties
    • 1.3 Compounds
    • 1.4 Isotopes
  • 2 History
  • 3 Occurrence and production
  • 4 Applications
    • 4.1 Magnets
    • 4.2 Neodymium doped lasers
    • 4.3 Neodymium glass for other applications
  • 5 Precautions
  • 6 See also
  • 7 References
  • 8 Books
  • 9 External links

[edit] Characteristics

[edit] Physical properties

Neodymium, a rare earth metal, was present in classical mischmetal to the extent of about 18%. The metal has a bright, silvery metallic luster; however, as one of the more reactive rare earth (lanthanide) metals, it quickly oxidizes in air. The oxide layer then falls off, which exposes the metal to further oxidation. Thus a centimeter-sized Nd sample completely oxidizes within a year.[4]

Neodymium exists in two allotropic forms, with a transformation from a double hexagonal to a body-centered cubic structure taking place at 863 °C.[5]

[edit] Chemical properties

Neodymium metal tarnishes slowly in air and burns readily at 150 °C to form neodymium(III) oxide:

 

4 Nd + 3 O2 → 2 Nd2O3

Neodymium is quite electropositive and reacts slowly with cold water and quite quickly with hot water to form neodymium hydroxide:

 

2 Nd (s) + 6 H2O (l) → 2 Nd(OH)3 (aq) + 3 H2 (g)

Neodymium metal reacts with all the halogens:

 

2 Nd (s) + 3 F2 (g) → 2 NdF3 (s) [violet]2 Nd (s) + 3 Cl2 (g) → 2 NdCl3 (s) [mauve]2 Nd (s) + 3 Br2 (g) → 2 NdBr3 (s) [violet]2 Nd (s) + 3 I2 (g) → 2 NdI3 (s) [green]

Neodymium dissolves readily in dilute sulfuric acid to form solutions containing the lilac Nd(III) ions, which exist as a [Nd(OH2)9]3+ complexes:[6]

 

2 Nd (s) + 3 H2SO4 (aq) → 2 Nd3+ (aq) + 3 SO2−

4 (aq) + 3 H2 (g)

[edit] Compounds

 

See also Category: Neodymium compounds

Neodymium compounds include

  • Halides: NdF3, NdCl3, NdBr3, NdI3
  • Oxides: Nd2O3
  • Sulfides: NdS, Nd2S3
  • Nitrides: NdN

[edit] Isotopes

Main article: Isotopes of neodymium

Naturally occurring neodymium is composed of 5 stable isotopes, 142Nd, 143Nd, 145Nd, 146Nd and 148Nd, with 142Nd being the most abundant (27.2% natural abundance), and 2 radioisotopes, 144Nd and 150Nd. In all, 31 radioisotopes of neodymium have been characterized up to now, with the most stable being naturally occurring isotopes 144Nd (alpha decay, a half-life (T½) of 2.29×1015 years) and 150Nd (double beta decay, T½ = 7×1018 years). All of the remaining radioactive isotopes have half-lives that are less than 11 days, and the majority of these have half-lives that are less than 70 seconds. This element also has 13 known meta states with the most stable being 139mNd (T½ = 5.5 hours), 135mNd (T½ = 5.5 minutes) and 133m1Nd (T½ ~ 70 seconds).

The primary decay modes before the most abundant stable isotope, 142Nd, are electron capture and positron decay, and the primary mode after is beta minus decay. The primary decay products before 142Nd are element Pr (praseodymium) isotopes and the primary products after are element Pm (promethium) isotopes.

[edit] History

Neodymium was discovered by Baron Carl Auer von Welsbach, an Austrian chemist, in Vienna in 1885. He separated neodymium, as well as the element praseodymium, from a material known as didymium by means of fractional crystallization of the double ammonium nitrate tetrahydrates from nitric acid, while following the separation by spectroscopic analysis; however, it was not isolated in relatively pure form until 1925. The name neodymium is derived from the Greek words neos (νέος), new, and didymos (διδύμος), twin.[7]

Double nitrate crystallization was the means of commercial neodymium purification until the 1950s. Lindsay Chemical Division was the first to commercialize large-scale ion-exchange purification of neodymium. Starting in the 1950s, high purity (above 99%) neodymium was primarily obtained through an ion exchange process from monazite, a mineral rich in rare earth elements. The metal itself is obtained through electrolysis of its halide salts. Currently, most neodymium is extracted from bastnäsite, (Ce,La,Nd,Pr)CO3F, and purified by solvent extraction. Ion-exchange purification is reserved for preparing the highest purities (typically >99.99 %). The evolving technology, and improved purity of commercially available neodymium oxide, was reflected in the appearance of neodymium glass that resides in collections today. Early neodymium glasses made in the 1930s have a more reddish or orange tinge than modern versions which are more cleanly purple, due to the difficulties in removing the last traces of praseodymium in the era when fractional crystallization technology had to be relied on.

[edit] Occurrence and production

 

 

 

 

Bastnäsite

Neodymium is never found in nature as the free element; rather, it occurs in ores such as monazite and bastnäsite that contain small amounts of all the rare earth metals. The main mining areas are China, United States, Brazil, India, Sri Lanka and Australia; and reserves of neodymium are estimated at about 8 million tonnes. Although it belongs to "rare earth metals," neodymium is not rare at all - its abundance in the Earth crust is about 38 mg/kg, which is the second among rare-earth elements after cerium. The world production of neodymium was about 7,000 tonnes per year in 2004.[7] The bulk of current production is from China, whose government has recently imposed strategic materials controls on the element, raising some concerns in consuming countries.[8]

Neodymium typically comprises 10 to 18% of the rare earth content of commercial orebodies of the light rare earth element (LREE) dominant minerals bastnasite and monazite.[citation needed] With neodymium being the most strongly colored trivalent lanthanide, that level of neodymium can occasionally dominate the coloration of rare earth minerals, when competing chromophores are absent, and provide a pink coloration. Outstanding examples of this include monazite crystals from the tin veins of Llallagua, Bolivia, ancylite from Mont Saint-Hilaire, Quebec, or lanthanite from the Saucon Valley of Pennsylvania. As with neodymium glass, such minerals change color under the differing lighting conditions. The absorption bands of neodymium interact with the visible mercury vapor emission spectrum, such that unfiltered shortwave UV light causes neodymium-containing minerals to reflect a distinct green color. This can be observed with monazite-containing sands or bastnasite-containing ore.

[edit] Applications

  • Neodymium has an unusually large specific heat capacity at liquid-helium temperatures, so is useful in cryocoolers
  • Probably because of similarities to Ca2+, Nd3+ has been reported[9] to promote plant growth. Rare earth element compounds are frequently used in China as fertilizer.
  • Samarium-neodymium dating is useful for determining the age relationships of rocks[10] and meteorites.
  • Size and strength of volcanic eruption can be predicted by scanning for neodymium isotopes. Small and large volcanic eruptions produce lava with different neodymium isotope composition. From the composition of isotopes, scientists predict how big the coming eruption will be, and use this information to warn residents of the intensity of the eruption.
  • Neodymium magnets are becoming popular as an implant, granting users "magnetic vision", that is, the ability to feel electromagnetic fields[11].

[edit] Magnets

 

 

 

 

Neodymium magnet on a bracket from a hard drive.

Neodymium magnets are the strongest permanent magnets known - Nd2Fe14B. A neodymium magnet of a few grams can lift a thousand times its own weight. These magnets are cheaper, lighter, and stronger than samarium-cobalt magnets. Neodymium magnets appear in products such as microphones, professional loudspeakers, in-ear headphones, guitar and bass guitar pick-ups and computer hard disks where low mass, small volume, or strong magnetic fields are required. Neodymium magnet electric motors have also been responsible for the development of purely electrical model aircraft within the first decade of the 21st century, to the point that these are displacing internal combustion powered models internationally. Likewise, due to this high magnetic-flux capacity, it is heavily used in the electric motors of hybrid automobiles and in the electricity generators of commercial wind turbines.

[edit] Neodymium doped lasers

 

 

 

 

Neodymium ions in various types of ionic crystals, and also in glasses, act as a laser gain medium, typically emitting 1064 nm light from a particular atomic transition in the neodymium ion, after being "pumped" into excitation from an external source

 

 

 

 

Neodymium doped glass slabs used in extremely powerful lasers for inertial confinement fusion.

