碧威股份有限公司
www.tool-tool.com
轉述:
1指令的区别及编程
1. 暂停指令
G04X(U)_/P_ 是指刀具暂停时间(进给停止,主轴不停止),地址P或X后的数值是暂停时间。X后面的数值要带小数点,否则以此数值的千分之一计算,以秒(s)为单位,P后面数值不能带小数点(即整数表示),以毫秒(ms)为单位。
例如,G04 X2.0;或G04 X2000; 暂停2秒
G04 P2000;
但在某些孔系加工指令中(如G82、G88及G89),为了保证孔底的精糙度,当刀具加工至孔底时需有暂停时间,此时只能用地址P表示,若用地址X表示,则控制系统认为X是X轴坐标值进行执行。
例如,G82X100.0Y100.0Z-20.0R5.0F200P2000;钻孔(100.0,100.0)至孔底暂停2秒
G82X100.0Y100.0Z-20.0R5.0F200X2.0; 钻孔(2.0,100.0)至孔底不会暂停。
2. M00、M01、M02和M30的区别与联系
M00为程序无条件暂停指令。程序执行到此进给停止,主轴停转。重新启动程序,必须先回到JOG状态下,按下CW(主轴正转)启动主轴,接着返回AUTO状态下,按下START键才能启动程序。
M01为程序选择性暂停指令。程序执行前必须打开控制面板上OP STOP键才能执行,执行后的效果与M00相同,要重新启动程序同上。
M00和M01常常用于加工中途工件尺寸的检验或排屑。
M02为主程序结束指令。执行到此指令,进给停止,主轴停止,冷却液关闭。但程序光标停在程序末尾。
M30为主程序结束指令。功能同M02,不同之处是,光标返回程序头位置,不管M30后是否还有其他程序段。
3. 地址D、H的意义相同
刀具补偿参数D、H具有相同的功能,可以任意互换,它们都表示数控系统中补偿寄存器的地址名称,但具体补偿值是多少,关键是由它们后面的补偿号地址来决 定。不过在加工中心中,为了防止出错,一般人为规定H为刀具长度补偿地址,补偿号从1~20号,D为刀具半径补偿地址,补偿号从21号开始(20把刀的刀 库)。
例如,G00G43H1Z100.0;
G01G41D21X20.0Y35.0F200;
4. 镜像指令
镜像加工指令M21、M22、M23。当只对X轴或Y轴进行镜像时,切削时的走刀顺序(顺铣与逆铣),刀补方向,圆弧插补转向都会与实际程序相反,如图1所示。当同时对X轴和Y轴进行镜像时,走刀顺序,刀补方向,圆弧插补转向均不变。
注意:使用镜像指令后必须用M23进行取消,以免影响后面的程序。在G90模式下,使用镜像或取消指令,都要回到工件坐标系原点才能使用。否则,数控系统 无法计算后面的运动轨迹,会出现乱走刀现象。这时必须实行手动原点复归操作予以解决。主轴转向不随着镜像指令变化。
5. 圆弧插补指令
G02为顺时针插补,G03为逆时针插补,在XY平面中,格式如下:G02/G03X_Y_I_K_F_或G02/G03 X_Y_R_F_,其中X、Y为圆弧终点坐标,I、J为圆弧起点到圆心在X、Y轴上的增量值,R为圆弧半径,F为进给量。
在圆弧切削时注意,q≤180°,R为正值;q>180°,R为负值;I、K的指定也可用R指定,当两者同时被指定时,R指令优先,I、K无效;R不能做整圆切削,整圆切削只能用I、J、K编程,因为经过同一点,半径相同的圆有无数个,如图2所示。
当有I、K为零时,就可以省略;无论G90还是G91方式,I、J、K都按相对坐标编程;圆弧插补时,不能用刀补指令G41/G42。
6. G92与G54~G59之间的优缺点
G54~G59是在加工前设定好的坐标系,而G92是在程序中设定的坐标系,用了G54~G59就没有必要再使用G92,否则G54~G59会被替换,应当避免,如表1所示。
注意:(1)一旦使用了G92设定坐标系,再使用G54~G59不起任何作用,除非断电重新启动系统,或接着用G92设定所需新的工件坐标系。(2)使用 G92的程序结束后,若机床没有回到G92设定的原点,就再次启动此程序,机床当前所在位置就成为新的工件坐标原点,易发生事故。所以,希望广大读者慎 用。
7. 编制换刀子程序。
在加工中心上,换刀是不可避免的。但机床出厂时都有一个固定的换刀点,不在换刀位置,便不能够换刀,而且换刀前,刀补和循环都必须取消掉,主轴停止,冷却 液关闭。条件繁多,如果每次手动换刀前,都要保证这些条件,不但易出错而且效率低,因此我们可以编制一个换刀程序保存在系统内存内,在换刀时,在MDI状 态下用M98调用就可以一次性完成换刀动作。
以PMC-10V20加工中心为例,程序如下:
O2002; (程序名)
G80G40G49 ; (取消固定循环、刀补)
M05; (主轴停止)
M09; (冷却液关闭)
G91G30Z0; (Z轴回到第二原点,即换刀点)
M06; (换刀)
M99; (子程序结束)
在需要换刀的时候,只需在MDI状态下,键入“T5M98P2002”,即可换上所需刀具T5,从而避免了许多不必要的失误。广大读者可根据自己机床的特点,编制相应的换刀子程序。
8.其他
程序段顺序号,用地址N表示。一般数控装置本身存储器空间有限(64K),为了节省存储空间,程序段顺序号都省略不要。N只表示程序段标号,可以方便查找 编辑程序,对加工过程不起任何作用,顺序号可以递增也可递减,也不要求数值有连续性。但在使用某些循环指令,跳转指令,调用子程序及镜像指令时不可以省 略。
9.同一条程序段中,相同指令(相同地址符)或同一组指令,后出现的起作用。
例如,换刀程序,T2M06T3; 换上的是T3而不是T2;
G01G00X50.0Y30.0F200;执行的是G00(虽有F值,但也不执行G01)。
不是同一组的指令代码,在同一程序段中互换先后顺序执行效果相同。
G90G54G00X0Y0Z100.0;
G00G90G54X0Y0Z100.0;
以上各项均在PMC-10V20(FANUC SYSTEM)加工中心上运行通过。在实际应用中,只有深刻理解各种指令的用法和编程规律,才可以减少错误,避免事故的发生。
2 FANUC数控系统PMC功能的妙用
FANUC 数控系统以其高质量、低成本、高性能,得到了广大用户的认可,在我公司得到了大量的使用,就其系统本身而言,经受了连续长时间的工作考验,故障率较低。而故障多发于外围行程、限位开关等外围信号检测电路上。
在实际工作中,了解和熟悉 FANUC 系统丰富的操作功能,对外围故障的判断和排除有着事半功倍的作用。
在这里,举例谈一下使用FANUC系统内嵌的强大、易用的PMC功能对外围故障的快速判断和排除。
功能 1
操作方法:按功能键|SYSTEM|切换屏幕→按|PMC|软键,再按相应的软键,便可分别进入|PMCLAD|梯形图程序显示功能、|PMCDGN|PMC的I/0信号及内部继电器显示功能、|PMCPRM|PMC参数和显示功能。
应用实例:本公司的一台日本立式加工中心使用FANUC18i系统,报警内容是2086ABNORMAL PALLET CONTACT(M/C SIDE),查阅机床说明书,意思是“加工区侧托盘着座异常",检测信号的PMC地址是X6.2。该加工中心的APC机构是双托盘大转台旋转交换式,观察 加工区内堆积了大量的铝屑,所以判断是托盘底部堆积了铝屑,以至托盘底座气检无法通过。但此时报警无法消除,不能对机床作任何的操作。在FANUC 系统的梯形图编程语言中规定,要在屏幕上显示某一条报警信息,要将对应的信息显示请求位(A线圈)置为"1",如果置为 "0" ,则清除相应的信息。也就是说,要消除这个报警,就必须使与之对应的信息显示请求位(A),置为"0"。按|PMCDGN|→|STATUS|进入信号状 态显示屏幕 , 查找为 "1" 的信息显示请求位 ( A)时 , 查得 A10.5 为 "1" 。于是 , 进入梯形图程序显示屏幕 |PMCLAD|, 查找 A10.5 置位为 "1" 的梯形图回路 , 发现其置位条件中使用了 一个保持继电器的K9.1 常闭点 , 此时状态为 "0" 。查阅机床维修说明书 ,K9.1 的含义是 : 置 "1" 为托盘底座检测无效。
