公告版位
Bewise Inc. www.tool-tool.com Reference source from the internet.
Eigenschaften

[Ar] 3d54s2
25
Mn
Allgemein
Name, Symbol, Ordnungszahl Mangan, Mn, 25
Serie Übergangsmetalle
Gruppe, Periode, Block 7, 4, d
Aussehen silbrig metallisch
Massenanteil an der Erdhülle 0,09 %
Atomar
Atommasse 54,938049 u
Atomradius (berechnet) 140 (161) pm
Kovalenter Radius 139 pm
Van-der-Waals-Radius - pm
Elektronenkonfiguration [Ar] 3d54s2
Elektronen pro Energieniveau 2, 8, 13, 2
Austrittsarbeit 4,1 eV
1. Ionisierungsenergie 717,3 kJ/mol
2. Ionisierungsenergie 1509 kJ/mol
3. Ionisierungsenergie 3248 kJ/mol
4. Ionisierungsenergie 4940 kJ/mol
5. Ionisierungsenergie 6990 kJ/mol
6. Ionisierungsenergie 9220 kJ/mol
7. Ionisierungsenergie 11500 kJ/mol
Physikalisch
Aggregatzustand fest
Modifikationen α-Mn, β-Mn
Kristallstruktur α-Mn:kubisch raumzentriert
β-Mn:kubisch-primitiv
Dichte 7470 kg/m3
Mohshärte 6,0
Magnetismus gewöhnlich unmagnetisch
Schmelzpunkt 1517 K (1244 °C)
Siedepunkt 2235 K (1962 °C)
Molares Volumen 7,35 · 10-6 m3/mol
Verdampfungswärme 226 kJ/mol
Schmelzwärme 12,05 kJ/mol
Dampfdruck

121 Pa bei 1517 K

Schallgeschwindigkeit 5150 m/s bei 293,15 K
Spezifische Wärmekapazität 480 J/(kg · K)
Elektrische Leitfähigkeit 0,695 · 106 S/m
Wärmeleitfähigkeit 7,82 W/(m · K)
Chemisch
Oxidationszustände 2, 3, 4, 6, 7
Oxide (Basizität) (stark sauer)
Normalpotential
Elektronegativität 1,55 (Pauling-Skala)
Isotope
Isotop NH t1/2 ZM ZE MeV ZP
52Mn

{syn.}

5,591 d ε 4,712 52Cr
53Mn

{syn.}

3,74 · 106 a ε 0,597 53Cr
54Mn

{syn.}

312,3 d ε 1,377 54Cr
β 0,697 54Fe
55Mn

100 %

Stabil
56Mn

{syn.}

2,5785 h β 3,695 56Fe
NMR-Eigenschaften
Spin γ in
rad·T−1·s−1
E fL bei
B = 4,7 T
in MHz
55Mn 5/2 6,598 · 107 0,175 49,3
Sicherheitshinweise
Gefahrstoffkennzeichnung
Pulver
Gefahrensymbole
Leichtentzündlich
F
Leichtent-
zündlich
[1]
R- und S-Sätze R: 11 (Pulver)[1]
S: 7-33-43-60(Pulver)[1]
Soweit möglich und gebräuchlich, werden SI-Einheiten verwendet.
Wenn nicht anders vermerkt, gelten die angegebenen Daten bei Standardbedingungen.

Mangan [maŋˈɡaːn] (von franz. manganèse „schwarze Magnesia“) ist ein chemisches Element im Periodensystem der Elemente mit dem Symbol Mn und der Ordnungszahl 25.

Geschichte [Bearbeiten]

Manganverbindungen werden seit Jahrtausenden vom Menschen genutzt. Farben mit Manganpigmenten aus Mangandioxid können 17000 Jahre zurückverfolgt werden. Römer und Ägypter verwendeten Manganverbindungen in der Glasherstellung zur Färbung und Entfärbung. Spartaner nutzten manganhaltiges Eisenerz zur Herstellung ihrer Waffen. Dass die hohe Qualität der Waffen auf einer Eisen-Mangan-Legierung beruhte, muss als Spekulation angesehen werden.

Im 17. Jahrhundert stellte der Chemiker Johann Rudolph Glauber Permanganat her. Mitte des 18. Jahrhunderts nutzte man Manganoxid zur Herstellung von Chlor. Auf Anregung des schwedischen Chemikers Carl Wilhelm Scheele, der 1774 entdeckte, dass Braunstein kein Eisenerz ist, sondern ein bis dahin unbekanntes Metall enthalten müsse, gelang es Johan Gottlieb Gahn noch im gleichen Jahr, erstmals elementares Mangan aus Braunstein durch Reduktion mit Kohle herzustellen. Anfang des 19. Jahrhunderts begann der Einsatz von Mangan zur Eisenherstellung. 1816 war die festigkeitssteigernde Wirkung ohne erhöhte Sprödigkeit bekannt.

Vorkommen [Bearbeiten]

Weltweit gibt es sehr große Manganvorkommen. Am Aufbau der Erdkruste ist es mit etwa 900 ppm beteiligt und ist damit nach dem Eisen das zweithäufigste Schwermetall. Bekannte abbauwürdige Manganerzvorkommen befinden sich in

  • Südafrika (Hotazel)
  • Georgien (Tschiatura)
  • Russland
  • Ukraine
  • Australien (Groote Eylandt)
  • Brasilien
  • Gabun
  • Indien
  • Volksrepublik China
  • Mexiko
  • Burkina Faso
  • Ghana
  • Marokko

Größere Mengen Mangan enthalten die Manganknollen und Mangankrusten in der Tiefsee.

Deutschland ist arm an Manganerzen, nennenswerte Mengen finden sich z.B. im Siegerländer Spateisensteinbezirk, im mittleren Thüringer Wald nahe Ilmenau und im Harz bei Ilfeld.

Natürlich vorkommende Minerale:

  • Pyrolusit MnO2, eine der fünf Modifikationen des Mangandioxids
  • Braunit Mn2O3, Manganit Mn2O3 · H20
  • Hausmannit Mn3O4
  • Manganspat (Rhodochrosit) MnCO3
  • Rhodonit MnSiO3
  • Psilomelan (der "schwarze Glaskopf"), ein Na-, K- und Ba- haltiges amorphes Mangandioxid
  • Manganosit, MnO

Gewinnung und Darstellung [Bearbeiten]

Manganerze können ebenso wie Chromerze nicht durch Kohle zum Element reduziert werden. Dies liegt an der Bildung von stabilen Carbiden. Für viele technische Anwendungen von Mangan, wie Ferromangan, können Gemische aus Eisen- und Manganerzen eingesetzt und mit Kohlenstoff reduziert werden.

Metallisches Mangan wird überwiegend durch Elektrolyse von Mangan(II)-sulfat-Lösungen hergestellt:

\mathrm{2\ MnSO_4 + 2\ H_2O \longrightarrow 2\ Mn + 2\ H_2SO_4 + O_2}

Ein weiterer, aber selten genutzter Herstellungsweg ist die Reduktion zu elementarem Mangan mit Hilfe des aluminothermischen oder silicothermischen Verfahrens.

Eigenschaften [Bearbeiten]

Mangan

Mangan

Mangan ist ein grau-weißes, hartes und sehr sprödes Schwermetall, in einigen Eigenschaften dem Eisen ähnelnd. Andere Quellen weisen absolut kohlenstofffreies Mangan als duktil aus.

Mangan kommt hauptsächlich in den Oxidationsstufen +2, +4 und +7 vor. Es existieren aber alle Oxidationsstufen von −3 bis +7, wodurch das Mangan das Element mit den meisten verschiedenen Oxidationsstufen ist. Zum Erreichen einiger der Oxidationszahlen benötigt man allerdings drastische Bedingungen. Chemisch verhält sich Mn2+ oft ähnlich dem Ca2+ und kann dieses auch in biologischen Systemen, z. B. im Knochen, ersetzen. Mn+7 in Form des Permanganats ist ein häufig genutztes und relativ starkes Oxidationsmittel. Elementares Mangan ist relativ unbeständig. Von Wasser wird es unter Wasserstoffentwicklung angegriffen. In verdünnten, nichtoxidierenden Säuren löst es sich ebenfalls. In der Wärme reagiert es mit Bor, Kohlenstoff, Silizium, Stickstoff, Phosphor, Sauerstoff, Schwefel und den Halogenen. Mit Wasserstoff reagiert Mangan nicht unter Bildung eines Hydrides.

An Luft ist Mangan durch Bildung eines Oxidfilms (Schutzschicht) beständig.

α-Mn kristallisiert in der kubisch-raumzentrierten Packung mit 58 Atomen und 4 verschiedenen Lagen in der Elementarzelle. Die Atome sind in Form von Friauf-Polyedern angeordnet. β-Mn kristallisiert in der kubisch-primitiven Packung mit 20 Atomen und 2 verschiedenen Lagen.

Nachweis [Bearbeiten]

Mangan(II)-Kationen werden für die Nachweisreaktion im Kationentrenngang im sogenannten „Alkalischen Bad“ − einer Mischung aus konz. Wasserstoffperoxid und Natriumhydroxid − zum Mangan(IV)-Kation oxidiert. Das Mangan(IV)-oxid-hydroxid „Braunstein“ wird dann durch Kochen in konz. Salpetersäure gelöst und mit Blei(IV)-oxid zum violetten Permanganat aufoxidiert:

1. Aufoxidation zum Mangan(IV)-Kation im alkalischen Bad:

\mathrm{Mn^{2+} + H_2O_2 + 2 \ OH^- \longrightarrow MnO(OH)_2 \downarrow + \ H_2O}
Farblose Mangan(II)-Ionen reagieren im alkalischen Bad zu braunem Manganoxiddihydroxid, der als Niederschlag ausfällt, und Wasser.