Certain transparent materials with a small concentration of neodymium ions can be used in lasers as gain media for infrared wavelengths (1054-1064 nm), e.g. Nd:YAG (yttrium aluminium garnet), Nd:YLF (yttrium lithium fluoride), Nd:YVO4 (yttrium orthovanadate), and Nd:glass. Neodymium-doped crystals (typically Nd:YVO4) generate high-powered infrared laser beams which are converted to green laser light in commercial DPSS hand-held lasers and laser pointers.

The current laser at the UK Atomic Weapons Establishment (AWE), the HELEN (High Energy Laser Embodying Neodymium) 1-terawatt neodymium-glass laser, can access the midpoints of pressure and temperature regions and is used to acquire data for modeling on how density, temperature and pressure interact inside warheads. HELEN can create plasmas of around 106 K, from which opacity and transmission of radiation are measured.[12]

Neodymium glass solid-state lasers are used in extremely high power (terawatt scale), high energy (megajoules) multiple beam systems for inertial confinement fusion. Nd:glass lasers are usually frequency tripled to the third harmonic at 351 nm in laser fusion devices.

[edit] Neodymium glass for other applications

Neodymium glass (Nd:glass) is produced by the inclusion of neodymium oxide (Nd2O3) in the glass melt. Usually in daylight or incandescent light neodymium glass appears lavender, but it appears pale blue under fluorescent lighting. Neodymium may be used to color glass in delicate shades ranging from pure violet through wine-red and warm gray.

The first commercial use of purified neodymium was in glass coloration, starting with experiments by Leo Moser in November 1927. The resulting "Alexandrite" glass remains a signature color of the Moser glassworks to this day. Neodymium glass was widely emulated in the early 1930s by American glasshouses, most notably Heisey, Fostoria ("wisteria"), Cambridge ("heatherbloom"), and Steuben ("wisteria"), and elsewhere (e.g. Lalique, in France, or Murano). Tiffin's "twilight" remained in production from about 1950 to 1980.[13] Current sources include glassmakers in the Czech Republic, the United States, and China.

The sharp absorption bands of neodymium cause the glass color to change under different lighting conditions, being reddish-purple under daylight or yellow incandescent light, but blue under white fluorescent lighting, or greenish under trichromatic lighting. This color-change phenomenon is highly prized by collectors. In combination with gold or selenium, beautiful red colors result. Since neodymium coloration depends upon "forbidden" f-f transitions deep within the atom, there is relatively little influence on the color from the chemical environment, so the color is impervious to the thermal history of the glass. However, for the best color, iron-containing impurities need to be minimized in the silica used to make the glass. The same forbidden nature of the f-f transitions makes rare-earth colorants less intense than those provided by most d-transition elements, so more has to be used in a glass to achieve the desired color intensity. The original Moser recipe used about 5% of neodymium oxide in the glass melt, a sufficient quantity such that Moser referred to these as being "rare earth doped" glasses. Being a strong base, that level of neodymium would have affected the melting properties of the glass, and the lime content of the glass might have had to be adjusted accordingly.[14]

Light transmitted through neodymium glasses shows unusually sharp absorption bands; the glass is used in astronomical work to produce sharp bands by which spectral lines may be calibrated. Neodymium is also used to remove the green color caused by iron contaminants from glass. Neodymium is a component of didymium used for coloring glass to make welder's and glass-blower's goggles; the sharp absorption bands obliterate the strong sodium emission at 589 nm.

Neodymium and didymium glass are used in color-enhancing filters in indoor photography, particularly in filtering out the yellow hues from incandescent lighting.

Similarly, neodymium glass is becoming widely used more directly in incandescent light bulbs. These lamps contain neodymium in the glass to filter out yellow light, resulting in a whiter light which is more like sunlight.[15]

Neodymium has been patented for use in automobile rear-view mirrors, to reduce the glare at night.

Similar to its use in glasses, neodymium salts are used as a colorant for enamels.

[edit] Precautions

Neodymium metal dust is a combustion and explosion hazard. Neodymium compounds, as with all rare earth metals, are of low to moderate toxicity; however its toxicity has not been thoroughly investigated. Neodymium dust and salts are very irritating to the eyes and mucous membranes, and moderately irritating to skin. Breathing the dust can cause lung embolisms, and accumulated exposure damages the liver. Neodymium also acts as an anticoagulant, especially when given intravenously.[7]

Neodymium magnets have been tested for medical uses such as magnetic braces and bone repair, but biocompatibility issues have prevented widespread application. Commercially available magnets made from neodymium are exceptionally strong, and can attract each other from large distances. If not handled carefully, they come together very quickly and forcefully, causing injuries. For example, there is at least one documented case of a person losing a finger when two magnets he was using snapped together from 50 cm away.[16]

[edit] See also

  • Neodymium magnet (NIB or Nd2Fe14B)

 

 

引用出處: 

 http://en.wikipedia.org/wiki/Neodymium

歡迎來到Bewise Inc.的世界,首先恭喜您來到這接受新的資訊讓產業更有競爭力,我們是提供專業刀具製造商,應對客戶高品質的刀具需求,我們可以協助客戶滿足您對產業的不同要求,我們有能力達到非常卓越的客戶需求品質,這是現有相關技術無法比擬的,我們成功的滿足了各行各業的要求,包括:精密HSS DIN切削刀具協助客戶設計刀具流程DIN or JIS 鎢鋼切削刀具設計NAS986 NAS965 NAS897 NAS937orNAS907 航太切削刀具,NAS航太刀具設計超高硬度的切削刀具醫療配件刀具設計複合式再研磨機PCD地板專用企口鑽石組合刀具粉末造粒成型機主機版專用頂級電桿PCBN刀具PCD刀具單晶刀具PCD V-Cut捨棄式圓鋸片組粉末成型機航空機械鉸刀主機版專用頂級電汽車業刀具設計電子產業鑽石刀具木工產業鑽石刀具銑刀與切斷複合再研磨機銑刀與鑽頭複合再研磨機銑刀與螺絲攻複合再研磨機等等。我們的產品涵蓋了從民生刀具到工業級的刀具設計;從微細刀具到大型刀具;從小型生產到大型量產;全自動整合;我們的技術可提供您連續生產的效能,我們整體的服務及卓越的技術,恭迎您親自體驗!!  

BW Bewise Inc. Willy Chen willy@tool-tool.com  bw@tool-tool.com  www.tool-tool.com skype:willy_chen_bw mobile:0937-618-190 Head &Administration Office No.13,Shiang Shang 2nd St., West Chiu Taichung,Taiwan 40356 http://www.tool-tool.com/ / FAX:+886 4 2471 4839 N.Branch 5F,No.460,Fu Shin North Rd.,Taipei,Taiwan S.Branch No.24,Sec.1,Chia Pu East Rd.,Taipao City,Chiayi Hsien,Taiwan

Welcome to BW tool world! We are an experienced tool maker specialized in cutting tools. We focus on what you need and endeavor to research the best cutter to satisfy users demand. Our customers involve wide range of industries, like mold & die, aerospace, electronic, machinery, etc. We are professional expert in cutting field. We would like to solve every problem from you. Please feel free to contact us, its our pleasure to serve for you. BW product including: cutting toolaerospace tool .HSS  DIN Cutting toolCarbide end millsCarbide cutting toolNAS Cutting toolNAS986 NAS965 NAS897 NAS937orNAS907 Cutting Tools,Carbide end milldisc milling cutter,Aerospace cutting toolhss drillФрезерыCarbide drillHigh speed steelCompound SharpenerMilling cutterINDUCTORS FOR PCD’CVDD(Chemical Vapor Deposition Diamond )’PCBN (Polycrystalline Cubic Boron Nitride) Core drillTapered end millsCVD Diamond Tools Inserts’PCD Edge-Beveling Cutter(Golden FingerPCD V-CutterPCD Wood toolsPCD Cutting toolsPCD Circular Saw BladePVDD End Millsdiamond tool. INDUCTORS FOR PCD . POWDER FORMING MACHINE Single Crystal Diamond Metric end millsMiniature end millsСпециальные режущие инструменты Пустотелое сверло Pilot reamerFraisesFresas con mango PCD (Polycrystalline diamond) ‘FresePOWDER FORMING MACHINEElectronics cutterStep drillMetal cutting sawDouble margin drillGun barrelAngle milling cutterCarbide burrsCarbide tipped cutterChamfering toolIC card engraving cutterSide cutterStaple CutterPCD diamond cutter specialized in grooving floorsV-Cut PCD Circular Diamond Tipped Saw Blade with Indexable Insert PCD Diamond Tool Saw Blade with Indexable InsertNAS toolDIN or JIS toolSpecial toolMetal slitting sawsShell end millsSide and face milling cuttersSide chip clearance sawsLong end millsend mill grinderdrill grindersharpenerStub roughing end millsDovetail milling cuttersCarbide slot drillsCarbide torus cuttersAngel carbide end millsCarbide torus cuttersCarbide ball-nosed slot drillsMould cutterTool manufacturer.