故障排除过程 : 在 MDI 状态下 , 用功能键 |OFFSET SETTING| 切换屏幕 , 按|SETTING|键将 " 参数写人 " 设为 "1", 再回到|PMCPRM| 屏幕下 , 按 |KEEPRL| 软键进入保持型继电器屏幕 , 将 K9.1 置位为 1" 。按报警解除按钮 , 这时可使 A10.5 置为 "0", 便可对机床进行操作。将大转台抬起旋转 45度, 拆开护板 , 果然有铝屑堆积 , 于是将托盘底部的铝屑清理干净。将 K9.1 和 " 参数写人 " 设回原来的值 "0" 。多次进行 APC 操作 , 再无此报警 , 故障排除。
功能 2
在 FANUC 系统的梯形图编程语言中 ,F 是来自 NC 侧的输入信号 (NC → PMC), 而 G 是由 PMC 输出到 NC 的信 号 (PMC → NC)。其中 ,G130 是 PMC 输出到 NC 侧的各轴互锁信号 , 当其中某一位被置为 "1" 时 , 允许对应的伺服轴移动 ;为 "0" 时 , 禁止对应的伺服轴移动。
应用实例 : 一国产加工专机使用 FANUC 21M 系统 , 执行原点返回的 NC 程序时 , 当执行到 "G91 G28 GOO ZO;" 时 ,Z 轴无动作 ,CNC 状态栏显示为 "MEM STRT MTN ***", 即 Z 轴移动指令已发出。用功能键|MESSAGE| 切换屏幕 , 并无报警信息。用功能键 |SYSTEM| 切换屏幕 , 按“诊断”软键 , 这时005(INTERLOCK/START-LOCK) 为 "1", 即有伺服轴进入了互锁状态。
故障排除过程 : 进入梯形图程序显示功能屏幕 , 发现与 Z 轴对应的互锁信号 G130.0 的状态为 "0", 即互锁信号被输入至 NC, 检查其互锁原因 , 发现是一传感器被铝屑污染。擦拭后 , 将 G130.0 置为 "1", 互锁解除 , 重新启动 原点返回的 NC 程序 , 动作正常 , 故障排除。
功能 3
PMC 中的眼踪功能 (TRACE) 是一个可检查信号变化的履历 , 记录信号连续变化的状态 , 特别对一些偶发性的、特殊故障的查找、定位起着重要的作用。用功能键 |SYSTEM| 切换屏幕 , 按|PMC|软键→ |PMCDGN| →{TRACE|即可进入信号跟踪屏幕。
应用实例 : 某国产加工中心使用的是 FANUC Oi 系统。在自动加工过程 ,NC 程序偶尔无故停止 , 上件端托盘已装夹好的夹爪自动打开 ( 不正常现象 ),CNC 状态栏显示 MEM STOP *** , 此时无任何报警信息 , 检查诊断画面 , 并未发现异常 , 按 NC 启动便可继续加工。经观察 ,CNC 都是在执行 M06( 换刀 ) 时停止 , 主要动作是 ATC 手臂旋转和主轴 ( 液压 ) 松开 / 拉紧刀具。
故障排除过程 : 使用梯形图显示功能 , 追查上件侧的托盘夹爪 (Y25.1) 置为 "1" 的原因 ( 估计与在自动加工过程 , 偶尔无故停止故障有关 ) 。经查 , 怀疑与一加工区侧托盘夹紧的检测液压压力开关 (X1007.4) 有关。于是 , 使用|TRACE|信号跟踪功能 , 在自动加工过程中 , 监视 X1007.4的变化情况。当 NC 再次在 M06 执行时停止 , 在|TRACE|屏幕上 , 跟踪到 X1007.4在 CNC 无故停止时的一个采样周期从原来的状态 "1" 跳转为 "0", 再变回 "1", 从而确认该压力开关有问题。调整此开关动作压力 , 但故障依旧。于是将此开关更换 , 故障排除。事后分析 , 引起这个故障原因是主轴松开 / 夹紧工具时 , 液压系统压力有所波动 ( 在合理的波动范围内 ), 而此压力开关作出了反应以致造成在自动加工过程中 ,NC 程序偶尔无故停止的故障。
3 加工中心的坐标设置与子程序调用
rn rn 本文通过实例,剖析了加工中心机床坐标设置与子程序的应用问题,说明了自动编程与手工编程相结合,利用G92位置设置功能与子程序调用相配合,简化编程, 优化程序的方法。在实际工作中,取到事半功倍的作用。rn 随着数控技术的快速发展及CAD/CAM技术的广泛应用,数控加工越来越多地依赖于软件的自 动编程,手工编程逐渐处于次要的地位。但在实际加工中如果将自动编程与手工编程相结合,利用G92位置设置功能与子程序调用相配合,则可以更加简化编程, 优化程序,有利于程序的修改和重复调用。rn 下面以美国SABRE-1000 Acramatic 850SX系统立式加工中心机床为例,就坐标设置(位置设置)与子程序调用问题进行探讨。rn 机床坐标系为机床上固有的坐标系,是由机床生产厂家设定 的。工件坐标系是编程人员在编制加工程序时,根据零件图纸上的某一固定点为原点确定的坐标系。两坐标系之间的统一通过准备功能代码G92的位置设置功能实 现。rn G92位置设置功能允许操作人员或编程人员为当前坐标轴赋予新的坐标值而工作台并不移动。 G92偏移机床坐标系,使NC程序中的工件坐标系的坐标值与之相匹配。 rn 工件原点(NC程序的零点)是由操作人员在安装工件的过程中进行定位的。编程人员在编制程序时可以不考虑工件在机床上安装的物理位置和安装精度, 而利用数控系统的原点偏置功能,通过工件原点偏置来补偿工件的装夹误差。在加工前将该偏置值输入到数控装置,加工时该偏置值便能自动加到工件坐标系上,使 数控系统按机床坐标系确定的工件的坐标值进行加工。但是,如果将G92直接编入程序中,而不采用将偏置值输入到数控装置的方法,则会更加方便。r n 如图1所示,模具有6个相同的型芯,如果仅采用自动编程而不进行人工编辑,就需要对每一个型芯都完全绘制和进行编程,工作量较大,程序量更大,也不 便于检查程序。rn 如图2所示,如果将手动编程与自动编程相结合,利用CAD/CAM软件自动编程,只需要绘制一个型芯,生成加工一个型芯的程序。再 根据各型芯之间的位置关系,通过G92设置和子程序调用,即可得到简洁、清晰的程序。而且,如果在加工的过程中刀具已经磨损,更换刀具后,也可以很方便地 修改程序,继续下一个型芯的加工。rn :G71G90 “:”为程序开始标识符rn T16M6 装第16号刀位上的刀具rn G00X519.8Y254.4Z77.929 机床坐标系中工件中心位置(也是型芯1的工件原点)rn (CLS,L10) 调用加工一个型芯的子程序rn G00X664.8Y254.4Z77.929 到达机床坐标系中型芯2的工件原点位置rn (CLS,L10) 调用同一个子程序rn G00X809.8Y254.4Z77.929到达机床坐标系中型芯3的工件原点位置rn (CLS,L10)rn G00X809.8Y484.4Z77.929到达机床坐标系中型芯4的工件原点位置rn (CLS,L10)rn G00X664.8Y484.4Z77.929到达机床坐标系中型芯5的工件原点位置rn (CLS,L10)rn G00X519.8Y484.4Z77.929到达机床坐标系中型芯6的工件原点位置rn (CLS,L10)rn (DFS,L10) 定义加工一个型芯的子程序rn G92X0Y0Z0 将子程序前面的,当前坐标轴赋予新的坐标值(0,0,0)rn G01X-145.Y-115.M03S350M08F2000 rn Z-38F100 rn ...... 加工一个型芯的程序rn Y-115.rn G00Z100 将主轴快速地提升到工 件坐标系中Z为100的位置rn X0Y0 回到工件坐标系X-Y平面零点rn G99 取消G92位置设置,让工件坐标系回复到机床坐标 系中rn (ENS) 子程序结束rn M30 程序结束rn 实际工作中,工件坐标系的Z方向以工件表面(甚 至低于工件表面)作为零点。如果让刀具真正到达工件原点,势必与工件相碰。为了提高安全性,如图3所示,在让刀具准确到达工件原点时,刀具并不真实与工件 接触,应将工件原点在机床坐标系中的Z值抬高一定距离(如距离a),相应地,在G92设置Z高度值时,Z值也加上相同距离a。rn G00X__Y__Z__+arn G92X0Y0Z0+arn 例如,对下面的G92设置程序:rn G00X519.8Y254.4Z77.929rn G92X0Y0Z0rn 如:将刀具抬高100mm,可改成:rn G00X519.8Y254.4Z77.929+100rn G92X0Y0Z0+100rn 刀具端面距离工件表面高100mm,而工件原点实际上仍在工件表面未变。