2. Nachweis als Permanganat mit Blei(IV)-oxid (oder durch Oxidationsschmelze mit Soda und Nitrat):

\mathrm{2 \ Mn^{4+} + 3 \ PbO_2 + 2 \ H_2O \longrightarrow 2 \ MnO_4^- + 3 \ Pb^{2+} + 4 \ H^+}
Braune Mangan(IV)-Ionen reagieren mit Blei(IV)-oxid und Wasser zu violetten Permanganat-Ionen, Blei(II)-Ionen und Wasserstoff-Ionen.

Auch die Boraxperle wird zum qualitativen Nachweis einiger Metalle beim Kationentrenngang in der Analytische Chemie verwendet. In Anwesenheit von Mangan-Ionen färbt sie sich in der Oxidationszone violett.

Verwendung [Bearbeiten]

Mangan ist wegen seiner hohen Affinität zu Schwefel und Sauerstoff sowie seiner werkstoffverbessernden Eigenschaften von hoher Bedeutung für die Metallindustrie. Ca. 90% bis 95% des erzeugten Mangans beziehungsweise Ferromangans gehen in die Eisen-, Stahl- und Sonderwerkstoffherstellung:

Mangandioxid dient als Oxidationsmittel in Trockenbatterien.

Der Bedarf an Mangan wird in den nächsten Jahren nicht sinken, da keine ökonomisch sinnvollen Ersatztechnologien bekannt sind.

Physiologie [Bearbeiten]

Gebundenes Mangan ist ein essentielles Spurenelement für alle Lebensformen. Es ist wichtiger Bestandteil vieler Enzyme und steigert die Verwertung des Vitamin B1, wichtig ist es für die Insulinproduktion der Bauchspeicheldrüse. In Pflanzen findet sich im Photosystem II ein Komplex mit 4 Manganteilchen. Dieser dient zur Spaltung von Wasser und der damit verbundenen Gewinnung von Elektronen.[2]

Der menschliche Körper enthält etwa 10 - 20 mg Mangan, entsprechend ca. 0,1 - 0,3 ppm, das meiste davon ist in den Knochen gebunden. Täglich sollten ungefähr 4 mg aufgenommen werden. Manganreich sind Nüsse, Vollkornprodukte, Keimlinge, Erdbeeren und Kakao. Milch, Mineralwässer und manche Trinkwässer sind manganarm.

Sicherheitshinweise [Bearbeiten]

Mangan ist im Vergleich zu vielen anderen Schwermetallen relativ unproblematisch. Die Gefährlichkeit der meisten Verbindungen ist gering und es wurden praktisch noch nie Vergiftungsfälle durch orale Aufnahme von Manganverbindungen bekannt. Chronische Manganaufnahme über die Atemwege als Staub ist hingegen toxisch und führt zu Manganismus. Diese Krankheit befiel vor allem Bergarbeiter, aber auch Mitarbeiter von Batteriefabriken und zeigt sich vor allem durch motorische Störungen ähnlich dem Morbus Parkinson durch Anreicherung des Mangans in den Basalganglien. Dadurch wurden auch Wesensveränderungen und Psychosen beschrieben. Im Gegensatz zum Morbus Parkinson ist der Manganismus aber gegenüber den herkömmlichen Therapieformen (Levodopa) resistent. Der Kontakt mit Permanganat kann zu Verätzungen führen.

Verbindungen [Bearbeiten]

  • Kaliumpermanganat wird als relativ starkes Oxidationsmittel im Laborbereich eingesetzt. In der Medizin wird es als frisch angesetzte wässrige Lösung (0,05 bis 1%) zur Hautdesinfektion und zur äußerlichen Behandlung von infektiösen Hauterkrankungen verwendet. Ebenso findet es Verwendung bei der Therapie von parasitären Fischkrankheiten.
  • Manganoxide
    • Mangandioxid wird genutzt als Oxidationsmittel in Trockenzellen (Batterien vom Typ Zink-Kohle, Alkali-Mangan und Lithium). Als Glasmacherseife wird es zur Entfärbung von eisenhaltigen Glasschmelzen eingesetzt. Es kompensiert die gelbe Farbe der Fe3+ Ionen durch eine violette Färbung.
  • Ferromangan als Legierungszuschlag in der metallurgischen Industrie.
  • Himbeerspat (Rhodochrosit, Mangancarbonat) rosa bis blutrotes Mineral zur Herstellung von Schmucksteinen.

Quellen [Bearbeiten]

  1. a b c Sicherheitsdatenblatt (alfa-aesar)
  2. Kaim, W., Schwederewski, B.: Bioanorganische Chemie, Zur Funktion chemischer Elemente in Lebensprozessen. 4. Auflage, Teubner-Verlag, Wiesbaden, 2005.

Weblinks [Bearbeiten]

Commons: Mangan – Bilder, Videos und Audiodateien
Wiktionary: Mangan – Bedeutungserklärungen, Wortherkunft, Synonyme und Übersetzungen


BW Bewise Inc. Willy Chen willy@tool-tool.com bw@tool-tool.com www.tool-tool.com skype:willy_chen_bw mobile:0937-618-190 Head &Administration Office No.13,Shiang Shang 2nd St., West Chiu Taichung,Taiwan 40356 TEL:+886 4 24710048 / FAX:+886 4 2471 4839 N.Branch 5F,No.460,Fu Shin North Rd.,Taipei,Taiwan S.Branch No.24,Sec.1,Chia Pu East Rd.,Taipao City,Chiayi Hsien,Taiwan

Welcome to BW tool world! We are an experienced tool maker specialized in cutting tools. We focus on what you need and endeavor to research the best cutter to satisfy users demand. Our customers involve wide range of industries, like mold & die, aerospace, electronic, machinery, etc. We are professional expert in cutting field. We would like to solve every problem from you. Please feel free to contact us, its our pleasure to serve for you. BW product including: cutting toolaerospace tool .HSS Cutting toolCarbide end millsCarbide cutting toolNAS Cutting toolCarbide end millAerospace cutting toolФрезерыCarbide drillHigh speed steelMilling cutterCVDD(Chemical Vapor Deposition Diamond )PCBN (Polycrystalline Cubic Boron Nitride) Core drillTapered end millsCVD Diamond Tools Inserts’PCD Edge-Beveling Cutter(Golden Finger’PCD V-Cutter’PCD Wood tools’PCD Cutting tools’PCD Circular Saw Blade’PVDD End Mills’diamond tool Single Crystal Diamond Metric end millsMiniature end millsСпециальные режущие инструменты Пустотелое сверло Pilot reamerFraisesFresas con mango PCD (Polycrystalline diamond) FreseElectronics cutterStep drillMetal cutting sawDouble margin drillGun barrelAngle milling cutterCarbide burrsCarbide tipped cutterChamfering toolIC card engraving cutterSide cutterNAS toolDIN toolSpecial toolMetal slitting sawsShell end millsSide and face milling cuttersSide chip clearance sawsLong end millsStub roughing end millsDovetail milling cuttersCarbide slot drillsCarbide torus cuttersAngel carbide end millsCarbide torus cuttersCarbide ball-nosed slot drillsMould cutterTool manufacturer.

Bewise Inc. www.tool-tool.com

beeway 發表在 痞客邦 留言(0) 人氣()

Bewise Inc. www.tool-tool.com Reference source from the internet.

Fra Wikipedia, den frie encyklopædi

Gå til: navigation, søg
25


Mn

Tc
Udseende

Gråt metal
Generelt
Navn(e): Mangan
Kemisk symbol: Mn
Atomnummer: 25
Atommasse: 54.938045(5) g/mol
Grundstofserie: Overgangsmetal
Gruppe: 7
Periode: 4
Blok: d
Elektronkonfiguration: [Ar] 3d5 4s2
Elektroner i hver skal: 2, 8, 13, 2
Kovalent radius: 139 pm
Kemiske egenskaber
Oxidationstrin: 7, 6, 4, 2, 3
Elektronegativitet: 1,55 (Paulings skala)
Fysiske egenskaber
Tilstandsform: Fast
Krystalstruktur: Kubisk rumcentreret
Massefylde (fast stof): 7,21 g/cm3
Massefylde (væske): 5,95 g/cm3
Smeltepunkt: 1246 °C
Kogepunkt: 2061 °C
Smeltevarme: 12,91 kJ/mol
Fordampningsvarme: 221 kJ/mol
Varmeledningsevne: (300 K) 7,81 W·m–1K–1
Varmeudvidelseskoeff.: 21,7 μm/m·K
Elektrisk resistivitet: (20°C) 1,44 μΩ·m
Magnetiske egenskaber: Ikke magnetisk
Mekaniske egenskaber
Youngs modul: 198 GPa
Kompressibilitetsmodul: 120 GPa
Hårdhed (Mohs' skala): 6,0
Hårdhed (Brinell): 196 MPa

Mangan (af fransk: manganèse, "sort magnesia") er det 25. grundstof i det periodiske system, og har det kemiske symbol Mn: Under normale temperatur- og trykforhold optræder dette overgangsmetal som et temmelig hårdt metal der minder om jern, men er langt mere "sprødt" og skrøbeligt.

[redigér] Kemiske egenskaber

Mangan reagerer ikke med atmosfærisk luft, fordi overfladen danner et oxid-lag der hindrer luften adgang til metallet inden under. Det reagerer langsomt med vand, men opløses let i syrer.