Bewise Inc.  www.tool-tool.com

ようこそBewise Inc.の世界へお越し下さいませ、先ず御目出度たいのは新たな

情報を受け取って頂き、もっと各産業に競争力プラス展開。

弊社は専門なエンドミルの製造メーカーで、客先に色んな分野のニーズ

豊富なパリエーションを満足させ、特にハイテク品質要求にサポート致します。

弊社は各領域に供給できる内容は:

(1)精密HSSエンドミルのR&D

(2)Carbide Cutting tools設計

(3)鎢鋼エンドミル設計

(4)航空エンドミル設計

(5)超高硬度エンドミル

(6)ダイヤモンドエンドミル

(7)医療用品エンドミル設計

(8)自動車部品&材料加工向けエンドミル設計

弊社の製品の供給調達機能は:

(1)生活産業~ハイテク工業までのエンドミル設計

(2)ミクロエンドミル~大型エンドミル供給

(3)小Lot生産~大量発注対応供給

(4)オートメーション整備調達

(5)スポット対応~流れ生産対応

弊社の全般供給体制及び技術自慢の総合専門製造メーカーに貴方のご体験を御待ちしております。   

Bewise Inc. talaşlı imalat sanayinde en fazla kullanılan ve üç eksende (x,y,z) talaş kaldırabilen freze takımlarından olan Parmak Freze imalatçısıdır. Çok geniş ürün yelpazesine sahip olan firmanın başlıca ürünlerini Karbür Parmak Frezeler, Kalıpçı Frezeleri, Kaba Talaş Frezeleri, Konik Alın Frezeler, Köşe Radyüs Frezeler, İki Ağızlı Kısa ve Uzun Küresel Frezeler, İç Bükey Frezeler vb. şeklinde sıralayabiliriz.

BW специализируется в научных исследованиях и разработках, и снабжаем самым высокотехнологичным карбидовым материалом для поставки режущих / фрезеровочных инструментов для почвы, воздушного пространства и электронной индустрии. В нашу основную продукцию входит твердый карбид / быстрорежущая сталь, а также двигатели, микроэлектрические дрели, IC картонорезальные машины, фрезы для гравирования, режущие пилы, фрезеры-расширители, фрезеры-расширители с резцом, дрели, резаки форм для шлицевого вала / звездочки роликовой цепи, и специальные нано инструменты. Пожалуйста, посетите сайт  www.tool-tool.com  для получения большей информации.

BW is specialized in R&D and sourcing the most advanced carbide material with high-tech coating to supply cutting / milling tool for mould & die, aero space and electronic industry. Our main products include solid carbide / HSS end mills, micro electronic drill, IC card cutter, engraving cutter, shell end mills, cutting saw, reamer, thread reamer, leading drill, involute gear cutter for spur wheel, rack and worm milling cutter, thread milling cutter, form cutters for spline shaft/roller chain sprocket, and special tool, with nano grade. Please visit our web  www.tool-tool.com  for more info.

 

beeway 發表在 痞客邦 留言(0) 人氣()

钕,原子序数 60,原子量144.24,元素名来源于希腊文,原意是“栾生” 。1841年瑞典化学家莫桑德尔从铈土中得到镨、钕的混合物;1885年奥地利的韦耳斯拔从中分离出绿色的镨盐和玫瑰色的钕盐,并确定它们是两种新元素。 钕在地壳中的含量为0.00239%,主要存在于独居石和氟碳铈矿中。自然界存在7种钕的同位素:钕142、143、144、145、146、148、 150,其中钕142含量最高。

纠错 编辑摘要

目录

  • 1 概述
  • 2 性质
  • 3 发现
  • 4 主要用途
  • 5 发现小史
  •  

  • 1 概述
  • 2 性质
  • 3 发现
  • 4 主要用途
  • 5 发现小史
  • 6 参考资料:

 

钕 - 概述

钕 为银白色金属,熔点1024°C,密度7.004克/厘米³。钕是最活泼的稀土金属之一,在空气中能迅速变暗,生成氧化物;在冷水中缓慢反应,在热水中反 应迅速。掺钕的钇铝石榴石和钕玻璃可代替红宝石做激光材料,钕和镨玻璃可做护目镜。钕(Nd):伴随着镨元素的诞生,钕元素也应运而生,钕元素的到来活跃 了稀土领域,在稀土领域中扮演着重要角色,并且左右着稀土市场。

 

钕 - 性质

 

 

体积弹性模量:Gpa,31.8

原子化焓:kJ /mol @25℃322

热容:J /(mol• K):27.45

导电性:10^6/(cm •Ω  ):0.0157

导热系数:W/(m•K):16.5

熔化热:(千焦/摩尔):7.140

汽化热:(千焦/摩尔):273.0

原子体积:(立方厘米/摩尔):20.6

元素在宇宙中的含量:(ppm):0.01

元素名称:钕

元素在太阳中的含量:(ppm):0.003

元素在海水中的含量:(ppm) 

太平洋表面  0.0000018

地壳中含量:(ppm):38

元素原子量:144.2

晶体结构:晶胞为六方晶胞。

相对原子质量: 144.2 

常见化合价: +3  

电负性: 1.14  

外围电子排布: 4f4 6s2  

核外电子排布: 2,8,18,22,8,2  

同位素及放射线:   *Nd-142 Nd-143 Nd-144(放 α[2.1E15y]) Nd-145 Nd-146 Nd-147[10.98d] Nd-148 Nd-149[1.72h] Nd-150

 

电子亲合和能: 0 KJ•mol-1 

第一电离能: 530 KJ•mol-1 

第二电离能: 1034 KJ•mol-1 

第三电离能: 0 KJ•mol-1 

单质密度: 7.007 g/cm3 

单质熔点: 1010.0 ℃ 

单质沸点: 3127.0 ℃ 

原子半径: 2.64 埃 

离子半径: 未知 埃 

共价半径: 1.64 埃 

晶胞参数:

a = 365.8 pm 

b = 365.8 pm 

c = 1179.9 pm 

α = 90° 

β = 90° 

γ = 120°

氧化态:

Main  Nd+3 

Other  Nd+2, Nd+4 

维氏硬度:343MPa    

声音在其中的传播速率:(m/S) 2330

电离能 (kJ /mol)  

M - M+ 529.6 

M+ - M2+ 1035 

M2+ - M3+ 2130 

M3+ - M4+ 3899

 

钕 - 发现

 

发现人:冯•韦尔塞巴赫    

发现年代:1885年

发现过程:1885年由冯•韦尔塞巴赫发现的。

元素描述:银白色金属,较活泼,室温下在空气中缓慢氧化,能与水和酸作用放出氢。有顺磁性。

元素来源:存在于独居石中,由含水氯化钕经脱水后用金属钙还原,或由无水氯化钕经熔融后电解而制得。元素用途:用于制造特种合金、电子仪器和光学玻璃。在制造激光器材方面,有着重要的应用。

元素辅助资料:

自 莫桑德尔先后发现镧、 铒和铽以后,各国化学家特别注意从已发现的稀土元素去分离新的元素。在发现钐和钆的同一时期里,1885年奥地利化学家韦尔塞巴赫从didymium(当 时被认为是一种稀土元素)的氧化物中分离出两种新元素的氧化物,其中一种被命名为neodidymium,后来被简化为neodymium,元素符号 Pr。

钕、镨、钆、钐都是从当时被认为是一种稀土元素膁idymium中分离出来的。由于它们的发现,didymium不再被保留。而正是 它们的发现打开了发现稀土元素的第三道大门,是发现稀土元素的第三阶段。但这仅是完成了第三阶段的一半工作。确切的将应该是打开了铈的大门或完成了铈的分 离,另一半就将是打开钇的大门或是完成钇的分离。

 

钕 - 主要用途

 

镨钕合金

钕元素的到来活跃了稀土领域,在稀土领域中扮演着重要角色,并且左右着稀土市场。钕元素凭借其在稀土领域中的独特地位,多年来成为市场关注的热点。

1、金属钕的最大用户是钕铁硼永磁材料。钕铁硼永磁体的问世,为稀土高科技领域注入了新的生机与活力。钕铁硼磁体磁能积高,被称作当代"永磁之王",以其优异的性能广泛用于电子、机械等行业。阿尔法磁谱仪的研制成功,标志着我国钕铁硼磁体的各项磁性能已跨入世界一流水平。