这样,在进行程序加工过程中就安全、灵活多 了。rn rn 如果装夹好工件后需要调试程序,我们必须抬高刀具远离工件表面运行,这时只需要将G92中的Z值减去a(a为Z向所需抬高的高度 值),就使刀具端面距离工件表面(工件原点)高了a距离。rn 在加工过程中需要临时增加深度,这时就只需要将G92中的Z值加上a(a为Z 向所需下降的深度值),就使刀具端面距离工件表面(工件原点)低了a距离。rn 如此,就可以在不更改程序其它部分的情况下,只通过更改G92中Z 坐标的设置就可以快速、安全地达到目的。rn G00X__Y__Z__rn G92X0Y0Z0+a (或G92X0Y0Z0-a)r n 例如:rn 对下面的程序要求Z方向下降5mm:rn G00X519.8Y254.4Z77.929+100rn G92X0Y0Z0+100rn 可改成:rn G00X519.8Y254.4Z77.929+100rn G92X0Y0Z0+ 100+5rn 如果将机床坐标系中工件原点所在的Z值加上a,而G92程序段中的Z值不变,也可使刀具端面距离工件表面(工件原点)提高a距离。或 者,将机床坐标系中工件原点所在的Z值减去a,而G92程序段中的Z值不变,就使刀具端面距离工件表面(工件原点)降低a距离。效果与更改G92中Z坐标 的设置相同。rn G00X__Y__Z__-a (或G00X__Y__Z__+a)rn G92X0Y0Z0rn 例如,对下面的程序要求Z方 向下降5mm:rn G00X519.8Y254.4Z77.929rn G92X0Y0Z0rn 可改成:rn G00X519.8Y254.4Z77.929+100-5rn G92X0Y0Z0+100rn 利用以上原理,在利用加工中心机床刃磨工件时,由 于砂轮损耗大,需要执行一次刃磨程序,就修磨一次砂轮(Z值必须下降),如果分别编程,加工时就需要反复更换程序,十分不便。下面的实例程序,可以方便地 实现通过G92的设置,调用砂轮修磨程序,在加工过程中方便地修改程序,进行砂轮修磨和工件刃磨,以提高加工效率。 rn :G71rn T12M6rn G00X541.52Y254.8Z170+100S3000M03M08 到达机床坐标系中工件原点位置 rn X60.0Y302.3 砂轮原点在机床坐标系中(X—Y平面内)的位置rn Z167.0+ 100F50 砂轮Z方向零点在机床坐标系中的位置,更改该值可以修磨砂轮rn (CLS,L10) 调用砂轮修磨子程序rn G92X0Y0Z0+100 当前坐标轴赋予新的坐标值(0,0,100)rn G01X43.677Y4F2000S5000rn Z79.4F1000rn Z73.5F100 工件坐标系中的Z值,与砂轮修磨时下降的高度对应修改rn ...... 磨削工件程序rn G00Z150 将主轴快速地提升到工件坐标系中Z为150的位置rn X0Y0rn G99 取消位置设置,让工件坐标系回复到 机床坐标系中rn (DFS,L10) 定义修磨砂轮子程序rn G92X0Y0Z0+100 将子程序前面的,轴的当前位置设置为(0, 0,100)rn G01X10Z-10F100rn X0Z0rn G99 取消位置设置,让砂轮的工件坐标系回复到机床坐标系中rn G00Z270 将主轴快速地提升到机床坐标系中Z为270的位置rn X541.52Y254.8 机床坐标系中工件中心位置rn (ENS) 砂轮修磨子程序结束rn M30rn 在 G92的位置设置时应注意:当G92包含在程序中时,如果不再需要G92位置设置,一定要使用位置设置取消指令(如G99,不同的机床有不同的指令),否 则就可能导致工件、刀具、机床被损坏甚至产生人身伤害事故。rn rn
4 cnc加工中心中几组常用指令的区别及编程技巧
随着科技的发展和社会的进步,人们对产品的性能和质量要求越来越高,从而使数控机床应用已得到一定程度的普及,而高性能高效率的加工中心也逐渐成为社会所需。通过几年的加工中心实际应用和教学实践及摸索,笔者将自己的体会和经验总结出来,希望对广大读者有所启迪。
1. 暂停指令
G04X(U)_/P_ 是指刀具暂停时间(进给停止,主轴不停止),地址P或X后的数值是暂停时间。X后面的数值要带小数点,否则以此数值的千分之一计算,以秒(s)为单位,P后面数值 不能带小数点(即整数表示),以毫秒(ms)为单位。
例如,G04 X2.0;或G04 X2000; 暂停2秒
G04 P2000;
但在某些孔系加工指令中(如G82、G88及G89),为了保证孔底的精糙度,当刀具加工至孔底时需有暂停时间,此时只能用地址P表示,若用地址X表示,则控制系统认为X是X轴坐标值进行执行。
例如,G82X100.0Y100.0Z-20.0R5.0F200P2000;钻孔(100.0,100.0)至孔底暂停2秒
G82X100.0Y100.0Z-20.0R5.0F200X2.0; 钻孔(2.0,100.0)至孔底不会暂停。
2. M00、M01、M02和M30的区别与联系
M00为程序无条件暂停指令。程序执行到此进给停止,主轴停转。重新启动程序,必须先回?
絁OG状态下,按下CW(主轴正转)启动主轴,接着返回AUTO状态下,按下START键才能启动程序。
M01为程序选择性暂停指令。程序执行前必须打开控制面板上OP STOP键才能执行,执行后的效果与M00相同,要重新启动程序同上。
M00和M01常常用于加工中途工件尺寸的检验或排屑。
M02为主程序结束指令。执行到此指令,进给停止,主轴停止,冷却液关闭。但程序光标停在程序末尾。
M30为主程序结束指令。功能同M02,不同之处是,光标返回程序头位置,不管M30后是否还有其他程序段。
3. 地址D、H的意义相同
刀具补偿参数D、H具有相同的功能,可以任意互换,它们都表示数控系统中补偿寄存器的地址名称,但具体补偿值是多少,关键是由它们后面的补偿号地址来决 定。不过在加工中心中,为了防止出错,一般人为规定H为刀具长度补偿地址,补偿号从1~20号,D为刀具半径补偿地址,补偿号从21号开始(20把刀的刀 库)。
例如,G00G43H1Z100.0;
G01G41D21X20.0Y35.0F200;
4. 镜像指令
镜像加工指令M21、M22、M23。当只对X轴或Y轴进行镜像时,切削时的走刀顺序(顺铣与逆铣),刀补方向,圆弧插补转向都会与实际程序相反,如图1所示。当同时对X轴和Y轴进行镜像时,走刀顺序,刀补方向,圆弧插补转向均不变。
注意:使用镜像指令后必须用M23进行取消,以免影响后面的程序。在G90模式下,使用镜像或取消指令,都要回到工件坐标系原点才能使用。否则,数控系统 无法计算后面的运动轨迹,会出现乱走刀现象。这时必须实行手动原点复归操作予以解决。主轴转向不随着镜像指令变化。
图1 镜像时刀补、顺逆变化
5. 圆弧插补指令
G02为顺时针插补,G03为逆时针插补,在XY平面中,格式如下:G02/G03X_Y_I_K_F_或G02/G
03 X_Y_R_F_,其中X、Y为圆弧终点坐标,I、J为圆弧起点到圆心在X、Y轴上的增量值,R为圆弧半径,F为进给量。
在圆弧切削时注意,q≤180°,R为正值;q>180°,R为负值;I、K的指定也可用R指定,当两者同时被指定时,R指令优先,I、K无效;R不能做整圆切削,整圆切削只能用I、J、K编程,因为经过同一点,半径相同的圆有无数个,如图2所示。
图2 经过同一点的圆
当有I、K为零时,就可以省略;无论G90还是G91方式,I、J、K都按相对坐标编程;圆弧插补时,不能用刀补指令G41/G42。
6. G92与G54~G59之间的优缺点
G54~G59是在加工前设定好的坐标系,而G92是在程序中设定的坐标系,用了G54~G59就没有必要再使用G92,否则G54~G59会被替换,应当避免,如表1所示。
表1 G92与工作坐标系的区别
注意:(1)一旦使用了G92设定坐标系,再使用G54~G59不起任何作用,除非断电重新启动系统,或接着用G92设定所需新的工件坐标系。(2)使用G92的程序结束后,若机床没有回?