I kemiske forbindelser optræder mangan normalt med oxidationstrinnene +2, +3, +4, +6 og +7, men man har også set mangan optræde med oxidationstrin +1 og +5. Forbindelser med mangan i oxidationstrin +7, for eksempel kaliumpermanganat, er stærke oxidationsmidler.

[redigér] Tekniske anvendelser

Mangan spiller en afgørende betydning for produktion af jern og stål, hvor det fikserer svovl, fjerner ilt og bidrager til at gøre stål rustfrit, hårdt og slidstærkt — mellem 85 og 90 procent af mangang-produktionen går til dette formål.

Almindeligt glas har normalt en svagt grønlig farve der skyldes urenheder af jern: Mangan virker som et violet farvestof med komplementærfarven til glassets grønne farve. Ved at tilsætte små mængder mangan "ophæver" de to farver hinanden, og glasset ser helt farveløst ud. Tilsættes større mængder mangan, får man violet glas.

Mangan bruges også i benzin til at justere oktantallet, og i den organiske kemi til at oxidere visse alkoholer. Brunsten (Mangan(IV)oxid; MnO2) er et brunt farvestof der har været brugt som maling af mennesker i 17.000 år, og indgår i en tidlig type elektrisk batteri; brunstensbatteriet.

[redigér] Forekomst og udvinding

Mangan optræder i naturen primært som brunsten og i mindre grad i form af rhodochrosit (MnCO3); langt det meste (80 %) af jordens kendte manganressourcer findes i Sydafrika og Ukraine, men også Kina, Australien, Brasilien, Gabon, Indien og Mexico råder over væsentlige forekomster.

Mangan udvindes ved minedrift i Burkina Faso og Gabon. Dertil findes der enorme mængder mangan i form af noduler (en slags "sten") på bunden af verdenshavene. Indtil 1970'erne forsøgte man forgæves at finde en økonomisk rentabel måde at udnytte denne mangankilde.

Metallisk mangan fremstilles hovedsageligt ved elektrolyse på opløsninger af mangan(II)sulfat. Man kan også isolere mangan ved at opvarme brunsten sammen med aluminium eller silicium, men det bruges langt fra i samme omfang som elektrolysemetoden.

[redigér] Historie

Mangan og manganholdige forbindelser har været brugt af mennesker i 17.000 år. Egypterne og romerne brugte mangan til at fjerne eller tilføje farve i glas, og stoffet kan spores i de jernmalme som spartanerne brugte — spartanernes jern var ekstremt hårdt, hvilket måske kan skyldes at spartanerne uforvarent er kommet til at lave en legering af jern og mangan.

I det 17. århundrede fremstillede den tyske kemiker Johann Glauber for første gang kaliumpermanganat; et nyttigt stof i kemilaboratoriet, da det kan bruges til at oxidere mange andre forbindelser. I midten af det 18. århundrede brugte man brunsten til at fremstille klor.

Den svenske kemiker Carl Wilhelm Scheele var den første der fandt ud af at mangan er et grundstof, men det var hans kollega, tyskeren Johan Gottlieb Gahn der i 1774 for første gang isolerede metallisk mangan ved at reducere brunsten med kul. Ved begyndelsen af det 19. århundrede begyndte videnskaben at udforske mangans egenskaber i forbindelse med stålfremstilling, og et patent på denne anvendelse blev udstedt. I 1816 fandt man ud af, at når jern tilsættes mangan, bliver det hårdere uden samtidig at blive mere skrøbeligt.

[redigér] Mangan i biologien

Mangan i små mængder er livsvigtig for en lang række organismer, bl.a. fordi det spiller en rolle for en mængde enzymers funktion. På den anden side er for meget mangan stærkt skadeligt: Briten James Couper blev i 1837 opmærksom på, at mennesker der udsættes for store mængder mangan (f.eks. i forbindelse med minedrift) udvikler noget der minder om Parkinsons sygdom.

[redigér] Isotoper af mangan

Naturligt forekommende mangan består af én stabil isotop; mangan-55. Hertil kender man 18 radioaktive isotoper, hvoraf mangan-54 er den mest "sejlivede" med en halveringstid på 3,7 millioner år. De øvrige radioaktive isotoper har alle halveringstider under et år.


BW Bewise Inc. Willy Chen willy@tool-tool.com bw@tool-tool.com www.tool-tool.com skype:willy_chen_bw mobile:0937-618-190 Head &Administration Office No.13,Shiang Shang 2nd St., West Chiu Taichung,Taiwan 40356 TEL:+886 4 24710048 / FAX:+886 4 2471 4839 N.Branch 5F,No.460,Fu Shin North Rd.,Taipei,Taiwan S.Branch No.24,Sec.1,Chia Pu East Rd.,Taipao City,Chiayi Hsien,Taiwan

Welcome to BW tool world! We are an experienced tool maker specialized in cutting tools. We focus on what you need and endeavor to research the best cutter to satisfy users demand. Our customers involve wide range of industries, like mold & die, aerospace, electronic, machinery, etc. We are professional expert in cutting field. We would like to solve every problem from you. Please feel free to contact us, its our pleasure to serve for you. BW product including: cutting toolaerospace tool .HSS Cutting toolCarbide end millsCarbide cutting toolNAS Cutting toolCarbide end millAerospace cutting toolФрезерыCarbide drillHigh speed steelMilling cutterCVDD(Chemical Vapor Deposition Diamond )PCBN (Polycrystalline Cubic Boron Nitride) Core drillTapered end millsCVD Diamond Tools Inserts’PCD Edge-Beveling Cutter(Golden Finger’PCD V-Cutter’PCD Wood tools’PCD Cutting tools’PCD Circular Saw Blade’PVDD End Mills’diamond tool Single Crystal Diamond Metric end millsMiniature end millsСпециальные режущие инструменты Пустотелое сверло Pilot reamerFraisesFresas con mango PCD (Polycrystalline diamond) FreseElectronics cutterStep drillMetal cutting sawDouble margin drillGun barrelAngle milling cutterCarbide burrsCarbide tipped cutterChamfering toolIC card engraving cutterSide cutterNAS toolDIN toolSpecial toolMetal slitting sawsShell end millsSide and face milling cuttersSide chip clearance sawsLong end millsStub roughing end millsDovetail milling cuttersCarbide slot drillsCarbide torus cuttersAngel carbide end millsCarbide torus cuttersCarbide ball-nosed slot drillsMould cutterTool manufacturer.

Bewise Inc. www.tool-tool.com

beeway 發表在 痞客邦 留言(0) 人氣()

Bewise Inc. www.tool-tool.com Reference source from the internet.
Mangan
Atomové číslo 25
Relativní atomová hmotnost 54,938045(5) amu
Elektronová konfigurace [Ar] 3d5 4s2
Elektronegativita 1,5
Počet přírodních izotopů 1
Skupenství Pevné
Oxidační čísla Mn-3, Mn-2, Mn-, Mn0, Mn+, Mn2+, Mn3+, Mn4+, Mn5+, Mn6+, Mn7+
Teplota tání 1246 °C, (1519 K)
Teplota varu 2061 °C, (2334 K)
Vzhled Mangan
Elektronegativita (Pauling) 1,55
Hustota 7,21 g/cm3
Hustota při teplotě tání 5,95 g/cm3
Tvrdost 6
Registrační číslo CAS 7439-96-5
Atomový poloměr 1,295 Å (1,295*10-10m)
Iontový poloměr Mn2+ 0,91 Å (0,91*10-10m)
Iontový poloměr Mn3+ 0,69 Å (0,69*10-10m)
Iontový poloměr Mn4+ 0,52 Å (0,52*10-10m)
Iontový poloměr Mn5+ 0,33 Å (0,33*10-10m)
Iontový poloměr Mn6+ 0,25 Å (0,25*10-10m)
Iontový poloměr Mn7+ 0,46 Å (0,46*10-10m)
Specifické teplo 0,1214
Normální potenciál -1,1 V
Skupenské teplo varu 13,4 kJ/mol
Skupenské teplo tání 221 kJ/mol
Měrný elektrický odpor při 20°C 0,185 mΩ

Mangan, chemická značka Mn, (lat. Manganum) je světle šedý, paramagnetický, tvrdý kov. Používá se v metalurgii jako přísada do různých slitin, katalyzátorů a barevných pigmentů.

[editovat] Základní fyzikálně - chemické vlastnosti

Pláty kovového manganu

Pláty kovového manganu
Mangan

Mangan

Kovový, křehký a značně tvrdý prvek světle šedé barvy. Patří mezi přechodné prvky, které mají valenční elektrony v d-sféře. Mangan je velmi elektropozitivní prvek, který je nejelektropozitivnější po alkalických kovech, kovech alkalických zemin a hliníku.

Mangan se vyskytuje ve třech stabilních modifikacích (α-mangan, β-mangan a γ-mangan), které se mění v závislosti na teplotě. První modifikace je stabilní za obyčejné teploty, druhá je stabilní v rozmezí 742°C až 1070°C a třetí v rozmezí 1070°C až 1160°C. První dvě modifikace jsou křehké a tvrdé a vznikají při aluminotermické výrobě manganu a třetí vzniká při elektrolytickém vylučování manganu a je měkká a tažná. Čtvrtá, ale nestabilní modifikace manganu, vzniká při teplotě nad 1160°C a označuje se jako δ-mangan.

S rostoucím oxidačním číslem klesá zásaditost prvku a stoupá kyselost. Mangan se v některých svých vlastnastech i sloučeninách velmi podobá prvkům a sloučeninám sedmé hlavní podskupiny - halogenidům - zejména pak chloru ve svém nejvyšším oxidačním čísle - chloristany se velmi podobají manganistanům.