2、钕还应用于有色金属材料。在镁或铝合金中添加1.5~2.5%钕,可提高合金的高性能、气密性和耐腐蚀性,广泛用作航空航天材料。

3、另外,掺钕的钇铝石榴石产生短波激光束,在工业上广泛用于厚度在10mm以下薄型材料的焊接和切削。

4、在医疗上,掺钕钇铝石榴石激光器代替手术刀用于摘除手术或消毒创伤口。钕也用于玻璃和陶瓷材料的着色以及橡胶制品的添加剂。

随着科学技术的发展,稀土科技领域的拓展和延伸,钕元素将会有更广阔的利用空间。

 

钕 - 发现小史

 

钕 是稀土金属 中的一种。稀土是历史遗留的名称,从18世纪末叶开始被陆续发现。当时人们惯于把不溶于水的固体氧化物称作土,例如把氧化铝叫做陶土,氧化镁叫苦土。稀土 是以氧化物状态分离出来,很稀少,因而得名稀土,稀土元素的原子序数是21(Sc)、39(Y)、57(La)至71(Lu)。它们的化学性质很相似,这 是由于核外电子结构特点所决定的。它们一般均生成三价化合物。钪的化学性质与其它稀土差别明显,一般稀土矿物中不含钪。钷是从铀反应堆裂变产物中获得,放 射性元素147Pm半衰期2.7年。过去认为钷在自然界中不存在,直到1965年,荷兰的一个磷酸盐工厂在处理磷灰石中,才发现了钷的痕量成分。

因 此,中国1968年将钷划入64种有色金属之 外。1787年瑞典人阿累尼斯(C.A.Arrhenius)在斯德哥尔摩(Stockholm)附近的伊特比(Ytterby)小镇上寻得了一块不寻常 的黑色矿石,1794年芬兰化学家加多林(J.Gadolin)研究了这种矿石,从其中分离出一种新物质,三年后(1797年),瑞典人爱克伯格 (A.G.Ekeberg)证实了这一发现,并以发现地名给新的物质命名为Ytteia(钇土)。后来为了纪念加多林,称这种矿石为 Gadolinite(加多林矿,即硅铍钇矿)。 1803年德国化学家克拉普罗兹(M.H.Klaproth)和瑞典化学家柏齐力阿斯 (J.J.Berzelius)及希生格尔(W.Hisinger)同时分别从另一矿石(铈硅矿)中发现了另一种新的物质---铈土(Ceria)。

1839 年瑞典人莫桑得尔(C.G.Mosander)发现了镧和 镨钕混合物(didymium)。1885年奥地利人威斯巴克(A.V.Welsbach)从莫桑得尔认为是“新元素”的镨钕混合物中发现了镨和钕。 1879年法国人布瓦普德朗(L.D.Boisbauder)发现了钐。1901年法国人德马尔赛(E.A.Demarcay)发现了铕。1880年瑞士 马利纳克(J.C.G.De Marignac)发现了钆。1843年莫桑得尔发现了铽和铒。1886年布瓦普德朗发现了镝。1879年瑞典人克利夫 (P.T.Cleve)发现了钬和铥。1974年美国人马瑞斯克(J.A.Marisky)等从铀裂产物中得到钷。1879年瑞典人尼尔松 (L.F.Nilson)发现了钪。从1794年加多林分离出钇土至1947年制得钷,历时150多年。

 

引用出處: 

 http://www.hudong.com/wiki/%E9%92%95

歡迎來到Bewise Inc.的世界,首先恭喜您來到這接受新的資訊讓產業更有競爭力,我們是提供專業刀具製造商,應對客戶高品質的刀具需求,我們可以協助客戶滿足您對產業的不同要求,我們有能力達到非常卓越的客戶需求品質,這是現有相關技術無法比擬的,我們成功的滿足了各行各業的要求,包括:精密HSS DIN切削刀具協助客戶設計刀具流程DIN or JIS 鎢鋼切削刀具設計NAS986 NAS965 NAS897 NAS937orNAS907 航太切削刀具,NAS航太刀具設計超高硬度的切削刀具醫療配件刀具設計複合式再研磨機PCD地板專用企口鑽石組合刀具粉末造粒成型機主機版專用頂級電桿PCBN刀具PCD刀具單晶刀具PCD V-Cut捨棄式圓鋸片組粉末成型機航空機械鉸刀主機版專用頂級電汽車業刀具設計電子產業鑽石刀具木工產業鑽石刀具銑刀與切斷複合再研磨機銑刀與鑽頭複合再研磨機銑刀與螺絲攻複合再研磨機等等。我們的產品涵蓋了從民生刀具到工業級的刀具設計;從微細刀具到大型刀具;從小型生產到大型量產;全自動整合;我們的技術可提供您連續生產的效能,我們整體的服務及卓越的技術,恭迎您親自體驗!!  

BW Bewise Inc. Willy Chen willy@tool-tool.com  bw@tool-tool.com  www.tool-tool.com skype:willy_chen_bw mobile:0937-618-190 Head &Administration Office No.13,Shiang Shang 2nd St., West Chiu Taichung,Taiwan 40356 http://www.tool-tool.com/ / FAX:+886 4 2471 4839 N.Branch 5F,No.460,Fu Shin North Rd.,Taipei,Taiwan S.Branch No.24,Sec.1,Chia Pu East Rd.,Taipao City,Chiayi Hsien,Taiwan

Welcome to BW tool world! We are an experienced tool maker specialized in cutting tools. We focus on what you need and endeavor to research the best cutter to satisfy users demand. Our customers involve wide range of industries, like mold & die, aerospace, electronic, machinery, etc. We are professional expert in cutting field. We would like to solve every problem from you. Please feel free to contact us, its our pleasure to serve for you. BW product including: cutting toolaerospace tool .HSS  DIN Cutting toolCarbide end millsCarbide cutting toolNAS Cutting toolNAS986 NAS965 NAS897 NAS937orNAS907 Cutting Tools,Carbide end milldisc milling cutter,Aerospace cutting toolhss drillФрезерыCarbide drillHigh speed steelCompound SharpenerMilling cutterINDUCTORS FOR PCD’CVDD(Chemical Vapor Deposition Diamond )’PCBN (Polycrystalline Cubic Boron Nitride) Core drillTapered end millsCVD Diamond Tools Inserts’PCD Edge-Beveling Cutter(Golden FingerPCD V-CutterPCD Wood toolsPCD Cutting toolsPCD Circular Saw BladePVDD End Millsdiamond tool. INDUCTORS FOR PCD . POWDER FORMING MACHINE Single Crystal Diamond Metric end millsMiniature end millsСпециальные режущие инструменты Пустотелое сверло Pilot reamerFraisesFresas con mango PCD (Polycrystalline diamond) ‘FresePOWDER FORMING MACHINEElectronics cutterStep drillMetal cutting sawDouble margin drillGun barrelAngle milling cutterCarbide burrsCarbide tipped cutterChamfering toolIC card engraving cutterSide cutterStaple CutterPCD diamond cutter specialized in grooving floorsV-Cut PCD Circular Diamond Tipped Saw Blade with Indexable Insert PCD Diamond Tool Saw Blade with Indexable InsertNAS toolDIN or JIS toolSpecial toolMetal slitting sawsShell end millsSide and face milling cuttersSide chip clearance sawsLong end millsend mill grinderdrill grindersharpenerStub roughing end millsDovetail milling cuttersCarbide slot drillsCarbide torus cuttersAngel carbide end millsCarbide torus cuttersCarbide ball-nosed slot drillsMould cutterTool manufacturer. 