紾92设定的原点,就再次启动此程序,机床当前所在位置就成为新的工件坐标原点,易发生事故。所以,希望广大读者慎用。
7. 编制换刀子程序。
在加工中心上,换刀是不可避免的。但机床出厂时都有一个固定的换刀点,不在换刀位置,便不能够换刀,而且换刀前,刀补和循环都必须取消掉,主轴停止,冷却 液关闭。条件繁多,如果每次手动换刀前,都要保证这些条件,不但易出错而且效率低,因此我们可以编制一个换刀程序保存谙低衬诖婺冢诨坏妒保贛DI状态 下用M98调用就可以一次性完成换刀动作。
以PMC-10V20加工中心为例,程序如下:
O2002; (程序名)
G80G40G49 ; (取消固定循环、刀补)
M05; (主轴停止)
M09; (冷却液关闭)
G91G30Z0; (Z轴回到第二原点,即换刀点)
M06; (换刀)
M99; (子程序结束)
在需要换刀的时候,只需在MDI状态下,键入“T5M98P2002”,即可换上所需刀具T5,从而避免了许多不必要的失误。广大读者可根据自己机床的特点,编制相应的换刀子程序。
8.其他
程序段顺序号,用地址N表示。一般数控装置本身存储器空间有限(64K),为了节省存储空间,程序段顺序号都省略不要。N只表示程序段标号,可以方便查找 编辑程序,对加工过程不起任何作用,顺序号可以递增也可递减,也不要求数值有连续性。但在使用某些循环指令,跳转指令,调用子程序及镜像指令时不可以省 略。
9.同一条程序段中,相同指令(相同地址符)或同一组指令,后出现的起作用。
例如,换刀程序,T2M06T3; 换上的是T3而不是T2;
G01G00X50.0Y30.0F200;执行的是G00(虽有F值,但也不执行G01)。
不是同一组的指令代码,在同一程序段中互换先后顺序执行效果相同。
G90G54G00X0Y0Z100.0;
G00G90G54X0Y0Z100.0;
以上各项均在PMC-10V20(FANUC SYSTEM)加工中心上运行通过。在实际应用中,只有深刻理解各种指令的用法和编程规律。
5 CNC加工中刀具的选择与切削用量的确定
rn 刀具的选择和切削用量的确定是数控加工工艺中的重要内容,它不仅影响数控机床的加工效率,而且直接影响加工质量。CAD/CAM技术的发展,使得在数控加 工中直接利用CAD的设计数据成为可能,特别是微机与数控机床的联接,使得设计、工艺规划及编程的整个过程全部在计算机上完成,一般不需要输出专门的工艺 文件。rn 现在,许多CAD/CAM软件包都提供自动编程功能,这些软件一般是在编程界面中提示工艺规划的有关问题,比如,刀具选择、加工路径规划、 切削用量设定等,编程人员只要设置了有关的参数,就可以自动生成NC程序并传输至数控机床完成加工。因此,数控加工中的刀具选择和切削用量确定是在人机交 互状态下完成的,这与普通机床加工形成鲜明的对比,同时也要求编程人员必须掌握刀具选择和切削用量确定的基本原则,在编程时充分考虑数控加工的特点。本文 对数控编程中必须面对的刀具选择和切削用量确定问题进行了探讨,给出了若干原则和建议,并对应该注意的问题进行了讨论。rn一、数控加工常用刀具的种类及 特点rn 数控加工刀具必须适应数控机床高速、高效和自动化程度高的特点,一般应包括通用刀具、通用连接刀柄及少量专用刀柄。刀柄要联接刀具并装在机床 动力头上,因此已逐渐标准化和系列化。数控刀具的分类有多种方法。根据刀具结构可分为:①整体式;②镶嵌式,采用焊接或机夹式连接,机夹式又可分为不转位 和可转位两种;③特殊型式,如复合式刀具,减震式刀具等。根据制造刀具所用的材料可分为:①高速钢刀具;②硬质合金刀具;③金刚石刀具;④其他材料刀具, 如立方氮化硼刀具,陶瓷刀具等。从切削工艺上可分为:①车削刀具,分外圆、内孔、螺纹、切割刀具等多种;②钻削刀具,包括钻头、铰刀、丝锥等;③镗削刀 具;④铣削刀具等。为了适应数控机床对刀具耐用、稳定、易调、可换等的要求,近几年机夹式可转位刀具得到广泛的应用,在数量上达到整个数控刀具的30% ~40%,金属切除量占总数的80%~90%。rn 数控刀具与普通机床上所用的刀具相比,有许多不同的要求,主要有以下特点:rn ⑴刚性好(尤其是粗加工刀具),精度高,抗振及热变形小;rn ⑵互换性好,便于快速换刀;rn ⑶寿命高,切削性能稳定、可靠;r n ⑷刀具的尺寸便于调整,以减少换刀调整时间;rn ⑸刀具应能可靠地断屑或卷屑,以利于切屑的排除;rn ⑹系列化,标准化,以利于编程和刀具 管理。rn 二、数控加工刀具的选择rn 刀具的选择是在数控编程的人机交互状态下进行的。应根据机床的加工能力、工件材料的性能、加工工序、切削用 量以及其它相关因素正确选用刀具及刀柄。刀具选择总的原则是:安装调整方便,刚性好,耐用度和精度高。在满足加工要求的前提下,尽量选择较短的刀柄,以提 高刀具加工的刚性。rn 选取刀具时,要使刀具的尺寸与被加工工件的表面尺寸相适应。生产中,平面零件周边轮廓的加工,常采用立铣刀;铣削平面时,应选 硬质合金刀片铣刀;加工凸台、凹槽时,选高速钢立铣刀;加工毛坯表面或粗加工孔时,可选取镶硬质合金刀片的玉米铣刀;对一些立体型面和变斜角轮廓外形的加 工,常采用球头铣刀、环形铣刀、锥形铣刀和盘形铣刀。rn 在进行自由曲面加工时,由于球头刀具的端部切削速度为零,因此,为保证加工精度,切削行距一 般取得很能密,故球头常用于曲面的精加工。而平头刀具在表面加工质量和切削效率方面都优于球头刀,因此,只要在保证不过切的前提下,无论是曲面的粗加工还 是精加工,都应优先选择平头刀。另外,刀具的耐用度和精度与刀具价格关系极大,必须引起注意的是,在大多数情况下,选择好的刀具虽然增加了刀具成本,但由 此带来的加工质量和加工效率的提高,则可以使整个加工成本大大降低。rn 在加工中心上,各种刀具分别装在刀库上,按程序规定随时进行选刀和换刀动作。 因此必须采用标准刀柄,以便使钻、镗、扩、铣削等工序用的标准刀具,迅速、准确地装到机床主轴或刀库上去。编程人员应了解机床上所用刀柄的结构尺寸、调整 方法以及调整范围,以便在编程时确定刀具的径向和轴向尺寸。目前我国的加工中心采用TSG工具系统,其刀柄有直柄(三种规格)和锥柄(四种规格)两种,共 包括16种不同用途的刀柄。rn 在经济型数控加工中,由于刀具的刃磨、测量和更换多为人工手动进行,占用辅助时间较长,因此,必须合理安排刀具的排列 顺序。一般应遵循以下原则:①尽量减少刀具数量;②一把刀具装夹后,应完成其所能进行的所有加工部位;③粗精加工的刀具应分开使用,即使是相同尺寸规格的 刀具;④先铣后钻;⑤先进行曲面精加工,后进行二维轮廓精加工;⑥在可能的情况下,应尽可能利用数控机床的自动换刀功能,以提高生产效率等。rn 三、 数控加工切削用量的确定rn 合理选择切削用量的原则是,粗加工时,一般以提高生产率为主,但也应考虑经济性和加工成本;半精加工和精加工时,应在保证 加工质量的前提下,兼顾切削效率、经济性和加工成本。具体数值应根据机床说明书、切削用量手册,并结合经验而定。rn ⑴切削深度t。在机床、工件和刀 具刚度允许的情况下,t就等于加工余量,这是提高生产率的一个有效措施。为了保证零件的加工精度和表面粗糙度,一般应留一定的余量进行精加工。数控机床的 精加工余量可略小于普通机床。rn ⑵切削宽度L。一般L与刀具直径d成正比,与切削深度成反比。经济型数控加工中,一般L的取值范围为:L= (0.6~0.9)d。rn 乔邢魉俣葀。提高v也是提高生产率的一个措施,但v与刀具耐用度的关系比较密切。随着v的增大,刀具耐用度急剧下降,故v 的选择主要取决于刀具耐用度。另外,切削速度与加工材料也有很大关系,例如用立铣刀铣削合金刚 30CrNi2MoVA时,v可采用8m/min左右;而用同样的立铣刀铣削铝合金时,v可选200m/min以上。rn ⑷主轴转速n (r/min)。主轴转速一般根据切削速度v来选定。计算公式为:rn 式中,d为刀具或工件直径(mm)。rn 数控机床的控制面板上一般备有主轴 转速修调(倍率)开关,可在加工过程中对主轴转速进行整倍数调整。rn ⑸进给速度vF 。vF应根据零件的加工精度和表面粗糙度要求以及刀具和工件材料来选择。vF的增加也可以提高生产效率。加工表面粗糙度要求低时,vF可选择得大些。在加 工过程中,vF也可通过机床控制面板上的修调开关进行人工调整,但是最大进给速度要受到设备刚度和进给系统性能等的限制。rn 随着数控机床在生产实际 中的广泛应用,数控编程已经成为数控加工中的关键问题之一。在数控程序的编制过程中,要在人机交互状态下即时选择刀具和确定切削用量。因此,编程人员必须 熟悉刀具的选择方法和切削用量的确定原则,从而保证零件的加工质量和加工效率,充分发挥数控机床的优点,提高企业的经济效益和生产水平。rn rn
www.tool-tool.com
轉述:
1指令的区别及编程
1. 暂停指令
G04X(U)_/P_ 是指刀具暂停时间(进给停止,主轴不停止),地址P或X后的数值是暂停时间。X后面的数值要带小数点,否则以此数值的千分之一计算,以秒(s)为单位,P后面数值不能带小数点(即整数表示),以毫秒(ms)为单位。