Ve sloučeninách se vyskytuje především v řadě mocenství od Mn+1 po Mn+7. Nejstálejší jsou však sloučeniny manganu Mn+2, Mn+4 a Mn+7, ale snadno lze získat i sloučeniny s oxidačním číslem Mn+3, Mn+5 i Mn+6.

V silných minerálních kyselinách je mangan rozpustný za vývoje plynného vodíku, v koncentrované kyselině sírové se rozpouští za vzniku oxidu siřičitého a v kyselině dusičné se podle její koncentrace rozpouští buď za vzniku oxidu dusnatého nebo oxidu dusičitého. Protože je chemicky poměrně podobný železu, je jeho odolnost vůči korozi nízká. Jemně rozetřený práškový mangan je pyroforický - je samozápalný na vzduchu. Mangan je také schopný rozkládat vodu a uvolňovat z ní vodík. Mangan je za normálních teplot málo reaktivní, ale za vyšší teploty se slučuje s mnoha prvky - fosfor, halogeny, dusík, síra, uhlík, křemík, bor a další.

[editovat] Historický vývoj

Oxid manganičitý - burel - je znám již od starověku, kdy se používal při výrobě skla. Byl považován za odrůdu magnetovce (magnes). Římský filozof Plinius starší nazval burel jako "ženskou" odrůdu magnetovce.

Středověk již rozlišoval rozdíl mezi magnes nebo magnesius lapis (magnetovec) a magnesia nebo pseudomagnes (falešný magnet čili burel). O něco později dali skláři burelu název podle jeho schopnosti odbarvovat železnaté sklo tzv. sklářské mýdlo a změnili jeho název na manganes neboli lapis manganensis.

Názor, že je burel železnou rudou, se udržel až do poloviny 18. století. V této době se však konečně došlo k názoru, že tato ruda musí obsahovat i jiný, dosud neznámý, kov. Objevil jej roku 1774 švédský chemik Carl W. Scheele, který předložil v tomto roce nezvratné důkazy Akademii věd ve Stockholmu.

V témže roce se podařilo mangan izolovat. Izoloval ho Johan Gottlieb Gahn při zahřívání burelu s dřevěným uhlím a olejem za vysoké teploty. Mangan v čisté podobě byl vyroben teprve ve třicátých letech dvacátého století elektrolýzou roztoků manganatých solí. Mangan dostal roku 1774 první název manganesium, ale později byl název změněn na mangan (latinsky manganum), aby se zabránilo záměně s hořčíkem (latinsky magnesium), který byl mezitím objeven.

[editovat] Výskyt

Manganová ruda - burel MnO2

Manganová ruda - burel MnO2
Mořské dno, pokryté konkrecemi
Mořské dno, pokryté konkrecemi
Detail manganové konkrece po vyzdvižení z mořského dna

Detail manganové konkrece po vyzdvižení z mořského dna
Manganová ruda - manganit MnO(OH)

Manganová ruda - manganit MnO(OH)

Mangan je prvkem s poměrně značným zastoupením na Zemi i ve vesmíru. V zemské kůře činí průměrný obsah manganu kolem 0,9 – 1 g/kg, což odpovídá 0,106% nebo 1060 ppm (parts per milion = počet částic na 1 milion částic) a ve výskytu na Zemi se řadí na dvanácté místo. Mangan je po železe a titanu třetí nejrozšířenější kov na Zemi. V mořské vodě se jeho koncentrace pohybuje na úrovni 2 mikrogramů v jednom litru. Předpokládá se, že ve vesmíru připadá na jeden atom manganu přibližně 5 milionů atomů vodíku.

V přírodě se mangan vyskytuje prakticky vždy současně s rudami železa. Hlavním minerálem manganu je burel neboli pyrolusit MnO2, další významější nerosty jsou hausmannit Mn3O4, braunit Mn2O3, manganit MnO(OH) a rhodochrozit neboli dialogit MnCO3. Méně významné minerály jsou například wolframit (Fe,Mn)WO4, triplit (Mn,Fe2+)2(PO4)(F,OH), tephroit Mn2SiO4, tantalit, [(Fe, Mn) Ta2O6].

Roční těžba manganových rud je přibližně 10 milionů tun a z toho se vytěží 3,4 mil. tun v Rusku, 2,13 mil. tun JAR, 1 mil. tun v Gabonu a Brazílii, 0,58 mil tun v Austrálii a 0,5 mil. tun vČině. V České republice se rudy manganu vyskytují v Krušných horách.

Velmi zajímavé objekty jsou manganové konkrece, což jsou kulovité útvary o velikosti od průměru několika centimetrů až velikost fotbalového míče, které se hojně vyskytují na některých místech oceánského dna. Byly objeveny v letech 1872 až 1876 na dně Tichého oceánu. Obvykle je jejich výskyt spojován s místy, kde se stýkají dvě různé oceánské desky. Na dně oceánů je více než 1012 tun manganových konkrecí a ročně se jich usadí řádově 107 tun. Konkrece vznikají při zvětrávání a následném vyplavování hornin do řek a následně oceánů, tam se na dně opět shlukují a vznikají kulovité útvary. Konkrece jsou složeny z řady sloučenin přechodných kovů, převládají v nich oxidy manganu. Tyto konkrece obsahují 15-30% manganu, železo a v menší míře nikl, měď a kobalt. Rudy, které se používají k průmyslovému získávání kovů musí obsahovat nejméně 35%, z čehož vyplývá, že tyto rudy nejsou ekonomicky nejvhodnější.

  • V 80. a 90. letech 20. století se dokonce vážně uvažovalo o možnosti těžby těchto rud, navzdory skutečnosti, že hloubka, ve která se konkrece nacházejí přesahuje obvykle 2 000 m. Na této těžbě se měla dokonce podílet i tehdejší ČSSR. Celosvětový pokles zájmu o tyto suroviny a tím i pokles jejich cen však tento projekt zastavil.

[editovat] Výroba

Základem výroby manganu je redukce uhlíkem (koksem) ve vysoké peci:

Mn3O4 + 4 C → 3 Mn + 4 CO

Protože je neekonomické oddělovat v rudě pouze složky s manganem, vzniká tímto postupem slitina Fe a Mn – ferromangan s obsahem manganu kolem 70 – 90% nebo zrcadlovina. Tato slitina je naprosto vyhovující pro další hutní zpracování při legování ocelí, protože v nich je železo přítomno jako hlavní složka.

Mangan se získavá aluminotermicky redukcí kovovým hliníkem. Při výrobě se vychází z burelu, ale ten by s hliníkem reagoval přílliš prudce, a proto se musí nejprve převést na Mn3O4, který reguje klidněji. Reakce Mn3O4 s hliníkem probíhá podle rovnice:

3 Mn3O4 + 8 Al → 4 Al2O3 + 9 Mn

Zvláště čistý mangan se získává elektrolýzou roztoku síranu manganatého.

[editovat] Využití

Podstatnou část světové těžby manganu se spotřebuje při výrobě oceli - je to asi 95% světové produkce manganu, dále manganového bronzu a slitin hliníku. Zbytek se spotřebuje ve sklářském a keramickém průmyslu a při výrobě chemikálií.

Manganistan draselný je látka se silnými oxidačními vlastnostmi. Pro svou zdravotní nezávadnost jsou proto roztoky KMnO4 používány k dezinfekci potravin, např. masa nebo syrové zeleniny v rizikových oblastech. Nevýhodou dezinfekce roztoky manganistanu je vznikající tmavý burel, což brání použití manganistanu při dezinfekci textilií nebo bytových ploch. Oxidačních vlastností manganistanu se využívá také v pyrotechnice, kde slouží k přípravě směsí pro pohon raket a obecně jako zdroj kyslíku pro kontrolované hoření.

Síran manganatý a chlorid manganatý se používají v barvířství, v tisku tkanin a k moření osiva. Chlorid manganatý se také využívá na výrobu sikativ pro fermaže.

Některé sloučeniny manganu se používaly a dnes ještě některé používají jako malířské barvy. K přírodním barvám manganu patří umbra a k umělým manganová hněď (zásaditý uhličitan manganatý), manganová běloba (uhličitan manganatý), manganová zeleň (někdy také kasselská zeleň) a permanentní violeť.

[editovat] Slitiny

V ocelářském průmyslu slouží mangan především jako složka, která při tavbě na sebe váže síru a kyslík, které je nutno z kvalitní oceli odstranit. Slouží tedy jako desulfurační a deoxidační přísada, která převede vzniklé sloučeniny S a O do strusky a vyčistí tak taveninu. Po dokončení tavby však v oceli vždy určité procento elementárního manganu zůstává, v některých případech pouze jako nezreagovaný přebytek po odstranění S a O, někdy je obsah záměrně vyšší tak, aby bylo dosaženo jiných mechanických vlastností vyrobené oceli. Kromě manganu obsahují oceli vždy jako základní složku železo, chrom a obvykle nikl.

Nejběžnější a nejdůležitější slitinou manganu je ferromangan, který obsahuje 70-90% manganu a zbytek železa. Další slitina manganu je silikomangan, který obsahuje 65-70% manganu a zbytek křemíku, a zrcadlovina, která obsahuje 5-20% manganu.

Další mimořádně důležitou slitinou s obsahem manganu je dural. Tento název označuje skupinu velmi lehkých a mechanicky odolných slitin na bázi hliníku a hořčíku s menším množstvím mědi a manganu.

Heuslerovy slitiny objevil roku 1898 Friedrich Heusler. Heusler totiž objevil, že mangan tvoří s mnoha kovy - například hliníkem, cínem nebo antimonem - slitiny, které jsou ferromagnetické, aniž obsahují ferromagnetický kov. Zdá se, že v těchto slitinách vznikají intermetalické sloučeniny. Nejsilnější vlastnosti se dosáhnou pokud nejsou přítomny v čistém stavu, ale jako směsné krystaly.