Bewise Inc.  www.tool-tool.com

ようこそBewise Inc.の世界へお越し下さいませ、先ず御目出度たいのは新たな

情報を受け取って頂き、もっと各産業に競争力プラス展開。

弊社は専門なエンドミルの製造メーカーで、客先に色んな分野のニーズ

豊富なパリエーションを満足させ、特にハイテク品質要求にサポート致します。

弊社は各領域に供給できる内容は:

(1)精密HSSエンドミルのR&D

(2)Carbide Cutting tools設計

(3)鎢鋼エンドミル設計

(4)航空エンドミル設計

(5)超高硬度エンドミル

(6)ダイヤモンドエンドミル

(7)医療用品エンドミル設計

(8)自動車部品&材料加工向けエンドミル設計

弊社の製品の供給調達機能は:

(1)生活産業~ハイテク工業までのエンドミル設計

(2)ミクロエンドミル~大型エンドミル供給

(3)小Lot生産~大量発注対応供給

(4)オートメーション整備調達

(5)スポット対応~流れ生産対応

弊社の全般供給体制及び技術自慢の総合専門製造メーカーに貴方のご体験を御待ちしております。     

Bewise Inc. talaşlı imalat sanayinde en fazla kullanılan ve üç eksende (x,y,z) talaş kaldırabilen freze takımlarından olan Parmak Freze imalatçısıdır. Çok geniş ürün yelpazesine sahip olan firmanın başlıca ürünlerini Karbür Parmak Frezeler, Kalıpçı Frezeleri, Kaba Talaş Frezeleri, Konik Alın Frezeler, Köşe Radyüs Frezeler, İki Ağızlı Kısa ve Uzun Küresel Frezeler, İç Bükey Frezeler vb. şeklinde sıralayabiliriz. 

BW специализируется в научных исследованиях и разработках, и снабжаем самым высокотехнологичным карбидовым материалом для поставки режущих / фрезеровочных инструментов для почвы, воздушного пространства и электронной индустрии. В нашу основную продукцию входит твердый карбид / быстрорежущая сталь, а также двигатели, микроэлектрические дрели, IC картонорезальные машины, фрезы для гравирования, режущие пилы, фрезеры-расширители, фрезеры-расширители с резцом, дрели, резаки форм для шлицевого вала / звездочки роликовой цепи, и специальные нано инструменты. Пожалуйста, посетите сайт  www.tool-tool.com  для получения большей информации.

BW is specialized in R&D and sourcing the most advanced carbide material with high-tech coating to supply cutting / milling tool for mould & die, aero space and electronic industry. Our main products include solid carbide / HSS end mills, micro electronic drill, IC card cutter, engraving cutter, shell end mills, cutting saw, reamer, thread reamer, leading drill, involute gear cutter for spur wheel, rack and worm milling cutter, thread milling cutter, form cutters for spline shaft/roller chain sprocket, and special tool, with nano grade. Please visit our web  www.tool-tool.com  for more info.

 

beeway 發表在 痞客邦 留言(0) 人氣()

Praseodymium is a soft, silvery, malleable and ductile metal in the lanthanide group. It is somewhat more resistant to corrosion in air than europium, lanthanum, cerium, or neodymium, but it does develop a green oxide coating that spalls off when exposed to air, exposing more metal to oxidation — a centimeter-sized sample of Pr completely oxidizes within a year.[2] For this reason, praseodymium is usually stored under a light mineral oil or sealed in glass.

Contrary to other rare-earth metals, which show antiferromagnetic or/and ferromagnetic ordering at low temperatures, Pr is paramagnetic at any temperature above 1 K.[1]

[edit] Chemical properties

Praseodymium metal tarnishes slowly in air and burns readily at 150 °C to form praseodymium(III,IV) oxide:

 

12 Pr + 11 O2 → 2 Pr6O11

Praseodymium is quite electropositive and reacts slowly with cold water and quite quickly with hot water to form praseodymium hydroxide:

 

2 Pr (s) + 6 H2O (l) → 2 Pr(OH)3 (aq) + 3 H2 (g)

Praseodymium metal reacts with all the halogens:

 

2 Pr (s) + 3 F2 (g) → 2 PrF3 (s) [green]2 Pr (s) + 3 Cl2 (g) → 2 PrCl3 (s) [green]2 Pr (s) + 3 Br2 (g) → 2 PrBr3 (s) [green]2 Pr (s) + 3 I2 (g) → 2 PrI3 (s) [green]

Praseodymium dissolves readily in dilute sulfuric acid to form solutions containing green Pr(III) ions, which exist as a [Pr(OH2)9]3+ complexes:[3]

 

2 Pr (s) + 3 H2SO4 (aq) → 2 Pr3+(aq) + 3 SO2−

4 (aq) + 3 H2 (g)

[edit] Compounds

See also: Category:Praseodymium compounds

In its compounds, praseodymium occurs in oxidation states +2, +3 and/or +4. Praseodymium(IV) is a strong oxidant, instantly oxidizing water to elemental oxygen (O2), or hydrochloric acid to elemental chlorine. Thus, in aqueous solution, only the +3 oxidation state is encountered. Praseodymium(III) salts are yellow-green and, in solution, present a fairly simple absorption spectrum in the visible region, with a band in the yellow-orange at 589-590 nm (which coincides with the sodium emission doublet), and three bands in the blue/violet region, at 444, 468, and 482 nm, approximately. These positions vary slightly with the counter-ion. Praseodymium oxide, as obtained by the ignition of salts such as the oxalate or carbonate in air, is essentially black in color (with a hint of brown or green) and contains +3 and +4 praseodymium in a somewhat variable ratio, depending upon the conditions of formation. Its formula is conventionally rendered as Pr6O11.

Other praseodymium compounds include:

  • Fluorides: PrF2, PrF3, PrF4
  • Chlorides: PrCl3
  • Bromides: PrBr3, Pr2Br5
  • Iodides: PrI2, PrI3, Pr2I5
  • Oxides: PrO2, Pr2O3, Pr6O11
  • Sulfides: PrS, Pr2S3
  • Sulfates: Pr2(SO4)3
  • Selenides: PrSe
  • Tellurides: PrTe, Pr2Te3
  • Nitrides: PrN

[edit] Isotopes

Main article: isotopes of praseodymium

Naturally occurring praseodymium is composed of one stable isotope, 141Pr. Thirty-eight radioisotopes have been characterized with the most stable being 143Pr with a half-life of 13.57 days and 142Pr with a half-life of 19.12 hours. All of the remaining radioactive isotopes have half-lives that are less than 5.985 hours and the majority of these have half-lives that are less than 33 seconds. This element also has six meta states with the most stable being 138mPr (t½ 2.12 hours), 142mPr (t½ 14.6 minutes) and 134mPr (t½ 11 minutes).

The isotopes of praseodymium range in atomic weight from 120.955 u (121Pr) to 158.955 u (159Pr). The primary decay mode before the stable isotope, 141Pr, is electron capture and the primary mode after is beta minus decay. The primary decay products before 141Pr are element 58 (cerium) isotopes and the primary products after are element 60 (neodymium) isotopes.

[edit] History

The name praseodymium comes from the Greek prasios (πράσιος), meaning green, and didymos (δίδυμος), twin. Praseodymium is frequently misspelled as praseodynium.

In 1841, Mosander extracted the rare earth didymium from lanthana. In 1874, Per Teodor Cleve concluded that didymium was in fact two elements, and in 1879, Lecoq de Boisbaudran isolated a new earth, samarium, from didymium obtained from the mineral samarskite. In 1885, the Austrian chemist baron Carl Auer von Welsbach separated didymium into two elements, praseodymium and neodymium, which gave salts of different colors.

Leo Moser (son of Ludwig Moser, founder of the Moser Glassworks in what is now Karlovy Vary, Bohemia, in the Czech Republic, not to be confused with Leo Moser, a mathematician) investigated the use of praseodymium in glass coloration in the late 1920s. The result was a yellow-green glass given the name "Prasemit". However, a similar color could be achieved with colorants costing only a minute fraction of what praseodymium cost in the late 1920s, such that the color was not popular, few pieces were made, and examples are now extremely rare. Moser also blended praseodymium with neodymium to produce "Heliolite" glass ("Heliolit" in German), which was more widely accepted. The first enduring commercial use of purified praseodymium, which continues today, is in the form of a yellow-orange stain for ceramics, "Praseodymium Yellow", which is a solid-solution of praseodymium in the zirconium silicate (zircon) lattice. This stain has no hint of green in it. By contrast, at sufficiently high loadings, praseodymium glass is distinctly green, rather than pure yellow.[4]

Using classical separation methods, praseodymium was always difficult to purify. Much less abundant than the lanthanum and neodymium from which it was being separated (cerium having long since been removed by redox chemistry), praseodymium ended up being dispersed among a large number of fractions, and the resulting yields of purified material were low. Praseodymium has historically been a rare earth whose supply has exceeded demand. This has occasionally led to its being offered more cheaply than the far more abundant neodymium. Unwanted as such, much praseodymium has been marketed as a mixture with lanthanum and cerium, or "LCP" for the first letters of each of the constituents, for use in replacing the traditional lanthanide mixtures that were inexpensively made from monazite or bastnäsite. LCP is what remains of such mixtures, after the desirable neodymium, and all the heavier, rarer and more valuable lanthanides have been removed, by solvent extraction. However, as technology progresses, it has been found that praseodymium can be incorporated into neodymium-iron-boron magnets, thereby extending the supply of the much in demand neodymium[citation needed]. So LC is starting to replace LCP as a result.