例如,G04 X2.0;或G04 X2000; 暂停2秒
G04 P2000;
但在某些孔系加工指令中(如G82、G88及G89),为了保证孔底的精糙度,当刀具加工至孔底时需有暂停时间,此时只能用地址P表示,若用地址X表示,则控制系统认为X是X轴坐标值进行执行。
例如,G82X100.0Y100.0Z-20.0R5.0F200P2000;钻孔(100.0,100.0)至孔底暂停2秒
G82X100.0Y100.0Z-20.0R5.0F200X2.0; 钻孔(2.0,100.0)至孔底不会暂停。
2. M00、M01、M02和M30的区别与联系
M00为程序无条件暂停指令。程序执行到此进给停止,主轴停转。重新启动程序,必须先回到JOG状态下,按下CW(主轴正转)启动主轴,接着返回AUTO状态下,按下START键才能启动程序。
M01为程序选择性暂停指令。程序执行前必须打开控制面板上OP STOP键才能执行,执行后的效果与M00相同,要重新启动程序同上。
M00和M01常常用于加工中途工件尺寸的检验或排屑。
M02为主程序结束指令。执行到此指令,进给停止,主轴停止,冷却液关闭。但程序光标停在程序末尾。
M30为主程序结束指令。功能同M02,不同之处是,光标返回程序头位置,不管M30后是否还有其他程序段。
3. 地址D、H的意义相同
刀具补偿参数D、H具有相同的功能,可以任意互换,它们都表示数控系统中补偿寄存器的地址名称,但具体补偿值是多少,关键是由它们后面的补偿号地址来决 定。不过在加工中心中,为了防止出错,一般人为规定H为刀具长度补偿地址,补偿号从1~20号,D为刀具半径补偿地址,补偿号从21号开始(20把刀的刀 库)。
例如,G00G43H1Z100.0;
G01G41D21X20.0Y35.0F200;
4. 镜像指令
镜像加工指令M21、M22、M23。当只对X轴或Y轴进行镜像时,切削时的走刀顺序(顺铣与逆铣),刀补方向,圆弧插补转向都会与实际程序相反,如图1所示。当同时对X轴和Y轴进行镜像时,走刀顺序,刀补方向,圆弧插补转向均不变。
注意:使用镜像指令后必须用M23进行取消,以免影响后面的程序。在G90模式下,使用镜像或取消指令,都要回到工件坐标系原点才能使用。否则,数控系统 无法计算后面的运动轨迹,会出现乱走刀现象。这时必须实行手动原点复归操作予以解决。主轴转向不随着镜像指令变化。
5. 圆弧插补指令
G02为顺时针插补,G03为逆时针插补,在XY平面中,格式如下:G02/G03X_Y_I_K_F_或G02/G03 X_Y_R_F_,其中X、Y为圆弧终点坐标,I、J为圆弧起点到圆心在X、Y轴上的增量值,R为圆弧半径,F为进给量。
在圆弧切削时注意,q≤180°,R为正值;q>180°,R为负值;I、K的指定也可用R指定,当两者同时被指定时,R指令优先,I、K无效;R不能做整圆切削,整圆切削只能用I、J、K编程,因为经过同一点,半径相同的圆有无数个,如图2所示。
当有I、K为零时,就可以省略;无论G90还是G91方式,I、J、K都按相对坐标编程;圆弧插补时,不能用刀补指令G41/G42。
6. G92与G54~G59之间的优缺点
G54~G59是在加工前设定好的坐标系,而G92是在程序中设定的坐标系,用了G54~G59就没有必要再使用G92,否则G54~G59会被替换,应当避免,如表1所示。
注意:(1)一旦使用了G92设定坐标系,再使用G54~G59不起任何作用,除非断电重新启动系统,或接着用G92设定所需新的工件坐标系。(2)使用 G92的程序结束后,若机床没有回到G92设定的原点,就再次启动此程序,机床当前所在位置就成为新的工件坐标原点,易发生事故。所以,希望广大读者慎 用。
7. 编制换刀子程序。
在加工中心上,换刀是不可避免的。但机床出厂时都有一个固定的换刀点,不在换刀位置,便不能够换刀,而且换刀前,刀补和循环都必须取消掉,主轴停止,冷却 液关闭。条件繁多,如果每次手动换刀前,都要保证这些条件,不但易出错而且效率低,因此我们可以编制一个换刀程序保存在系统内存内,在换刀时,在MDI状 态下用M98调用就可以一次性完成换刀动作。
以PMC-10V20加工中心为例,程序如下:
O2002; (程序名)
G80G40G49 ; (取消固定循环、刀补)
M05; (主轴停止)
M09; (冷却液关闭)
G91G30Z0; (Z轴回到第二原点,即换刀点)
M06; (换刀)
M99; (子程序结束)
在需要换刀的时候,只需在MDI状态下,键入“T5M98P2002”,即可换上所需刀具T5,从而避免了许多不必要的失误。广大读者可根据自己机床的特点,编制相应的换刀子程序。
8.其他
程序段顺序号,用地址N表示。一般数控装置本身存储器空间有限(64K),为了节省存储空间,程序段顺序号都省略不要。N只表示程序段标号,可以方便查找 编辑程序,对加工过程不起任何作用,顺序号可以递增也可递减,也不要求数值有连续性。但在使用某些循环指令,跳转指令,调用子程序及镜像指令时不可以省 略。
9.同一条程序段中,相同指令(相同地址符)或同一组指令,后出现的起作用。
例如,换刀程序,T2M06T3; 换上的是T3而不是T2;
G01G00X50.0Y30.0F200;执行的是G00(虽有F值,但也不执行G01)。
不是同一组的指令代码,在同一程序段中互换先后顺序执行效果相同。
G90G54G00X0Y0Z100.0;
G00G90G54X0Y0Z100.0;
以上各项均在PMC-10V20(FANUC SYSTEM)加工中心上运行通过。在实际应用中,只有深刻理解各种指令的用法和编程规律,才可以减少错误,避免事故的发生。
2 FANUC数控系统PMC功能的妙用
FANUC 数控系统以其高质量、低成本、高性能,得到了广大用户的认可,在我公司得到了大量的使用,就其系统本身而言,经受了连续长时间的工作考验,故障率较低。而故障多发于外围行程、限位开关等外围信号检测电路上。
在实际工作中,了解和熟悉 FANUC 系统丰富的操作功能,对外围故障的判断和排除有着事半功倍的作用。
在这里,举例谈一下使用FANUC系统内嵌的强大、易用的PMC功能对外围故障的快速判断和排除。
功能 1
操作方法:按功能键|SYSTEM|切换屏幕→按|PMC|软键,再按相应的软键,便可分别进入|PMCLAD|梯形图程序显示功能、|PMCDGN|PMC的I/0信号及内部继电器显示功能、|PMCPRM|PMC参数和显示功能。
应用实例:本公司的一台日本立式加工中心使用FANUC18i系统,报警内容是2086ABNORMAL PALLET CONTACT(M/C SIDE),查阅机床说明书,意思是“加工区侧托盘着座异常",检测信号的PMC地址是X6.2。该加工中心的APC机构是双托盘大转台旋转交换式,观察 加工区内堆积了大量的铝屑,所以判断是托盘底部堆积了铝屑,以至托盘底座气检无法通过。但此时报警无法消除,不能对机床作任何的操作。在FANUC 系统的梯形图编程语言中规定,要在屏幕上显示某一条报警信息,要将对应的信息显示请求位(A线圈)置为"1",如果置为 "0" ,则清除相应的信息。也就是说,要消除这个报警,就必须使与之对应的信息显示请求位(A),置为"0"。按|PMCDGN|→|STATUS|进入信号状 态显示屏幕 , 查找为 "1" 的信息显示请求位 ( A)时 , 查得 A10.5 为 "1" 。于是 , 进入梯形图程序显示屏幕 |PMCLAD|, 查找 A10.5 置位为 "1" 的梯形图回路 , 发现其置位条件中使用了 一个保持继电器的K9.1 常闭点 , 此时状态为 "0" 。查阅机床维修说明书 ,K9.1 的含义是 : 置 "1" 为托盘底座检测无效。
故障排除过程 : 在 MDI 状态下 , 用功能键 |OFFSET SETTING| 切换屏幕 , 按|SETTING|键将 " 参数写人 " 设为 "1", 再回到|PMCPRM| 屏幕下 , 按 |KEEPRL| 软键进入保持型继电器屏幕 , 将 K9.1 置位为 1" 。按报警解除按钮 , 这时可使 A10.5 置为 "0", 便可对机床进行操作。将大转台抬起旋转 45度, 拆开护板 , 果然有铝屑堆积 , 于是将托盘底部的铝屑清理干净。将 K9.1 和 " 参数写人 " 设回原来的值 "0" 。多次进行 APC 操作 , 再无此报警 , 故障排除。
功能 2
在 FANUC 系统的梯形图编程语言中 ,F 是来自 NC 侧的输入信号 (NC → PMC), 而 G 是由 PMC 输出到 NC 的信 号 (PMC → NC)。其中 ,G130 是 PMC 输出到 NC 侧的各轴互锁信号 , 当其中某一位被置为 "1" 时 , 允许对应的伺服轴移动 ;为 "0" 时 , 禁止对应的伺服轴移动。