[editovat] Barvení skla a keramiky

Porcelán s glazurou na bázi solí manganu

Porcelán s glazurou na bázi solí manganu

Přídavek malého množství manganu do skloviny může zvýšit jasnost vyrobeného skla, protože odstraňuje zelenavý nádech, který po sobě ve skle zanechávají stopy železa.

U keramických materiálů nebo porcelánu se používá tzv., glazování, kdy je primárně vypálený střep pokryt vrstvou tekuté glazury, která jako barvicí pigmenty obsahuje většinou soli různých těžkých kovů. Opětným vypálením předmětu v peci se glazura stabilizuje ve formě různých směsných oxidů, křemičitanů a dalších solí, které trvale zbarví její povrch. Společně se solemi manganu se do glazur přidávají obvykle sloučeniny železa a výsledným efektem je hnědé až červeno-hnědé zabarvení.

[editovat] Galvanické články

Nejstarší komerčně vyráběný elektrický galvanický článek (baterie) se skládal ze zinkové katody a anody, kterou tvořil grafitový váleček umístěný v pastě s vysokým obsahem oxidu manganičitého (burele) MnO2. Článek poskytuje napětí přibližně 1,5 V a při odběru proudu dochází k oxidaci elementárního zinku na Zn+2 a redukci manganu na Mn+2.

V průběhu posledních desetiletí byly tyto články z velké části nahrazeny jinými typy, které poskytují vyšší výkon na jednotku vlastní hmotnosti a nehrozí u nich riziko korozního zničení, i když články obsahující burel se stále komerčně využívají.

[editovat] Sloučeniny

[editovat] Anorganické sloučeniny

Z mnoha sloučenin manganu jsou nejvýznamnější sloučeniny v mocenství Mn+2, Mn+4 a Mn+7. Většina sloučenin manganu je jen minimálně toxická a téměř všechny jsou barevné.

[editovat] Sloučeniny manganaté Mn2+

Chlorid manganatý

Chlorid manganatý
Síran manganatý

Síran manganatý

Soli dvojmocného manganu Mn+2 jsou jak v bezvodém stavu tak i v roztoku narůžovělé. Na vzduchu a v roztoku za přítomnosti nadbytečné kyseliny jsou stálé. V zásaditém prostředí vzniká hydroxid manganatý, který je nestabilní. Také v neutrálních roztocích při delším stání nejsou manganaté soli úplně stálé, ale oxidují se na soli manganité a oxid manganičitý. Soli manganaté jsou většinou dobře rozpustné ve vodě a vytváří také podvojné sloučeniny.

  • Hydroxid manganatý Mn(OH)2 je v čerstvém stavu bílá látka, která na vzduchu hnědne až černá a je nerozpustná ve vodě. V přírodě se vyskyuje jako nerost pyrochroit. Připravuje se srážením roztoků manganatých solí alkalickým hydroxidem.
  • Sulfid manganatý MnS je v čerstvém stavu růžová práškovitá látka, nerozpustná ve vodě. Zahříváním přechází ve stálejší zelenou modifikaci, která se v přírodě vyskytuje jako nerost alabandin. V přírodě se vyskytuje i disulfid manganatý MnS2 jako nerost hauerit. Sulfid manganatý se připravuje srážením roztoků manganatých solí alkalickým sulfidem nabo kyselinou sirovodíkovou.

[editovat] Sloučeniny manganité Mn3+

Manganité soli nejsou pro mangan úplně typické, ale lze je získat redukcí manganičitých sloučenin nebo oxidací manganatých sloučenin. Manganité sloučeniny jsou stabilní a na vzduchu ani ve vodě se nerozkládají. Jsou většinou temně zbarveny a mají silný sklon k tvorbě komplexních sloučenin - někdy nejde soli získat v jiném stavu.

[editovat] Sloučeniny manganičité Mn4+

Oxid manganičitý

Oxid manganičitý

Ze sloučenin Mn+4 má největ

beeway 發表在 痞客邦 留言(0) 人氣()

Bewise Inc. www.tool-tool.com Reference source from the internet.
Crom - Manganès - Ferro
Mn
Tc
General
Nom, símbol, nombre Manganés, Mn, 25
Sèrie química Metall de transició
Grup, període, bloc 7, 4 , d
Densitat, duresa Mohs 7470 kg/m3, 6,0
Aparença Platejat metàl·lic
Aparença del manganès
Propietats atòmiques
Pes atòmic 54,938049 uma
Radi mitjà 140 pm
Radi atòmic calculat 161 pm
Radi covalent 139 pm
Radi de Van der Waals Sense dades
Configuració electrònica [Ar]3d54s2
Estats d'oxidació (òxid) 7,6,4,2,3 (àcid fort)
Estructura cristal·lina Cúbica centrada en el cos
Propietats físiques
Estat de la matèria Sòlid (generalmente no magnètic)
Punt de fusió 1517 K
Punt d'ebullició 2235 K
Entalpia de vaporització 226 kJ/mol
Entalpia de fusió 12,05 kJ/mol
Pressió de vapor 121 Pa a 1517 K
Velocitat del so 5150 m/s a 293,15 K
Informació diversa
Electronegativitat 1,55 (Pauling)
Calor específica 480 J/(kg·K)
Conductivitat elèctrica 0,695 x 106 m-1·ohm-1
Conductivitat tèrmica 7,82 W/(m·K)
1er potencial d'ionització 717,3 kJ/mol
2on potencial d'ionització 1509 kJ/mol
3er potencial d'ionització 3248 kJ/mol
4t potencial d'ionització 4940 kJ/mol
5è potencial d'ionització 6990 kJ/mol
6è potencial d'ionització 9220 kJ/mol
7è potencial d'ionització 11500 kJ/mol
Isòtops més estables
iso. AN Període de semidesintegració CD ED MeV PD
52Mn Sintètic 5,591 dies ε 4,712 52Cr
53Mn Sintètic 3,74 x 106 anys ε 0,597 53Cr
54Mn Sintètic 312,3 dies ε
β-
1,377
0,697
54Cr
54Fe
55Mn 100% Mn és estable amb 30 neutrons
Valors en el SI d'unitats i en CNPT (0º C i 1 atm),
excepte quan s'indica el contrari.

El manganés és un element químic de nombre atòmic 25 situat en el grup 7 de la taula periòdica dels elements i se simbolitza com Mn.

[edita] Característiques principals

El manganès és un metall de transició blanc grisenc, semblant al ferro. És un metall dur i molt fràgil, refractari i fàcilment oxidable. El manganés metall pot ser ferromagnètic, però només després de patir un tractament especial.

Els seus estats d'oxidació més comuns són +2, +3, +4, +6 i +7, encara que s'han trobat des de +1 a +7; els compostos en els que el manganès presenta estat d'oxidació +7 són agents oxidants molt enèrgics. Dins dels sistemes biològics, el catió Mn+2 competix sovint amb el Mg+2. S'empra sobretot aliat amb ferro en acers i en altres aliatges.

[edita] Aplicacions

  • És important per a la fabricació d'acers. El manganès reacciona amb el sofre present formant sulfur de manganès (MnS), evitant que el sofre reaccioni amb el ferro (augmentant la fragilitat i sent més difícil de forjar); també l'excés pot reaccionar amb el carboni donant carburs de manganès, millorant les propietats mecàniques de l'acer. A més, el manganès té propietats desoxidants i evita la formació de bombolles.
  • La major part del manganès s'empra per a obtenirferromanganès (conté un 80% en Mn). Aquest aliatge de manganès i ferro s'obté per reducció del triòxid de diferro (Fe2O3), i el diòxid de manganès, (MnO2).
  • També s'empra en el silicomanganès, un aliatge amb un 60-70% en manganès i un 15-30% en silici.
  • Pot estar present en altres aliatges, per exemple amb alumini.
  • El diòxid de manganès, MnO2, s'utilitza com a despolaritzador en piles seques, anomenades també piles tipus Leclanché o de zinc/carboni (Zn/C). També es troba en les piles alcalines o de zinc/diòxid de manganès (Zn/MnO2).
  • El MnO2 també s'empra en l'obtenció de pintures i en la descoloració del vidre.

[edita] Història

Mineral de manganita

Mineral de manganita

S'ha trobat diòxid de manganès, MnO2, en pintures rupestres (donant un color negre). També s'han utilitzat al llarg de la història, per exemple pels egipcis i els romans, compostos de manganès per a decolorar el vidre o bé donar-li color. Així mateix s'ha trobat manganès en la menes de ferro utilitzades pels espartans, i es pensa que tal vegada sigui a causa d'això l'especial duresa dels seus acers.

En el segle XVII, el químic alemany Glauber, va produir per primera vegada permanganat potàssic (KMnO4), un reactiu de laboratori força utilitzat per les seves propietats oxidants. A mitjan segle XVIII, el diòxid de manganès es va emprar per a la producció de clor. El químic suec Scheele va ser el primer que va descobrir que el manganès era un element, però va ser J. G. Gahn qui el va aïllar per reducció del diòxid amb carboni.

A principis del segle XIX es va començar a provar el manganès en aliatges d'acer. El 1816 es va comprovar que enduria l'acer, sense fer-lo més fràgil.

[edita] Rol biològic

El manganès és un oligoelement; és considerat un element químic essencial per a totes les formes de vida.