[edit] Occurrence

 

 

 

 

Monazite

Praseodymium is available in small quantities in Earth’s crust (9.5 ppm). It is found in the rare earth minerals monazite and bastnäsite, typically comprising about 5% of the lanthanides contained therein, and can be recovered from these minerals by an ion exchange process, or by counter-current solvent extraction. Misch metal, used in making cigarette lighters, contains about 5% praseodymium metal.[5]

[edit] Applications

Uses of praseodymium:

  • As an alloying agent with magnesium to create high-strength metals that are used in aircraft engines.[6][7]
  • Praseodymium forms the core of carbon arc lights which are used in the motion picture industry for studio lighting and projector lights.
  • Praseodymium compounds give glasses and enamels a yellow color.[8]
  • Praseodymium is used to color cubic zirconia yellow-green, to simulate the mineral peridot.
  • Praseodymium is a component of didymium glass, which is used to make certain types of welder's and glass blower's goggles.[8]
  • Silicate glass doped with praseodymium ions has been used to slow a light pulse down to a few hundred meters per second.[9]
  • Praseodymium alloyed with nickel (PrNi5) has such a strong magnetocaloric effect that it has allowed scientists to approach within one thousandth of a degree of absolute zero.[10]
  • Doping praseodymium in fluoride glass allows it to be used as a single mode fiber optical amplifier.[11]
  • Praseodymium oxide in solid solution with ceria, or with ceria-zirconia, have been used as oxidation catalysts.[12]
  • Modern ferrocerium firesteel products, commonly referred to as "flint", used in lighters, torch strikers, "flint and steel" fire starters, etc., contain around 4% praseodymium.[8]

[edit] Precautions

Like all rare earths, praseodymium is of low to moderate toxicity. Praseodymium has no known biological role.

引用出處: 

 http://en.wikipedia.org/wiki/Praseodymium

歡迎來到Bewise Inc.的世界,首先恭喜您來到這接受新的資訊讓產業更有競爭力,我們是提供專業刀具製造商,應對客戶高品質的刀具需求,我們可以協助客戶滿足您對產業的不同要求,我們有能力達到非常卓越的客戶需求品質,這是現有相關技術無法比擬的,我們成功的滿足了各行各業的要求,包括:精密HSS DIN切削刀具協助客戶設計刀具流程DIN or JIS 鎢鋼切削刀具設計NAS986 NAS965 NAS897 NAS937orNAS907 航太切削刀具,NAS航太刀具設計超高硬度的切削刀具醫療配件刀具設計複合式再研磨機PCD地板專用企口鑽石組合刀具粉末造粒成型機主機版專用頂級電桿PCBN刀具PCD刀具單晶刀具PCD V-Cut捨棄式圓鋸片組粉末成型機航空機械鉸刀主機版專用頂級電汽車業刀具設計電子產業鑽石刀具木工產業鑽石刀具銑刀與切斷複合再研磨機銑刀與鑽頭複合再研磨機銑刀與螺絲攻複合再研磨機等等。我們的產品涵蓋了從民生刀具到工業級的刀具設計;從微細刀具到大型刀具;從小型生產到大型量產;全自動整合;我們的技術可提供您連續生產的效能,我們整體的服務及卓越的技術,恭迎您親自體驗!!

BW Bewise Inc. Willy Chen willy@tool-tool.com  bw@tool-tool.com  www.tool-tool.com skype:willy_chen_bw mobile:0937-618-190 Head &Administration Office No.13,Shiang Shang 2nd St., West Chiu Taichung,Taiwan 40356 http://www.tool-tool.com/ / FAX:+886 4 2471 4839 N.Branch 5F,No.460,Fu Shin North Rd.,Taipei,Taiwan S.Branch No.24,Sec.1,Chia Pu East Rd.,Taipao City,Chiayi Hsien,Taiwan

Welcome to BW tool world! We are an experienced tool maker specialized in cutting tools. We focus on what you need and endeavor to research the best cutter to satisfy users demand. Our customers involve wide range of industries, like mold & die, aerospace, electronic, machinery, etc. We are professional expert in cutting field. We would like to solve every problem from you. Please feel free to contact us, its our pleasure to serve for you. BW product including: cutting toolaerospace tool .HSS  DIN Cutting toolCarbide end millsCarbide cutting toolNAS Cutting toolNAS986 NAS965 NAS897 NAS937orNAS907 Cutting Tools,Carbide end milldisc milling cutter,Aerospace cutting toolhss drillФрезерыCarbide drillHigh speed steelCompound SharpenerMilling cutterINDUCTORS FOR PCD’CVDD(Chemical Vapor Deposition Diamond )’PCBN (Polycrystalline Cubic Boron Nitride) Core drillTapered end millsCVD Diamond Tools Inserts’PCD Edge-Beveling Cutter(Golden FingerPCD V-CutterPCD Wood toolsPCD Cutting toolsPCD Circular Saw BladePVDD End Millsdiamond tool. INDUCTORS FOR PCD . POWDER FORMING MACHINE Single Crystal Diamond Metric end millsMiniature end millsСпециальные режущие инструменты Пустотелое сверло Pilot reamerFraisesFresas con mango PCD (Polycrystalline diamond) ‘FresePOWDER FORMING MACHINEElectronics cutterStep drillMetal cutting sawDouble margin drillGun barrelAngle milling cutterCarbide burrsCarbide tipped cutterChamfering toolIC card engraving cutterSide cutterStaple CutterPCD diamond cutter specialized in grooving floorsV-Cut PCD Circular Diamond Tipped Saw Blade with Indexable Insert PCD Diamond Tool Saw Blade with Indexable InsertNAS toolDIN or JIS toolSpecial toolMetal slitting sawsShell end millsSide and face milling cuttersSide chip clearance sawsLong end millsend mill grinderdrill grindersharpenerStub roughing end millsDovetail milling cuttersCarbide slot drillsCarbide torus cuttersAngel carbide end millsCarbide torus cuttersCarbide ball-nosed slot drillsMould cutterTool manufacturer.

Bewise Inc.  www.tool-tool.com

ようこそBewise Inc.の世界へお越し下さいませ、先ず御目出度たいのは新たな

情報を受け取って頂き、もっと各産業に競争力プラス展開。

弊社は専門なエンドミルの製造メーカーで、客先に色んな分野のニーズ

豊富なパリエーションを満足させ、特にハイテク品質要求にサポート致します。

弊社は各領域に供給できる内容は:

(1)精密HSSエンドミルのR&D

(2)Carbide Cutting tools設計

(3)鎢鋼エンドミル設計

(4)航空エンドミル設計

(5)超高硬度エンドミル

(6)ダイヤモンドエンドミル

(7)医療用品エンドミル設計

(8)自動車部品&材料加工向けエンドミル設計

弊社の製品の供給調達機能は:

(1)生活産業~ハイテク工業までのエンドミル設計

(2)ミクロエンドミル~大型エンドミル供給

(3)小Lot生産~大量発注対応供給

(4)オートメーション整備調達

(5)スポット対応~流れ生産対応

弊社の全般供給体制及び技術自慢の総合専門製造メーカーに貴方のご体験を御待ちしております。   

Bewise Inc. talaşlı imalat sanayinde en fazla kullanılan ve üç eksende (x,y,z) talaş kaldırabilen freze takımlarından olan Parmak Freze imalatçısıdır. Çok geniş ürün yelpazesine sahip olan firmanın başlıca ürünlerini Karbür Parmak Frezeler, Kalıpçı Frezeleri, Kaba Talaş Frezeleri, Konik Alın Frezeler, Köşe Radyüs Frezeler, İki Ağızlı Kısa ve Uzun Küresel Frezeler, İç Bükey Frezeler vb. şeklinde sıralayabiliriz.

BW специализируется в научных исследованиях и разработках, и снабжаем самым высокотехнологичным карбидовым материалом для поставки режущих / фрезеровочных инструментов для почвы, воздушного пространства и электронной индустрии. В нашу основную продукцию входит твердый карбид / быстрорежущая сталь, а также двигатели, микроэлектрические дрели, IC картонорезальные машины, фрезы для гравирования, режущие пилы, фрезеры-расширители, фрезеры-расширители с резцом, дрели, резаки форм для шлицевого вала / звездочки роликовой цепи, и специальные нано инструменты. Пожалуйста, посетите сайт  www.tool-tool.com  для получения большей информации.