应用实例 : 一国产加工专机使用 FANUC 21M 系统 , 执行原点返回的 NC 程序时 , 当执行到 "G91 G28 GOO ZO;" 时 ,Z 轴无动作 ,CNC 状态栏显示为 "MEM STRT MTN ***", 即 Z 轴移动指令已发出。用功能键|MESSAGE| 切换屏幕 , 并无报警信息。用功能键 |SYSTEM| 切换屏幕 , 按“诊断”软键 , 这时005(INTERLOCK/START-LOCK) 为 "1", 即有伺服轴进入了互锁状态。
故障排除过程 : 进入梯形图程序显示功能屏幕 , 发现与 Z 轴对应的互锁信号 G130.0 的状态为 "0", 即互锁信号被输入至 NC, 检查其互锁原因 , 发现是一传感器被铝屑污染。擦拭后 , 将 G130.0 置为 "1", 互锁解除 , 重新启动 原点返回的 NC 程序 , 动作正常 , 故障排除。
功能 3
PMC 中的眼踪功能 (TRACE) 是一个可检查信号变化的履历 , 记录信号连续变化的状态 , 特别对一些偶发性的、特殊故障的查找、定位起着重要的作用。用功能键 |SYSTEM| 切换屏幕 , 按|PMC|软键→ |PMCDGN| →{TRACE|即可进入信号跟踪屏幕。
应用实例 : 某国产加工中心使用的是 FANUC Oi 系统。在自动加工过程 ,NC 程序偶尔无故停止 , 上件端托盘已装夹好的夹爪自动打开 ( 不正常现象 ),CNC 状态栏显示 MEM STOP *** , 此时无任何报警信息 , 检查诊断画面 , 并未发现异常 , 按 NC 启动便可继续加工。经观察 ,CNC 都是在执行 M06( 换刀 ) 时停止 , 主要动作是 ATC 手臂旋转和主轴 ( 液压 ) 松开 / 拉紧刀具。
故障排除过程 : 使用梯形图显示功能 , 追查上件侧的托盘夹爪 (Y25.1) 置为 "1" 的原因 ( 估计与在自动加工过程 , 偶尔无故停止故障有关 ) 。经查 , 怀疑与一加工区侧托盘夹紧的检测液压压力开关 (X1007.4) 有关。于是 , 使用|TRACE|信号跟踪功能 , 在自动加工过程中 , 监视 X1007.4的变化情况。当 NC 再次在 M06 执行时停止 , 在|TRACE|屏幕上 , 跟踪到 X1007.4在 CNC 无故停止时的一个采样周期从原来的状态 "1" 跳转为 "0", 再变回 "1", 从而确认该压力开关有问题。调整此开关动作压力 , 但故障依旧。于是将此开关更换 , 故障排除。事后分析 , 引起这个故障原因是主轴松开 / 夹紧工具时 , 液压系统压力有所波动 ( 在合理的波动范围内 ), 而此压力开关作出了反应以致造成在自动加工过程中 ,NC 程序偶尔无故停止的故障。
3 加工中心的坐标设置与子程序调用
rn rn 本文通过实例,剖析了加工中心机床坐标设置与子程序的应用问题,说明了自动编程与手工编程相结合,利用G92位置设置功能与子程序调用相配合,简化编程, 优化程序的方法。在实际工作中,取到事半功倍的作用。rn 随着数控技术的快速发展及CAD/CAM技术的广泛应用,数控加工越来越多地依赖于软件的自 动编程,手工编程逐渐处于次要的地位。但在实际加工中如果将自动编程与手工编程相结合,利用G92位置设置功能与子程序调用相配合,则可以更加简化编程, 优化程序,有利于程序的修改和重复调用。rn 下面以美国SABRE-1000 Acramatic 850SX系统立式加工中心机床为例,就坐标设置(位置设置)与子程序调用问题进行探讨。rn 机床坐标系为机床上固有的坐标系,是由机床生产厂家设定 的。工件坐标系是编程人员在编制加工程序时,根据零件图纸上的某一固定点为原点确定的坐标系。两坐标系之间的统一通过准备功能代码G92的位置设置功能实 现。rn G92位置设置功能允许操作人员或编程人员为当前坐标轴赋予新的坐标值而工作台并不移动。 G92偏移机床坐标系,使NC程序中的工件坐标系的坐标值与之相匹配。 rn 工件原点(NC程序的零点)是由操作人员在安装工件的过程中进行定位的。编程人员在编制程序时可以不考虑工件在机床上安装的物理位置和安装精度, 而利用数控系统的原点偏置功能,通过工件原点偏置来补偿工件的装夹误差。在加工前将该偏置值输入到数控装置,加工时该偏置值便能自动加到工件坐标系上,使 数控系统按机床坐标系确定的工件的坐标值进行加工。但是,如果将G92直接编入程序中,而不采用将偏置值输入到数控装置的方法,则会更加方便。r n 如图1所示,模具有6个相同的型芯,如果仅采用自动编程而不进行人工编辑,就需要对每一个型芯都完全绘制和进行编程,工作量较大,程序量更大,也不 便于检查程序。rn 如图2所示,如果将手动编程与自动编程相结合,利用CAD/CAM软件自动编程,只需要绘制一个型芯,生成加工一个型芯的程序。再 根据各型芯之间的位置关系,通过G92设置和子程序调用,即可得到简洁、清晰的程序。而且,如果在加工的过程中刀具已经磨损,更换刀具后,也可以很方便地 修改程序,继续下一个型芯的加工。rn :G71G90 “:”为程序开始标识符rn T16M6 装第16号刀位上的刀具rn G00X519.8Y254.4Z77.929 机床坐标系中工件中心位置(也是型芯1的工件原点)rn (CLS,L10) 调用加工一个型芯的子程序rn G00X664.8Y254.4Z77.929 到达机床坐标系中型芯2的工件原点位置rn (CLS,L10) 调用同一个子程序rn G00X809.8Y254.4Z77.929到达机床坐标系中型芯3的工件原点位置rn (CLS,L10)rn G00X809.8Y484.4Z77.929到达机床坐标系中型芯4的工件原点位置rn (CLS,L10)rn G00X664.8Y484.4Z77.929到达机床坐标系中型芯5的工件原点位置rn (CLS,L10)rn G00X519.8Y484.4Z77.929到达机床坐标系中型芯6的工件原点位置rn (CLS,L10)rn (DFS,L10) 定义加工一个型芯的子程序rn G92X0Y0Z0 将子程序前面的,当前坐标轴赋予新的坐标值(0,0,0)rn G01X-145.Y-115.M03S350M08F2000 rn Z-38F100 rn ...... 加工一个型芯的程序rn Y-115.rn G00Z100 将主轴快速地提升到工 件坐标系中Z为100的位置rn X0Y0 回到工件坐标系X-Y平面零点rn G99 取消G92位置设置,让工件坐标系回复到机床坐标 系中rn (ENS) 子程序结束rn M30 程序结束rn 实际工作中,工件坐标系的Z方向以工件表面(甚 至低于工件表面)作为零点。如果让刀具真正到达工件原点,势必与工件相碰。为了提高安全性,如图3所示,在让刀具准确到达工件原点时,刀具并不真实与工件 接触,应将工件原点在机床坐标系中的Z值抬高一定距离(如距离a),相应地,在G92设置Z高度值时,Z值也加上相同距离a。rn G00X__Y__Z__+arn G92X0Y0Z0+arn 例如,对下面的G92设置程序:rn G00X519.8Y254.4Z77.929rn G92X0Y0Z0rn 如:将刀具抬高100mm,可改成:rn G00X519.8Y254.4Z77.929+100rn G92X0Y0Z0+100rn 刀具端面距离工件表面高100mm,而工件原点实际上仍在工件表面未变。这样,在进行程序加工过程中就安全、灵活多 了。rn rn 如果装夹好工件后需要调试程序,我们必须抬高刀具远离工件表面运行,这时只需要将G92中的Z值减去a(a为Z向所需抬高的高度 值),就使刀具端面距离工件表面(工件原点)高了a距离。rn 在加工过程中需要临时增加深度,这时就只需要将G92中的Z值加上a(a为Z 向所需下降的深度值),就使刀具端面距离工件表面(工件原点)低了a距离。rn 如此,就可以在不更改程序其它部分的情况下,只通过更改G92中Z 坐标的设置就可以快速、安全地达到目的。rn G00X__Y__Z__rn G92X0Y0Z0+a (或G92X0Y0Z0-a)r n 例如:rn 对下面的程序要求Z方向下降5mm:rn G00X519.8Y254.4Z77.929+100rn G92X0Y0Z0+100rn 可改成:rn G00X519.8Y254.4Z77.929+100rn G92X0Y0Z0+ 100+5rn 如果将机床坐标系中工件原点所在的Z值加上a,而G92程序段中的Z值不变,也可使刀具端面距离工件表面(工件原点)提高a距离。或 者,将机床坐标系中工件原点所在的Z值减去a,而G92程序段中的Z值不变,就使刀具端面距离工件表面(工件原点)降低a距离。效果与更改G92中Z坐标 的设置相同。rn G00X__Y__Z__-a (或G00X__Y__Z__+a)rn G92X0Y0Z0rn 例如,对下面的程序要求Z方 向下降5mm:rn G00X519.8Y254.4Z77.929rn G92X0Y0Z0rn 可改成:rn G00X519.8Y254.4Z77.929+100-5rn G92X0Y0Z0+100rn 利用以上原理,在利用加工中心机床刃磨工件时,由 于砂轮损耗大,需要执行一次刃磨程序,就修磨一次砂轮(Z值必须下降),如果分别编程,加工时就需要反复更换程序,十分不便。