S'ha comprovat que el manganès té un paper tant estructural com enzimàtic. Està present en distints enzims, destacant la superòxid dismutasa de manganès (Mn-SOD), que catalitza la dismutació de superòxids, O2-; la Mn-catalasa, que catalitza la dismutació de peròxid, H2O2; així com en la concavanila A (de la família de les lecitines), on el manganès té un paper estructural.

En humans, el manganès s'absorbix en l'intestí prim, acabant la major part en el fetge, d'on es reparteix a diferents parts de l'organisme.

[edita] Abundància i obtenció

Mena de manganès

Mena de manganès

És el segon metall més abundant en l'escorça terrestre, per darrere del ferro, i està àmpliament distribuït.

Es troba en centenars de minerals, encara que només una dotzena té interés industrial. Destaquen: pirolusita (MnO2), psilomelana (MnO2·H2O), manganita (MnO(OH)), braunita (3Mn2O3·MnSiO3), rodonita (MnSiO3), rodocrosita (MnCO3), hübnerita (MnWO4), etc. També s'ha trobat en nòduls marins, on el contingut en manganès oscil·la entre un 15 i un 30%, i d'on seria possible extraure'l.

Els països amb majors jaciments de minerals de manganès són Sud-àfrica, Ucraïna i Xina.

El metall s'obté per reducció dels òxids amb alumini, i el ferromanganès s'obté també reduint els òxids de ferro i manganès amb carboni.

[edita] Compostos

El permanganat de potassi, KMnO4, és un reactiu de laboratori molt comú a causa de les seues propietats oxidants.

El diòxid de manganès, MnO2 s'empra com a despolaritzador en piles seques. També es pot usar per a decolorar vidre que presenta color verd a causa de la presència de traces de ferro. Aquest òxid també s'empra per a donar color ametista al vidre, i és responsable del color de l'ametista (una varietat del quars). A més, s'utilitza en la producció de clor i oxigen.

[edita] Isòtops

El manganès natural conté només 1 isòtop; Mn-55. 18 radioisòtops han estat caracteritzats, sent el Mn-53 el més estable amb un període de semidesintegració de 3.7 milions d'anys, Mn-54 amb un període de 312.3 dies, i Mn-52 de 5.591 dies. La resta d'isòtops radioactius, tenen períodes inferiors a les 3 hores i la majoria d'aquests inferiors a 1 minut. Aquest element també té 3 metaestats.

El manganès està inclòs dins el grup d'elements del ferro, que es creu que són sintetitzats dins de gran estrelles poc abans de la seva explosió en forma de supernoves. El Manganès-53 es desintegra en 53Cr amb un període de semidesintegració de 3.7 milions d'anys. A causa d'aquest període relativament curt, 53Mn és un radionúclid extingit. El contingut isotòpic del manganès es combina típicament amb contingut isotòpic del crom, i ha trobat aplicació en la geologia d'isòtops. Variacions en la proporció 53Cr/52Cr i Mn/Cr des d'uns quants meteorits indiquen una proporció de 53Mn/55Mn inicial, que suggereix que la relació isotòpica de Mn-Cr hagi resultat de la desintegració in situ del 53Mn en cossos planetaris diferenciats. Per això el 53Mn proporciona evidències addicionals per als processos nucleosintètics immediatament abans de la coalescència del Sistema Solar.

El pes atòmic dels isòtops de manganès, varien des de les 46 uma (Mn-46) a 65 uma (Mn-65). El principal mode de desintegració dels isòtops fins l'isòtop estable més abundant, Mn-55, és la captura electrònica i el mode principal dels isòtops més grans és la desintegració beta.

 

[edita] Precaucions

El manganès és un element essencial, sent necessària una aportació d'entre 1 a 5 mg per dia, quantitat que s'aconsegueix a través dels aliments.

El manganès en excés és tòxic. Exposicions prolongades a compostos de manganès, de forma inhalada o oral, poden provocar efectes adversos en el sistema nerviós, sistema respiratori, i altres.

El permanganat potàssic, KMnO4, és corrosiu.


BW Bewise Inc. Willy Chen willy@tool-tool.com bw@tool-tool.com www.tool-tool.com skype:willy_chen_bw mobile:0937-618-190 Head &Administration Office No.13,Shiang Shang 2nd St., West Chiu Taichung,Taiwan 40356 TEL:+886 4 24710048 / FAX:+886 4 2471 4839 N.Branch 5F,No.460,Fu Shin North Rd.,Taipei,Taiwan S.Branch No.24,Sec.1,Chia Pu East Rd.,Taipao City,Chiayi Hsien,Taiwan

Welcome to BW tool world! We are an experienced tool maker specialized in cutting tools. We focus on what you need and endeavor to research the best cutter to satisfy users demand. Our customers involve wide range of industries, like mold & die, aerospace, electronic, machinery, etc. We are professional expert in cutting field. We would like to solve every problem from you. Please feel free to contact us, its our pleasure to serve for you. BW product including: cutting toolaerospace tool .HSS Cutting toolCarbide end millsCarbide cutting toolNAS Cutting toolCarbide end millAerospace cutting toolФрезерыCarbide drillHigh speed steelMilling cutterCVDD(Chemical Vapor Deposition Diamond )PCBN (Polycrystalline Cubic Boron Nitride) Core drillTapered end millsCVD Diamond Tools Inserts’PCD Edge-Beveling Cutter(Golden Finger’PCD V-Cutter’PCD Wood tools’PCD Cutting tools’PCD Circular Saw Blade’PVDD End Mills’diamond tool Single Crystal Diamond Metric end millsMiniature end millsСпециальные режущие инструменты Пустотелое сверло Pilot reamerFraisesFresas con mango PCD (Polycrystalline diamond) FreseElectronics cutterStep drillMetal cutting sawDouble margin drillGun barrelAngle milling cutterCarbide burrsCarbide tipped cutterChamfering toolIC card engraving cutterSide cutterNAS toolDIN toolSpecial toolMetal slitting sawsShell end millsSide and face milling cuttersSide chip clearance sawsLong end millsStub roughing end millsDovetail milling cuttersCarbide slot drillsCarbide torus cuttersAngel carbide end millsCarbide torus cuttersCarbide ball-nosed slot drillsMould cutterTool manufacturer.

Bewise Inc. www.tool-tool.com

beeway 發表在 痞客邦 留言(0) 人氣()

 

Biološki značaj [uredi]

Mangan je sastojak mnogih enzima. Njega bi trebalo dnevno unositi u količini od najmanje 1 miligram. U velikim količinama soli mangana su toksične

 

Osobine [uredi]

Mangan je tvrd, srebrnast i krh metal. Vrlo je reaktivan, na vazduhu se pali, reaguje sa vodom gradeći hidroksid. Mangan ima slične osobine kao i alkalni metali. Mangan se masovno koristi kao dodatak čeliku smanjujući njegovu temperaturu topljenja i popravljajući mehaničke osobine.


BW Bewise Inc. Willy Chen willy@tool-tool.com bw@tool-tool.com www.tool-tool.com skype:willy_chen_bw mobile:0937-618-190 Head &Administration Office No.13,Shiang Shang 2nd St., West Chiu Taichung,Taiwan 40356 TEL:+886 4 24710048 / FAX:+886 4 2471 4839 N.Branch 5F,No.460,Fu Shin North Rd.,Taipei,Taiwan S.Branch No.24,Sec.1,Chia Pu East Rd.,Taipao City,Chiayi Hsien,Taiwan

Welcome to BW tool world! We are an experienced tool maker specialized in cutting tools. We focus on what you need and endeavor to research the best cutter to satisfy users demand. Our customers involve wide range of industries, like mold & die, aerospace, electronic, machinery, etc. We are professional expert in cutting field. We would like to solve every problem from you. Please feel free to contact us, its our pleasure to serve for you. BW product including: cutting toolaerospace tool .HSS Cutting toolCarbide end millsCarbide cutting toolNAS Cutting toolCarbide end millAerospace cutting toolФрезерыCarbide drillHigh speed steelMilling cutterCVDD(Chemical Vapor Deposition Diamond )PCBN (Polycrystalline Cubic Boron Nitride) Core drillTapered end millsCVD Diamond Tools Inserts’PCD Edge-Beveling Cutter(Golden Finger’PCD V-Cutter’PCD Wood tools’PCD Cutting tools’PCD Circular Saw Blade’PVDD End Mills’diamond tool Single Crystal Diamond Metric end millsMiniature end millsСпециальные режущие инструменты Пустотелое сверло Pilot reamerFraisesFresas con mango PCD (Polycrystalline diamond) FreseElectronics cutterStep drillMetal cutting sawDouble margin drillGun barrelAngle milling cutterCarbide burrsCarbide tipped cutterChamfering toolIC card engraving cutterSide cutterNAS toolDIN toolSpecial toolMetal slitting sawsShell end millsSide and face milling cuttersSide chip clearance sawsLong end millsStub roughing end millsDovetail milling cuttersCarbide slot drillsCarbide torus cuttersAngel carbide end millsCarbide torus cuttersCarbide ball-nosed slot drillsMould cutterTool manufacturer.

Bewise Inc. www.tool-tool.com

beeway 發表在 痞客邦 留言(0) 人氣()

Bewise Inc. www.tool-tool.com Reference source from the internet.