BW is specialized in R&D and sourcing the most advanced carbide material with high-tech coating to supply cutting / milling tool for mould & die, aero space and electronic industry. Our main products include solid carbide / HSS end mills, micro electronic drill, IC card cutter, engraving cutter, shell end mills, cutting saw, reamer, thread reamer, leading drill, involute gear cutter for spur wheel, rack and worm milling cutter, thread milling cutter, form cutters for spline shaft/roller chain sprocket, and special tool, with nano grade. Please visit our web  www.tool-tool.com  for more info.

 

beeway 發表在 痞客邦 留言(0) 人氣()

镨,原子序数 59,原子量140.90765,元素名来源于希腊文,原意是“绿色”。1841年瑞典化学家莫桑德尔从铈土中得到镨、钕的混合物;1885年奥地利的韦 耳斯拔从中分离出绿色的镨盐和玫瑰色的钕盐,确定它们是两种新元素。镨在地壳中的含量约0.000553%,常于其它稀土元素共生于许多矿物中。天然稳定 同位素只有镨141。

纠错 编辑摘要

目录

  • 1 概述
  • 2 性质
  • 3 名称由来
  • 4 发现
  • 5 特性及来源
  •  

  • 1 概述
  • 2 性质
  • 3 名称由来
  • 4 发现
  • 5 特性及来源
  • 6 元素用途

 

 

镨 - 概述

镨 是一种银白色的,中等柔软的金属元素,是镧系元素,在空气中抗腐蚀能力比镧、铈、钕和铕都要强,但暴露在空气中会产生一层易碎的绿色氧化物,所以纯镨必须 在矿物油或密封塑料中保存。镨为淡黄色金属,质地较软,有延展性;熔点931°C,沸点3512°C,密度6.773克/厘米³。镨在空气中缓慢形成绿色 易碎氧化物层;镨通常以三价氧化态存在。三氧化二镨可用于制造优良的高温陶瓷材料,也用于制造绿色的镨玻璃;镨在石油化工方面可用作催化剂。

 

镨 - 性质

 

元素周期表·镨

 

元素名称:镨

元素原子量:140.9

氧化态:

Main  Pr+3 Other  Pr+4 

晶体结构:晶胞为六方晶胞。

晶胞参数:

a = 367.25 pm 

b = 367.25 pm 

c = 1183.54 pm 

α = 90° 

β = 90° 

γ = 120°

维氏硬度:400 MPa     

声音在其中的传播速率:(m/S) 2280

 

金属镨

电离能 (kJ /mol)  

M - M+ 523.1 

M+ - M2+ 1018 

M2+ - M3+ 2086 

M3+ - M4+ 3761 

M4+ - M5+ 5543 

元素在太阳中的含量:(ppm):0.001

元素在海水中的含量:(ppm):太平洋表面  0.00000044

地壳中含量:(ppm):9.5

原子体积:(立方厘米/摩尔):20.8

镨的化合物包括:氟化物,PrF2,PrF3,PrF4 

氯化物:PrCl3 

溴化物:PrBr3、Pr2Br5 

碘化物:PrI2、PrI3、Pr2I5 

氧化物:PrO2、Pr2O3 

硫化物:PrS、Pr2S3 

硒化物:PrSe 

碲化物:PrTe、Pr2Te3 

氮化物:PrN

 

镨 - 名称由来

 

耐温优质镨黄

镨 的名称 Praseodymium 来源于希腊语词prasios(绿色)和didymos(成对的)。1841年发现镧的瑞典化学家卡尔•古斯塔夫•莫散德从含镧的矿物中分离出一种稀有的 didymium土,1874年瑞典地质学家波•提奥多•克莱夫证实了didymium土实际是两种元素的混合物。1879年, 勒考•德•布瓦包得兰从铌钇矿(samarskite) 中取得的didymium 土中分离出一种新元素钐,因此取名(praseodymium)。 直到1885年奥地利 化学家 C•F•奥尔•冯•韦耳斯拔男爵才成功地将didymium土分离为镨和钕。两种元素的金属盐的颜色不同。

自 莫桑德尔先后发现镧、铒和铽以后,各国化学家 特别注意从已发现的稀土元素去分离新的元素。在发现钐和钆的同一时期里,1885年奥地利化学家韦尔塞巴赫从didymium(当时被认为是一种稀土元 素)的氧化物中分离出两种新元素的氧化物,其中一种被命名为preseodidymium,后来被简化为praseodymium,元素符号Pr。

 

镨 - 发现

 

镨玛科技

    镨、 钆、钐、钕都是从当时被认为是一种稀土元素的didymium中分离出来的。由于它们的发现,didymium不再被保留。而正是它们的发现打开了发现稀 土元素的第三道大门,是发现稀土元素的第三阶段。但这仅是完成了第三阶段的一半工作。确切的将应该是打开了铈的大门或完成了铈的分离,另一半就将是打开钇 的大门或是完成钇的分离。

    镨是稀土金属中的一种。稀土是历史遗留的名称,从18世纪末叶开始被陆续发现。当时人们惯于把不溶于水的固体氧化物称作土,例如把氧化铝叫做陶土,氧化 镁叫苦土。稀土是以氧化物状态分离出来,很稀少,因而得名稀土,稀土元素的原子序数是21(Sc)、39(Y)、57(La)至71(Lu)。它们的化学 性质很相似,这是由于核外电子结构特点所决定的。它们一般均生成三价化合物。钪的化学性质与其它稀土差别明显,一般稀土矿物中不含钪。钷是从铀反应堆裂变 产物中获得,放射性元素147Pm半衰期2.7年。过去认为钷在自然界中不存在,直到1965年,荷兰的一个磷酸盐工厂在处理磷灰石中,才发现了钷的痕量 成分。

    因此,中国1968年将钷划入64种有色金属之外。 1787年瑞典人阿累尼斯(C.A.Arrhenius)在斯德哥尔摩(Stockholm)附近的伊特比(Ytterby)小镇上寻得了一块不寻常的黑 色矿石,1794年芬兰化学家加多林(J.Gadolin)研究了这种矿石,从其中分离出一种新物质,三年后(1797年),瑞典人爱克伯格 (A.G.Ekeberg)证实了这一发现,并以发现地名给新的物质命名为Ytteia(钇土)。后来为了纪念加多林,称这种矿石为 Gadolinite(加多林矿,即硅铍钇矿)。 1803年德国化学家克拉普罗兹(M.H.Klaproth)和瑞典化学家柏齐力阿斯(J.J.Berzelius)及希生格尔(W.Hisinger) 同时分别从另一矿石(铈硅矿)中发现了另一种新的物质---铈土(Ceria)。1839年瑞典人莫桑得尔(C.G.Mosander)发现了镧和镨钕混 合物(didymium)。

    1885年奥地利人威斯巴克(A.V.Welsbach)从莫桑得尔认为是“新元素”的镨钕混合物中发现了镨和钕。1879年法国人布瓦普德朗 (L.D.Boisbauder)发现了钐。1901年法国人德马尔赛(E.A.Demarcay)发现了铕。1880年瑞士马利纳克(J.C.G.De Marignac)发现了钆。1843年莫桑得尔发现了铽和铒。1886年布瓦普德朗发现了镝。1879年瑞典人克利夫(P.T.Cleve)发现了钬和 铥。1974年美国人马瑞斯克(J.A.Marisky)等从铀裂产物中得到钷。1879年瑞典人尼尔松(L.F.Nilson)发现了钪。从1794年 加多林分离出钇土至1947年制得钷,历时150多年。

 

镨 - 特性及来源

 

青铜镨

自 然界中镨只有一种稳定同位素,141-Pr。 但有38种放射性同位素, 其中比较稳定的有143-Pr,半衰期为13.57 天; 142-Pr,半衰期为19.12小时。 其他的放射性同位素的半衰期都超不过5.985 小时,大部分的半衰期少于33秒。镨还有6个亚稳态,比较稳定的是138m-Pr (t½ 2.12 小时), 142m-Pr (t½ 14.6 分) 和134m-Pr (t½ 11 分)。镨的同位素原子量从120.955 u (121-Pr)到 158.955 u (159-Pr)。稳定同位素 141-Pr如果放出β射线,会俘获电子。主要放射产物为铈的同位素铈58和钕的同位素钕60。

元素来源:主要存在于独居石中。常由水合氯化镨PrCl3•X H2O经脱水后用金属钙还原,或由无水氯化镨经熔融后电解而制得。

 