下面的实例程序,可以方便地 实现通过G92的设置,调用砂轮修磨程序,在加工过程中方便地修改程序,进行砂轮修磨和工件刃磨,以提高加工效率。 rn :G71rn T12M6rn G00X541.52Y254.8Z170+100S3000M03M08 到达机床坐标系中工件原点位置 rn X60.0Y302.3 砂轮原点在机床坐标系中(X—Y平面内)的位置rn Z167.0+ 100F50 砂轮Z方向零点在机床坐标系中的位置,更改该值可以修磨砂轮rn (CLS,L10) 调用砂轮修磨子程序rn G92X0Y0Z0+100 当前坐标轴赋予新的坐标值(0,0,100)rn G01X43.677Y4F2000S5000rn Z79.4F1000rn Z73.5F100 工件坐标系中的Z值,与砂轮修磨时下降的高度对应修改rn ...... 磨削工件程序rn G00Z150 将主轴快速地提升到工件坐标系中Z为150的位置rn X0Y0rn G99 取消位置设置,让工件坐标系回复到 机床坐标系中rn (DFS,L10) 定义修磨砂轮子程序rn G92X0Y0Z0+100 将子程序前面的,轴的当前位置设置为(0, 0,100)rn G01X10Z-10F100rn X0Z0rn G99 取消位置设置,让砂轮的工件坐标系回复到机床坐标系中rn G00Z270 将主轴快速地提升到机床坐标系中Z为270的位置rn X541.52Y254.8 机床坐标系中工件中心位置rn (ENS) 砂轮修磨子程序结束rn M30rn 在 G92的位置设置时应注意:当G92包含在程序中时,如果不再需要G92位置设置,一定要使用位置设置取消指令(如G99,不同的机床有不同的指令),否 则就可能导致工件、刀具、机床被损坏甚至产生人身伤害事故。rn rn
4 cnc加工中心中几组常用指令的区别及编程技巧
随着科技的发展和社会的进步,人们对产品的性能和质量要求越来越高,从而使数控机床应用已得到一定程度的普及,而高性能高效率的加工中心也逐渐成为社会所需。通过几年的加工中心实际应用和教学实践及摸索,笔者将自己的体会和经验总结出来,希望对广大读者有所启迪。
1. 暂停指令
G04X(U)_/P_ 是指刀具暂停时间(进给停止,主轴不停止),地址P或X后的数值是暂停时间。X后面的数值要带小数点,否则以此数值的千分之一计算,以秒(s)为单位,P后面数值 不能带小数点(即整数表示),以毫秒(ms)为单位。
例如,G04 X2.0;或G04 X2000; 暂停2秒
G04 P2000;
但在某些孔系加工指令中(如G82、G88及G89),为了保证孔底的精糙度,当刀具加工至孔底时需有暂停时间,此时只能用地址P表示,若用地址X表示,则控制系统认为X是X轴坐标值进行执行。
例如,G82X100.0Y100.0Z-20.0R5.0F200P2000;钻孔(100.0,100.0)至孔底暂停2秒
G82X100.0Y100.0Z-20.0R5.0F200X2.0; 钻孔(2.0,100.0)至孔底不会暂停。
2. M00、M01、M02和M30的区别与联系
M00为程序无条件暂停指令。程序执行到此进给停止,主轴停转。重新启动程序,必须先回?
絁OG状态下,按下CW(主轴正转)启动主轴,接着返回AUTO状态下,按下START键才能启动程序。
M01为程序选择性暂停指令。程序执行前必须打开控制面板上OP STOP键才能执行,执行后的效果与M00相同,要重新启动程序同上。
M00和M01常常用于加工中途工件尺寸的检验或排屑。
M02为主程序结束指令。执行到此指令,进给停止,主轴停止,冷却液关闭。但程序光标停在程序末尾。
M30为主程序结束指令。功能同M02,不同之处是,光标返回程序头位置,不管M30后是否还有其他程序段。
3. 地址D、H的意义相同
刀具补偿参数D、H具有相同的功能,可以任意互换,它们都表示数控系统中补偿寄存器的地址名称,但具体补偿值是多少,关键是由它们后面的补偿号地址来决 定。不过在加工中心中,为了防止出错,一般人为规定H为刀具长度补偿地址,补偿号从1~20号,D为刀具半径补偿地址,补偿号从21号开始(20把刀的刀 库)。
例如,G00G43H1Z100.0;
G01G41D21X20.0Y35.0F200;
4. 镜像指令
镜像加工指令M21、M22、M23。当只对X轴或Y轴进行镜像时,切削时的走刀顺序(顺铣与逆铣),刀补方向,圆弧插补转向都会与实际程序相反,如图1所示。当同时对X轴和Y轴进行镜像时,走刀顺序,刀补方向,圆弧插补转向均不变。
注意:使用镜像指令后必须用M23进行取消,以免影响后面的程序。在G90模式下,使用镜像或取消指令,都要回到工件坐标系原点才能使用。否则,数控系统 无法计算后面的运动轨迹,会出现乱走刀现象。这时必须实行手动原点复归操作予以解决。主轴转向不随着镜像指令变化。
图1 镜像时刀补、顺逆变化
5. 圆弧插补指令
G02为顺时针插补,G03为逆时针插补,在XY平面中,格式如下:G02/G03X_Y_I_K_F_或G02/G
03 X_Y_R_F_,其中X、Y为圆弧终点坐标,I、J为圆弧起点到圆心在X、Y轴上的增量值,R为圆弧半径,F为进给量。
在圆弧切削时注意,q≤180°,R为正值;q>180°,R为负值;I、K的指定也可用R指定,当两者同时被指定时,R指令优先,I、K无效;R不能做整圆切削,整圆切削只能用I、J、K编程,因为经过同一点,半径相同的圆有无数个,如图2所示。
图2 经过同一点的圆
当有I、K为零时,就可以省略;无论G90还是G91方式,I、J、K都按相对坐标编程;圆弧插补时,不能用刀补指令G41/G42。
6. G92与G54~G59之间的优缺点
G54~G59是在加工前设定好的坐标系,而G92是在程序中设定的坐标系,用了G54~G59就没有必要再使用G92,否则G54~G59会被替换,应当避免,如表1所示。
表1 G92与工作坐标系的区别
注意:(1)一旦使用了G92设定坐标系,再使用G54~G59不起任何作用,除非断电重新启动系统,或接着用G92设定所需新的工件坐标系。(2)使用G92的程序结束后,若机床没有回?
紾92设定的原点,就再次启动此程序,机床当前所在位置就成为新的工件坐标原点,易发生事故。所以,希望广大读者慎用。
7. 编制换刀子程序。
在加工中心上,换刀是不可避免的。但机床出厂时都有一个固定的换刀点,不在换刀位置,便不能够换刀,而且换刀前,刀补和循环都必须取消掉,主轴停止,冷却 液关闭。条件繁多,如果每次手动换刀前,都要保证这些条件,不但易出错而且效率低,因此我们可以编制一个换刀程序保存谙低衬诖婺冢诨坏妒保贛DI状态 下用M98调用就可以一次性完成换刀动作。
以PMC-10V20加工中心为例,程序如下:
O2002; (程序名)
G80G40G49 ; (取消固定循环、刀补)
M05; (主轴停止)
M09; (冷却液关闭)
G91G30Z0; (Z轴回到第二原点,即换刀点)
M06; (换刀)
M99; (子程序结束)
在需要换刀的时候,只需在MDI状态下,键入“T5M98P2002”,即可换上所需刀具T5,从而避免了许多不必要的失误。广大读者可根据自己机床的特点,编制相应的换刀子程序。
8.其他
程序段顺序号,用地址N表示。一般数控装置本身存储器空间有限(64K),为了节省存储空间,程序段顺序号都省略不要。N只表示程序段标号,可以方便查找 编辑程序,对加工过程不起任何作用,顺序号可以递增也可递减,也不要求数值有连续性。但在使用某些循环指令,跳转指令,调用子程序及镜像指令时不可以省 略。
9.同一条程序段中,相同指令(相同地址符)或同一组指令,后出现的起作用。
例如,换刀程序,T2M06T3; 换上的是T3而不是T2;
G01G00X50.0Y30.0F200;执行的是G00(虽有F值,但也不执行G01)。
不是同一组的指令代码,在同一程序段中互换先后顺序执行效果相同。
G90G54G00X0Y0Z100.0;
G00G90G54X0Y0Z100.0;
以上各项均在PMC-10V20(FANUC SYSTEM)加工中心上运行通过。在实际应用中,只有深刻理解各种指令的用法和编程规律。
5 CNC加工中刀具的选择与切削用量的确定