من ويكيبيديا، الموسوعة الحرة

اذهب إلى: تصفح, بحث
25 كروممنجنيزحديد
-

Mn

Tc
 
صفات عامة
الإسم, الرقم, الرمز منجنيز, Mn, 25
سلاسل كيميائية فلز انتقالي
المجموعة, الدورة, المستوى الفرعي d ، 4 ، 7
المظهر معدني فضي
كتلة ذرية 54.938045(5) g/mol
شكل إلكتروني [Ar] 3d5 4s2
عدد الإلكترونات لكل مستوى 2, 8, 13, 2
خواص فيزيائية
الحالة حالة صلبة
كثافة عندح.غ. 7.21 ج/سم³
كثافة السائل عند m.p. 5.95 ج/سم³
نقطة الإنصهار 1519 ك
1246 م °
2275 ف °
نقطة الغليان 2334 ك
2061 م °
3742 ف °
حرارة الإنصهار kJ/mol 12.91
حرارة التبخر kJ/mol 221
السعة الحرارية (25 26.32 C (م) ° ( J/(mol·K
ضغط البخار
P/Pa 1 10 100 1 k 10 k 100 k
at T/K 1228 1347 1493 1691 1955 2333
الخواص الذرية
البنية البللورية cubic body centered
حالة التأكسد 7, 6, 4, 2, 3
(strongly acidic oxide)
سالبية كهربية 1.55 (مقياس باولنج)
طاقة التأين
(المزيد)
1st: 717.3 kJ/mol
2nd: 1509.0 kJ/mol
3rd: 3248 kJ/mol
نصف قطر ذري 140 pm
نصف قطر ذري (حسابيا) 161 pm
نصف القطر التساهمي 139 pm
متفرقة
الترتيب المغناطيسي nonmagnetic
مقاومة كهربية 20 °C 1.44 µΩ·m
توصيل حراري (300 K ك ) 7.81
(W/(m·K)
تمدد حراري (25 °C) 21.7 µm/(m·K)
سرعة الصوت (قضيب رفيع) (20 °م) 5150 m/s
معامل يونج 198 GPa
معاير الحجم 120 GPa
صلابة موس 6.0
رقم برينل للصلادة 196 MPa
رقم التسجيل 7439-96-5
النظائر المهمة
المقالة الرئيسية: نظائر المنجنيز
نظ ت.ط. عمر النصف طر.إ. طا.إ. MeV ن.إ.
52Mn syn 5.591 d ε - 52Cr
β+ 0.575 52Cr
γ 0.7, 0.9, 1.4 -
53Mn syn 3.74 ×106 y ε - 53Cr
54Mn syn 312.3 d ε - 54Cr
γ 0.834 -
55Mn 100% Mn يكون ثابت وله 30 نيوترون
المراجع

المنجنيز عنصر كيميائي في الجدول الدوري، رمزه Mn، ورقمه الذري 25.


BW Bewise Inc. Willy Chen willy@tool-tool.com bw@tool-tool.com www.tool-tool.com skype:willy_chen_bw mobile:0937-618-190 Head &Administration Office No.13,Shiang Shang 2nd St., West Chiu Taichung,Taiwan 40356 TEL:+886 4 24710048 / FAX:+886 4 2471 4839 N.Branch 5F,No.460,Fu Shin North Rd.,Taipei,Taiwan S.Branch No.24,Sec.1,Chia Pu East Rd.,Taipao City,Chiayi Hsien,Taiwan

Welcome to BW tool world! We are an experienced tool maker specialized in cutting tools. We focus on what you need and endeavor to research the best cutter to satisfy users demand. Our customers involve wide range of industries, like mold & die, aerospace, electronic, machinery, etc. We are professional expert in cutting field. We would like to solve every problem from you. Please feel free to contact us, its our pleasure to serve for you. BW product including: cutting toolaerospace tool .HSS Cutting toolCarbide end millsCarbide cutting toolNAS Cutting toolCarbide end millAerospace cutting toolФрезерыCarbide drillHigh speed steelMilling cutterCVDD(Chemical Vapor Deposition Diamond )PCBN (Polycrystalline Cubic Boron Nitride) Core drillTapered end millsCVD Diamond Tools Inserts’PCD Edge-Beveling Cutter(Golden Finger’PCD V-Cutter’PCD Wood tools’PCD Cutting tools’PCD Circular Saw Blade’PVDD End Mills’diamond tool Single Crystal Diamond Metric end millsMiniature end millsСпециальные режущие инструменты Пустотелое сверло Pilot reamerFraisesFresas con mango PCD (Polycrystalline diamond) FreseElectronics cutterStep drillMetal cutting sawDouble margin drillGun barrelAngle milling cutterCarbide burrsCarbide tipped cutterChamfering toolIC card engraving cutterSide cutterNAS toolDIN toolSpecial toolMetal slitting sawsShell end millsSide and face milling cuttersSide chip clearance sawsLong end millsStub roughing end millsDovetail milling cuttersCarbide slot drillsCarbide torus cuttersAngel carbide end millsCarbide torus cuttersCarbide ball-nosed slot drillsMould cutterTool manufacturer.

Bewise Inc. www.tool-tool.com

beeway 發表在 痞客邦 留言(0) 人氣()

Bewise Inc. www.tool-tool.com Reference source from the internet.

vanuit Wikipedia, die vrye ensiklopedie.

Spring na: navigasie, soek
25 chroommangaanyster
-

Mn

Tc
 
Algemeen
Naam, Simbool, Getal mangaan, Mn, 25
Chemiese reeks oorgangsmetaal
Groep, Periode, Blok 7, 4, d
Voorkoms silwermetaal kleur
Atoommassa 54.938049(9) g/mol
Elektronkonfigurasie [Ar] 3d5 4s2
Elektrone per skil 2, 8, 13, 2
Fisiese Eienskappe
Toestand vastestof
Digtheid (naby k.t.) 7.21 g/cm³
Vloeistof digtheid teen s.p. 5.95 g/cm³
Smeltpunt 1519 K
(1246 °C)
Kookpunt 2334 K
(2061 °C)
Smeltingswarmte 12.91 kJ/mol
Verdampingswarmte 221 kJ/mol
Warmtekapasiteit (25 °C) 26.32 J/(mol·K)
Dampdruk
P/Pa 1 10 100 1 k 10 k 100 k
teen T/K 1228 1347 1493 1691 1955 2333
Atoomeienskappe
Kristalstruktuur kubies vlak gesentreerd
Oksidasietoestande 7, 6, 4, 2, 3
(sterk suur oksied)
Elektronegatiwiteit 1.55 (Skaal van Pauling)
Ionisasie energieë
(meer)
1ste: 717.3 kJ/mol
2de: 1509.0 kJ/mol
3rde: 3248 kJ/mol
Atoomradius 140 pm
Atoomradius (ber.) 161 pm
Kovalente radius 139 pm
Diverse
Magnetiese rangskikking nie-magneties
Elektriese weerstand (20 °C) 1.44 µΩ·m
Termiese geleidingsvermoë (300 K) 7.81 W/(m·K)
Termiese uitsetting (25 °C) 21.7 µm/(m·K)
Spoed van klank (dun staaf) (20 °C) 5150 m/s
Young se modulus 198 GPa
Massamodulus 120 GPa
Mohs se hardheid 6.0
Brinell hardheid 196 MPa
CAS-registernommer 7439-96-5
Vernaamste isotope
Hoofartikel: Isotope van mangaan
iso NV halfleeftyd VM VE (MeV) VP
52Mn sin 15.591 d ε - 52Cr
β+ 0.575 52Cr
γ 0.7, 0.9, 1.4 -
53Mn sin 3.74 ×106 j ε - 53Cr
54Mn sin 312.3 d ε - 54Cr
γ 0.834 -
55Mn 100% Mn is stabiel met 30 neutrone
Verwysings

Mangaan is 'n chemiese element in die periodieke tabel met die simbool Mn en atoomgetal van 25.

[wysig] Kenmerkende eienskappe

Mangaan is 'n gryswit metaal wat soos yster lyk. Dit is 'n harde metaal en is baie bros, smelt met moeite maar word maklik geoksideer. Mangaan-metaal toon ferromagnetiese eienskappe slegs na spesiale behandeling. Die mees algemen oksidasietoestande van mangaan is +2, +3, +4, +6 en +7, maar toestande van +1 regdeur tot +7 word wel aangetref. Mn2+ ding dikwels mee met Mg2+ in biologiese stelsels. Mangaanverbindings waar die mangaan in die +7 oksidasietoestand verkeer is kragtige oksideermiddels.

[wysig] Aanwendings

Manganiet, 'n mangaanoksied

Manganiet, 'n mangaanoksied

Mangaan is 'n noodsaaklike element vir yster en staal produksie uit hoofde van sy swaelvestiging, deoksidering en legeringseienskappe. Staalvervaardiging, insluitend die ystervervaardigingstap is verantwoordelik vir die grootste vraag na mangaan, huidiglik rondom 85% tot 90% van die totale vraag. Mangaan is 'n sleutelkomponent in die vervaardiging van lae-koste vlekvrye staal formulerings en word ook algemeen gebruik in aluminiumlegerings. Dit word ook by petrol gevoeg om enjinklop te verminder. Mangaan(IV)oksied (mangaandioksied) is gebruik vir die eerste droë-sel batterye. Mangaandioksied word ook as katalis aangewend. Mangaan word verder gebruik om kleur in glas te verwyder (verwydering van die groen tint wat deur die teenwoordigheid van yster veroorsaak word) en, by hoër konsentrasies, om perskleurige glas te maak. Mangaanoksied is 'n bruin pigment wat gebruik kan word om verf te maak en is 'n natuurlike bestandeel van omber. Kaliumpermanganaat is 'n uiters sterk oksideermiddel en word in chemie en geneeskunde as ontsmettingsmiddel gebruik.