镨 - 元素用途

 

镨钕玻璃光谱图

 

1,镨被广泛应用于建筑陶瓷和日用陶瓷中,其与陶瓷釉混合制成色釉,也可单独作釉下颜料,制成的颜料呈淡黄色,色调纯正、淡雅。

2,用于制造永磁体。选用廉价的镨钕金属代替纯钕金属制造永磁材料,其抗氧性能和机械性能明显提高,可加工成各种形状的磁体。广泛应用于各类电子器件和马达上。

3,用于石油催化裂化。以镨钕富集物的形式加入Y型沸石分子筛中制备石油裂化催化剂,可提高催化剂的活性、选择性和稳定性。我国70年代开始投入工业使用,用量不断增大。

4,镨还可用于磨料抛光。另外,镨在光纤领域的用途也越来越广。

5、制造特种合金和用作催化剂。

6、镨钕的混合氧化物,常用来制造遮光眼镜,作为电焊工和玻璃工的防护镜。镨和镁一起用于制造飞机引擎的合金中;用于碳弧光照明的碳芯中;镨的氧化物用于为玻璃或珐琅添加黄色; 镨和钕的混合物可以用于制造电焊和玻璃制造使用的护目镜。

引用出處: 

 http://zh.wikipedia.org/zh-cn/%E9%95%A8

歡迎來到Bewise Inc.的世界,首先恭喜您來到這接受新的資訊讓產業更有競爭力,我們是提供專業刀具製造商,應對客戶高品質的刀具需求,我們可以協助客戶滿足您對產業的不同要求,我們有能力達到非常卓越的客戶需求品質,這是現有相關技術無法比擬的,我們成功的滿足了各行各業的要求,包括:精密HSS DIN切削刀具協助客戶設計刀具流程DIN or JIS 鎢鋼切削刀具設計NAS986 NAS965 NAS897 NAS937orNAS907 航太切削刀具,NAS航太刀具設計超高硬度的切削刀具醫療配件刀具設計複合式再研磨機PCD地板專用企口鑽石組合刀具粉末造粒成型機主機版專用頂級電桿PCBN刀具PCD刀具單晶刀具PCD V-Cut捨棄式圓鋸片組粉末成型機航空機械鉸刀主機版專用頂級電汽車業刀具設計電子產業鑽石刀具木工產業鑽石刀具銑刀與切斷複合再研磨機銑刀與鑽頭複合再研磨機銑刀與螺絲攻複合再研磨機等等。我們的產品涵蓋了從民生刀具到工業級的刀具設計;從微細刀具到大型刀具;從小型生產到大型量產;全自動整合;我們的技術可提供您連續生產的效能,我們整體的服務及卓越的技術,恭迎您親自體驗!!  

BW Bewise Inc. Willy Chen willy@tool-tool.com  bw@tool-tool.com  www.tool-tool.com skype:willy_chen_bw mobile:0937-618-190 Head &Administration Office No.13,Shiang Shang 2nd St., West Chiu Taichung,Taiwan 40356 http://www.tool-tool.com/ / FAX:+886 4 2471 4839 N.Branch 5F,No.460,Fu Shin North Rd.,Taipei,Taiwan S.Branch No.24,Sec.1,Chia Pu East Rd.,Taipao City,Chiayi Hsien,Taiwan

Welcome to BW tool world! We are an experienced tool maker specialized in cutting tools. We focus on what you need and endeavor to research the best cutter to satisfy users demand. Our customers involve wide range of industries, like mold & die, aerospace, electronic, machinery, etc. We are professional expert in cutting field. We would like to solve every problem from you. Please feel free to contact us, its our pleasure to serve for you. BW product including: cutting toolaerospace tool .HSS  DIN Cutting toolCarbide end millsCarbide cutting toolNAS Cutting toolNAS986 NAS965 NAS897 NAS937orNAS907 Cutting Tools,Carbide end milldisc milling cutter,Aerospace cutting toolhss drillФрезерыCarbide drillHigh speed steelCompound SharpenerMilling cutterINDUCTORS FOR PCD’CVDD(Chemical Vapor Deposition Diamond )’PCBN (Polycrystalline Cubic Boron Nitride) Core drillTapered end millsCVD Diamond Tools Inserts’PCD Edge-Beveling Cutter(Golden FingerPCD V-CutterPCD Wood toolsPCD Cutting toolsPCD Circular Saw BladePVDD End Millsdiamond tool. INDUCTORS FOR PCD . POWDER FORMING MACHINE Single Crystal Diamond Metric end millsMiniature end millsСпециальные режущие инструменты Пустотелое сверло Pilot reamerFraisesFresas con mango PCD (Polycrystalline diamond) ‘FresePOWDER FORMING MACHINEElectronics cutterStep drillMetal cutting sawDouble margin drillGun barrelAngle milling cutterCarbide burrsCarbide tipped cutterChamfering toolIC card engraving cutterSide cutterStaple CutterPCD diamond cutter specialized in grooving floorsV-Cut PCD Circular Diamond Tipped Saw Blade with Indexable Insert PCD Diamond Tool Saw Blade with Indexable InsertNAS toolDIN or JIS toolSpecial toolMetal slitting sawsShell end millsSide and face milling cuttersSide chip clearance sawsLong end millsend mill grinderdrill grindersharpenerStub roughing end millsDovetail milling cuttersCarbide slot drillsCarbide torus cuttersAngel carbide end millsCarbide torus cuttersCarbide ball-nosed slot drillsMould cutterTool manufacturer. 

Bewise Inc.  www.tool-tool.com

ようこそBewise Inc.の世界へお越し下さいませ、先ず御目出度たいのは新たな

情報を受け取って頂き、もっと各産業に競争力プラス展開。

弊社は専門なエンドミルの製造メーカーで、客先に色んな分野のニーズ

豊富なパリエーションを満足させ、特にハイテク品質要求にサポート致します。

弊社は各領域に供給できる内容は:

(1)精密HSSエンドミルのR&D

(2)Carbide Cutting tools設計

(3)鎢鋼エンドミル設計

(4)航空エンドミル設計

(5)超高硬度エンドミル

(6)ダイヤモンドエンドミル

(7)医療用品エンドミル設計

(8)自動車部品&材料加工向けエンドミル設計

弊社の製品の供給調達機能は:

(1)生活産業~ハイテク工業までのエンドミル設計

(2)ミクロエンドミル~大型エンドミル供給

(3)小Lot生産~大量発注対応供給

(4)オートメーション整備調達

(5)スポット対応~流れ生産対応

弊社の全般供給体制及び技術自慢の総合専門製造メーカーに貴方のご体験を御待ちしております。   

Bewise Inc. talaşlı imalat sanayinde en fazla kullanılan ve üç eksende (x,y,z) talaş kaldırabilen freze takımlarından olan Parmak Freze imalatçısıdır. Çok geniş ürün yelpazesine sahip olan firmanın başlıca ürünlerini Karbür Parmak Frezeler, Kalıpçı Frezeleri, Kaba Talaş Frezeleri, Konik Alın Frezeler, Köşe Radyüs Frezeler, İki Ağızlı Kısa ve Uzun Küresel Frezeler, İç Bükey Frezeler vb. şeklinde sıralayabiliriz.

BW специализируется в научных исследованиях и разработках, и снабжаем самым высокотехнологичным карбидовым материалом для поставки режущих / фрезеровочных инструментов для почвы, воздушного пространства и электронной индустрии. В нашу основную продукцию входит твердый карбид / быстрорежущая сталь, а также двигатели, микроэлектрические дрели, IC картонорезальные машины, фрезы для гравирования, режущие пилы, фрезеры-расширители, фрезеры-расширители с резцом, дрели, резаки форм для шлицевого вала / звездочки роликовой цепи, и специальные нано инструменты. Пожалуйста, посетите сайт  www.tool-tool.com  для получения большей информации.

BW is specialized in R&D and sourcing the most advanced carbide material with high-tech coating to supply cutting / milling tool for mould & die, aero space and electronic industry. Our main products include solid carbide / HSS end mills, micro electronic drill, IC card cutter, engraving cutter, shell end mills, cutting saw, reamer, thread reamer, leading drill, involute gear cutter for spur wheel, rack and worm milling cutter, thread milling cutter, form cutters for spline shaft/roller chain sprocket, and special tool, with nano grade. Please visit our web  www.tool-tool.com  for more info.

 

beeway 發表在 痞客邦 留言(0) 人氣()