rn 刀具的选择和切削用量的确定是数控加工工艺中的重要内容,它不仅影响数控机床的加工效率,而且直接影响加工质量。CAD/CAM技术的发展,使得在数控加 工中直接利用CAD的设计数据成为可能,特别是微机与数控机床的联接,使得设计、工艺规划及编程的整个过程全部在计算机上完成,一般不需要输出专门的工艺 文件。rn 现在,许多CAD/CAM软件包都提供自动编程功能,这些软件一般是在编程界面中提示工艺规划的有关问题,比如,刀具选择、加工路径规划、 切削用量设定等,编程人员只要设置了有关的参数,就可以自动生成NC程序并传输至数控机床完成加工。因此,数控加工中的刀具选择和切削用量确定是在人机交 互状态下完成的,这与普通机床加工形成鲜明的对比,同时也要求编程人员必须掌握刀具选择和切削用量确定的基本原则,在编程时充分考虑数控加工的特点。本文 对数控编程中必须面对的刀具选择和切削用量确定问题进行了探讨,给出了若干原则和建议,并对应该注意的问题进行了讨论。rn一、数控加工常用刀具的种类及 特点rn 数控加工刀具必须适应数控机床高速、高效和自动化程度高的特点,一般应包括通用刀具、通用连接刀柄及少量专用刀柄。刀柄要联接刀具并装在机床 动力头上,因此已逐渐标准化和系列化。数控刀具的分类有多种方法。根据刀具结构可分为:①整体式;②镶嵌式,采用焊接或机夹式连接,机夹式又可分为不转位 和可转位两种;③特殊型式,如复合式刀具,减震式刀具等。根据制造刀具所用的材料可分为:①高速钢刀具;②硬质合金刀具;③金刚石刀具;④其他材料刀具, 如立方氮化硼刀具,陶瓷刀具等。从切削工艺上可分为:①车削刀具,分外圆、内孔、螺纹、切割刀具等多种;②钻削刀具,包括钻头、铰刀、丝锥等;③镗削刀 具;④铣削刀具等。为了适应数控机床对刀具耐用、稳定、易调、可换等的要求,近几年机夹式可转位刀具得到广泛的应用,在数量上达到整个数控刀具的30% ~40%,金属切除量占总数的80%~90%。rn 数控刀具与普通机床上所用的刀具相比,有许多不同的要求,主要有以下特点:rn ⑴刚性好(尤其是粗加工刀具),精度高,抗振及热变形小;rn ⑵互换性好,便于快速换刀;rn ⑶寿命高,切削性能稳定、可靠;r n ⑷刀具的尺寸便于调整,以减少换刀调整时间;rn ⑸刀具应能可靠地断屑或卷屑,以利于切屑的排除;rn ⑹系列化,标准化,以利于编程和刀具 管理。rn 二、数控加工刀具的选择rn 刀具的选择是在数控编程的人机交互状态下进行的。应根据机床的加工能力、工件材料的性能、加工工序、切削用 量以及其它相关因素正确选用刀具及刀柄。刀具选择总的原则是:安装调整方便,刚性好,耐用度和精度高。在满足加工要求的前提下,尽量选择较短的刀柄,以提 高刀具加工的刚性。rn 选取刀具时,要使刀具的尺寸与被加工工件的表面尺寸相适应。生产中,平面零件周边轮廓的加工,常采用立铣刀;铣削平面时,应选 硬质合金刀片铣刀;加工凸台、凹槽时,选高速钢立铣刀;加工毛坯表面或粗加工孔时,可选取镶硬质合金刀片的玉米铣刀;对一些立体型面和变斜角轮廓外形的加 工,常采用球头铣刀、环形铣刀、锥形铣刀和盘形铣刀。rn 在进行自由曲面加工时,由于球头刀具的端部切削速度为零,因此,为保证加工精度,切削行距一 般取得很能密,故球头常用于曲面的精加工。而平头刀具在表面加工质量和切削效率方面都优于球头刀,因此,只要在保证不过切的前提下,无论是曲面的粗加工还 是精加工,都应优先选择平头刀。另外,刀具的耐用度和精度与刀具价格关系极大,必须引起注意的是,在大多数情况下,选择好的刀具虽然增加了刀具成本,但由 此带来的加工质量和加工效率的提高,则可以使整个加工成本大大降低。rn 在加工中心上,各种刀具分别装在刀库上,按程序规定随时进行选刀和换刀动作。 因此必须采用标准刀柄,以便使钻、镗、扩、铣削等工序用的标准刀具,迅速、准确地装到机床主轴或刀库上去。编程人员应了解机床上所用刀柄的结构尺寸、调整 方法以及调整范围,以便在编程时确定刀具的径向和轴向尺寸。目前我国的加工中心采用TSG工具系统,其刀柄有直柄(三种规格)和锥柄(四种规格)两种,共 包括16种不同用途的刀柄。rn 在经济型数控加工中,由于刀具的刃磨、测量和更换多为人工手动进行,占用辅助时间较长,因此,必须合理安排刀具的排列 顺序。一般应遵循以下原则:①尽量减少刀具数量;②一把刀具装夹后,应完成其所能进行的所有加工部位;③粗精加工的刀具应分开使用,即使是相同尺寸规格的 刀具;④先铣后钻;⑤先进行曲面精加工,后进行二维轮廓精加工;⑥在可能的情况下,应尽可能利用数控机床的自动换刀功能,以提高生产效率等。rn 三、 数控加工切削用量的确定rn 合理选择切削用量的原则是,粗加工时,一般以提高生产率为主,但也应考虑经济性和加工成本;半精加工和精加工时,应在保证 加工质量的前提下,兼顾切削效率、经济性和加工成本。具体数值应根据机床说明书、切削用量手册,并结合经验而定。rn ⑴切削深度t。在机床、工件和刀 具刚度允许的情况下,t就等于加工余量,这是提高生产率的一个有效措施。为了保证零件的加工精度和表面粗糙度,一般应留一定的余量进行精加工。数控机床的 精加工余量可略小于普通机床。rn ⑵切削宽度L。一般L与刀具直径d成正比,与切削深度成反比。经济型数控加工中,一般L的取值范围为:L= (0.6~0.9)d。rn 乔邢魉俣葀。提高v也是提高生产率的一个措施,但v与刀具耐用度的关系比较密切。随着v的增大,刀具耐用度急剧下降,故v 的选择主要取决于刀具耐用度。另外,切削速度与加工材料也有很大关系,例如用立铣刀铣削合金刚 30CrNi2MoVA时,v可采用8m/min左右;而用同样的立铣刀铣削铝合金时,v可选200m/min以上。rn ⑷主轴转速n (r/min)。主轴转速一般根据切削速度v来选定。计算公式为:rn 式中,d为刀具或工件直径(mm)。rn 数控机床的控制面板上一般备有主轴 转速修调(倍率)开关,可在加工过程中对主轴转速进行整倍数调整。rn ⑸进给速度vF 。vF应根据零件的加工精度和表面粗糙度要求以及刀具和工件材料来选择。vF的增加也可以提高生产效率。加工表面粗糙度要求低时,vF可选择得大些。在加 工过程中,vF也可通过机床控制面板上的修调开关进行人工调整,但是最大进给速度要受到设备刚度和进给系统性能等的限制。rn 随着数控机床在生产实际 中的广泛应用,数控编程已经成为数控加工中的关键问题之一。在数控程序的编制过程中,要在人机交互状态下即时选择刀具和确定切削用量。因此,编程人员必须 熟悉刀具的选择方法和切削用量的确定原则,从而保证零件的加工质量和加工效率,充分发挥数控机床的优点,提高企业的经济效益和生产水平。rn rn
BW 碧威股份有限公司針對客戶端改善切削方式、提供專業切削CNC數控刀具專業能力、製造客戶需求如:Cutting tool、切削刀具、HSS Cutting tool manufacturer、Carbide end mills manufacturer、Carbide cutting tool manufacturer、NAS Cutting tool manufacturer、Carbide end mill、Aerospace cutting tool、Carbide drill manufacturer、High speed steel manufacturer、Milling cutter、Core drill manufacturer、鎢鋼銑刀、航太刀具、鎢鋼鑽頭、高速剛、鉸刀、中心鑽頭、Taperd end mills、斜度銑刀、Metric end mills、公制銑刀、Miniature end mills、微小徑銑刀、鎢鋼切削刀具、Pilot reamer、領先鉸刀、Electronics cutter、電子用切削刀具、Step drill、階梯鑽頭、Metal cutting saw、金屬圓鋸片、Double margin drill、領先階梯鑽頭、Gun barrel、Angle milling cutter、角度銑刀、Carbide burrs、滾磨刀、Carbide tipped cutter、銲刃刀具、Chamfering tool、倒角銑刀、IC card engraving cutter、IC晶片卡刀、Side cutter、側銑刀、NAS tool、DIN tool、德國規範切削刀具、Special tool、特殊刀具、Metal slitting saws、Shell end mills、滾筒銑刀、Side and face milling cutters、Side chip clearance saws、交叉齒側銑刀、Long end mills、長刃銑刀、Stub roughing end mills、粗齒銑刀、Dovetail milling cutters、鳩尾刀具、Carbide slot drills、Carbide torus cutters、鎢鋼圓鼻銑刀、Angeled carbide end mills、角度鎢鋼銑刀、Carbide torus cutters、短刃平銑刀、Carbide ball-noseed slot drills、鎢鋼球頭銑刀、Mould cutter、模具用刀具、BW微型渦流管槍、Tool manufacturer、刀具製造商等相關切削刀具、以服務客戶改善工廠加工條件、增加競爭力。
歡迎尋購~~~
碧威股份有限公司
www.tool-tool.com
全站熱搜
留言列表