[wysig] Geskiedenis

Mangaan (Latyn magnes, wat "magneet" beteken) is al sedert die oertyd in gebruik; verwe wat met mangaandioksied gepigmenteer is kan so ver as 17 000 jaar teruggespoor word. Die Egiptenare en Romeine het mangaanverbindings in glasvervaardiging geburik, hetsy om kleeur te verwyder of om dit te kleur. Mangaan kan in ysterertse van die Spartane gevind word. Sommige spekuleer dat die buitengewone hardheid van Spartaanse stale, die gevolg van onbewustelike vervaardiging van yster-mangaanlegerings is.

In die 17de eeu, het die Duitse skeikundige Johan Glauber (daar word egter deur sommige mense geglo dat dit deur Ignites Kaim in 1770 ontdek is) die permanganaat vir die eerste keer voorberei. Teen die middel 18de eeu, is mangaandioksied gebruik in die vervaardiging van chloor. Die sweedse skeikundige Scheele was die eerste om vas te stel dat mangaan 'n element is, en sy kollega, Johan Gottlieb Gahn, het die dit in 1774 as 'n suiwer element voorberei deur reduksie van die dioksied met koolstof. Rondom die begin van die 19de eeu, het wetenskaplikes begin om met die gebruik van mangaan in staalvervaardiging te eksperimenteer, en is die eerste patente vir sodanige toepassings van mangaan uitgereik. In 1816 is daar opgemerk dat die byvoeging van mangaan tot yster dit harder gemaak het, sonder om dit brosser te maak. In 1837 het die Britse akademikus Couper opgelet dat daar 'n verband bestaan het tussen 'n hoë blootstelling aan mangaan in die myne en Parkinson se siekte.

[wysig] Biologiese rol

Mangaan is 'n noodskaaklike spoorvoeding vir alle lewensvorme.

Die verskeidenheid klasse ensieme wat mangaan kofaktore het is groot en sluit klasse soos oksiedoreduktase, transferase, hidrolase, liase, isomerase, ligase, lektiene en integriene in. Die mees bekende mangaan-bevattende polipeptiede is waarskynlik arginase, 'n Mn-bevattende superoksied dismutase en die difteria toksien.

[wysig] Verspreiding

Mangaanerts

Mangaanerts

Mangaan kom hoofsaaklik as pirolusiet (MnO2) en tot 'n mindere mate as rhodochrosiet (MnCO3) voor. Landgebaseerde neerslae is groot maar onreëlmatig verspreid; dié van die Verenigde State is van 'n lae gehalte wat 'n baie hoë ontginningskoste meebring. Suid-Afrika en die Oekraïne se neerslae verteenwoordig meer as 80% van die wêreld se bekende bronne terwyl Suid-Afrika se produksie 80% van die totale wêreldproduksie verteenwoordig as Sjina en die Ukraïne buite rekening gelaat word. Mangaan word ook in Burkina Faso ontgin.

Geweldige groot neerslae van mangaan bestaan in mangaanknobbels op die seebodem. Pogings om ekonomies lewensvatbare metodes te ontwikkel om mangaanknobbels te ontgin is in die 1970's gestaak.

[wysig] Verbindings

Kaliumpermanganaat word dikwels as reagens in die laboratorium gebruik vanweë sy oksideringseienskappe en vind ook gebruike as medisinale salwe (byvoorbeeld, vir die behandeling van vissiektes).

Mangcaan(IV)oksied (mangaandioksied) word in droë-sel batterye gebruik en kan ook gebruik word om glas wat met spoorhoevelhede yster besoedel is te ontkleur. Mangaanverbindings kan ook gebruik word om glas 'n ametis kleur te gee en is dan ook verantwoordelk vir die kleur van ametis. Mangaandioksied word ook gebruik in die vervaardiging van suurstof en chloor en om swart verwe te droog.

Die mees stabiele oksidasietoestand van mangaan is +2 en daarom word baie mangaan(II)verbindings aangetref, soos onder andere mangaan(II)sulfaat (MnSO4) en mangaan(II)chloried (MnCl2). Hierdie oksidasietoestand word dan ook waargeneem in die mineraal rhodochrosiet (mangaan(II)karbonaat). Die +3 oksidasietoestand kom ook voor in verbindings soos mangaan(II)asetaat, maar hierdie is nogal sterk oksideermiddels.

[wysig] Isotope

Mangaan wat natuurlik voorkom bestaan uit 1 stabiele isotoop; 55Mn. 18 radio-isotope is al uitgeken, waarvan die mees stabiele een 53Mn is met 'n halfleeftyd van 3.7 miljoen jaar, 54Mn met 'n halfleeftyd van 312.3 dae en 52Mn met 'n halfleeftyd van 5.591 dae en die oorblywende isotope halfleeftye wat halfleeftye van minder as 3 ure het waar die oorgrote meerderheid daarvan halfleeftye van minder as 'n minuut het. Die element het ook 3 meta-toestande.

Mangaan is deel van die ystergroep van elemente en daar word gereken dat dit in groot sterre net voor 'n supernova gevorm word. Mangaan-53 verval na 53Cr met 'n halfleeftyd van 3.7 miljoen jaar. Vanweë sy relatiewe kort halfleeftyd, is 53Mn 'n uitgestorwe radionuklied. Mangaan isotope word dikwels in kombinasie met chroom isotope aangetref en word gebruik in isotoopgeologie.

Mn-Cr isotoopverhoudings versterk die teoretieë oor die vroeëre geskiedenis van die sonnestelsel soos afgelei uit 26Al en 107Pd. Variasies in die 53Cr/52Cr en Mn/Cr verhoudings in verskeie meteoriete dui op 'n aanvanklike 53Mn/55Mn verhouding wat daarop dui dat die Mn-Cr isotope onderhewig was aan in-situ verval van 53Mn in planetêre liggame. 53Mn verskaf dus verdere bewys dat nukleosintetiese prosesse plaasgevind het net voor die vorming van die sonnestelsel.

Die isotope van mangaan wissel in atoomgewig tussen 46 ame (46Mn) tot 65 ame (65Mn). Die primêre vervalmodus voor die mees algemene isotoop, 55Mn, is elektronvangs en die primêre modus daarna is beta verval.

[wysig] Voorsorgmaatreëls

Mangaan in oormaat is toksies. Blootstelling aan mangaanstof en dampe behoort nie die vlak van 5 mg/m3 selfs vir kort tydperke oorskry nie vanweë die uiters toksiese aard daarvan.

Suur permanganaat oplossings sal baie soorte organiese materiaal waarmee hulle in kontak kom oksideer. Hierdie oksidasie proses kan selfs genoeg warmte vrystel om sommige organiese stowwe aan die brand te steek.

In 2005 het 'n studie 'n moontlike verband tussen die inaseming van mangaan en toksiese effekte op die sentrale senuweestelsel van rotte vasgestel. Daar word vermoed dat langtermyn blootstelling aan die mangaan wat natuurlik in stortwater voorkom ook 'n risiko inhou.

'n Vorm van senuweestelsel verval soortgelyk aan Parkinson se siekte, genaamd "manganisme" is al sedert die vroeë 19de eeu aan mangaan verbind. Die sweisnywerheid is al daarvan beskuldig dat dit verantwoordelik is vir gevalle van manganisme deur die inaseming van mangaandampe. Mangaan verskein op die OSHA se Gevaarlike stowwe lys en word beheer as gevolg van sy hoë vlak van toksisiteit.

[wysig] Sien ook

[wysig] Verwysings

[wysig] Eksterne skakels


BW Bewise Inc. Willy Chen willy@tool-tool.com bw@tool-tool.com www.tool-tool.com skype:willy_chen_bw mobile:0937-618-190 Head &Administration Office No.13,Shiang Shang 2nd St., West Chiu Taichung,Taiwan 40356 TEL:+886 4 24710048 / FAX:+886 4 2471 4839 N.Branch 5F,No.460,Fu Shin North Rd.,Taipei,Taiwan S.Branch No.24,Sec.1,Chia Pu East Rd.,Taipao City,Chiayi Hsien,Taiwan

Welcome to BW tool world! We are an experienced tool maker specialized in cutting tools. We focus on what you need and endeavor to research the best cutter to satisfy users demand. Our customers involve wide range of industries, like mold & die, aerospace, electronic, machinery, etc. We are professional expert in cutting field. We would like to solve every problem from you. Please feel free to contact us, its our pleasure to serve for you. BW product including: cutting toolaerospace tool .HSS Cutting toolCarbide end millsCarbide cutting toolNAS Cutting toolCarbide end millAerospace cutting toolФрезерыCarbide drillHigh speed steelMilling cutterCVDD(Chemical Vapor Deposition Diamond )PCBN (Polycrystalline Cubic Boron Nitride) Core drillTapered end millsCVD Diamond Tools Inserts’PCD Edge-Beveling Cutter(Golden Finger’PCD V-Cutter’PCD Wood tools’PCD Cutting tools’PCD Circular Saw Blade’PVDD End Mills’diamond tool Single Crystal Diamond Metric end millsMiniature end millsСпециальные режущие инструменты Пустотелое сверло Pilot reamerFraisesFresas con mango PCD (Polycrystalline diamond) FreseElectronics cutterStep drillMetal cutting sawDouble margin drillGun barrelAngle milling cutterCarbide burrsCarbide tipped cutterChamfering toolIC card engraving cutterSide cutterNAS toolDIN toolSpecial toolMetal slitting sawsShell end millsSide and face milling cuttersSide chip clearance sawsLong end millsStub roughing end millsDovetail milling cuttersCarbide slot drillsCarbide torus cuttersAngel carbide end millsCarbide torus cuttersCarbide ball-nosed slot drillsMould cutterTool manufacturer.

Bewise Inc. www.tool-tool.com

beeway 發表在 痞客邦 留言(0) 人氣()